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Abstract—In this paper, we propose the distributed bees
algorithm (DBA) for task allocation in a swarm of robots.
In the proposed scenario, task allocation consists in assigning
the robots to the found targets in a 2-D arena. The expected
distribution is obtained from the targets’ qualities that are
represented as scalar values. Decision-making mechanism is
distributed and robots autonomously choose their assignments
taking into account targets’ qualities and distances. We tested the
scalability of the proposed DBA algorithm in terms of number
of robots and number of targets. For that, the experiments
were performed in the simulator for various sets of parameters,
including number of robots, number of targets, and targets’
utilities. Control parameters inherent to DBA were tuned to test
how they affect the final robot distribution. The simulation results
show that by increasing the robot swarm size, the distribution
error decreased.

Index Terms—Multirobot systems, scalability, swarm
intelligence, task allocation.

I. Introduction

IN applications that are too risky or too demanding for
humans, or where a fast response is crucial, multirobot

systems can play an important role thanks to their capability to
cover the area. Possible applications are planetary exploration,
urban search and rescue, monitoring, surveillance, cleaning,
maintenance, among others. In order to successfully perform
the tasks, robots require a high degree of autonomy and a good
level of cooperation. The set of robots should behave like a
team and not merely as a set of entities.

In scenarios that require area coverage, dozens, hundreds,
or even thousands of robots can be used. Such a large group of
robots, if organized in a centralized manner, could experience
information overflow that can lead to the overall system
failure. For this reason, the communication between the robots
can be realized through local interactions, either directly with
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one another or indirectly via environment. The large group of
robots acting in such a manner is referred to as swarm [1].

As a result of the growing interest in coordination of multi-
robot systems, multirobot task allocation (MRTA) has become
an important research topic. The goal is to assign the tasks
to the robots in a way that, through cooperation, the global
objective is achieved more efficiently. In the scenario proposed
in this paper, tasks are represented by targets defined by their
qualities and their location in the robot arena. We developed
a simulator that implements a multiforaging scenario, and
the experimental setup addresses the issue on how to, in a
distributed way, assign the robots to the found targets with a
expected distribution determined from the targets qualities.

Scalability in its most general form is defined as how
well a solution to some problem will work when the size of
the problem increases. In the context of mobile multirobot
systems, scalability refers to the overall system’s performance
if the number of robots increases in relation to the number
of tasks at hand [2]. The resulting effect on the system’s
performance can be determined in terms of metrics associated
with a particular platform or an operating environment, which
in our work refers to dispatching a robot to a remote site
marked as a target.

For a swarm of robots engaged in a multiforaging scenario
we propose using the distributed bees algorithm (DBA) [3]
inspired by the foraging behavior of colonies of bees in
nature. When they find a food source, the scout bees return
to the hive and perform a famous “waggle dance” in order
to recruit other bees. The information about the richness and
location of the source is passed using direct communication.
Some models of the cooperative behavior of bee colonies
with centralized communication or no communication have
already been proposed [4]–[6]. In order to avoid the centralized
concept of the beehive dance floor, our robots were designed
to use broadcast communication to inform other robots in the
range about the estimated location and the quality of the found
target.

The objective of the proposed algorithm is to assign the
robots in a swarm to the found targets in such a way that the
final distribution is proportional to the targets’ qualities. The
targets with associated qualities represent a distributed “food”
that requires a usually nonuniform distribution of robots in
the area. The algorithm has been previously validated through
experiments with real robots [3]. This paper presents the
analysis of the proposed algorithm’s scalability in a simulated
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environment. The simulations were performed for various sets
of parameters, including number of robots, number of targets
and targets’ quality values. Control parameters inherent to
the DBA were tuned to test how they affect the final robot
distribution.

The rest of this paper is organized as follows. Section II
provides a summary of the related work. In Section III, we
give a problem statement and describe a general mechanism
for distributed task allocation in multiforaging domain. In this
section, we present a mathematical model of the proposed
DBA algorithm. In Section IV, we define the simulation
environment and propose the experimental evaluation for the
multirobot system’s scalability. We present the experimental
results and their statistical analysis, and give a discussion of
the approach and the results. Finally, in Section V we make
the conclusions.

