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M. Elena Hernando1,2 • Álvaro Gutiérrez1
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Abstract
Diabetes is a chronic disease that affects a high percentage of the world population and produces different and serious

complications to patients. Most diabetes complications may be avoided by controlling the blood glucose levels exhaus-

tively. Moreover, a prediction of future glucose levels has shown to be fundamental in helping patients to plan and modify

their treatment in real-time. In this paper, a glucose predictor based on long short-term memory neural networks is

designed. Three input parameters are fed to the predictor: past glucose levels obtained from a continuous glucose mon-

itoring sensor, the insulin units administered by an insulin pump and the patient’s carbohydrates intake. Different pre-

diction times and input dimensions have been evaluated in order to provide the best prediction to patients. Results

encourage the use of glucose predictions to avoid the occurrence of hypoglycemias, anticipate correction actions, and to

increase the quality of life of these patients.

Keywords Artificial neural network � Long short-term memory (LSTM) � Type 1 diabetes � Times-series forecasting �
Glucose prediction

1 Introduction

Diabetes mellitus (DM), also known as diabetes, is a dis-

ease mainly distinguished by high blood glucose levels [1].

It is classified in four groups: type 1, type 2, gestational and

other specific types of diabetes [2]. The disease is mainly

related to insulin, one of the hormones that regulates blood

glucose concentration in the body.

Diabetes is an important health care problem worldwide.

According to the last available global report by the World

Health Organization [3], around 422 million adults were

diagnosed with diabetes in 2014. The disease’s prevalence

and the number of cases of diabetes continues to increase

annually, expecting to reach 693 million by 2045 [4]. In

2012, diabetes was found to be the direct cause in 1.5

million deaths, in addition to 2.2 million deaths caused

indirectly by complications of the disease [3]. Heart

attacks, strokes and kidney failure are some complications

that may arise from diabetes [5]. These complications are

very costly to healthcare systems and could be drastically

reduced with better control of the disease [6–8].

Type 2 diabetes is the most common form of diabetes.

However, type 1 diabetes, the second most common,

requires more attention during daily activities. The treat-

ment to manage type 1 diabetes is based on the exogenous

administration of insulin supported by exhaustive blood

glucose monitoring, with which most of the complications

can be prevented or minimized [9]. In addition to insulin

therapy administration, nutritional therapy and physical
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exercise are essential for controlling the blood glucose

levels [5]. Carbohydrates intake and physical exercise are

the main disturbances in blood glucose concentration.

The goal of blood glucose control is to reach normo-

glycemia levels, normal concentration of blood glucose,

minimizing the occurrences of hypoglycemia and hyper-

glycemia, low and high blood glucose levels, respectively.

The American Diabetes Association (ADA) defines hypo-

glycemia as a measurable glucose concentration 70 mg/dl

and hyperglycemia as glucose concentration 180 mg/dl.

The 2019 ADA revision recommended the range

80–130 mg/dl as premeal glucose target [10].

Self-monitoring carried out by the patient is necessary to

track and control blood glucose levels [11]. Patients need

to measure their capillary glucose levels discretely, several

times per day with a glucose meter, or using a continuous

glucose monitoring (CGM) sensor [12, 13]. CGM sensors

provide a continuous flow of information about the glucose

concentration, allowing a better control of the disease in

real time.

A glucose predictor would allow patients to plan their

actions and therefore, deal with the disease better [14].

However, to have a useful predictor, two factors must be

taken into account [15]. First, the prediction horizon (PH)

has to be long enough (at least 15 min), so patients have

time to adjust their treatment. Secondly, the fact that CGM

systems measure glucose levels in interstitial fluid in the

subcutaneous adipose tissue and not directly in blood

means that there is a delay between the glucose concen-

tration measured by CGM sensors and the blood glucose

levels [16], so it is important that the PH is longer than the

delay.

Artificial neural networks (ANNs) have been widely

used to address forecasting problems in different fields.

ANNs excel in comparison with traditional algorithms for

time series forecasting because they are able to infer the

complex relationships of the data and its

nonlinearity [17–20].

ANNs have been used in the past, showing good per-

formance in the prediction of blood glucose levels.

Specifically, different techniques have been followed to

predict the blood glucose level, such as (MLPs) [15],

(CNNs) [21] and recurrent neural networks (RNNs) [22].

Pérez-Gandı́a et al. [15] proposed a MLP to predict

glucose in real time from two different sensors. The model

only used CGM measurements as input data. The algorithm

provided three different PHs for 15, 30 and 45 min.

