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Abstract

In this paper, we use artificial evolution to design homogeneous neural network controller

for groups of robots required to align. Aligning refers to the process by which the robots

managed to head towards a common arbitrary an autonomously chosen direction starting

from initial randomly chosen orientations. The cooperative interactions among robots require

local communications that are physically implemented using infrared signalling. We study the

performance of the evolved controllers, both in simulation and in reality for different group

sizes. In addition, we analyze the most successful communication strategy developed using

artificial evolution.

1 Introduction

Swarm robotics refers to research work in collective robotics in which autonomous cooperating
agents are controlled by distributed, and local rules (Dorigo and Şahin, 2004). Each agent uses
individual mechanisms and local perception to decide what action to take. Swarm robotics is of
particular interest for roboticists since it promotes desired properties of swarms: (i) the failure of
individual components does not significantly hinder the performance of the group (robustness);
(ii) cooperative behaviour makes it possible to reduce the complexity of the individuals (simplicity
of single units), and (iii) the control mechanisms used are not dependent on the number of agents
in the swarm (scalability).

On going research work in swarm robotics is focusing on the development of design methods
to obtain effective group level behaviours from the definition of individual mechanisms as well
as on the development of effective communication systems that allow the coordination of actions
in scenarios that require cooperation among the agents (Ampatzis et al., 2008; Tuci et al., 2008;
Kube and Zhang, 1993; Trianni and Dorigo, 2006; Winfield et al., 2005). Following this lines of
investigation, we are interested in studying the effectiveness of recent technological advances in the
domain of localisation system as means for communication in groups of autonomous cooperating
robots.

Committed to the principle of the Occam’s razor, we focus on a simple task in which a group
of homogeneous physical robots are required to align. Aligning refers to the process by which the
robots managed to head towards a common arbitrary an autonomously chosen direction starting
from initial randomly chosen orientations. Evolutionary robotics method (hereafter ER) is em-
ployed to design control and communication mechanisms to allow the robots to align. ER is a
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methodological tool to automate the design of robots’ controllers based on the use of artificial
evolution to find sets of parameters for artificial neural networks that guide the robots to the
accomplishment of their task (Nolfi and Floreano, 2000). As far as it concerns the subject of
this study, ER allow us to develop adaptive communication mechanisms that are grounded on the
perceptual experience of the agents and fully integrated with all the other underlying structures
that underpin the behavioural repertoire of each robot. This is because, with respect to other
design methods, evolutionary robotics doesn’t require the designer to make strong assumptions
concerning what behavioural and communication mechanisms are needed by the robots. Robots
controllers are designed in simulation and then ported and evaluated on physical robots.

The results of this study are a “proof-of-concept”: they show that dynamic artificial neural
networks can be successfully synthesised by artificial evolution to design the neural mechanisms
required by the robots to align. In particular, owing to the use of this design method, we take
advantage of the properties of the communication system used to allow the agents to obtain
the required collective behaviour. Post-evaluation analyses unveil operational aspects of the best
evolved behavioural strategy. By exploiting only a part of the potentialities of their communication
system, the robots prove to be capable of solving the alignment task with simple and effective
coordinated movements.

1.1 Localisation and Communication

The communication system the robots use in the considered task is based on technologies developed
for computing relative distance and bearing of infrared signals’ sources. The system used manages
transfer and processing of signals in software and does not require any additional hardware. We
rely solely on the technologies (sensors and main board) available on the e-pucks (see Section The

E-pucks and their task for a description of the robot).
Several works focus on the development of relative positioning system for autonomous robots.

However, many of these works are emulations of relative positioning systems, and in some cases
the systems are developed and tested only in simulation. Roumeliotis and Bekey (2002) proposed
the use of a Kalman filter to combine dead reckoning and information from an emulated relative
positioning system to allow a group of mobile robots to solve the issue of localisation. Ludwig
and Gini (2006) used a wireless local area network for a robotic swarm dispersion to cover an
unknown area. In this study, one robot was required to be stationary to determine distance and
bearing information. The use of infrared signals for the development of relative positioning system
has already been studied by Spears et al. (2004), Kelly and Martinoli (2004) and more recently
by Pugh and Martinoli (2006).