II. Related Work

Multirobot systems offer the possibility of enhanced task
performance, increased task reliability and decreased cost over
more traditional single-robot systems. However, multirobot
systems must be designed having these issues in mind. Re-
search field of multirobot systems is not new and various
architectures that differ in size and complexity have been pro-
posed. Dudek et al. [7] provided a taxonomy that categorizes
the existing multirobot systems along various axes, including
size (number of robots), team organization (e.g., centralized
versus distributed), communication topology (e.g., broadcast
versus unicast), and team composition (e.g., homogeneous
versus heterogeneous).

Rather than characterize architectures, Gerkey and Matarić
[8] categorized instead the underlying coordination problems
with a focus on MRTA. They distinguish: single-task (ST)
and multitask (MT) robots, single-robot (SR) and multirobot
(MR) tasks, and instantaneous (IA) and time-extended (TA)
assignment. The authors showed that many MRTA problems
can be viewed as instances of well-studied optimization prob-
lems in order to analyze the existing approaches, but also to
use the same theory in the synthesis of new approaches. In
order to estimate a robot’s performance, they defined utility
that depends on two factors, namely expected quality of task
execution and expected resource cost. Given a robot R and a
task T one can define QRT and CRT as the quality and cost,
respectively, expected to result from the execution of T by R.
The resulting nonnegative utility measure is as follows:

URT =

⎧⎨
⎩

QRT − CRT , if R is capable of executing
T and QRT > CRT

0, otherwise.
(1)

This, however, is not a strict definition of utility which is
a flexible measure of performance and can entail arbitrary
computation. The only constraint on utility estimators is that
they must each produce a single scalar value that can be
compared for the purpose of assigning robots for tasks. The
problem that we address in this paper is categorized as a
“single-task robots, multirobot tasks, instantaneous assignment
(ST-MR-IA),” which Gerkey and Matarić proposed to be

solved as a set partitioning problem. However, this requires the
combined utilities of all the robots to be known in advance,
which is not the case. The method we propose is described in
detail in Section III.

What follows is a survey of various multirobot system
architectures that have been proposed for solving different
problems. We tend to use the above mentioned taxonomies
to categorize them.

One of the common approaches for solving the ST-SR
and ST-MR problems is a market-based approach which uses
auctioning mechanism for task allocation. Matarić et al. [9]
proposed four different strategies for dynamical task allocation
in two different emergency-handling scenarios. The robots
bid for tasks and decisions are made by auctioning. The
authors concluded that there is no overall best strategy and
that the success of a strategy is task-related. Michael et al.
[10] proposed a market-based approach for robots formation
control. They associated multiple tasks with predefined spatial
locations that define a formation.

A thorough overview of market-based approaches for
MRTA was given by Dias et al. [11]. A common drawback
of these approaches is the underlying auctioning mechanism
which requires all the bids from the robots to be gathered at
one auctioning point. The main advantage of the method we
propose is that, although it imposes certain communication
cost for sending the information of the found targets, the robots
make decisions autonomously and in a distributed manner.
This is not the case with market-based approaches that feature
a partial distribution, where robots are divided into subteams
that take decisions in a centralized manner. For this reason,
scalability in market-based approaches is often limited by
the computation and communication needs that arise from
increasing auction frequency, bid complexity, and planning
demands.

Environment exploration and mapping are common appli-
cations for multirobot systems. Franchi et al. [12] proposed
a sensor-based random graph method for cooperative robot
exploration. They addressed the issue of system’s performance
with respect to exploration time and traveled distance. The
authors showed that by adding more robots the system could
scale-up, but its performance was highly dependent on the
initial team deployment, giving better results when the robots
started grouped in a cluster than if scattered in the environ-
ment. Another approach proposed by Burgard et al. [13] treats
the unknown environment exploration as a ST-SR problem,
where individual robots select a new target location based
on its distance and utility. Although the experimental results
show the advantages of collaboration, the proposed centralized
approach cannot be applied if not all robots can communicate
with each other.

