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Abstract

In this paper, we study a new approach to multi-robot localization based on local communi-
cation which confers the robots the possibility to learn from the others. By communicating
with the rest of the group, robots are able to correct, localize and achieve tasks they could
not solve by their own. We use a foraging task as test bed where a nest and prey areas must
be identified by the robots. Once both areas have been located, robots must forage from nest
to prey endlessly. Each robot has an estimate of its own location and an associated confi-
dence level that decreases with the distance travelled. The algorithm guides a robot to its
goal by imitating estimated locations, confidence levels and actual locations of its neighbors.
We evaluate the performance of different local communication algorithms by observing the
number of times robots go from nest to prey and come back. We extend the performance
analysis to different quantitative measures about the intrinsic recruitment and self-organized
process.

1 Introduction

Most of the localization existing works address the problem of a single robot, and only few works
address it from the multi-robot point of view. In this way, each single robot could implement
its own localization algorithm by ignoring the presence of the other robots in the environment.
Following this approach, we could use a single robot localization algorithm in every robot in the
team, but robots would ignore useful information available in their neighbors. For these reasons,
in the literature, multi-robot localization problem is referred to as a collaborative/cooperative
localization problem [21].

In this paper, we develop, analyze and study a localization strategy, in which robots neither
share any movement constraint nor access to centralized information. This solution exploits self-
organized cooperation in a swarm of robots to reduce each individual location error. In a nutshell,
each robot’s knowledge consists of an estimate of its own location and an associated confidence
level that decreases with the distance travelled. This information is purely local and results from
individual experience with the environment and other robots. In order to maximize its confidence
level, each individual updates its estimates using the information available in its neighborhood.
Hence, each individual will adopt the estimate of its immediate neighbors with a probability that
increases with the ratio of confidence levels. This adaptive dynamics, previously defined as Social
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Odometry [11], confers to each robot the possibility of gaining knowledge from others, by imitating
estimated locations that offer higher confidence levels. Estimated locations, confidence levels and
actual locations of the robots dynamically change in order to guide each robot to its goal. This
simple online social odometry allows the population of robots to both reduce individuals errors
and efficiently reach a common objective. Moreover, this collective navigation uses sucessfully
minimal local communication, to promote an efficient collective performance and removes the
need of stationary robots. We introduce the Social Generalized Induced Kalman Filter (SGIKF)
and the Social Generalized Induced Fermi Filter (SGIFF) based on a resemblance to the Kalman
Filter (KF) and its Induced Kalman Filter (IKF) derivation [9]. The filter development flows to
the confidence level concept, inspired by the spectral norm of the covariance matrix.

For the algorithm validation, real localization and communication systems are needed to pro-
vide situated and abstract communication. Abstract communication refers to communication
protocols in which only the content of the message carries a meaning and the physical signal (the
medium) that transports the message does not have any semantic properties [29]. Differently,
situated communication means that both the physical properties of the signal that transfers the
message and the content of the message contribute to its meaning (see [6] for more details). For
example, when an individual tells us to “come here” the content of the message has not all the
information, but the location of the sender with respect to our position makes the message gets the
meaning of “come to my position”. One way to do so is to let the communicating robots extract
from the signal the location of the communicating source. Therefore, these systems are commonly
called localization and communication systems. Note that abstract communication tends to be
used in multi-robot systems in which a wireless network provides the required structures to trans-
mit messages from a specific sender to a specific receiver [33]. The use of wireless networks implies
experiments with long range communication. Because of the number of robots and the dimensions
of the experimental environments typically used, such communication span across the whole group
of robots. In swarm robotics, this is in contradiction with the concept of locality which is seen as
an important ingredient to achieve scalability. Therefore, in our experimental validation we make
use of a local communication sensor [10] which offers situated and abstract communication to the
robots.

2 Related work

Probabilistic methods have been applied with remarkable success to robot localization [27, 4, 3,
2, 12, 13, 5, 34]. Most of these approaches are based on Markov localization methods which
make use of dead-reckoning and absolute or relative measurements. The key idea is that each
robot maintains an estimate on its position which will be updated according to its odometry
calculations and measurements in the environment. The most used probabilistic method has
been the Kalman Filter (KF) [16, 17, 20]. It is an optimal filter that estimates a state vector
containing the robot position and the parameters characterizing the odometry error introduced
by the designer. The KF makes a number of assumptions on the system, measurements and
different noises that are involved in the estimation problem. It presupposes that the system and
measurements are adequately modeled by a linear dynamic system, and that noises are independent
and white. Moreover, the KF presumes that the initial state of the system is also independent
and Gaussian distributed.