Moreover, they compared their model with the auto-re-

gressive model (ARM) of [23], obtaining better results

using the MLP. Zhu et al. [21] proposed a model that was

built from CNN layers and employed WaveNet algorithms

[24]. They used the type 1 diabetes OhioT1DM dataset

developed by [25] with patients’ glucose levels, insulin

bolus, carbohydrates intake and time as input. They also

used other input data such as heart rate and temperature.

However, these new parameters hindered the performance

of their model. A RNN, proposed by [22], used input data

from a CGM sensor. They compared their RNN model and

a MLP model with four different PHs: 15, 30, 45 and

60 min. As expected, the results showed that the RNN

architecture was better in making predictions than the MLP

model, because their feedback connections allow them to

learn temporal dependencies [26].

Given the importance of short- and long-term prediction

needs for diabetes patients, this paper presents a model

using long short-term memory (LSTM) neural networks

which extends the work of [15]. LSTMs are a type of

RNNs that are able to maintain both short and long time

dependencies through their states [27]. They are composed

of gates that control the information that is stored in the

states by altering the input and output.

Therefore, the main goal of this paper is to design and

implement a set of predictors with the aim of predicting

accurately the glucose level of type 1 diabetes and

improving previous results in the literature. First, a main

predictor model developed will consist of an LSTM fed

with previous values of glucose, insulin bolus and meal

intake. Based on the main predictor model, a set of pre-

dictors specialized in forecasting for different PHs will be

deployed. Furthermore, the use of different (IDs) in the

performance of the predictors are explored.

The paper is structured as follows. In Sect. 2, an intro-

duction to the basic concepts of LSTM neural networks is

carried out. Section 3 presents the dataset and the process

followed to develop the set of predictors that are evaluated

in this paper. Section 4 is dedicated to assess the set of

predictors designed in Sect. 3. Section 5 provides conclu-

sions of the paper and outlines possibilities for future

research.

2 Theoretical background

LSTM neural networks were firstly introduced by [27].

LSTm is a type of RNNs developed specifically to solve

the vanishing and exploding gradient problem [28, 29].

During the training of the RNNs with backpropagation

through time (BPTT) [30], when the gradients are propa-

gated over time, they tend to vanish or become unstable.

This problem makes it very difficult for RNNs to learn long

time dependencies. This issue is addressed by the LSTMs,

being able to react to long- and short-term dependencies.

An LSTM cell (see Fig. 1) is composed of 4 layers, also

called gates [26, 31]. The four gates are the forget gate (fk),

the input gate (ik), the new cell state candidate gate ( eck )

and the output gate (ok). Each gate has its own parameters,
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biases (b), weight for the input value (W) and weight for

the hidden state value (U).

The cell state is the memory of the cell and maintains

the information through time. The inputs to the four gates

are the correspondent xk vector, where k is a sequence from

k ¼ 1; . . .; sf g, s being a number of time steps that belongs

to N, and the previous outputs (hidden states) from the

LSTM (hk�1).

The behavior of an LSTM cell is as follows:

1. The forget layer decides what percentage of the

information from the cell state has to be left behind

and which should remain in it. The activation function

of this gate is a sigmoid (r):

fk ¼ r Wf xk þ Uf hk�1 þ bf
� �

ð1Þ

where Wf is the input weight matrix, xk is the input

vector, Uf is the previous output weight matrix, hk�1 is

the previous output and bf is the bias.

The output of the forget layer (fk) is multiplied

element-wise by the cell state (ck).

cfk ¼ fk � ck�1 ð2Þ

This process is the one that erases the information of

the cell state and occurs for the input and output gates.

2. The next step consists of updating the new information

to the cell state, cik . The new cell state candidate gate

( eck ) proposes the new information that might be added

to the memory of the cell, with a hyperbolic tangent

(tanh) as the activation function:

eck ¼ tanh Wixk þ Uihk�1 þ bið Þ ð3Þ

On the contrary, the input gate uses a sigmoid

function:

ik ¼ r Wixk þ Uihk�1 þ bið Þ ð4Þ

Next, the cell state is calculated:

cik ¼ ik � eck ð5Þ

3. The new cell state is updated with the information

provided by the two previous steps:

ck ¼ cfk þ cik ð6Þ

4. Next, the output gate calculates its output by means of

a sigmoid activation function:

ok ¼ r Woxk þ Uohk�1 þ boð Þ ð7Þ

The cell state (ck) is modified with a hyperbolic tan-

gent (tanh) activation function. Finally, the output hk is

calculated as:

hk ¼ ok � tanh ckð Þ ð8Þ

3 Design process

3.1 Dataset

The dataset includes time-dependent information about the

glucose levels obtained with the Guardian� Real Time

CGM sensor, the insulin data administered by each

patient’s insulin pump, the food intake converted into

grams of carbohydrates and the capillary blood glucose

levels from a glucometer (used for the calibration of the

CGM sensor). The glucose levels are sampled every 5 min,

while the insulin data and the food intake are adjusted to

this sampling period. Therefore, all the glucose profiles

have a sampling period of 5 min, meaning each profile has

288 samples per day.

