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Abstract
In this paper, the use of artificial neural networks (ANNs) is proposed to manage the local demand of different electric grid

elements to smooth their aggregated consumption. The ANNs are based on the load automation of the local electric

behavior, following a local strategy but affecting to the global system. In an electrical grid, there is no possibility to share

information between the users because anonymity must be warranted. Therefore, a solution to the problem is elaborated

with the minimum information possible without the need for communication between the users. A grid environment and

behavior of different users is simulated.

Keywords Artificial neural network � Multi-agent system � distributed coordination � Demand-side management

1 Introduction

Working with ANNs in power systems has been long used

[12, 20, 22, 29]. However, their application field is centered

in tasks related to their pattern recognition and forecasting

abilities, in order to handle problems that arise in the grid

[24, 28, 31]. In this paper, the use of ANNs is proposed to

manage the local demand of different grid elements to

smooth their aggregated consumption [5]. However, con-

trary to standard approaches [30], it is done by focusing on

the users instead of using the capabilities of cutting large

grid consumptions [9, 10, 38, 39]. In this way, the security

of supply is guaranteed for all users and the operation

enhancement for the entire grid. This proposal is based on

Demand-Side Management (DSM) techniques [1, 34].

DSM is defined as actions that influence the way that

consumers use electricity in order to achieve savings or

higher efficiency in energy use. DSM is a global term that

includes a variety of activities, such as load management,

energy efficiency, etc., in a long-term perspective, whereas

the short-term perspectives are tackled by Demand

Response (DR) programs, which are actions that result in

short-term reductions in energy demand [2]. DR can also

be defined as incentive payment programs to motivate

users to respond to changes in price or availability of

electricity by changing its consumption [17]. The different

DSM techniques focus on the modification of the load

shape. In general, these techniques seek the grid enhance-

ment through an increase in the energy efficiency [17, 18].

Although some real experiments have already been

developed [3, 4, 8, 25, 30], there exist some barriers, of

different nature, that are difficult and slow their develop-

ment. One of these barriers is the lack of knowledge and

potential of DSM by users [34]. There is also a lack of

knowledge about the costs and benefits of DSM because of

a lack of methodologies to evaluate it. In [35], the authors

analyze DSM experiences in Europe and conclude that

limited knowledge has been developed about its overall

energy saving capacities. Another barrier is the lack of

infrastructure; there is no information coming from the grid
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Madrid, 28040 Madrid, Spain

123

Neural Computing and Applications (2020) 32:5745–5760
https://doi.org/10.1007/s00521-019-04139-3(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-8926-5328
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04139-3&amp;domain=pdf
https://doi.org/10.1007/s00521-019-04139-3


to the users, only the bill of the electricity consumed in a

time period. This fact makes difficult the decision of the

users in order to actuate over their consumption [23]. The

last important barrier in the development of the DSM is the

necessity of policies and incentives that motivate its use.

The DSM concepts and techniques involve the different

grid agents and the necessary development of them implies

all the participants of the grid, from big energy producers

to small consumers. Thus, it is difficult to develop pro-

grams and policies that encompass the entire grid. In

addition, the conservative position of the majority of the

agents of the electric power sector is slowing down the

DSM implementation. Fortunately, this situation is

changing as governments are taking part in enhancing the

grid operation [6, 16, 36, 37]. Furthermore, new energy

policies are emerging motivated by improving the grid

efficiency and fighting climate change [13].

Therefore, the interest of developing these techniques

consists of enhancing the grid operation and helping with

the integration of new technologies. This is the strategy

tackled in this paper.

The DSM algorithm proposed in this paper is based on

the load automation of the local electric behavior of users.

This strategy is applied locally, but its effects impact

globally in the system. A neural approach is used to

implement it, which consists of controlling the local elec-

tric behavior by taking into account the aggregated con-

sumption of the electrical grid and local energy resources.