Although the KF is an efficient recursive filter, it requires to introduce in the robots external
information that models the environment and it is also computationally costly. For instance,
in [30] robots navigate in an indoor environment where a map is given to the robots and make use
of the KF. Each robot senses the environment, correct its measure according to the observation
of others robots and exchange the information with the rest of the team. In this work, the way
the information is exchanged is not presented. In [22], each robot measures its relative orientation
and shares the information with the rest of the group. During the navigation cycle, each robot
collects data from its proprioceptive sensors to perform the prediction step of KF while it shares
information from the exteroceptive sensors with the rest of the team during the update. In [15]
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a method based on a combination of maximum likelihood estimation and numerical optimization
was introduced. This method allows the error on the robot localization to be reduced by using
the information coming from relative observations among the robots in the team. A distributed
multi-robot localization strategy was introduced based on an Extended KF (EKF) used to fuse
proprioceptive and exteroceptive sensor data. In [26], the authors deal with the automatic learning
of the spatial distribution given a set of images offered by all the members of the group, thanks
to a centralized system which takes care of all the information. In [23], the robots are equipped
with a compass which increases the efficiency of the filter. In [21] robots dynamically correct
the estimation autonomously evaluated when a second robot comes across and they exchange
their estimates. The algorithm combines the robustness of an EKF with its interlaced (IEKF)
implementation [25]. Robots make use of a centralized system (wireless communication) for the
data exchange. In [19] a new approach based on a series of EKFs hierarchically distributed is
introduced. The team is broken down into several groups and, for each group, an EKF estimates
the locations of all the members of the group in a local frame attached to one robot. However,
this robot is specific and is considered as the group leader.

Other approaches for exploring the environment are based on map construction [7], which are
also costly in computational terms. Most of these implementations build maps incrementally by
iterating localization for each new reading of each sensor on a robot.

Different works have been implemented recently in the multi-robot localization approach based
on local communication. In [8] robots navigate in an environment to which they know the map and
improve their global localization each time they meet another robot exchanging their estimates.
In [22] each of the robots collects sensor data regarding its own motion and shares this information
with the rest of the team during the update cycles. A single estimator, in the form of a KF,
processes the available positioning information from all the members of the team and produces a
position estimate for every one of them. In [18] the authors extend the EKF approach presented
in [22] by considering a general relative observation between two robots. In order to exploit the
information contained in any relative observation between two robots, the authors derive the EKF
equations to integrate a generic relative observation, based on the bearing, distance and orientation
of another robot. In [21], the authors implement a collaborative localization system in simulation.
When two robots are sufficiently close to communicate they exchange information about the robot
pose and a fixed landmark. The data transmitted are used as “virtual” sensors for the receiving
robot.

While being successful in achieving their goals, all these frameworks present several limitations:
1) they are have high computational consumption as a result of optimal filters and map construc-
tion, ii) some robots are not allowed to move while others are tracking the distance between them,
thus representing a misuse of resources, 4ii) robots must maintain visual contact with the rest of
the group at all times, and 4v) in some cases have to communicate with a central device to update
or download maps, synchronize movements, or update positions.

The collective behavior proposed in this paper avoids the previous problems in a collective and
self-organized manner.

3 The robot: Hardware and motion

3.1 Robot hardware

E-pucks are modular, robust and non-expensive robots designed by Francesco Mondada and
Michael Bonani from FEcole Polytechnique Fédérale de Lausanne (EPFL) for research and edu-
cational purposes (see Figure 1). They are small wheeled cylindrical robots, 7cm in diameter,
equipped with a variety of sensors, and whose mobility is ensured by a differential drive system.
The e-puck robot uses two miniature stepper motors with gear reduction. The motor has 20 steps
per revolution and the gear has a reduction of 50:1. A circular ring is used as a tire for the wheel
friction. The distance between the wheels is about 53 mm. The maximum speed of the wheels is
about 1,000 steps/s, which corresponds to one wheel revolution per second.



4 IRIDIA — Technical Report Series: TR/IRIDIA/2009-014

Figure 1: E-pucks robots.

The e-puck hardware and software are fully open source providing low-level access to every
electronic device and offering extension possibilities . E-pucks are equipped with 8 infrared
proximity sensors, a 3D accelerometer, a ring of 8 LEDs and a CMOS camera. Extension boards
communicate with the main board through an I12C, SPI or RS232 bus. Finally, a Bluetooth
communication is available for programming the robot and communicating data to a computer or
to other Bluetooth devices.

3.2 Communication hardware

We have equipped each robot with a local communication board, the E-puck Range & Bearing
board [10]. The board allows robots to communicate locally, obtaining at the same time both the
range and the bearing of the emitter without the need of any centralized control or any external ref-
erence. The board relies on infrared communications with frequency modulation and is composed
of two interconnected modules for data and power measurement. The FE-puck Range & Bearing
board is controlled by its own processor. Each board includes 12 sets of IR emission/reception
modules (see Figure 2). Each of these modules is equipped with one infrared emitting diode, one
infrared modulated receiver and one infrared photodiode?. The modules, as shown in Figure 3,
are nearly uniformly distributed on the perimeter of the board; so, the distance between them is
approximately 30°.

Figure 2: (a) Top and (b) bottom view of the range and bearing board.

A Manchester code is implemented to allow any data sent at a certain distance to be received
with the same intensity by the receiver. The implementation of the Manchester code allows a
maximum data rate of 5kbps. The range of communication can be software controlled from 0cm
to 80 cm.