Decentralized coordination of robots has various advantages
over more traditional centralized approaches. It can be applied
to reduce the communication burden on multirobot system
[14], especially for large teams of robots. In some applications
communication can be difficult to implement or no commu-
nication exists at all. Joordens and Jamshidi [15] proposed a
decentralized coordination for a swarm of underwater robots
which is based on consensus control. Another decentralized
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strategy for dynamical allocation of tasks that requires no
communication among robots was proposed by Berman et al.
[16]. But often, as in case of multirobot area coverage [17], the
decentralized coordination and distributed decision-making is
applied having one goal in mind, that the global objective is
achieved more efficiently.

A. Bio-Inspired Coordination of Multirobot Systems

Robot swarms are multirobot systems that typically consist
of a large population of simple robots interacting locally with
one another and with their environment [18]. These systems
draw inspiration from animal swarms in nature but their
design is not constrained by biological plausibility. Their main
feature is decentralized coordination which results in a desired
behavior that emerges from the rules of local interactions.

The self-organizing properties of animal swarms such as
insects have been studied for better understanding of the
underlying concept of decentralized decision-making in na-
ture [19], but it also gave a new approach in applications
to multiagent system engineering and robotics. Bio-inspired
approaches have been proposed for multirobot division of
labor in applications such as exploration and path formation
[20], multisite deployment [21], or cooperative transport and
prey retrieval [22], [23].

The bottom-up design topology inherent to bio-inspired
multirobot systems provides them with one or more of the
following features, such as being autonomous, scalable, robust
and adaptive to changes in their environment. On the other
hand, the collective behavior has emergent properties that give
them the ability to produce unpredictable patterns. One way
of dealing with the unpredictability issue is statistical analysis
through experiments, as proposed in this paper.

B. Scalability

Task allocation scenarios include a set of tasks that may
have different priorities and require one or more robots to
be assigned to their execution. A very important property of
multirobot systems is the ability to scale-up with respect to the
number of robots or the number of tasks at hand. However,
scalability of multirobot systems and multiagent systems in
general has been analyzed from various perspectives including
the total number of agents involved, the size of the commu-
nication data, the number of rules the agents operate with, or
the agents’ diversity [2].

In order to evaluate the scalability of a given multirobot
system we need to identify a performance metrics. Various
MRTA methods exist but, to the best of our knowledge,
a comprehensive analysis tool for the scalability of such
methods has not been given. Some mathematical models that
have been proposed could serve as guidelines in multirobot
system design, but different scenarios to which these systems
are applied usually do not permit us to maintain within the
proposed framework.

Lerman et al. [24] proposed a mathematical model for
MRTA in dynamical environments. The authors assumed that
robots were able to observe tasks in order to discriminate their
types, but also to discriminate the tasks that other robots were

assigned to. Robots had limited sensing capabilities and could
not directly communicate. The lack of communication made
the system more robust to failures, but also more susceptible to
noise from the sensors, and requires more time for exploration
of available tasks.

Top-down design methodologies apply the classical control
theory for performance estimation of distributed agent-based
systems. While it is possible to establish bounds on the system
behavior and provide performance guarantees, they heavily
rely on the available bandwidth for robot communication and
they are more sensitive to noise. The need for resources
becomes even a bigger issue as the number of robots increase.
There is therefore a very natural tendency to apply bottom-
up methodologies which produce autonomous, scalable and
adaptable systems requiring minimal communication [25].

Broadcast communication provides quick propagation of
tasks’ information within the multirobot system but extensive
use of communication channel can affect the system’s scalabil-
ity. Previously described market-based approaches suffer from
a large requirement in terms of communication bandwidth
as they use broadcast messages to auction for the tasks.
Farinelli et al. [26] proposed a mechanism based on token
passing for cooperative object retrieval, which scales up for
reliable sending of broadcast messages. The authors made a
comparison of their method with market-based approaches and
the ones based on iterative broadcast communication. Their
results show that the ability of the system to adjust to the
available communication bandwidth provides guarantees for
better performance.