The first three variables (glucose, insulin and carbohy-

drates intake) from the aforementioned database will be

used for prediction (see Fig. 2 for an example). The fourth

Fig. 1 Computational graph of a LSTM cell [32]

Fig. 2 Representation of the raw parameters to feed the RNN. The top

graph represents the glucose values obtained by the CGM sensor, the

middle graph represents the insulin units provided, and the bottom

graph shows the food intake in grams of carbohydrates
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variable, capillary blood glucose levels, were automatically

used by the Guardian� Real Time to calibrate the output.

3.1.1 Data preprocessing

3.1.2 Glucose preprocessing

CGM profiles usually present three main artifacts that need

to be fixed before the dataset can be used for glucose

prediction:

1. There are missing values (values equal to zero), mainly

caused by a problem with the connection between the

CGM sensor and the receptor or problems that happen

during calibration. A linear interpolation has been used

to eliminate missing data.

2. There are non-derivative values that appear when a

blood glucose calibration is entered to the CGM (see

step in Fig. 3). A threshold of 30 mg/dl has been

defined to compensate these distortions. Only steps

greater than or equal to the threshold are compensated.

The preprocessing to compensate works as follows: if a

distortion greater than or equal to the threshold is

found, then there is a check for an associated calibra-

tion value that has produced this distortion. If it is

confirmed, a linear transformation is applied to the

signal to minimize the distortion, see Eq. 9. The

transformation technique is applied before and after the

calibration point (CP), where the calibration is inserted

into the CGM sensor measurement (ka ¼ 0). This

process is applied until a number of time steps (Np, Na)

is reached or when the distortion decreases to a

threshold of 20 mg/dl.

y
0
CGM½ip� ¼ yCGM½ip� þ C

Np � kp

Np

� �

y
0
CGM½ia� ¼ yCGM½ia� þ C

Na � ka

Na

� �

8

>

>

>

<

>

>

>

:

ð9Þ

where

ip ¼ CP þ kp
� �

ia ¼ CP � kað Þ
kp ¼ f1; . . .;Npg
ka ¼ f0; . . .;Nag

8

>

>

>

<

>

>

>

:

ð10Þ

where Np is the number of time steps where the

transformation is going to be applied before the CP,

whereas Na corresponds to the number of time steps

after the CP. The corrective measure (C) is applied to

the CGM signal from the CP and its effect decreases

the further it moves from that point. C is directly

proportional to the difference between the glucometer

calibration measure y CP½ �calibration

� �

and the CGM

value y CP½ �CGM

� �

, see Eq. 11.

C ¼ h y CP½ �calibration�y CP½ �CGM

� �

ð11Þ

where h is a constant that corresponds with the per-

centage of the corrective measure that is going to be

applied to the signal. Its value is chosen between 0 and

1. Therefore, h, Np and Na are selected for each profile

to minimize distortion of the original signal, main-

taining its trend and shape. Figure 3 shows an example

of the results of the process compared to the pre-cali-

brated CGM signal and the calibration measures. When

performing this process, the 57th profile, out of 58,

showed not to have calibration data. Therefore, this

profile has been dropped from the study because dis-

tortions could not be corrected.

3. Finally, there is noise in the CGM signal. To reduce the

CGM signal noise and smooth the signal, a moving

average filter is applied:

x̂½k� ¼ 1

N

X

N�1

n¼0

x½k � n� ð12Þ

where N is the length of the window, x is the raw

signal and x̂ is the filtered signal. The moving average

filter is a finite impulse response (FIR) filter. It only

depends on the input parameters, and it is a time-de-

pendent filter. For this application, the selected filter

should fulfill the requirement of keeping the relevant

information in the filtered signal. However, the filtering

process causes a delay in the output signal and a

potential loss of information. Taking all this into

account, the chosen moving average filter has a length

of N ¼ 5.

Fig. 3 Step produced by the calibration. This graph represents the

glucose values from the pre-calibrated CGM sensor, the calibration

measures made by glucometer and the transformed CGM after the

transformation
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3.1.3 Insulin preprocessing

Insulin pumps try to emulate the functioning of a healthy

pancreas with two kinds of insulin injections: basal insulin

bolus and preprandial insulin bolus. The basal profile is

intended to emulate the insulin secretion of the pancreas in

fasting periods, and the preprandial insulin bolus is inten-

ded to control hyperglycemia after each meal. The

preprandial bolus is several orders of magnitude bigger

than the basal micro-boluses, usually infused every

3–5 min. The preprandial insulin boluses are represented as

an impulse function (see Fig. 2). This may produce the

ANN to ignore the value of these boluses of insulin or

another unforeseen behavior. Therefore, a preprocessing

technique is needed.