IFurther details on the robot platform can be found at http://www.e-puck.org.
2For an exhaustive description of the board see http://www.rbz.es/randb/.
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Figure 4: Path made by the wheels of a differential drive robot during a turn.

3.3 Robot motion

Let us assume a robot performs a movement in accordance with Figure 4, which can be expressed
as the following trigonometric equations:

TkAQk = AUl,k (1)

(Tk + b) Al = AUr,k (2)
where b is the wheelbase of the robot, measured as the distance between the two ideal contact
points between each wheel and the floor, r is the left wheel turning radius and A8y is the turning
angle at time k.

By subtracting Equation 1 from Equation 2 the turning angle is obtained:
Ay, = (AUrk — AULk)/b (3)
Adding Equation 1 and Equation 2 and substituting Equation 3 we obtain the linear movement
of the center point ¢ of the robot:
App = (AUry + AUk) /2 (4)

To obtain the robot’s movement equation, let the location of a robot at time k — 1 be:

@p_1 = Te1 Yk Ok }T (5)

where (z5_1,yr—1) are the Cartesian coordinates and 05_; is the orientation with respect to a
global reference.
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Figure 5: The robot’s displacement on a plane.

A rotation A#y and a translation Apy move the robot to a new location xj in accordance with
Figure 5:

ZTp—1 + Apgcos (o)
xp = | Yr—1+ Aprsin (ax) (6)
oy + O

If we approximate the arc movement of the midpoint of the robot for the chord (Apy) as shown
in Figure 4, we observe that angle ay, = m— -y, + (0x—1 — 7/2), where v, = 7/2— A0}, /2. Therefore
ay = 01 + AG/2. Moreover, 0, = oy + i, where §;, = /2 — ;. Hence, 0, = 01 + Aby

By substituting these angles into Equation 6, we obtain the movement equation of the robot

as 3:

Appcos(r—1 + Aby/2)
T = Tp—1 + Apksin(ek,1 + Aek/Q) (7)
Aby,

Let us represent equation 7 as

zp = f(@h—1, Uk, V) (8)
where x;_1 is the [ zx—1 yp—1 Or—1 ]T state vector, uy, is the [ AU, AU ]T input vector
and vy denotes the system noise. v ~ N (0,Q) indicates a white noise with a zero mean and
covariance matrix @, which models the uncertainties of the odometry model.

Looking at Equation 7 and assuming the system has no errors, the state vector is redefined as
xp = [ (xg_1,ur,0). For modelling the reliability of the localization measurement, we define P
as the covariance matrix of our measure:

Py = AP Af + W,Q W (9)
where Py = 0 and @), is defined as:

kAUl 0

Qi = 0 N (10)

3Notice that this equation approximates the robot’s movement and it is not exact. Nevertheless, we will use it
as if the robot’s movement was calculated as an infinitesimal displacement.
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Figure 6: Non-systematic error propagation when a robot is travelling in a straight line.

where k, and k; are error constants representing the nondeterministic errors of the interaction of
the floor and the right and left wheel respectively.
Finally, Ay and W, are the Jacobians of f(-) with regard to x;_1 and ug, respectively:

L 0 —Apgsin (k)
Ap,=10 1 Apgcos ()
0 0 1
(11)
cos () — AT’?CSi” (Ck)  3cos (Cr) + Ag’;k sin (Cx)
Wi = | gsin(Ge) + Sftcos () 55im (G) = Tftcos (Go)
b b

where ¢ = 0,_1 + Agk and A6y and Apy are defined by Equations 3 and 4.

Using the covariance matrix, the position estimation can be represented as an ellipsoid sur-
rounding the robot position when no errors are computed. Projecting this ellipsoid in the x — y
plane, we model each computed robot position as a characteristic “error ellipse”, which indicates a
region of uncertainty for the actual position [28]. This region increases with the distance travelled

(see Figure 6), until some absolute position measurement resets it.

4 Communication

4.1 The foraging task

We set up a foraging task which serves as an example for the algorithm derivation. Inside an
arena we introduce two goal areas (i.e. nest and prey) which have to be located by the robots (See
Figure 7a).

Once the areas have been located, the robots must forage from nest to prey endlessly. Robots
use dead-reckoning methods to estimate and reach the nest and prey locations. When robot 7 finds
the nest or the prey, it stores its a priori estimated location information as EZ\E;Z and EQ‘T;{{
respectively. Additionally, the robot keeps track of the path travelled since it left the nest or
the prey denoted by pi,fZ and pﬁfﬂ respectively, which represents the inverse of the a priori
confidence level the robot has about its estimated information. (See Figure 7b).

At a given time step (k), robot ¢ checks if there is another robot to communicate with. If there

is not, it updates its a posteriori estimated goal locations and confidence levels as:

~nest,i __ ~nest,i
k|k - Yk|lk—-1
nest,t __ _nest,i
Prik - = Prjk—1 19
~prey,i __ :/iprey,i ( )
klk T Tklk—1
prey,i __ _prey,i
P = Prlk—1

In the next step (k + 1), the inverse of the a priori estimated confidence levels are updated
with the distance travelled (Adj, ;) in the time step duration:
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‘ NEST
P

‘ PREY
_PREY

Figure 7: (a) Arena for a simple foraging task. (b) Robot information on the nest and prey areas
and their confidence levels.

nest,i nest,i 1
[ AL
Prtijk = Pk k+1 (13)

prey,i __  prey,i i
Phtifr = P+ Adjyy

Therefore, if no encounter between the robots is produced, the confidence level decreases
endlessly until the robot arrives at the nest or prey, resetting it or until it gets lost.