All the above mentioned works shared with our study an interest in the design of relative
positioning systems for autonomous robots that can only use local and decentralised control.
However, while these works are mainly focused on the development of relative localisation systems,
our goal is to merge these technologies with the ER to allow autonomous agents to use both situated
and abstract communication. Situated communication refer to social interactions in which the
physical instantiation of the message contributes to define its semantics (Clancey, 1997, for more
details). In this work, receivers extract the range of the infrared signal source by considering the
intensity of the modulated signal, and the bearing by considering the relative position on their
body of the sensor impinged by the received signal. For example, a signal which is detected by a
sensor positioned on the back of a robot receiver, indicated that the signal source is more or less
at 180◦ with respect to the receiver heading. Since the localisation of signal source is obtained by
exploiting the physical properties of the signals and the morphology of the robots, it follows that
our robots are endowed with situated communication capabilities.

Abstract communication refers to communication protocols in which only the content of the
message has meaning and the physical signal (the medium) that transports the message does not
have any semantic properties (Støy, 2001). In our study, the robots are allowed to associate a
binary message to each infrared signal. Although the message is anonymous and simply broadcast
into the environment and not directly sent to specific robots, the receivers can identify the physical
location of the signal and exploit the message. Since the semantics of the binary message have
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nothing to do with the physical properties of the medium that transport it, it follows that our
robots are endowed with abstract communication capabilities as well.

Note that, abstract communication tends to be used in multi-agents systems in which a wireless
network provides the required structures to transmit messages from a specific sender to a specific
receiver/s. In swarm robotics, the decentralised and local approach makes the use of wireless
network difficult and abstract communication is not very common. Our swarm robotics system
bypasses this limitation owe to the use of the innovative communication technologies described
above. Moreover, ER makes possible to ground the semantics of abstract communication into the
sensory-motor experience of the agent. That is, the meaning of binary messages is not a priori
determined by the designer, but it emerges during the evolutionary process due to its value in the
social interactions that characterise the alignment process.

2 The E-pucks and their task

E-pucks are modular, robust and non-expensive robots designed by Francesco Mondada and
Michael Bonani from Ecole Polytechnique Fédérale de Lausanne (EPFL) for research and edu-
cational purposes. They are small wheeled cylindrical robots, 7cm of diameter, equipped with a
variety of sensors, and whose mobility is ensured by a differential drive system1 (see Figure 1a).
The controllers are evolved in a simulation environment which models some of the hardware char-
acteristics of the e-pucks. In particular, we have developed a simulation software based on ODE
(http://www.ode.org), an open source, high performance library for simulating rigid 3D body
dynamics that provides primitives for the implementation of detailed and realistic physics-based
simulations. In our simulation, an e-puck is modelled as a cylindrical body of 3.5cm radius that
holds 8 infrared sensors distributed around the body. A differential drive system composed of two
wheels fixed to the body of the simulated robot.

We decided to test the effectiveness of the evolutionary robotics method to the design of adap-
tive communication mechanisms on a simple but fundamental task of alignment. In this task,
robots should manage to adopt similar directions by exchanging relevant communications. Align-
ment is a fundamental behaviour to a number of tasks in robotics such as cooperative transport
or flocking (see Campo et al., 2006; Hayes and Dorminiani-Tabatabaei, 2002; Kelly and Keating,
1996). Artificial evolution coupled to the local communication system may produce new and un-
expected strategies for solving these tasks efficiently. The experimental setup consists of a group
of homogeneous e-pucks that are positioned in a boundless arena at a distance of 10cm from each
other, with randomly generated initial orientations, as depicted in Figure 1b. Each agent can only
change its orientation through rotational movements. The robots can not move away or approach
each other, they only turn on spot. The robots should tackle the task by exploiting the properties
of a communication system based on the use of infrared signals from which the range and bearing
of the signal source and a 3 bits message can be obtained.