The chosen solution is to transform the preprandial

bolus of insulin, that is an impulse function, into a rect-

angular function with the same area. The postprandial

bolus is distributed during 12 samples that correspond to

1 h, simulating the delivery of an insulin bolus over an

extended period of time (known as the extended bolus in

insulin infusion systems), which avoids a high initial dose

of insulin and allows an extended insulin action [33].

3.1.4 Food intake preprocessing

The food intake was manually provided by the patient.

These values were transformed to grams of carbohydrates,

representing the amount of carbohydrates eaten by the

patient in the meal. Each registered meal is represented

with only one value. The representation of this parameter

shows that the food intake is also an impulse function (see

Fig. 2).

The food intake parameter is transformed into a rect-

angular function with the same area that the impulse

function with 12 samples equivalent to 1 h. The value of

1 h has been defined as the average absorption time of

glucose for the different types of carbohydrates.

3.1.5 Normalization

LSTMs have sigmoid and tanh activation functions in their

gates (see Sect. 2). The value of the sigmoid output is in

the range between 0 and 1, while the tanh function range is

between � 1 and 1. Therefore, all input parameters to the

ANN have been normalized in the range of 0–1 to prevent

unforeseen results and to facilitate the proper learning of

the neural network. This process is also done to the targets

of the ANN model. The min–max feature scaling is applied

to normalize the input parameters and targets. Figure 4

shows the result of all the preprocessing techniques applied

in the dataset.

3.1.6 Data arrangement

The data are to be arranged in input vectors,

I ¼ fI;I; . . .;Ing, and targets vectors,

T ¼ T;T; . . .;Tnf g, where n is the number of tuples of

input and target vectors in the dataset. The input time series

are: glucose (x ¼ x1; x2; . . .; xnf g), insulin

(w ¼ w1;w2; . . .;wnf g) and food intake

(z ¼ z1; z2; . . .; znf g). These values are converted in a

supervised learning problem using the sliding window or

windowing method [34, 35], and it has been applied as

follows:

• The ID, also known as the sequence of values,

determines how many past values of glucose, insulin

or carbohydrates intake are fed as an input to the

predictor. The PH states the time at which the

prediction will be made in minutes.

• The past values of glucose are used as input to the

predictor, while the future values of glucose are the

target of the predictor. Therefore, the time series have

to be re-arranged in input and target values. The insulin

and the carbohydrates intake parameters are only inputs

to the system, so they only have to be re-arranged as

input values.

• Ii represents an input time series to the predictor at a

specific time instant, and Ti is the corresponding future

glucose value for that input. For specific values of ID

and PH, every input (Ii) is arranged as a sequence of

s ¼ ID� 1 values in the past, that is:

Fig. 4 Parameters after the application of the preprocessing tech-

niques. The top graph represents the glucose values obtained by the

CGM sensor. The middle graph represents the insulin units provided,

while the bottom graph shows the food intake in grams of

carbohydrates
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Ii ¼
x½k� s� . . . x½k� � x½k�
w½k� s� . . . w½k� � w½k�
z½k� s� . . . z½k� � z½k�

2

6

4

3

7

5
ð13Þ

The correspondent target (Ti½k�) is the glucose value for

the expected PH in the future, that is:

Ti ¼ x½kþPH� ¼ y½k� ð14Þ

The dataset is divided into three smaller subsets: training,

validation and the test datasets. It is important to note that

the data belonging to each patient should be only in one of

the datasets, because these data are correlated among them

and this could bring misleading results as the data would be

biased. Taking all of this into consideration, the different

subsets are distributed as follows: training dataset has 36

profiles from five patients, validation dataset has 6 profiles

from one patient and test dataset has 15 profiles from two

patients.

3.2 Neural network architecture

The chosen framework to implement the predictor is

PyTorch [36]. PyTorch is an open source platform to

develop neural network models, and it is deeply integrated

with Python.

A predictor example, shown in Fig. 5, is composed of

three layers: two LSTM layers and one final linear layer.

The LSTM layers (see Sect. 2) have a variable number of

neurons to be optimized, and the linear layer is a single

perceptron with only one neuron and a linear activation

function. Figure 5 also presents the unfolding and the data

flow of the model. First, the input sequence (Ii) comes in

the first LSTM layer. In this layer, the unfolding is pro-

cessed and the output (h1
k) is the input to the following

LSTM layer. Note that the superscript denotes the layer of

the model. The second LSTM layer processes the infor-

mation and provides its output for the last value of the

sequence, h2
s to the linear layer. Finally, the linear layer

computes the h2
s to produce the expected value of glucose

concentration (yPH) at the desired PH.