If two robots meet, they communicate and update their estimates. In what follows we show
all the different nest location exchange options, which are equivalent for the prey exchange.

e None of the two robots know the nest location: Robots do not exchange any infor-
mation.

e One robot knows the nest location: Let us assume that robot i is the one who has

~nest,t

previously visited the nest and has an estimated location Zy and its correspondent

nest,i

confidence level p Hence, robot j updates its information as the one provided by

klk—1"
robot i:
~nest,j __ inest,i
k|k — Yklk—1
nlest,j _ nclst,i (14)
P~ = Prjk—1

e Both robots know the nest location: In this case, both robots exchange their informa-
tion according to:

a_:\nest,i _ f a:\nest,i {E\nest,j nest,i _mnest,j
ke = T\ Trjk—1 Trjke—10 Prjk—1> Prjk—1

nest,i __ f nest,i _nest,j
Prig - = T2\ Prje—17Prjk-1

and

Tk klk—1> Ti|k—1> Prlk—1> Prlr—1

(16
)

~nest,j _ fl (/m\nest,j ~nest,i _nest,j nest,i)

nest,j __ nest,j mnest,t
Prig ~ = T2 \Prjr—1Prjr—1
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where f; and f, are the update functions discussed in Section 4.3. We will show that
thanks to f, and f5, when two robots update their information, they end up with the same
estimated knowledge and confidence level:

~nest,i __ {:Enest,j
nest,i __ _mnest,j
Pl = Py

4.2 The Social Induced Kalman Filter

We assume that a robot i acts as a sensor for robot j and vice versa. When the robots commu-
nicate, they transmit their a priori state vector and a priori covariance matrix. If we define this
communication following the next equations:

i __ pJ
bk (19
Rgﬂ = Tklk—1
Y, = h(xp,vi) = Tf + Vi (19)

where Pj;_; is the a priori covariance matrix and the random variable vy ~ N (0, R) denotes a
white noise, with 0 mean and associated covariance matrix R. It can be demonstrated [9] that:

L+ KL =1 (20)

Z|k = P?qk (21)

where K is the KF gain.
Therefore, the KF equation correction phase can be denoted as:

. . . . —1
K}, = P (P2|k71 +Piz\k—1) (22)
Ty, = K@y + K, (ﬁi\k_l + x?j) (23)
i = KL Py (24)

Given the previous KF equations, we call Social Induced Kalman Filter (SIKF) to the one
which substitutes the a priori and a posteriori covariances matrices and the Kalman gain by
its induced norms [9]. If ||z|| is a vector norm, we define the induced matrix norm as ||A|| =
max (||Az||V||z|| = 1). Therefore, the SIKF is defined by the a posteriori state vector equation:

Tipe = Trp—1 + || Kkl| (Yp — h (Thjp—1,0)) (25)

In what follows we will use the spectral norm as induced norm. The spectral norm is defined
as the square root of the largest eigenvalue of the semidefinite positive matrix A* A, where A*
represents the conjugate transpose matrix of A:

1Al = s (A7) (26)

It is easy to prove that if A is a real symmetric matrix, the spectral norm follows the following
equations:

1Ay = Amax (A) (27)

I+ Ally = 1+ Al (28)
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and if A and B are two invertible matrices, then:

|ABI[, = [|All, | Bl (29)

Therefore, if we define g, = ||Ky||, and p = ||P||,, where the matrices are symmetric and
positive definite we obtain:

g+, =1 (30)

Then, we rewrite the KF equations based on the previous assumptions to obtain the SIKF
equations:

Ty = f (%—1%—1»“2—1’0) (31)
P?ﬂkq = HAkP?cfl\kflAZ + VkaAVZH (32)
i p;c k—1
o= — (33)
Prjk—1 1 Prjr—1
Ty = (1—93) Tpe_r + 95 (ii|k—1 + "”?) (34)
PZ\k = (1 - 91@) P2|k_1 (35)

4.3 Social Odometry

Based on the SIKF, we define its generalized form (Social Generalized Induced Kalman Filter

(SGIKF)) as the filter which substitutes the induced norm by any other scalar value. In Social

Odometry we define this value as the inverse of the confidence level a robot has about its mea-

surements. Approaching a real application and inspired by social insects, we define the inverse of

the confidence level as the distance traveled by a robot since it left a specific area (d,).
Following these principles, two different filters are presented:

e Social Generalized Induced Kalman Filter (SGIKF): Tt follows the SIKF equations, where
the inverse of the confidence level is represented by di.

e Social Generalized Induced Fermi Filter (SGIFF): A modification of the SIKF where g
is modified according to a sigmoid function and the inverse of the confidence level is also
represented by dj.