1Further details on the robot platform can be found at www.e-puck.org.
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Figure 1: (a) Depiction of an e-puck. Si i ∈ [1, 8] refer to the infrared sensors which are used in
this study for local communications. Ml and Mr are the left and right motor respectively. (b) Six
e-pucks at the beginning of a trial.
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Figure 2: Neural network architecture: only the efferent connections of the first node of each layer
are drawn. See the text for the meaning of the labels.

A signal generated by a robot sender through its infrared sensors can be picked up by the
infrared sensors of robots receivers that are at a distance less than 25cm from the sender. The
intensity of the signal decreases with the inverse of the square of the distance. It can be used by the
receiver to infer distance of the sender. Given the directional propagation of infrared signals, the
infrared sensor that picks up the signal can be used by the receiver to infer the relative direction
of the sender with respect to it’s own heading. Given the notation used in Figure 1a, a signal
emitted by a sender positioned 90◦ left of a receiver, is picked up by infrared sensor S6 of the
receiver. Each signal takes 25ms to be emitted, that is 1/8 of the length of the control loop, which
is 200ms. In the remaining 175ms the robots read from the sensors, update their control structure,
and set the status of their left and right motor. Note that robots can not pick up signals while
they send signals. Each signal can carry a binary encoded message, which are 3 bit long in this
study. In principle, the 8 possible states of a message give the robots the possibility to refer to
each sensor. However, the reader should note that the semantics of the messages is entirely left
to the evolution, which shapes the mechanisms underpinning the robots behaviour. Whether or
not the messages play a functional role in the accomplishment of the task, and which roles they
play, will be ascertained through post-evaluation analysis by looking at behavioural mechanisms
implemented by the evolved successful strategies.

In simulation, signals are modelled as an additive field of single frequency and fixed intensity
which decrease with the square of the distance from the source. Simulated sensors return 1 bit to
indicate if they were impinged by a signal and 3 other bits containing the message, if any. Noise
value chosen uniformly random in ±45◦ is added to the relative orientation of the sender with
respect to the receiver’s heading, and noise chosen uniformly random in ±2.5cm is added to the
sender-receiver distance. The model takes into account the fact that a receiver can not perceive a
message if it is sending a message or if two messages arrive at the same time. A third robot placed
on the direct path in between a signal source and the receiver’s sensor interrupts the transmission.
Moreover, each emitted message can be lost with a probability which varies from 1% when the
sender-receiver distance is less than 1cm, to 50% when the two robots are at 25cm from each other.
Messages are not altered in simulation: if a message is captured by a robot, it corresponds exactly
to what was broadcast by the sender. Additionally, 10% uniform noise is added to the e-pucks ’
motor outputs.

3 The Robots’ Controller

The agent controller is composed of a continuous time recurrent neural network (CTRNN) of
7 inter-neurons and an arrangement of 11 sensor neurons and 5 output neurons (see Beer and
Gallagher, 1992, for further details on CTRNNs). At each time cycle, the network receives in
input a 11 bits vector, which is composed of 8 bits corresponding to the status of all sensors
ISi

and the 3 bits corresponding to the message Mi of the sensor that is impinged by a signal,
if any (see Figure 2). The inter-neuron network is fully connected. Additionally, each inter-
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neuron receives one incoming synapse from each sensory neuron. Each output neuron receives one
incoming synapse from each inter-neuron. There are no direct connections between sensory and
output neurons. The states of the output neurons are used to set the speed of the robot wheels,
and to control the signalling system. The network neurons are governed by the following equation:

τiẏi =



















−yi + gISi
; i ∈ [1, 8]

−yi + gMj; i ∈ [9, 11], j ∈ [1, 3]

−yi +
k
∑

j=1

ωjiσ(yj + βj); i ∈ [12, 23]

with σ(x) =
1

1 + e−x

(1)

where, using terms derived from an analogy with real neurons, yi represents the cell potential,
τi the decay constant, g is a gain factor, ISi