3.3 Parameter optimization

All IDs and PHs are combined to search the parameters that

produce the best performance. In this paper, three values of

ID are set for the network optimization: 5, 20 and 50

samples, defining a small, medium and large input vector.

The search of the optimal parameters is divided in two

parts, the architecture parameters and the parameters rela-

ted to the training of the proposed predictor.

For the architecture optimization, the output linear layer

will not be modified and its structure remains in one layer

with one neuron. Therefore, during this Section when any

reference is made to the number of layers or neurons, it

refers to the LSTM layers of the model.

All LSTM layers will have the same number of neurons.

The number of neurons that is considered in this study is

from 10 to 100 in steps of 10. The number of LSTM layers

is 1, 2 and 3. This gives a total of 30 combinations that are

searched to find the best performance for the 3 IDs (5, 20

and 50 samples) and four PH (5 min, 15 min, 30 min and

45 min).

Moreover, two optimizers are chosen to train the pro-

posed predictor: RMSprop [37] and Adam [38]. These

optimizers are used to update the weights and biases of the

ANN in the backpropagation algorithm. On the other hand,

five different learning rates (a) are considered a ¼
0:0001; 0:0005; 0:001; 0:005; 0:01½ � to search the best

parameters for the training of the ANN.

This parameter setup makes a total of 3600 combina-

tions to be tested. From them, 12 different models shown in

Table 1 are selected considering the best root mean square

error (RMSE) value obtained in the prediction. The moti-

vation of the decision to use this metric for parameter

selection is twofold. Firstly, in contrast to Mean Square

Error (MSE) it provides a statistic error that maintains the

scale of the time series under assessment. Secondly, com-

pared to other metrics such as the mean absolute error, it is

sensitive to large errors that must be mitigated in potential

Fig. 5 Generic architecture version of the predictor proposed
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medical applications involving patients. Results of these

models are analyzed in detail in Sect. 4.

4 Results

4.1 Metrics

For all the metrics, let the prediction be Y ¼ y1; . . .; ynf g,

the expected output or targets T ¼ t1; . . .; tnf g, and N the

number of samples to be evaluated.

The MSE has been used as the loss function to be

minimized, see Eq. 15. In the backpropagation algorithms,

it is typically used to optimize artificial neural networks.

The MSE simplifies the gradient calculations, and it is a

globally differentiable function and provides an optimal

and computationally simple optimization improvement.

MSE ¼ 1

N

X

N

i¼1

ti � yið Þ2 ð15Þ

Nonetheless, the following metrics are used in the evalu-

ation of the performance of the proposed predictor:

• The RMSE, see Eq. 16:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

ti � yið Þ2

v

u

u

t ð16Þ

where ti is the expected output (target) and yi is the

prediction made by the model. The RMSE, unlike the

MSE, presents the error in the same unit as the variables

that it is evaluating. Additionally, it is the most fre-

quently used metric to quantify accuracy for glucose

prediction models in the literature [15, 23, 39, 40].

• The Pearson correlation coefficient (rt;y), see Eq. 17:

rt;y ¼
PN

i¼1 ti � �tð Þ yi � �yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ti � �tð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 yi � �yð Þ2

q ð17Þ

where �t and �y are the mean defined as �t ¼ 1
N

Pn
i¼1 t and

�y ¼ 1
N

Pn
i¼1 y. This coefficient gives information about

the similarities between the target signal and the pre-

dicted signal. The Pearson correlation coefficient has

been used previously by other authors, complementing

RMSE to evaluate prediction models’ accuracy

[41–43].