III. Distributed Task Allocation

A. Problem Definition

Based on the described taxonomy, our multirobot system
can be categorized as homogeneous and distributed, using
broadcast communication. We address a problem of single-
task robots, multirobot tasks and instantaneous assignment
(ST-MR-IA). The task allocation scenario we study considers
the environment that contains a number of tasks that could be
of same or different importance and robots that are equally
capable of performing each task but can only be assigned to
one at any given time. More specifically, the tasks are targets
with their associated qualities. The quality of a target is an
application-specific scalar value that may represent target’s
priority or complexity, where a higher value requires more
robots to be allocated. For example, it could represent the
richness of the mineral or water source on a planet that we
want to harness, the amount of garbage to be collected in a
public space, or the number of injured people in a need for
assistance in urban search and rescue scenario. In this paper,
we do not consider how these values are obtained.

The proposed scenario is presented under the following
assumptions.

1) All the targets are made available to all the robots. This
is done by setting the broadcast communication range of
the robots to cover the entire arena.

2) Robots take decisions once all the targets in the arena
are found, unless they were the ones that found a target
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in which case they are automatically allocated to that
target. The total number of targets is preset in robots’
internal memory and it depends on the experimental
setup.

3) Reallocation to another target is not allowed.

These assumptions are taken for simplicity; otherwise, it
would be difficult to analyze the performance of the system
due to the unpredictability of the robots’ distribution prior to
target allocation.

Consider a population of N robots to be allocated among
M targets. Let Q ∈ {q1, . . . , qM} denote the set of normalized
qualities of all available targets. We denote the number of
robots on the target i ∈ {1, . . . , M} by ni, a nonnegative
integer. The population fraction allocated to target i is fi =
ni/N, which represents the target’s relative frequency, and
the vector of population fraction is f = [f1, . . . , fM]T . The
expected distribution is the set of desired population fractions
for each target, fd = [f d

1 , . . . , f d
M]T , where f d

i = qi. The
usage of fractions rather than integers is practical for scaling,
but it also introduces a distribution error as the fractions
can take only certain values that are defined by the swarm
size.

A relevant concept from set theory could be used to observe
this as a set partitioning problem. A family X is a partition of
a set E if and only if the elements of X are mutually disjoint
and their union is E ⋂

x∈X

= ∅

⋃
x∈X

= E.

(2)

However, for the proposed scenario the system optimization
based on the maximum utility cannot be applied because the
combined utilities of the robots are unknown as robots have no
knowledge of the decisions taken by other robots. Therefore,
we propose the DBA.

B. Distributed Bees Algorithm

When a robot receives information about the targets it
calculates the utilities with respect to those targets. The utility
depends on the target’s quality value and the related cost, i.e.
the robot’s distance from the target. This is the basic concept
behind the DBA that was introduced in [3], but here it is
described in details.

1) Costs: The cost of a target i for robot k is calculated
as the Euclidean distance between the robot and the target in
a 2-D arena

dk
i =

√
(xi − xk)2 + (yi − yk)2 (3)

where (xi, yi) and (xk, yk) represent target’s and robot’s coor-
dinates in the arena, respectively.

However, to calculate the utility we use the target’s visibility
defined as the reciprocal value of the distance

ηk
i =

1

dk
i

. (4)

2) Qualities: The quality is a scalar value that represents
priority, or the complexity of the target. Normalized qualities
are calculated as fractions of the sum of qualities of all
available targets

qi =
Qi∑M
j=1 Qj

(5)

where Qi is a quality of the target i. In real-world scenarios,
the quality of a region of interest is an estimated value that is as
a result of sensor-readings or a previously acquired knowledge.

3) Computing Utilities: The utility of a robot as proposed
in (1) depends on both, cost and quality of the chosen target.
We define the utility as a probability that the robot k is
allocated to the target i, and it is calculated as follows:

pk
i =

qα
i η

β
i∑M

j=1 qα
j η

β
j

(6)

where α and β are control parameters that allow us to bias the
decision-making mechanism toward the quality of the solution
or its cost, respectively (α, β > 0; α, β ∈ �). From (6) it is
easy to show that

M∑
i=1

pk
i = 1. (7)

4) Decision-Making: The underlying decision-making
mechanism of the DBA algorithm adopts the roulette rule, also
known as the wheel-selection rule. That is, every target has an
associated probability with which it is chosen from a set of
available targets. Once all the probabilities are calculated as
in (6), the robot will choose a target by “spinning the wheel.”