The use of ANNs allows, by applying their abilities of

signal processing and forecasting [21], to vary the behavior

of the grid aggregated consumption. Moreover, their

adaptive and distributed properties make it perfect to

implement a possible solution to this electric paradigm.

Specifically, RNNs are used to tackle this problem, due to

its dynamic properties and its short-term memory ability

inherited in their structure [26, 27, 32]. Both are desirable

properties to design a DSM controller that has to adapt to

changes in the environment. However, working with RNNs

can be difficult and computationally slow, especially for

large structures. Therefore, a small RNN structure is

sought.

The reminder of the paper is as follows. The environ-

ment and the different elements inside it are introduced in

Sect. 2. A training algorithm is developed in Sect. 3. The

different parameters involved in the training of the neural

controller and how it is carried are explained in Sect. 4.

Then, the results achieved during the training are presented

in Sect. 5. In Sect. 6, a post-evaluation is carried out to test

the neural controller achieved at the end of the training.

Finally, conclusions are presented in Sect. 7.

2 Environment

In this paper, the environment is defined as a variable

number of users, whose consumption is typical for a high

electrified house (see Sect. 2.1). The electricity required by

those users will be supplied by the grid. The grid is com-

posed by two types of users: (i) non-controllable users,

whose consumption cannot be controlled because it is not

deferrable or they do not have any DSM system, and (ii)

controllable users, who can control their demand in real

time through the use of a controller [8, 11].

The aim of the neural DSM controller is to flatten the

aggregated consumption of a grid composed by this two

type of users. Mathematically, if P(t) is the formulation of

the aggregated consumption, then the objective of the

neural DSM controller consists of PðtÞ ! C, where C is a

constant. Moreover, P(t) can be divided in the sum of the

two users of the environment, such that:

PðtÞ ¼ PncðtÞ þ PcðtÞ ð1Þ

where PncðtÞ is the non-controllable consumption and PcðtÞ
is the consumption available for the algorithm to be

controlled.

Each part of the demand, PncðtÞ and PcðtÞ, is represented
by the sum of the power consumed by each type of user

(see Eqs. 2a and 2b).

PncðtÞ ¼
Xm

i¼1

pnci ðtÞ ð2aÞ

PcðtÞ ¼
Xn

i¼1

pci ðtÞ ð2bÞ

where pnci ðtÞ is the demand of the ith non-controllable user

and pci ðtÞ is the consumption of the ith controllable user.

The electrical behavior of the users and their aggregated

consumption is described in Fig. 1. In the general case,

neither of the users can control their demand so that each

one of them can consume any power at any time as in

Fig. 1a. In this case, there is no algorithm to control the

demand of PcðtÞ and the aggregated consumption possesses

a high variability. Thus, it is necessary for the proposed

algorithm to reshape the amount of PcðtÞ in order to adapt

to PncðtÞ, achieving a flattened PðtÞ consumption as in

Fig. 1b. The main challenge consists of how to adapt PcðtÞ
to PncðtÞ to produce a flattened response. However, the

current information coming from the grid and available by

users is non-existent, making difficult the elaboration of a

control strategy in order to achieve any goal.

In an electrical grid, in which users do not control their

consumption, the aggregated consumption behaves peri-

odically as shown in Fig. 2. The aggregated consumption

of other countries may differ in the form or in the power
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consumed, but the periodicity of valleys and peaks is very

similar among them because consumption habits among

users are very similar. Furthermore, it can be observed that

the grid aggregated consumption of the same region is

similar over the years, but with very small variations.

Focusing on the grid example of Fig. 2, it shows a

periodicity both in time (see Fig. 2a) and in frequency (see

Fig. 2b). Figure 2a shows the aggregated consumption of

2 weeks in different seasons of the year. The behavior of

weekdays is that they are very similar to each other and to

other weekdays from other weeks during the same weather

season. The same behavior can be observed for weekends.