• The delay associated with the prediction. The purpose

of this metric is to assess the lag produced in the

prediction with respect to the original glucose signal

from the CGM sensor. The presence of delay reduces

the accuracy when it is calculated as RMSE and reduces

the expected PH. Therefore, it is necessary to calculate

the delay to characterize the performance of a glucose

predictor model. Several authors calculate this metric

[15, 23, 41, 42, 44–46], although the algorithm to set

the delay is not exactly the same for all them. To

estimate the delay associated with prediction, the

concept of mean delay presented by [23, 44] is extended

by calculating every sample between the 25% and 75%

of the slope length. The slope length is defined as the

difference between the lowest point and the highest

point. This metric measures the delay in the positive

and negative slopes individually. Therefore, there are

two values for this metric, one corresponds with the

rising trend (upward delay) and the other with the

falling trend (downward delay). The upward and

downward delay are finally computed as the average

of all rising trends and all the falling trends,

Table 1 Optimal parameters for each ID and PH

ID PH (min) LSTM layers Neurons Optimizer a

5 5 2 60 Adam 0.001

5 15 3 10 Adam 0.001

5 30 2 10 Adam 0.0001

5 45 3 10 Adam 0.0005

20 5 2 80 Adam 0.0005

20 15 1 70 Adam 0.001

20 30 3 10 Adam 0.0001

20 45 3 90 Adam 0.0005

50 5 3 30 Adam 0.0001

50 15 2 10 Adam 0.0001

50 30 2 10 Adam 0.001

50 45 2 20 Adam 0.001

All these models have one output linear layer with one neuron

Fig. 6 Example of the delay calculation, each percentage is calculate

for the length of each slope. For the rising slope, Pr is the lowest point

and P0
r is the highest point. In the falling slope, Pf is the highest point

and P0
f is the lowest point
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respectively. Figure 6 shows an example of the slope

points at which the delay is calculated.

4.2 Results

In Sect. 3.3, twelve predictors were tuned to predict the

glucose concentration by using three input parameters.

Each of the twelve predictors are specialized for an ID and

a PH (see Table 1).

This study is divided in two parts: (1) an evaluation of

the accuracy of the 12 different predictors for their corre-

sponding PH; and (2) assessment of the effect of the pre-

diction when different sequences of previous glucose,

insulin and carbohydrates intake values or IDs are entered

as input.

In the first part, the twelve predictors are evaluated with

the test dataset. The process followed to prevent overfit-

ting, called early stopping, stops the training when the

performance for the validation dataset begins to worsen

[47]. The results from these metrics are shown in Tables 2

and 4 for the training and test dataset, respectively. In

addition, the predictions for a glucose profile of the test

dataset for each model are displayed.

It is important to note that the prediction starts once the

first ID values are fed. An example of this is presented in

Fig. 7 with an ID of 5 and a PH of 45 min. The model starts

to predict when it receives the first 5 values. Therefore, the

samples are separated by 5 min, the model of an ID of 5

will wait 25 min to begin the predictions. Once the model

has generated the first prediction, the model will output a

value for each new input received.

First, it is important to verify that the models do not

incur in overfitting. Tables 2, 3 and 4 show the results for

the training, validation and test datasets, respectively. The

RMSE is very similar for the three datasets, being slightly

lower for the validation dataset. There are some exceptions

where the training dataset is slightly lower, these cases are

the models for IDs 20 and 50 with PH 45 min. The other

metrics have similar results for the three datasets.

There are three models specialized in the prediction of

each PH. Firstly, we assess the performance of the models

that predict with a PH of 5 min. Figure 8 shows the pre-

diction made by the predictor with IDs 5, 20 and 50 for a

specific glucose profile. These three models have a high

accuracy with error lower than 1 mg/dl, see Table 4, and

the time series are almost identical. No delay is obtained

from the output of these models.

The performance of the models with a PH of 15 min for

the same glucose profile is shown in Fig. 9. These models

improve the RMSE results presented in [15] for a PH of

15 min in a 55.44%, 56.57% and 62.32%, for the ID of 5,

20 and 50, respectively. Moreover, Fig. 9 shows that the

predicted glucose signals resemble with the original values

Table 2 Metrics for all the

models for the training dataset
Model ID PH (min) RMSE (mg/dl) rt;y U. delay (min) D. delay (min)

60-60-1 5 5 1.03 0.99 0 0

10-10-10-1 5 15 4.4 0.99 5 5

10-10-1 5 30 12 0.96 15 10

10-10-10-1 5 45 20.06 0.9 30 15

80-80-1 20 5 0.9 0.99 0 0

70-1 20 15 4.39 0.99 5 0

10-10-10-1 20 30 11.97 0.96 15 5

90-90-90-1 20 45 19.6 0.9 25 10

30-30-30-1 50 5 0.86 0.99 0 0

10-10-1 50 15 3.66 0.99 5 0

10-10-1 50 30 11.59 0.96 15 5

20-20-1 50 45 17.94 0.90 25 10

The models are identified by the numbers of neurons in each layer and the ID is the input dimension. U.

delay and D. delay are defined as the upwards delay and the downward delay, respectively

Fig. 7 Example of the effect of an ID of 5 in the prediction
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Table 3 Metrics for all the

models for the validation dataset
Model ID PH (min) RMSE (mg/dl) rt;y U. delay (min) D. delay (min)

60-60-1 5 5 0.95 0.99 0 0

10-10-10-1 5 15 4.14 0.99 0 5

10-10-1 5 30 11.51 0.96 10 15

10-10-10-1 5 45 18.79 0.89 25 25

80-80-1 20 5 0.79 0.99 0 0

70-1 20 15 3.86 0.99 0 5

10-10-10-1 20 30 11.37 0.96 10 10

90-90-90-1 20 45 20.66 0.89 10 25

30-30-30-1 50 5 0.85 0.99 0 0

10-10-1 50 15 3.59 0.99 5 5

10-10-1 50 30 11.72 0.96 10 15

20-20-1 50 45 19.51 0.87 25 25

The models are identified by the numbers of neurons in each layer and the ID is the input dimension. U.