In both filters, when a robot encounters a neighbor, it transmits its estimated location and
confidence level. Hence, each robot has the opportunity to adopt the estimates of other robots
present in their neighborhood.

4.3.1 Social Generalized Induced Kalman Filter (SGIKF)

Since the spectral norm of the covariance matrix P grows endlessly until a communication is
established or the robots arrive at one of the goals, we define the inverse of the a priori confidence
level (p};‘k_l) of robot i as the distance travelled (d%) since the robot left a specific area. Therefore
the prediction stage for the induced covariance matrix is defined as:

Phjk—1 = di, (36)
This implementation allows the robot not to calculate the covariance matrix at each time step,
and therefore to save computational time.
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Figure 8: The Fermi function which allows the robots to decide between their own estimate and
the information provided by the others.

4.3.2 Social Generalized Induced Fermi Filter (SGIFF)

In the SGIFF, the inverse of the a priori confidence level, represented by pyx—1, is also calculated
as the distance travelled since the robot left a specific area.

To calculate gi, we adopt the so called pairwise comparison rule [31, 24, 32] often adopted in
evolutionary/social dynamic studies, to code the social learning dynamics, which makes use of the
Fermi distribution (see also Figure 8):

1
1+ e*ﬁ(APk|k—1)

95 = (37)

where Apyjp—1 = p;dkfl — pil w1 and ( measures the importance of the relative confidence
levels in the decision making. For low values of 3, the decision making proceeds by ignoring the
confidence levels whereas for high value of 8, we obtain a pure imitation dynamics commonly used
in cultural evolution [14] defined by a sharp step function. In the first case, the confidence level
works as a small perturbation to a simple average between the two estimates, while in the latter,
each robot is ready to completely ignore the estimate which has a smaller relative confidence level.

Hence, we use a weighted average to obtain the new location ﬁ};l i and confidence level p};‘ i
using the Fermi function:

T = (1—91) Thper + 9k ('fii\k—l + w?ﬁ) (38)

pf'cuc = (1 - glzc) P2|k—1 + glicpic\k—l (39)

A comparison chart about the IKF, SGIKF and SGIFF equations is shown in Table 1. In
the SGIFF, we observe the a posteriori confidence level of robot ¢ adds a terminus based on the
confidence level of robot j (g,icpi‘ w_1)- This is because, following a social dynamics approach, we
want to offer a more rational than statistical approach to the SGIFF. When two robots commu-
nicate, they implicitly agree on a middle point between both confidence levels. Therefore, when a
communication is established, the robot with a worst confidence level will improve it and the one
with the better confidence level will reduce it.
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Table 1: Comparison table between the Social Induced Kalman Filter and Social Odometry equa-
tions.

\ Social Induced Kalman Filter \ Social Odometry Filters
ﬁiﬂk—l f ($2—1|k—1’u271’0) f (332_1“6_1771427170)
% % T T i
Phlk—1 AP 1A +ViQp_1 Vi Adj,
SGIKF; ——Phi=1
i Phik—1 Phih—1FPhu—1
9k

Phik i SGIFF: 1

1+6_ﬁ(”7§\k71_”i\k71)

~1

e | (L=gb) B +9i (Bl + o) | (=g Bhur + 9 (3l + o)
SGIKF: (179};)1}}%_1

p;dki (1- gll;:)p;c\k—l

SGIFF: (1 - gi) Pijs_1 + 9iPhjs

5 Control architecture

We have designed the robots’ controllers based on a behavior-based architecture. The behavior
is implemented following a Subsumption architecture [1]. At the lowest level, each behavior is
represented using an augmented finite state machine (AFSM). Each AFSM performs an action
and is responsible for its world perception. In the following we describe two architectures: one with
and one without communication. For each of them, we first give a high-level description and then
detail the Subsumption architecture used, the behaviors and the conditions that inhibit/suppress
each behavior.
In the controllers, robots make use of the following inputs and outputs:

e Clock: the system clock runs at 100 ms. Some of the AFSMs need the clock input to perform
the odometry movement calculations.

e Infrared Sensors: 8 infrared sensors are distributed around the the robot’s perimeter (see
Figure 9). They are used to detect the presence of obstacles and to detect any neighbors
with whom the robots can communicate.

e Ground sensors: 3 infrared sensors are located in the front-bottom part of the robot (see
Figure 9). Robots differentiate the areas depending on the color of the ground. The nest is
represented as black, prey as grey and the rest of the arena as white.

e RANDB Emitter and Receiver: the emission and reception module of the E-puck Range &
Bearing board.

e Motors: the two differential drive motors (see Figure 9).

5.1 Controller without communication

The robots are initially located at random positions inside a fixed area in the center of the arena.
Inside this area robots do not perceive the central place (nest) or the resource site (prey) areas.
Once a robot finds the nest or the prey, it stores its position and continues with a random walk
until it finds the other area. When both areas have been located, the robots try to go from one area
to the other endlessly. Because of the movement errors, robots might arrive at some coordinates
that they wrongly estimate inside the area. At this point a robot considers itself lost, it resets its
estimated locations and starts carrying out a random walk until it finds both areas again. If a
robot correctly arrives at one of the areas, it stores the new position coordinates.