= {0, 1} the perturbation on sensory neuron i with
i ∈ [1, 8] corresponding to the status of sensor Si, Mj = {0, 1} the perturbation on the 9th, 10th,
and 11th sensory neuron corresponding to the 3 bits message, ωji the strength of the synaptic
connection from neuron j to neuron i, βj the bias term, σ(yj + βj) the firing rate. The cell
potentials yi of the 19th neuron, mapped into [0.0,1.0] by a sigmoid function σ and then linearly
scaled into [-1, 1], set the angular speed of the robot right motor. The speed of the left motor
is the inverse of the right motor. The output neurons 20, 21, 22, and 23 are used to control the
signalling system. At each time cycle, a 3 bits message is broadcast if the cell potential of output
neuron 20 is y20 > 0.5. The message Mj, j ∈ [1, 3] is determined by the cell potentials yi of the
21st, 22nd, and 23rd neuron. Mj is set to 1 if the cell potentials of the corresponding output
neuron i is yi > 0.5, 0 otherwise. The first time the network is updated ∀j, Mj = 0. If at time
cycle t no sensors are impinged by a signal, that is ∀i, ISi

= 0, i ∈ [1, 8], then ∀j, Mj keeps the
value at time cycle t − 1. Cell potentials are set to 0 at the beginning of each experiment, and
circuits are integrated using the forward Euler method with an integration step-size of dt = 0.2s.

4 The Evolutionary Algorithm

A simple generational genetic algorithm is employed to set the parameters of the networks (Gold-
berg, 1989). The population contains 80 genotypes. Genotypes of the first generation are generated
randomly. Generations following the first one are produced by a combination of selection with
elitism, recombination and mutation. For each new generation, the five highest scoring individu-
als (“the elite”) from the previous generation are retained unchanged. The remainder of the new
population is generated by fitness-proportional selection (also known as roulette wheel selection)
from the individuals of the old population. Each genotype is a vector comprising 182 real values
(i.e., 161 connection weights, 12 decay constants, 8 bias terms, and one gain factor). Initially,
random genotypes are generated by initialising each of their components to values chosen uni-
formly random from the range [0,1]. New genotypes, except “the elite”, are produced by applying
recombination with a probability of 0.3 and mutation. Mutation entails that a random Gaussian
offset is applied to each real-valued vector component encoded in the genotype, with a probability
of 0.15. The mean of the Gaussian is 0, and its standard deviation is 0.1. During evolution, all
vector component values are constrained to remain within the range [0,1]. Genotype parameters
are linearly mapped to produce network parameters with the following ranges: biases βi ∈ [−4,−2]
with i ∈ [12, 23], weights ωij ∈ [−6, 6] with i ∈ [12, 23] and j ∈ [12, 18]; gain factor g ∈ [1, 10].
The outputs neurons share the same bias. Decay constants are firstly linearly mapped into the
range [−1.0, 1.2] and then exponentially mapped into τi ∈ [2 ∗ 10−1.0, 101.2]. The lower bound of
τi corresponds to the integration step-size (i.e., dt = 0.2s) used to update the controller; the upper
bound, arbitrarily chosen, corresponds to about 1/3 of the maximum length of a trial (i.e., 300s).
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Figure 3: Average fitness of the best groups at each generation of the three best performing
evolutionary runs.

5 The Fitness Function

During evolution, each genotype is translated into a robot controller, and cloned onto each sim-
ulated e-puck. Each group is evaluated in 8 trials. Each trial (e) differs from the others in the
initialisation of the random number generator, which determines the amount of noise injected into
the system and the robots initial orientation. Within a trial, the robots life-span is 300 simulated
seconds (1500 simulation cycles). In each trial e, each group is rewarded by an evaluation function
Fe which seeks to assess the ability of the e-pucks to perform alignment. Fe is computed as follows:

Fe =
2

T

T
∑

t= T

2

(

1 −
π − Ht

π

)

;

Ht = min (|θrc
t − θcr

t |) , with θrc
t , θcr

t ∈ [0◦, 360◦];