It should be noticed that the resulting robots’ distribution
depends on their initial distribution in the arena, i.e. their
distances from each target prior to target allocation. Therefore,
robots’ utilities will differ with respect to the same target if
their distances from that target are not equal. Since a combined
robots utility cannot be computed due to a distributed nature of
the proposed algorithm, the quality of the targets is used as the
only measure for the expected robots’ distribution. Although
the overall cost efficiency of the swarm is not analyzed in this
paper, target’s visibility as used in (6) makes closer targets
more attractive to robots.

IV. Experimental Evaluation

In the following, we describe the simulation environment
and experimental setup, and we report the simulation results
in order to analyze the scalability of the proposed system.

A. Simulator

Our simulation platform is a fast, specialized multirobot
simulator for the e-puck robots described in [27]. It is a
simple and effective simulator implementing 2-D kinematics.
A screenshot of the simulator is shown in Fig. 1. In our
simulations, the e-puck is modeled as a cylindrical body of
3.5 cm in radius that holds eight infrared (IR) proximity
sensors distributed around the body, three ground sensors on
the lower-front part of the body and a range and bearing
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TABLE I

Parameters Describing Three Arenas Used in Experiments

Arena 1 Arena 2 Arena 3

Area dimensions [m2] 1.5 × 2.125 1.5 × 2.125 1.5 × 2.125
Number of robots 10 20 40 60 100 10 20 40 60 100 10 20 40 60 100
Experiment duration [time steps] 400 400 400 300 200 400 400 400 300 200 400 400 400 300 200
Time step duration [s] 0.1 0.1 0.1
Initial area radius [m] 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.5
Number of targets 2 4 4
Target radius [m] 0.09 0.09 0.09
Target 1 location (x, y) [m] (−0.45, 0.75) (−0.45, 0.75) (−0.45, 0.75)
Target 2 location (x, y) [m] (0.45, −0.75) (0.45, −0.75) (0.45, −0.75)
Target 3 location (x, y) [m] N/A (−0.45, −0.75) (−0.45, −0.75)
Target 4 location (x, y) [m] N/A (0.45, 0.75) (0.45, 0.75)
Target 1 quality (q1) 0.5 0.25 0.1
Target 2 quality (q2) 0.5 0.25 0.2
Target 3 quality (q3) N/A 0.25 0.3
Target 4 quality (q4) N/A 0.25 0.4

∗Targets have a form of a circle. Without loss of generality, their radius and location were intuitively chosen.

Fig. 1. Simulator screenshot. Experimental setup included 40 robots engaged
in search for four targets of different qualities represented by different grey-
level intensity. Robots are programmed for obstacle avoidance, when robot
detects an obstacle its color changes from black to blue to mark his new state.
Once the robot has taken a new direction, its color goes back to black.

communication sensor. IR proximity sensors have a range of
5 cm, while the communication range of the E-puck Range
& Bearing module was set to cover the whole arena. For the
three types of sensors, real robot measurements were sampled
and the data was mapped into the simulator. Furthermore,
uniformly distributed noise was added to the samples in order
to effectively simulate different sensors; ±20% noise is added
to the IR sensors and ±30% to the ground sensors. In the range
and bearing sensor, noise is added to the range (±2.5 cm) and
bearing (±20°) values. A differential drive system made up
of two wheels is fixed to the body of the simulated robot.
At each time step (100 ms), the robot senses the environment
and actuates. The robot speed has been limited to 6 cm/s when
moving straight and 3 cm/s when turning.

B. Experimental Setup

Three different experimental setups have been chosen to
compare and study performance and scalability of the pro-
posed DBA algorithm. The setups were carried out in the

same arena where the number of robots, number of targets
and targets’ quality values were changed as shown in Table I.
Additional experimental setup was created in order to analyze
the effect of the control parameters α and β on the resulting
distribution. Each experiment was repeated 50 times in order
to perform a statistical analysis of the results.