IRIDIA — Technical Report Series: TR/IRIDIA /2009-014 13

S

Figure 9: Depiction of an e-puck. S; i € [1,8] refer to the infrared sensors used as IR proximity
sensors. G; @ € [1,3] refer to the ground sensors. M; and M, are the left and right motor
respectively.

Figure 10 shows the architecture diagram of the controller. Each layer corresponds to a robot
behavior and arrows connecting the different AFSMs are the connector, inhibitor, suppressor or
reset signals.

WANDER EXPLORE LAYER

STORE LOCATIONS

RESET LOCATIONS
0
GOAL
FORAGE LAYER

GROUND
SENSORS
FORAGE
MOTORS
INFRARED
SENSORS AVOID )
AVOID LAYER

Figure 10: The behavior structure of the foraging agents for a controller without communication.
The inhibitors are represented by S, the reset by R.

The AFSMs are described in the following:

e Awoid: the state machine return a vector taking into account all the IR sensors above a
threshold. The direction sent to the motors is opposite to the vector.

e Forage: the robot has location information of both the nest and the prey area. It walks
from nest to prey following the shortest path. If the robot arrives at one of both areas,
detected by the ground sensors, it stores the new estimated position and goes towards the
other area. If the robot arrives at a place where the area was supposed to be but does not
perceive it, it resets the Goal Locations memory. This last action gets the robot lost and it
starts wandering again.

e Wander: the robot carries out a random walk. If a nest or prey area is found, the robot
stores its position in the Goal Locations memory.
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All the layers are permanently active. The upper layer (explore layer) always outputs values
and it is suppressed if the forage layer outputs signals to the motors when both goal locations are
known. If an obstacle is detected, the avoid layer inhibits the previous layers’ outputs and obtains
the motor control.

5.2 Controller with communication

In this controller, the robots are initially located as in the controller without communication.
Robots maintain the Avoid, Forage and Wander AFSMs unchanged. When two robots encounter
they exchange their estimates about the goal areas. The information is exchanged and updated
following the filters presented in Section 4.3.

X axis (Robot’ s heading) AREA A
A

Communicated direction

Communication axis

Figure 11: Robots sharing information on their estimated location.

However, robots do not share a global coordinates system, so they rely only on the commu-
nication axis to transform the information transmitted by their neighbor into their own frame.
Figure 11 shows an example of how information about the estimated location of Area Y, previ-
ously visited by robot j, is transmitted from robot j to robot ¢. In a first step, robot j transmits
its estimate of the distance dy’ and direction ¢’ of area Y to robot i. For the direction, the value
transmitted is the angle «, obtained from ¢’/ using the communication beam as reference axis:
a = ¢ —~7. In a second step, robot i transforms the received data into its own coordinates
system. First, it calculates the direction pointed out by robot j as ¢* = 7' + a — , followed
by the calculation of the location (Z7,37) of area Y. This location is represented by Ty, + )]
in the Social Odometry filter equations (see Section 4.3). This computation takes into account
the transformation to its own frame of reference and robot ¢ computes robot j information in the
following way:

77 = |x%|cos (v') + dy'cos (¢* (40)
y = |x|sin (v') + dy'sin (¢*

Figure 12 shows the architecture diagram of the controller. Each layer corresponds to a robot

behavior and arrows connecting the different AFSMs, the inhibitor, suppressor or reset signals. In

addition to the architecture used for the controller without communication, two more AFSMs are
required for this controller:

o Receive Data: the robot translates the information received into its own reference axis.

e Send Data: the robot transforms the information to communicate according to the common
reference axis (communication axis), and sends it to its neighbors.
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Figure 12: The behavior structure of the foraging agents for a controller with communication.
The inhibitors are represented by S, the reset by R.

The architecture follows the same suppression and inhibition principles as the one without
communication. However, in this architecture the communication layer takes control of the motors’
output in case something is received in the RANDB receiver. When the robot receives an input
from the E-puck Range & Bearing board, it stops the movement, tries to communicate with its
neighbor and release the motors control. This strategy is adopted to stabilize the range and
bearing measure and therefore to avoid the robots moving while they are communicating.

6 Experimental evaluation

In the following, we report experimental results with simulated and real robots in which the
outcomes of the controllers using communication strategies and the one not using communication
are compared.

6.1 Experiments in simulation

In our simulation, an e-puck is modelled as a cylindrical body of 3.5cm in radius that holds 8
infrared sensors distributed around the body, 3 ground sensors on the bottom-front part of the
body and a range and bearing communication sensor. A differential drive system composed of
two wheels is fixed to the body of the simulated robot. For the three types of sensors, we have
sampled real robot measurements and mapped the data into the simulator. Furthermore, we
introduce errors to simulate the standard deviation of the different sensors. +20 % noise is added
to the infrared sensors and +30 % to the ground sensors. In the range and bearing sensor, noise
is added to the bearing (+20°) and range (42.5 cm) values. Moreover, each message emitted can
be lost with a probability that varies linearly from 1% when the sender-receiver distance is less
than 1cm, to 50 % when the two robots are 15cm from each other.