There are also similarities between winter and summer

days and the same for spring and autumn days. This is also

corroborated with the annual grid consumption spectrum of

Fig. 2b, in which the most significant components are

shown. It can also be observed that the strongest compo-

nent (apart from the continuous one of period 0, corre-

sponding to the average consumption) is the one located at

a period of 24 h or 1 day. The next stronger components

are located at 12 h period (half day) and 168 h period

(1 week), respectively. Thus, it is necessary to reduce these

components to smooth the aggregated consumption.

However, before describing the algorithm, Sect. 2.1

describes the facilities that compose the artificial grid.

2.1 Facility

An electrical grid is composed by a large variety of con-

sumptions to improve their performance through maxi-

mizing the utilization of the installed capacity. Therefore,

different consumption profiles are found inside them, such

as industrial factories, commercial users or residential

ones. The grid is managed by operators in charge of the

different parts that comprise it. However, the load con-

sumption is part from the local electric power system of the

user. In order to simplify how these power systems are

addressed, they will be referred as facilities. A facility is

owned by a particular consumer whose management

depends on him instead of the electric utility. A facility is

characterized by different attributes, for example its size

varies depending on the needs of the user, from a single

family house to large factories or even a micro-grid com-

posed by a neighboring community.

The facilities consider the possibility to actuate in their

consumption, and they are divided in two groups: con-

trollable and non-controllable users. The second one rep-

resents all those consumptions within the grid for which

there is no information about their consumption except the

one coming from the aggregated consumption of all of

them. Thus, there is no possibility to know any individual

information of their load profile. On the other hand, the

controllable facilities are perfectly known and their indi-

vidual consumption is completely specified knowing the

instant power they are consuming. The facility is connected

to the grid through an electric meter which serves as the

exchange point between the grid and the user to measure

the electricity consumed by the loads. Inside the facility,
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Fig. 1 Graphical representation of P(t) signal as a sum of PncðtÞ and
PcðtÞ signals, where: a represents the current electric grid where PcðtÞ
is not adapted to PncðtÞ and b represents the proposed algorithm goal

where PcðtÞ is adapted to PncðtÞ in order to smooth P(t)
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Fig. 2 Aggregated consumption of the Spanish grid during 2017:

a temporal representation of 2 weeks for different seasons of the year

and b annual spectrum
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there are three main parts that compose it: (i) generation,

(ii) storage and (iii) consumption. The technology used to

implement the local generator of the facilities in this paper

is Photovoltaic (PV), being one of the most integrated

technologies in users.

However, a PV generator can only produce electricity

during day hours, producing a bell shape electricity curve

related with the radiation of the Sun. Therefore, the facility

also incorporates an energy storage system for a better use

of the energy generated locally. The incorporation of a

storage system gives the facility a way to store the surplus

of PV generated for a posteriori use.

The consumption inside a controllable facility can be

divided also into two groups (i.e., controllable and non-

controllable) depending on the controllable capacity of the

load. And for each controllable facility the algorithm will

dispose an amount of energy that can be controlled. The

rest of the energy will depend on the user preferences.

Figure 3 shows a topology representation of all the

elements that integrate the facilities. The electrical

behavior of the facility responds to Eq. 3:

PPVðtÞ þ PBðtÞ þ PGðtÞ ¼ PLðtÞ ð3Þ

where PLðtÞ is the instantaneous power consumed by loads,

PPVðtÞ is the instantaneous PV power generated, PBðtÞ is

the instantaneous power exchanged with the local storage

system, and PGðtÞ is the instantaneous power exchanged

with the grid. The sign of each variable depends on the

power flow; for example, PLðtÞ and PPVðtÞ are always

positive, while PBðtÞ is positive when the local storage

system supplies power to the loads and negative when it is

storing energy, and PGðtÞ is positive when the grid supplies

power to the loads and negative when the facility exports

power to the grid.