C. Simulation Results and Discussion

In order to test the scalability of the proposed DBA with re-
spect to the size of the swarm, the experiments were performed
with 10, 20, 40, 60, and 100 robots for the experimental setup
1, and 20, 40, 60, and 100 robots for the experimental setup
2 and the experimental setup 3. The number of targets was
also changed, from two in the experimental setup 1 to four
in the experimental setup 2, in order to test the performance
of the algorithm with respect to the number of targets. In
the experimental setup 3, we used four targets with different
quality values to show the adaptability of the swarm to a
nonuniform distribution of the “food” in the environment. This
is also the most realistic scenario. Finally, the experimental
setup 4 was created to test how by changing the ratio of the
control parameters α and β we can affect the resulting robots’
distribution.

As the algorithm performance metrics we define the mean
absolute error (MAE) of the robots’ distribution, which is
given by

MAE =
1

M

M∑
i=1

∣∣fi − f d
i

∣∣ (8)

where f d
i = qi.

As the name suggests, the mean absolute error is the
average value of the absolute distribution error (per target)
that is the result of discrepancy between the expected and the
resulting robots’ distribution. For each experimental setup and
each swarm size described in Table I, 50 experiments were
performed. The average and the maximum values of MAE

obtained from the experiments are presented in Table II and
graphically shown in Fig. 2. We can notice that the average
MAE and maximum MAE values decrease as the size of the
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Fig. 2. Box-plot comparison shows the robots’ distribution mean absolute error (MAE) with respect to the swarm size. (a) Experimental setup 1.
(b) Experimental setup 2. (c) Experimental setup 3. Each box-plot comprises observations ranging from the first to the third quartile. The median is indicated
by a horizontal bar, dividing the box into the upper and lower parts. The whiskers extend to the farthest data points that are within 1.5 times the interquartile
range. Outliers are shown with a plus symbol. The values were obtained from 50 experiments performed for each swarm size within each experimental setup.

Fig. 3. Bar-plot comparison of the expected (red) versus the obtained (blue) robots’ distribution on two targets of same quality values, q1 = q2 = 0.5. Fifty
experiments were performed for each of the following swarm sizes. (a) 10 robots. (b) 40 robots. (c) 100 robots.

TABLE II

Mean Absolute Error (MAE) of the Robots’ Distribution

Num. of Robots Average MAE Maximum MAE

Exp. setup 1 10 0.1140 0.4000
20 0.0820 0.3500
40 0.0555 0.2000
60 0.0482 0.1167
100 0.0461 0.1100

Exp. setup 2 10 0.0941 0.1750
20 0.0720 0.1500
40 0.0500 0.1000
60 0.0475 0.0917
100 0.0313 0.0650

Exp. setup 3 10 0.0979 0.2500
20 0.0790 0.1500
40 0.0526 0.0875
60 0.0478 0.0790
100 0.0343 0.0750

* Parameters for each experimental setup are described in Table I.
** The average MAE and the maximum MAE values were obtained
from 50 experiments performed for the each swarm size within the each
experimental setup.

robot swarm increases regardless of the number of targets
or their quality values. This was expected because of the
probabilistic target allocation mechanism applied in (6).

The effectiveness of the algorithm in terms of increased
number of targets is shown in Figs. 3 and 4. The results show
that the average and the maximum MAE values decreased
for larger swarms in case of four targets of the same quality.

It should be noticed that the allocation of ten robots to four
targets produces an error that is the result of the cardinality of
the robot swarm. It is not physically possible to partition the
swarm in order to obtain the expected target allocation (2.5
robots per target).

Another inherent source of error results from the assumption
that the robots that had found a target are not allowed to
reallocate to another target, therefore they are not involved
in the decision-making process. Also, it is assumed that
the robots wait for a predetermined number of targets to
be found before they make a decision, which can result in
the same target being found by more than one robot. This
fraction of the robot swarm also produces an error in the final
distribution because they cannot reallocate to another target.
The algorithm’s performance is analyzed having these issues
mind.