Three different experimental setups (ESs) have been chosen to study the convergence and
comparison of the different algorithms. All setups are carried out in a similar arena (see Figure 7)
where the dimensions and number of robots are changed as detailed in Table 2.

For each experimental setup we have tested five different communication strategies:
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Table 2: Description of the three simulated experimental setups for the single objective localization
experiment.

| ES1 | ES2 | ES3
Area dimensions (m ?) 1.2x1.7 | 3.0x4.25 | 6x85
Initial area radius (m) 0.2 0.5 0.5
Nest and prey radius (m) 0.1 0.1 0.1
Number of robots 10 50 100
Experiment duration (s) 1800 7200 7200

e No communication (NC): Robots do not communicate.

e Single SGIKF (SSGIKF): Robots use the SGIKF to correct the information received related
to the area they are going to.

e Double SGIKF (DSGIKF): Robots use the SGIKF to correct the information received related
to both areas.

e Single SGIFF (SSGIFF): Robots use the SGIFF to correct the information received related
to the area they are going to.

e Double SGIFF (DSGIFF): Robots use the SGIFF to correct the information received related
to both areas.

Each experimental setup has been repeated 30 times. The performance of the robots in the
foraging task under study is measured as the number of total round trips completed from the
central place to the resource site and back during the experiment.

6.1.1 Recruitment process

We first study the time it takes for all the robots to locate the nest and prey areas. When robots
do not communicate they are exploring the environment until they find both areas. Each robot
uses the same algorithm, but they ignore useful information available from their neighbors (i.e.
other robots that have already found one or both areas). In any of the other four strategies,
when robots are looking for one of the areas and they find a neighbor, they stop and check if
the neighbor is transmitting information about the unknown area. In this case, they take the
neighbor’s estimates as their own and go towards the communicated estimate.

Figure 13 shows the time it takes for all the robots to visit both areas at least once. We observe
how the convergence on the path speeds up with the communication strategies. A robot, which
has found one or both areas, is able to recruit other robots. All the communication strategies
perform approximately in the same way. The recruitment time efficiency speeds up four times on
the communication strategies compared to the NC for the ES1 and the ES2. Moreover, note than
in the ES3 not all the robots with a NC controller are able to find the path within the 7,200s run.

6.1.2 Retrieval process

We have also tested the benefits of the different communication strategies in a retrieval process.
We define the retrieval process as the task in which robots have to transport “virtual” items from
the prey to the nest area. Each time a robot completes a run from the nest to the prey and comes
back to the nest, we consider the robot has succeeded in its task and count one round trip. We
have tested the different communication strategies in the three ESs. In any of the communication
strategies, robots show a better performance than the NC. In the NC strategy, robots rely only
on their estimates and once a robot has lost the correct location of its goal, it has to explore the
environment and find the areas by chance, which explains the poor performance of this strategy.
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Figure 13: Recruitment results for the five communication strategies for the (a) ES1 (b) ES2 and
(c) ES3, in a single objective scenario. (30 replications for each boxplot). Each box comprises
observations ranging from the first to the third quartile. The median is indicated by a horizontal
bar, dividing the box into the upper and lower part. The whiskers extend to the farthest data
points that are within 1.5 times the interquartile range. Outliers are shown as circles.

Figure 14 shows results for the two SGIKFs compared to the NC. We observe that the SGIKF's
increase 2.5 times the performance of the retrieval process with respect the NC for the ESI1.
For the other two ESs, robots without communication are not able to perform more than 50
successful retrievals while the SGIKF's achieve 1400 and 2000 retrievals in average for the ES2
and the ES3 respectively. We observe that the single implementation of the filter, when robots
only communicate their estimate about the goal they are aiming at, performs better than the
double one. This is because when robots are moving from one area to the other, they have better
information on the goal they are coming from than the one they are aiming at. When a robot
i encounters another neighbor (robot j), this last one is typically coming from the place robot i
is aiming at. Therefore, robot i improves its goal estimate with the more reliable information of
robot j (the estimate on where it is coming from). If robot j communicates information about the
goal it is aiming at, as in the double filter implementation, it is disrupting the information from
robot 4 which will be propagated to the rest of the neighbors robot ¢ encounters later.

Figure 15 shows the same experiments for the SGIFFs with different 5 parameters. We have
defined 8 values where 3 € [1075,100]. A maximum retrieval process is achieved when 3 = 1072
for the ES1 and ES2, and 8 = 1072 for the ES3. Finally, note that the best 8s perform better
than in the SGIKFs, while any of the other 8 perform worse than the SGIKF implementations.
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Figure 14: Retrieval results comparison between the NC, SSGIKF and DSGIKF for the (a) ES1
(b) ES2 and (c) ES3, in a single objective scenario. (30 replications for each boxplot).