(2)

with T = 1500 corresponding to the length of a trial in simulation cycles; Ht corresponds the
absolute value of the difference between θrc

t and θcr
t with {r, c ∈ [1, N ] | r 6= c, N = 6}. At time

t, θrc
t corresponds to the relative orientation of e-puck c with respect to the heading of e-puck r,

and θcr
t corresponds to the relative orientation of e-puck r with respect to the heading of e-puck

c. Headings are computed with respect to a general polar coordinate system. The fitness assigned
to each genotype after evaluation of the e-pucks behaviour is given by

FF =
1

E

E
∑

e=1

Fe with E = 8; (3)

6 Results in simulation

Ten evolutionary simulations, each using a different random initialisation, were run for 1000 gener-
ations. These evolutionary processes aim at designing control mechanisms for groups of 6 simulated
e-pucks required to negotiate a common heading. During evolution, the highest fitness score that
a group can reach (FF = 1.0) corresponds to the circumstance in which the simulated robots are
perfectly aligned. None of the evolutionary runs produced groups that managed to get the high-
est score. As shown in Figure 3, the fitness of the best evolutionary runs, after 700 generations,
reached a plateau around the value of 0.7. If we consider that the fitness is computed by referring
to the two less aligned robots of each group (see equation 2), and that the maximum score can
hardly be produced by the robots due to the issues mentioned in the introduction, these fitness
curves are quite promising.

However, it is generally the case that the fitness of the best groups in evolution is overesti-
mated. Moreover, there is no guarantee that, once ported on the physical robots, the best evolved
controllers are as effective as they are in simulation given that simulations approximate reality
and that critical aspects of reality may have been neglected. For these reasons, we firstly run a
series of post-evaluation tests in which each of the best evolved controllers at each generation of
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Figure 4: Mean polarisation (± standard error) in function of time for 30 repeated experiments.
(a) 4 physical e-pucks. (b) 6 physical e-pucks.
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Figure 5: Mean polarisation (± standard error) in function of time for 30 repeated experiments
for all group sizes tested (3, 4, 6, and 9 e-pucks) in superimposition, standard errors not shown
for the sake of clarity.

each evolutionary run are evaluated for 1000 trials. In each post-evaluation trial the behaviour of
robots is scored using the fitness function previously defined.

The best performing genotype resulting from this set of post-evaluations is decoded into an
artificial neural network which is then cloned and ported onto physical robots. In what follows
we provide the results of post-evaluation tests aimed at evaluating the success rate of physical
e-pucks at the task. Post-evaluation was decoded into an artificial neural network which was
then cloned and ported onto physical robots. In what follows, first we provide the results of post-
evaluation tests aimed at evaluating the success rate of physical e-pucks at the task. Subsequently,
we analyse the behaviour of simulated e-pucks to unveil operational aspects underlying the best
evolved behavioural strategy.

Supplementary information is available at http://iridia.ulb.ac.be/supp/IridiaSupp2008-
005/index.html
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7 Results with physical robots

Real experiments are recorded using a digital camera. A tracking software is used to automatically
extract the heading of each robot at each second. We use a specific measure of polarisation to
calculate the degree of alignment of all the robots. While the fitness function is a measure tuned to
facilitate the evolution of good controllers, the polarisation measure is devised to report faithfully
observations on real robots.

Polarisation P (G) of a group of robots G is defined using the angular nearest neighbour. For
a robot r, the corresponding angular nearest neighbour c is defined such that θrc, the relative
orientation of c with respect to r is the smallest possible : θrc < θri, ∀i ∈ G \ {c}. We denote
θann(r) the relative orientation of the angular nearest neighbour of the robot r. The formal
definition of polarisation is as follows :

P (G) =
∑

i∈G

θann(i). (4)

If all robots are aligned, then P (G) = 0. Conversely, if headings are evenly distributed, P (G) = 2π.
Lastly, if headings are random, i.e. drawn from a uniform distribution, then P (G) = π in average.
It is worth mentioning that meaningful comparisons among different group sizes are possible since
the average value of P (G) is not affected by the number of robots in G.