In order to test the ability of the robot swarm to adapt
to a nonuniform distribution of “food” in the environment,
the experiments were performed for four different targets
(experimental setup 3). The robots’ distribution changed ac-
cording to a new set of targets’ quality values, as shown in
Fig. 5. In the same figure we can also notice that the resulting
robots’ distribution, with respect to the expected distribution,
is slightly in favor of the less valuable targets. This is another
consequence of the robots that had found a target not being
able to reallocate, and it is especially evident for smaller robot
swarms. For example, let us consider a swarm of ten robots
in search of four different targets, as shown in Fig. 5(a). If
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Fig. 4. Bar-plot comparison of the expected (red) versus the obtained (blue) robots’ distribution on four targets of same quality values, q1 = q2 = q3 = q4 =
0.25. Fifty experiments were performed for each of the following swarm sizes. (a) 20 robots. (b) 60 robots. (c) 100 robots.

Fig. 5. Bar-plot comparison of the expected (red) versus the obtained (blue) robots’ distribution on four targets of different quality values, q1 = 0.1, q2 = 0.2,
q3 = 0.3, and q4 = 0.4. Fifty experiments were performed for each of the following swarm sizes. (a) 20 robots. (b) 60 robots. (c) 100 robots.

Fig. 6. Effects of the control parameters, α and β, on the final robots’ distribution. Target allocation was performed with 60 robots as described in the
experimental setup 3 consisting of four targets with different quality values: q1 = 0.1, q2 = 0.2, q3 = 0.3, and q4 = 0.4. The results of the robots’ distribution
per target is shown for the following values of α/β ratio. (a) α/β = 1. (b) α/β = 2. (c) α/β = 5. The values were obtained from 50 experiments for each
scenario.

in the random target search process two robots find the target
with the associated quality value of 0.1, then the final relative
frequency for this target cannot be less than 0.2 (2 out of
10 robots) which is already above the expected value of 0.1.
Although for the larger swarms the effect of the initial robot
distribution becomes less relevant, it is always present.

The control parameters, α and β, were introduced in (6)
to compensate for the biased distribution, but also to allow
us to give more relevance to either the quality of the targets
or the cost of reaching them. Therefore, in the experimental
setup 4 we increased the α/β ratio to give more relevance
to the quality value of the targets on the expense of their
distances from the robots. The resulting robots’ distributions
per target for different values of the α/β ratio are presented

TABLE III

Effects of Control Parameters on Robots’ Distribution

α/β Ratio Average MAE Maximum MAE

1 0.0478 0.1083
2 0.0525 0.1000
5 0.1415 0.2083

* The values were obtained from 50 experiments performed on the swarm
of 60 robots in search for four targets with different quality values
(experimental setup 3).

in Fig. 6. Results show that, by tuning the control parameters,
the final robot distribution can change in favor of the more
valuable targets but with an increase in the average MAE

(see Table III). It is reasonable to expect that by decreasing
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the α/β ratio the cost efficiency of the robot swarm would
improve in terms of the distance traveled, however, the MAE

is also expected to increase. Further analysis of the effect of
the control parameters will be a part of the future work.

V. Conclusion

Various applications for large multirobot systems require
efficient task allocation in terms of individual and combined
robots’ utilities. The quality of the solution is analyzed using
a defined performance metrics, which in our case was a
mean absolute error of the resulting robots’ distribution with
respect to the qualities of the available targets in the robot
arena. In case of large, autonomous, multirobot systems, the
scalability and the ability to adapt to different environments are
the features of utmost importance. Our experiments through
simulation showed that the proposed DBA provides the robot
swarm with scalability in terms of the number of robots and
number of targets, but also with adaptability to a nonuniform
distribution of the targets’ qualities.

The importance of the control parameters, α and β, is that
they provide a mechanism to adjust the robot swarm behavior
depending on the task at hand and the available resources. In
this paper, we changed the values of α and β in order to bias
the resulting robots’ distribution toward the more favorable
targets. Future work will include the analysis of the effect
of these parameters in terms of the task-allocation cost with
respect to the distance traveled by the robots.
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