3 Derivative algorithm

In order to enhance the grid, the proposed algorithm has to

be able to adapt the power of the controllable facilities to

the non-controllable ones without any information apart

from the one of the aggregated consumption and the power

its facility is consuming (piðtÞ). Thus, there is no com-

munication between the facilities of the grid. The objective

of the algorithm consists of being able to meet the condi-

tion of Eq. 4.

PðtÞ ¼
Xm

i¼1

pnci ðtÞ þ
Xn

i¼1

pci ðtÞ ¼ K ð4Þ

Then, from Eq. 4, it can be deduced that the result of

applying the algorithm should be

dPðtÞ
dt

¼ 0 ð5Þ

Equation 5 also implies that P(t) is constant, but the dif-

ferent parts, that integrate it, are not necessarily constant.

Therefore, the algorithm would modify the response of

each of the pci ðtÞ to adapt in real time to the pnci ðtÞ. In
addition, it is known that P(t), with no active control of the

facilities, presents strong periodicity components corre-

sponding to the 12 h, 24 h and 11 week. [7] developed a

solution which consisted of building a distributed band-

stop filter through the synchronization of the different

users. On the contrary, in this paper the objective is to

neutralize PncðtÞ through the construction of an interfer-

ence signal (PcðtÞ) that opposes to it, resulting in a flattened
P(t). This approach is inspired in Active Noise Control

(ANC) which is a method for reducing an unwanted sound

by the addition of a second one specifically designed to

cancel it [14]. The noise source is counteracted by another

signal with the same amplitude, that will either phase shift

or invert the polarity of the original signal. Then, both

signals are combined into a new one.

For the shake of simplicity, let’s assume that there are

only two facilities: one non-controllable and one control-

lable, which only consume power and there is no local

generation and which present a continuous and periodic

consumption profile such as the one of the members of a

real grid. Then, P(t) as the sum of the two facilities would

be periodic, being similar to the response of the aggregated

consumption of a grid. The chosen signal to represent the

consumption of the facilities is of sinusoidal nature being

easy to use and describe its properties. Thus, PncðtÞ and

PcðtÞ have a sinusoidal waveform, and they can be

expressed as in Eq. 6.

PncðtÞ ¼ Anc � cosðxt þ /ncÞ þ lnc ð6aÞ

PcðtÞ ¼ Ac � cosðxt þ /cÞ þ lc ð6bÞFig. 3 Schematic representation of the controllable facility, where the

arrows represent the possible direction of power flows
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where A is the amplitude, x is the frequency, / is the

phase, and l is the mean value, since consumption is

always greater or equal to zero. There exist two periodic

consumptions greater than zero with the same periodicity

and each period corresponds to a day. By varying the

parameters of the sinusoid, different waveforms can be

obtained which represent the consumption of each facility.

An example of the waveform of PncðtÞ and PcðtÞ is shown
in Fig. 4a. The result of the aggregated consumption can

also be observed in Fig. 4b. The form of P(t) is also

sinusoidal since it is the sum of two sinusoids of the same

period and its expression is calculated in Eq. 7.

PðtÞ ¼ PncðtÞ þ PcðtÞ
¼ Anc � cosðxt þ /ncÞ þ lnc þ Ac � cosðxt þ /cÞ þ lc

¼ A � cosðxt þ /Þ þ l

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAnc � cosð/ncÞ þ Ac � cosð/cÞÞ2 þ ðAnc � sinð/ncÞ þ Ac � sinð/cÞÞ2

q

/ ¼ arctan
Anc � sinð/ncÞ þ Ac � sinð/cÞ
Anc � cosð/ncÞ þ Ac � cosð/cÞ

� �

l ¼ lnc þ lc

ð7Þ

The resulting P(t) is expressed in terms of PncðtÞ and PcðtÞ:
and it also corresponds to a sinusoidal waveform depending

on the parameters of the PncðtÞ and PcðtÞ. The three signals
P(t), PncðtÞ and PcðtÞ are formed by a constant part (l) and
an oscillating part (sinusoid). Then, the algorithm seeks to

cancel the alternating part of P(t). To cancel it, the

parameters of the controllable consumption are modified to

Pnc(t)