delay and D. delay are defined as the upwards delay and the downward delay, respectively

Table 4 Metrics for all the

models for the test dataset
Model ID PH (min) RMSE (mg/dl) rt;y U. delay (min) D. delay (min)

60-60-1 5 5 0.96 0.99 0 0

10-10-10-1 5 15 4.34 0.99 5 5

10-10-1 5 30 12.6 0.96 15 10

10-10-10-1 5 45 21.40 0.89 30 15

80-80-1 20 5 0.86 0.99 0 0

70-1 20 15 4.23 0.99 5 0

10-10-10-1 20 30 12.51 0.96 15 5

90-90-90-1 20 45 21.52 0.89 25 20

30-30-30-1 50 5 0.85 0.99 0 0

10-10-1 50 15 3.67 0.99 5 0

10-10-1 50 30 12.20 0.96 15 10

20-20-1 50 45 20.76 0.88 25 15

The models are identified by the numbers of neurons in each layer and the ID is the input dimension. U.

delay and D. delay are defined as the upwards delay and the downward delay, respectively

Fig. 8 Predictions made at 5 min by the models with an ID of 5, 20

and 50

Fig. 9 Predictions made at 15 min by the models with an ID of 5, 20

and 50
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from the CGM sensor. This idea is reinforced by the value

of the correlation, rt;y, that is very close to 1 (see Table 4).

Furthermore, the models present a delay of 5 min in the

upward slopes. However, the model is faster in the

downward slopes, which explains why the models for IDs

20 and 50 have a null downward delay.

The glucose predictions made for a PH of 30 min and

the same glucose profile are shown in Fig. 10. Comparing

the results with those obtained in [15] for a PH of 30 min,

these predictors improve the RMSE in a 27.79%, 28.31%

and 30.09%, for the ID of 5, 20 and 50, respectively. The

rt;y is very close to 1 (see Table 4), demonstrating that the

predicted signal is very close to the original signal. The

delays obtained are similar for all the models that predict

using a PH of 30 min.

Lastly, the models with a PH of 45 min for the same

profile are shown in Fig. 11. The results from these pre-

dictors, see Table 4, improve the RMSE obtained in [15]

by a 17.54%, 16.98% and 20.53%, for the ID of 5, 20 and

50, respectively. The similarity between the predicted

signal and the original signal from the CGM sensor have

worsened with regard to the previous cases where the rt;y
was very close to 1. The presented models are faster in the

downward slopes than in the upward slopes.

After the study of the performance of all the predictors,

the most accurate models are the ones with an ID of 50 (see

Table 4). Moreover, these models are faster in both rising

and falling slopes. This result was expected, because it is

the model that receives more information in their inputs.

However, the evaluation metrics in Table 4 present a

similar performance between models with the same PH,

independent of the ID.

Figures 8, 9, 10 and 11 also present a high similitude

between the prediction at the same PH. Some differences in

the model performance start to appear when the PH is

30 min or 45 min. Specifically, the differences are better

identified when there is a steep slope. In these cases, the

predictors with ID of 5 and 20 tend to overshoot a bit more

than the predictors with IDs of 50. Nevertheless, these

differences are difficult to notice and are not very

remarkable.

4.3 Discussion

Twelve models have been deployed to achieve the objec-

tive of predicting glucose concentration in patients with

type 1 diabetes. These models may be grouped by their PH:

5 min, 15 min, 30 min and 45 min.

The predictors with a PH of 5 min are the most accurate

models, but they do not provide enough time to anticipate

therapeutic actions to predict adverse events (hypo-

glycemia or hyperglycemia) due to the delayed action of

insulin infusions [15]. Consequently, the predictors with a

PH of 5 min are not useful in a clinical scenario.

Predictors specialized to forecast at 15 min have shown

a high accuracy; they can be used to improve the glucose

control supported by artificial pancreas systems, which are

designed automatic and real-time adjustments of insulin

delivery with no human intervention [48]. The models with

a PHs of 30 min or longer are good enough to allow a

patient to do the necessary adjustments in insulin delivery

and consequently to prevent the occurrence of hypo-

glycemia or hyperglycemia events. Both predictors with a

PH of 30 and 45 min will provide a sufficient time interval

to anticipate the patient’s action, both being useful to

predict the glucose concentration. However, predictors

with a PH of 30 min have the best compromise between

available time interval to allow therapeutic adjustments and

the accuracy of the predictions.

