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Swarm robotics research has been present for some decades, providing nature-inspired
algorithms in swarms of robots. During this time, many different algorithms have focused
on specific tasks, such as coordination, cooperation, organization, division of labor, or task
allocation, among others. However, basic concepts, such as the use of communication, col-
lective memory, or optimized coordination, are still important challenges when designing
swarms of robots.

One of the most critical design steps is the communication mechanics of the group.
Communication within the swarm refers to any kind of interaction among robots, in which
information about states, actions, or intentions of agents is shared across the swarm. Ac-
cording to [1], inter-agent communication in swarm robotics can be split into: stigmergy,
interaction via state, or direct communication. Another distinction can be highlighted in
the case of direct communication. Essentially, we can differentiate between direct commu-
nication semantics and codes that are handcrafted by the researcher or communication
semantics that arise from automatic controller design methods. In the latter scenario, it is
said that communication emerges. Clearly, the researcher still must design and establish the
communication means and resources, but the semantics and the information relevant to the
emerged communication are a result of optimization processes. Within this context, com-
munication can also be identified as abstract or situated communication [2–6]. However,
nowadays, many aspects remain unsolved. For example, how does the communication
emerge? How should it be implemented? To what extent does increasing or reducing the
communication capabilities improve or worsen the swarm behavior?

Another important unsolved aspect is collective memory. Remembering information
is a fundamental aspect of cognition, present in numerous natural systems. The ability to
store and later use information is essential for a variety of adaptive behaviors, including
integration, learning, generalization, prediction, and inference [7]. Moreover, memory
allows behavior changes based on previously learned situations. Many living organisms
remember penalties or rewards, relying on these memories to repeat or avoid similar
situations. However, what if the individual does not hold the required information itself?
Is the group capable of collectively creating a memory? These are aspects that also remain
unsolved.

In recent decades, several works have focused on these communication and memory
challenges for the coordination of swarms of robots [8–12]. In this editorial, we refer to nine
specific works dealing with these aspects. The highlighted manuscripts approach these
problems from several perspectives (control theory, statistical analysis, machine learning,
or deep learning) and types of robots (terrestrial, aerial, or underwater robots). Regardless
of the approach, they all share a common objective, to increase the actual understanding on
collective robot control and coordination.

Specifically, Sendra and Gutiérrez analyze the evolution of different kinds of abstract
and situated communications in collaborative environments [13]. The objective is to main-
tain the same neural structure to develop controllers that adapt to different tasks. The neural
controllers are optimized using Separable Natural Evolution Strategies (SNES) [14]. The
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semantics of the communication are undefined at the design phase and they correspond to
the evolution process and fine-tuning of the neural controller, based on the communication
information that becomes relevant for the task. The manuscript confirms that the evolution
guides the communication towards very different mechanics and semantics, although
the neural controllers are architecturally identical. Nonetheless, the evolved systems are
scalable and robust under predefined perturbations.

On the other side, Campo et al. investigate how individuals without memory capabili-
ties may display collective memory [15]. They gain inspiration from the Pavlov experiment
and propose an aggregation experiment on a swarm of robots. Within the experiment, the
group encodes and recovers information that is not independently stored on the individuals
of the swarm. On the contrary, the information is stored over specific spatial configurations
of the group. The results show that a swarm of robots can have a memory of its own,
independently of the internal state of its members. With simple agents and behavioral
rules, the robots learn to associate different stimuli with spatial information.

Focusing on planification, Ahmed et al. develop a distributed path planner for multi-
robot systems with a mechanism based on priorities [16], by integrating Particle Swarm
Optimization (PSO) [17] and the Bresenham algorithm [18]. In their proposal, PSO is used
to generate the optimal trajectory, with a multi-objective fitness function based on energy
consumption and movement risk. The Bresenham algorithm is used for ensuring the full
coverage of the operational area. The communication between robots is performed with
each other in an ad hoc manner, and it is only used to share position and location among
themselves.

Extending the communication assumptions raised in the previous work, Coquet et al.
propose a new method inspired by flocking algorithms and PSO, named the Local Charged
Particle Swarm Optimization (LCPSO) algorithm [19]. In this case, the authors control a
swarm of robots with communication constraints between agents. The authors test the
algorithm in a formation scenario with source heading, where the positions of the center
of gravity and attractors guide the swarm. Moreover, based on tunable parameters, the
algorithm controls the swarm with minimal communication or interaction, achieving a
stable formation which is invariant to time.

Nonetheless, limited communication is also exploited in [20]. The authors propose
a distributed and asynchronous approach to simultaneous task assignment and path
planning. The authors refer to it as Hierarchical Task Assignment and Path Finding
(HTAPF), exploiting a hierarchical representation of the locations where tasks must be
executed. The proposal combines a bio-inspired collective decision-making process and a
search-based path planning. The algorithm is decentralized for both tasks, being robust
to limited communication and robot failures and scalable to different environments and
group sizes. Task allocation supports multiple hierarchical decision levels and a utility
function that directly considers the cost of motions.

By dividing the level of competences, the authors of [21] develop a macroscopic
foraging behavior for collectively transporting objects. The authors define two microscopic
behaviors, both for displacement and collision avoidance. The robots adapt to unseen
changes in the environment, operating coherently with its initial goal. The authors verify
that the behavior definition on the microscopic system does not only simplify the learning
of the global system, but it also provides a way to adjust microscopic behaviors without
significant macroscopic changes.

Based on the same concepts of division of behaviors, a multilayer architecture is
presented in [22]. The different layers focus on trajectory planners, obstacle avoidance
algorithms, and decision-making methods. Every layer provides the swarm with the neces-
sary technology to solve problems arising from coordinated and unsupervised navigation.
Moreover, each layer includes a set of methods that increase the robustness of the archi-
tecture, by developing redundant implementations and control loops. The layers are later
combined to allow the coordinated navigation of a robot swarm in different environments.
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Control theory has typically been used for optimizing the emergence of order in
swarms. As a step further, [23] proposes a new algorithm that optimizes the swarm
movements with respect to interaction requirements. The authors propose a systematic
methodology, combing control theories and statistical analysis for its purpose. In their
proposal, every individual is considered an egalitarian system that focuses on the rules
applied to the nearest neighbour. The results indicate that by reducing the interaction
between the individuals, a faster convergence of the group task is achieved.

In the same direction, Aznar et al. provide the microscopic design of two behaviours,
Slant beacon deployment (SLABE) and Sematectonic Pheromone Deployment (SEPHE),
to analyse how the number of agents influences the deployment of the macroscopic be-
haviour [24]. For this purpose, they use a virtual stigmergy system, assuming a local
positioning mechanism in a mesh network. Consistent with [23], the authors find that, for
complex environments, the less informed behaviour achieves the task execution in a similar
way to that of the informed approach, but with a lower energy and computing cost.

As can be observed, all the manuscripts presented in this editorial point to the direction
of improving swarm behaviour and control, with the aim of reducing communication costs
and interaction to a minimum. Moreover, these new concepts based on optimization will
continue growing until a new complete approach of multi-agent self-organization emerges.
Therefore, in the following years, collective communication and memory paradigms will
arise, where a high number of heterogeneous optimization algorithms will coexist to
improve the swarm coordination and its distributed control.
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