P c(t)

P (t)

t

Pnc(t)

P c(t)

P (t)

t

(a)

(b)

Fig. 4 Environment simplification using sinusoidal signals as the

demand profile for the different grid elements: a PcðtÞ is not adapted
to PncðtÞ, so the form of P(t) is not constant because the demand is

arbitrary and b PcðtÞ is adapted to PncðtÞ, being P(t) constant. PcðtÞ is
drawn in blue, PncðtÞ is drawn in red and P(t) is drawn in purple (color
figure online)

adapt to the non-controllable part and the conditions are

gathered in Eq. 8.

ð8Þ

Moreover, to remove the oscillating parts of Eq. 8, the

algorithm reconfigures the controllable signal to create a

destructive interference with those conditions. Therefore,

the aggregated consumption is smoothed. Figure 4b shows

the result of modifying PcðtÞ in order to cancel the alter-

nating part of the PncðtÞ getting a constant P(t). In this case,
it can be observed that one signal is opposite to the other

and they are in antiphase or opposite phase with the same

amplitude. When one signal grows, the other one decreases

to compensate the growth. This effect causes P(t) being at

equilibrium and constant over time.

In this case, the non-controllable demand has an ana-

lytical expression and it behaves the same over time. Thus,

the construction of the controllable demand signal can be

easily adjusted to interfere with the rest of the demand and

be opposite to it. However, in general, there is no infor-

mation about the analytical expression of P(t) and how it

evolves over time. So, the algorithm must ensure that the

condition of Eq. 4 is satisfied regardless the waveform of

PncðtÞ. The algorithm will seek for a PcðtÞ that satisfies,
PcðtÞ ¼ K � PncðtÞ ð9Þ

Nevertheless, it is difficult to calculate the exact value of

PcðtÞ needed to counteract PncðtÞ. The reason is that the

information of P(t) is not available at the moment the

algorithm has to calculate and takes a decision of what

power the controllable facility has to consume. This mea-

sure is only available after all the components of the grid

have consumed power and the grid response evolves

depending on how much power was consumed. So, the

algorithm has to apply a different strategy that is not based

on the instant value of P(t) but based on historical values

enclosing information about it. A first approach should

consist of using the tendency of P(t). Thus, the condition is

based on the trend of P(t) and how it changes through time.

If Eq. 5 is expressed in terms of the components of the

grid, the following relationship is achieved

dPðtÞ
dt

¼ 0 ¼) dPcðtÞ
dt

¼ � dPncðtÞ
dt

ð10Þ

PcðtÞ in order to neutralize the variability of PncðtÞ should
grow when PncðtÞ decays and vice versa. So the tendency

of PcðtÞ should oppose to PncðtÞ and it has to grow or decay
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at the same rate as PncðtÞ. However, there is no information

about the form of the non-controllable demand. The only

information available is P(t) and the local power consumed

by the facility pci ðtÞ. From the point of view of one con-

trollable user, the rest of the demand is non-controllable.

Therefore, for the jth controllable facility, the aggregated

consumption, from its individual point of view, is as

follows

pcj ðtÞ ¼ PðtÞ � PncðtÞ �
Xn�j

i¼1

pci ðtÞ ¼ PðtÞ � P̂ncðtÞ ð11Þ

where P̂ncðtÞ groups together the rest of the grid con-

sumption except the one coming from the local facility.