In Sect. 4.2, the performance of the predictors with the

same PH and different ID was compared, assessing the

effect of the ID in the predictor’s output. It is important toFig. 10 Predictions made at 30 min by the models with an ID of 5, 20

and 50

Fig. 11 Predictions made at 45 min by the models with an ID of 5, 20

and 50
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consider all the characteristics of the predictors before

choosing one. These characteristics are the ID, PHs and the

results of the metrics evaluation. Taking all this into

account, the results from Table 4 are very similar for each

predictor at the same PH. However, the predictors with the

larger IDs have a longer initialization time. Therefore, with

all the models having similar levels of accuracy, it would

be advisable to choose models with smaller IDs, because

they start to predict sooner.

Nevertheless, the most accurate predictors were those

with an ID of 50 that corresponds with a period of 250 min.

This happens because they are the models which more

information received. However, the results from the other

models are similar. The improvement of adding more

information in the input is small. This effect is explained

hereafter for several reasons.

First, patients with type 1 diabetes does not have

endogenous insulin secretion; hence, their metabolisms do

not have the mechanisms that regulate the glucose con-

centration. The LSTM neural networks are fed with the

past glucose concentration values. The predictor could be

giving priority to the recent values in time because they

have a bigger impact in the future values of glucose.

Hence, the most important characteristic taken into account

by the predictors is the glucose trend, so they tend to ignore

the oldest values that have a lower impact in the trend of

the signal.

The mechanisms that patients have to change the glu-

cose concentration are mainly the injection of insulin,

which diminishes the glucose value, and the consumption

of carbohydrates, which increases the glucose concentra-

tion. However, the effects of both insulin and carbohy-

drates intakes are not immediate. This leads to another

possible problem: insulin starts to act 1 h after its injection

and the absorption of the carbohydrates consumed takes

between 30 min and 2 h depending on the type of carbo-

hydrates. Therefore, these are the long term dependencies

that the predictor should learn to improve the prediction.

The problem is that the insulin bolus and the food intake

is presented a few times in each profile, 3 or 4 times on

average, corresponding with main meals. Then, consider-

ing that the training dataset has 36 daily profiles, the

number of available main meals is around one hundred.

This might not be a sufficient number of training samples

to learn the effects of possible long term dependencies in

the future glucose values. Therefore, the oldest input values

are being partially ignored.

In addition, LSTM have at least four more weights and

biases than a multilayer perceptron. This is translated in

LSTM needing bigger datasets for training and the pro-

posed predictors could benefit from enlarging the number

of profiles.

Moreover, long term dependencies in the glucose con-

centration might exist. Future research with profiles longer

than 1 day would be needed to assess the impact of this

long term dependencies.

Nevertheless, the twelve models presented are between

17 and 62% more accurate than those obtained in [15]. In

addition, the twelve models are slower in the upwards trend

than the models presented in [15] while performing faster

in the downwards trends. In fact, this is a desirable char-

acteristic because diabetic patients are usually more wor-

ried about hypoglycemia events than hyperglycemia

events.

5 Conclusions

The aim of this paper was to continue the work presented in

previous studies [15] with the design of LSTM based

predictors. The results obtained are encouraging and sup-

port the use of LSTM for predictions of glucose concen-

tration in patients with diabetes type 1.

The evaluation of the predictors was done at four dif-

ferent PHs 5, 15, 30 and 45 min, and the predictors were

fed with three different ID 5, 20 and 50. From this archi-

tecture, twelve predictors were deployed, each one spe-

cialized in a PH with a specific ID.

Results show that predictors with a PH of 30 min pro-

vide the best compromise between the amount of time that

a patient has to modify the treatment and the performance

of the model predictions. In addition, it is recommended to

use an ID of 5 because it has a much shorter initialization

time. Nonetheless, the rest of the models could be also used

depending on the prediction needs that have to be covered.

Results presented in this paper open new lines of future

work. The most important aspect is the number of patients

and the amount of data. Some reasons have been proposed

to explain why the different IDs give such similar results.

The most probable cause is the need for more data to train

the predictor based on LSTM. Nonetheless, a comple-

mentary approach using the paradigm of few-shot learning,

where the models are trained with small amounts of data, is

recommended (see [49, 50]).

Moreover, in this paper only three parameters are used

to calculate the futures values of glucose. However, the

process that regulates the glucose concentration is a com-

plex mechanism and other parameters such as physical

activity has an impact. Therefore, a future research line

might be to add new parameters to feed the predictors and

assess the importance of these parameters in the perfor-

mance of the predictor. Finally, an automatic approach to

correct the sensor artifacts and an automatic optimization

of all ANN parameters would be desired.
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