We tested the best genotype obtained by artificial evolution in groups of 3, 4, 6, and 9 physical
robots. Figure 4 reports the average polarisation (± standard error) of the robots across 30
repeated experiments. We have observed very good abilities to align for groups of 3 and 4 robots.
For these group sizes, the polarisation measure is not statistically different. Groups of 6 robots
are less performant and need more time to achieve alignment and groups of 9 robots display a
polarisation close to random headings (close to π). Figure 5 clearly shows that groups of 3, 4 and
6 robots converge and maintain their alignment till the end of the experiments. The collective
behaviour consists in a first phase of negotiation in which robots try to adopt similar headings
for a period of time that varies from t = 100s (3 and 4 robots) to t = 150s (6 robots). With 9
robots the phase of negotiation may last the whole experiments as there is always at least one
robot not properly aligned. In a second phase of maintenance, groups of robots stay aligned and
achieve a stable degree of polarisation by regularly applying slight corrections to the headings.
These corrections are needed as unavoidable errors in communications cancel the polarisation
of the groups. During the negotiation phase, robots communicate in a pairwise manner that
explains why this phase takes more time as group size increases. With respect to simulated
experiments shown in Figure 7a and b, physical robots did not achieve such an extreme degree of
polarisation. This is due to two main factors, namely the errors of the communication system and
the automatic tracking system that has only 10◦ accuracy in the detection of robots headings, due
to computational limitations.

To summarise, results on real robots show that the evolved genotype has been successfully
transposed in real robots with no specific tuning, and while evolution was carried out with only
groups of 6 robots, the neural network is able to cope with different group sizes and exhibit graceful
degradation of performance as the task becomes more difficult.

8 Communication strategies

In order to find out the nature of the mechanisms underlying the communication strategies the
robots are using to solve this coordination task, we proceed by carrying out further post-evaluation
tests on simulated robots controlled by networks built from the best evolved genotype which is
the same used on the real robots. In particular, we look at a simplest possible scenario—i.e.,
two simulated e-pucks randomly oriented—in which the evolved communication mechanisms can
be observed. In a single trial test, we record the status of the two e-pucks ’ sensors, the 3 bits
messages transmitted, and Ht which is a measure of the convergence of the e-pucks ’ headings (see
equation 2). Note that, Ht = 1 when the simulated robots are phasing the opposite direction,
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Figure 6: (a) Time during a trial in which the sensors of e-puck (|) and e-puck (*) are active—that
is ISi = 1, with i ∈ [1, 8]. (b) Value of Ht during a trial.

and 0 when both robots head in the same direction. Since the robots can only turn on spot, the
range of the signal sources is not relevant to the accomplishment of the task. The results of our
post-evaluation test reveal that the 3 bits message is not used by the robots to solve the task
given that they are always emitting the same message. Therefore, the behaviour we described in
Section Results with physical robots seems to result from the exploitation of only the bearing of
signal sources. Figure 6a provide information to understand how two robots manage to converge
to a state of alignment.

When the robots share the same heading (i.e., from t = 20s till the end of the trial, see
Figure 6b), they rotate counterclockwise with the same angular speed, they emit signals for half
of a turn period and they alternate signalling. This produces the regular pattern observed in
Figure 6a, which shows the time during a trial in which the sensors of e-puck (|) and e-puck (*)
are active. In particular, we notice that when the e-puck (|) is emitting signals e-puck (*) is
receiving and vice versa. Both e-pucks switch from receiving to emitting as soon as they receive
a signal from sensor S6, and from emitting to receiving as soon as they perceive a signal from
sensor S3. Since the robots are moving with the same angular speed, the switch of roles—sender
versus receiver—happens at a regular frequency. That is, the sender continuously emits while
doing a 180◦ turn. This corresponds to the time it takes to the receiver to reach an orientation in
which sensor S6 is impinged by the signal. At this point, both robots are signalling and the one
signalling for a longer time is receiving from sensor S3. Therefore, it stops emitting. This process
is repeated till the end of the trial.