Then, the local consumption of one facility is negligible

compared to the sum of the rest of consumptions. Nor-

mally, a grid is composed by a huge number of facilities, so

it is normal that P̂ncðtÞ � PðtÞ. Thus, a controllable facility
seeks to modify its consumption opposing to the rest of the

components of the grid. If Eq. 10 is developed for one

individual, it can be obtained that

dpcj ðtÞ
dt

¼ � dP̂ncðtÞ
dt

� � dPðtÞ
dt

ð12Þ

As aforementioned, each facility will use a neural con-

troller that should acquired the dynamic behavior of the

grid to counteract the effects of the rest of the users based

on the derivate of the aggregated consumption. ANNs

should oppose to the derivate of P(t) with the only infor-

mation of the grid signal, P(t), and the local behavior of its

facility, pci ðtÞ.

4 Neural controller

Figure 5 shows a simplified environment with two facili-

ties: Facility A, being the non-controllable part of the

demand, and Facility B, which is the controllable one. Both

facilities only consume power, and there is no generation

and no energy storage system. The different signals of the

environment are renamed in order to facilitate its nomen-

clature. PncðtÞ becomes z(t), PcðtÞ is x(t) and P(t) is

renamed as s(t). Then, the environment equation is as

follows,

sðtÞ ¼ zðtÞ þ xðtÞ ð13Þ

The controller has to extract the information from the

history of the signals and build a destructive interference to

obtain a flattened aggregated consumption. The inputs

available are the derivatives of the facility local behavior,

_xðtÞ, and the environment aggregated consumption, _sðtÞ,
both of them with respect to time. In this case, the output of

the neural controller is of the form,

xðtÞ ¼ f ð _sðtÞ; _xðtÞÞ ¼ sðtÞ � zðtÞ ð14Þ

4.1 Neural structure

– Structure The neural structure selected is composed by

one input layer, one or two hidden layers, that will be

explained later, and an output layer.

– Input This layer is composed by only two neurons

because there are only two inputs, _sðtÞ and _xðtÞ.
Both neurons receive both inputs multiplied by a

gain.

– Hidden The number of hidden layers is selected

between one or two layers. The number of neurons

in each layer is varied from 2 to 4.

– Output The output of the network is directly

x(t) which should be in antiphase to cancel the

fluctuations of the environment signal.

– Neuron function The function that each neuron com-

putes is described in Eq. 15.

_yiðtÞ ¼ fiðIiðtÞ; y1ðtÞ; . . .; ynðtÞÞ

¼ 1

si
� �yiðtÞ þ

XNpre

j¼1

wij � ri yjðtÞ þ hj
� �

þ
Xnin

m¼1

gm � ImðtÞ
 !

ð15Þ

where yi is the activation of the ith neuron, _yi is the rate

of change of the ith activation neuron, si is the time

constant, wij is the connection weight of the jth to the

ith neuron, rið�Þ is the activation function, hi is the bias
of the neuron, and Im is the external input of the neuron

(if any), which is multiplied by a gain, gm. The network

is composed by homogeneous neurons, so all of them

compute the same function. The output of each neuron

of the network equals ri yiðtÞ þ hið Þ.
– Flow of information The RNN(CTRNN) has been

designed in such a way that each neuron of the input

layer has a feedback loop from its output to its input. In

Grid

Facility B

Facility A

Neural
Network

+

z(t)

x(t)

ẋ(t)

s(t)

ṡ(t)

Fig. 5 Electrical grid consisting of two facilities: facility A does not

have a controller and Facility B has a neural controller that control its

demand. z(t) represents the non-controllable demand, x(t) represents

the controllable demand, and s(t) is the environment signal or the

aggregated consumption
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the hidden layer, the feedback loop is more complex

and the output of the neurons is connected from the

output to the input of the rest of the neurons and itself.

The structure of the hidden layer resembles the one of

the Elman networks [15] in which the state of the

network is stored in a group of neurons connected to the

hidden layer. Finally, in the output layer, the neurons

are connected as in the input layer.

Based on these tips, a first approximation of the neural

controller structure is elaborated. Section 4.2 explains the

training performed to obtain the fittest structure.