6.1.3 Stability

In any of the communication strategies we observe, not all of the robots are able to keep themselves
on the path. When many robots try to enter the nest and prey areas at the very same time or
when there is not enough robots on the path to communicate with, the robots get lost. However,
when robots get lost they are typically close to the nest or prey area. Therefore, a lost robot that
uses a communication strategy is likely to meet another robot from whom it gets its estimates
and has a high probability of finding the path again. Figure 16 shows the average of the robots
on the path for the three experimental setups. In all the communication strategies, 50-70 % of the
robots (depending on the filter used) are always in the path at steady state. However, no more
than 20 % of the total number of robots are able to stay on the path with the NC strategy.

6.2 Experiments with real robots

Real experiments are carried out in a 1.7x1.2m? arena, during 1800s with 10 e-pucks. Robots
start in a central round area of 0.2 cm radius in random positions and orientations. Data collection
is managed through the Bluetooth connection. Due to the Bluetooth limitations, two different
computers are used to communicate with 5 different robots each. Robots are initialized at the
same time thanks to a standard TV remote control. Additionally, robots keep track of a timer
which is initialized with the remote control and allows the robots to have the same time reference.
When a robot arrives at one of the two goals (i.e. nest or prey) or it gets lost, the robot sends
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Figure 15: Retrieval results for different § values of the SGIFF's for the (a) ES1 (b) ES2 and (c)
ES3, in a single objective scenario. (30 replications for each boxplot).

a Bluetooth command to the computer, indicating the state in which it finds itself (i.e. nest,
prey or lost) and the time at which it has been produced. After 1800s the controller stops and
robots must be randomly initialized again. The 8 IR sensors are used as input to the avoid and
communication behaviors. The nest and prey areas are detected with the ground sensors. The
communication range has been limited to 15cm to avoid the IR signals to spread over the arena,
as in the simulation experiments.

We have tested the 5 different communication strategies defined in Section 6.1. For the SGIKFs,
only the best 3 value obtained in simulation (i.e. 8 = 1072) has been programed. Finally, each
experimental setup was repeated 30 times to allow for statistical comparisons.

In Figure 17 we observe the recruitment process achieved by the real robots. Compared to the
simulation results we notice a similar behavior and the same improvement in average. However,
the standard deviation grows because of communication imperfections discussed later.

Figure 18 shows the retrieval process comparison between the 5 different strategies. We observe
a small reduction in the number of round trips. In average 120 round trips for the SGIKFs
compared to the 150 obtained in simulation and 140 instead of 170 for the SGIFFs. Therefore
there is only a difference of 20% between real and simulated experiments. However, robots with
any of the communication strategies are able to carry out in average twice more retrievals than
with the NC strategy.

Finally, Figure 19 shows the stability of the robots on the path. A larger oscillation is seen with
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Figure 16: Stability results comparison for the five communication strategies for the (a) ES1 (b)
ES2 and (c) ES3, in a single objective scenario.

respect to the simulated experiments. For the communication strategies, we observe an average
of 5 robots in the path compared to the 6 robots obtained in simulation.

The differences observed between the real and simulated experiments are mainly due to the
working of the range and bearing sensor. These differences arise from the imperfection of the
communication model implemented in simulation. Another problem is the reflection obtained
from the borders of the arena, which distort some of the bearing measures when robots are near
those borders. Moreover, we have observed some interferences between the range and bearing
sensor and the IR proximity sensors. These alterations in the range and bearing produce extra
errors not modelled in the simulation, which make the robots miscalculate the information given
by other neighbors. However, we observe the same behavior in all the qualitative measures and

only a decrease of 10-20 % in the quantitative ones.
Moreover, the time used in the communication is longer in the real robots scenario. This
is because errors in the communication makes the communication layer repeat some messages.

Therefore, robots wait a little more time (around 20-30%) in the communication process, which
explains the reduction of the number of “virtual” items retrieved in the experiments with real

robots.
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7 Conclusions

In this paper we have described a social localization strategy in which robots use pairwise local
communication to share knowledge about specific locations to improve their performance in a
foraging task. By letting the robots use the estimates of others, we engineer an efficient and
decentralized knowledge sharing mechanism which allows the robots to achieve their goals, both
from an individual and group perspective. This simple mechanism drives the system to a successful
collective pattern improving the individuals’ behavior.

We have also compared two different Social Odometry strategies: the Social Generalized In-
duced Kalman Filter, a simplification of the Kalman Filter equations and the Social Generalized
Induced Fermi Filter as an imitation based dynamic algorithm. Our experiments have demon-
strated that complex behaviors can result from simple local interactions based on simple behavior-
based controllers such as the subsumption architecture. A simple foraging task has been created
as test-bed for the algorithm test. Local communication allows the robots to improve drastically
the group performance and shows it to be stable. Additionally, we observe that the algorithms
implement an implicit recruitment process that speeds up the initial exploration phase mandatory
to achieve the foraging task.

Finally, we would like to stress that the performance of the Social Odometry filters allows an
optimistic forecast concerning the use of online self-organized methodologies in the field of swarm
robotics. Online methodologies, from communication to evolution, may represent the missing
aspect necessary for truly adaptive populations of robots.
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