When robots are misaligned, they act in order to bring forth the cyclic phases described above.
At the beginning of a trial, both robots emit signals and turn counterclockwise. When e-puck (*)
switch state from receiving to emitting due to the perception of a signal form sensor S6, e-puck (|)
does not stop emitting since it is not currently receiving from sensor S3 but from sensor S7. E-puck

(*) reacts to this contingency by stopping the emission of signals and changing its behaviour. That
is, it interrupts its smooth rotational movement and starts oscillating, changing its direction of
rotation from clockwise to counterclockwise anytime sensor S6 is impinged by a signal, and from
counterclockwise to clockwise anytime sensor S5 is impinged by a signal. During the oscillations,
e-puck (*) begins again to emit signals. While e-puck (*) is busy in performing this dance, e-puck
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Figure 7: (a) Polarisation results of a team of 4 simulated e-pucks for a set of 30 experiments.(b)
Polarisation results of a team of 6 simulated e-pucks for a set of 30 experiments.

(|) keeps on smoothly moving counterclockwise. As soon as it reaches an orientation in which
signals impinged its sensor S3, e-puck (|) stops emitting. For e-puck (*) this is the condition
to interrupt its oscillating behaviour and start the smooth rotational movement. At this point
(t = 20s) the robots have more or less the same heading—see Ht < 0.1 in Figure 6b—and the
cyclic phases guarantee the maintenance of the coordinated movements.

Note also that, in this trial, the simulated robots are initially oriented in such a way that
they are nearly facing opposite directions—see Ht = 0.85 in Figure 6b. At the very beginning of
the trial, both robots try to wait for the other changing rotation sense, so they both enter into
the oscillatory phase mentioned above. Errors in communications and noise on motors allow the
robots to get out of the deadlock and successfully accomplish their objective.

We replicate test with physical robots in simulation, to do a comparison between the real and
simulated behaviour. Figure 7a shows polarisation measures for a group of 4 robots, and Figure 7b
for a group of 6. In simulation robots are behaving slightly better than in reality. They manage
to negotiate their common heading before t = 70s. We studied these differences by keeping track
of the inputs and outputs values of the neural network in both simulated and real experiments.
We observe that as the size of the group of robots increases, more communication signals are
simultaneously broadcast in the environment and message collisions are therefore more likely to
arise. This degradation of the communication signals has not been implemented on the simulated
robots due to the difficulty of simulating the shared medium of the communication system. This
is the main explanation to the negotiation time difference between real and simulated results.

9 Conclusions

In this paper, we describe a neural network controller designed using artificial evolution that allows
robots to implement efficient communication strategies to align. Aligning refers to the process by
which the robots managed to head towards a common arbitrary an autonomously chosen direction
starting from initial randomly chosen orientations. The communication among the robots is base
on a system which provides a receiver information concerning range, bearing of the signal source
and a binary message broadcast into the environment by the sender. The results show that
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artificial evolution synthesised successful neural network controllers that provide the robots all the
behavioural and communication mechanisms required by the task.

The best evolved neural network has been successfully ported on the physical robots. Despite
the differences between simulations and reality, the evolved neural network has proved being
robust to errors on the communication and kinematics of the real robots. Results are a proof-
of-concept that artificial evolution helps designing controllers faster and easily. We also observed
that changing the cardinality of the group does not disrupt the effectiveness of the best evolved
strategies. However, the robots exhibits graceful degradation of their performance as the group size
increases and the task becomes more difficult. Further investigation on the operational principles
of the best evolved strategies reveal how the communication system is being used. Robots do not
rely on semantic communication as it was expected. Instead, artificial evolution has found a very
simple way to deal with the alignment task by simple relying on the physics of the signal and on
a signalling behaviour in which sender and receiver alternates period of signalling and period of
silence. The simplicity of the synthesised controller is likely to produce robust behaviours, and the
lack of semantic in messages makes the controller less prone to defect of alignment due to errors
in transmission.

In the future, we intend to develop the approach described in this paper into more complex
scenarios. Since alignment is a fundamental behaviour for a number of swarm robotics tasks, we
will investigate more challenging tasks that demand potentially more elaborated communications
among the robots. In particular, we are thinking about setups such as flocking, with the expecta-
tion to discover new strategies of communication that could be as surprising as the ones observed
in this work.
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