4.2 Neural parameters

Different simulations have been prepared in which the

performance of various CTRNN architectures is compared.

A genetic algorithm (GA) [19] has been used to adjust

the free parameters of the neural structure. The definition

of a fitness function will be based in Eq. 12, evaluating the

result of applying the neural controller. The main objective

of the GA consists of evolving the neural structure of the

CTRNN in order to minimize the fitness function. All the

possible neural parameters are divided into two groups:

– Structures 12 structures, with different number of

neurons distributed in one or two layers, are going to

be evaluated. Figure 6a represents the architectures

with one hidden layer, whereas Fig. 6b shows the

architectures with two hidden layers. In each hidden

layer, the number of neurons varies from 2 (solid units)

to 4 neurons (dashed units), making a total of 3

different architectures with only one hidden layer and 9

architectures with all the possible combinations of

neurons in both layers.

– Free parameters to adjust From Eq. 15, the free

parameters of the network are: si, wij, hi and gm. gm
and wij can be grouped together because they represent

the connections of different parts of the network. The

value of si is going to be fixed to 1 because it is not

necessary to variate the reaction speed of the neurons at

the moment. So the parameters of the network used

during the evolution are wij and hi. 6 different intervals

are used in order to know in which range of parameters

the network performs better and achieves the best

results. These 6 intervals are divided in two types:

[0, a] and ½�a; a� with a 2 f1; 5; 10g. Thus, there are 3

intervals with only positive values and 3 with positive

and negative values. The reason is that it is necessary to

test whether the problem can be solved with only

excitatory connections (positive values) or inhibitory

weights (negative values) must be added. Both the

synaptic connections, wij and gm, and the bias, hi, take
their values from the same interval. In each simulation

scenario, only one parameter interval is used generating

72 experiments for each structure and interval.

4.3 Genetic algorithm configuration

A genetic algorithm is used to evolve the CTRNN struc-

ture. This GA is composed by the three basic operations,

selection, crossover and mutation, over a population of

individuals whose performance will be evaluated based on

a fitness function. The different parameters of the GA and

its values are as follows:

– Chromosome The length of the chromosome depends

directly from the architecture of the CTRNN. Thus, the

chromosome is composed by the different wij and hi, as
shown in Eq. 16.

N3

N1 N4

N2 N5

N6

N7
x(t)

ẋ(t)

ṡ(t)

N3 N7

N1 N4 N8

N2 N5 N9

N6 N10

N11
x(t)

ẋ(t)

ṡ(t)

(a)

(b)

Fig. 6 CTRNN structure of the hidden layer: a one hidden layer and

b two hidden layers. The synaptic weights of each neuron of the layer

are represented in the first neuron of it. The minimum size of the

hidden layer is two neurons (drawn with solid lines), whereas the

maximum number of neurons is four (drawn with dashed lines)

Neural Computing and Applications (2020) 32:5745–5760 5751

123



lch ¼ Nin � nin þ 1ð Þ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{input

þ
XL

l¼1

Nh;l � Npl;l þ Nh;l

� �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{hidden

þ No � Npl þ 1
� �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{output

þ NT

z}|{h

i

ð16Þ

where lch is the length of the chromosome, Nin is the

number of neurons in the input layer, nin is the number

of inputs associated with the gm terms, Nh;l is the

number of neurons of the lth hidden layer, Npl;l is the

number of neurons of the previous layer, No is the

number of neurons in the output layer, and NT is the

total number of neurons. The minimum length of the

chromosome corresponds to the neural architecture

with only 1 hidden layer and 2 neurons in it, and it has a

value of 22 genes, whereas the maximum length cor-

responds to the structure with 2 hidden layers and 4

neurons in each of them, that is 78 genes.

– Population size The population size affects the speed to

find the solution. The higher the size of the population

is, the greater the number of solutions is tried. During

the tuning process, different population sizes are tested

to find the optimum number of individuals per gener-

ation. The size of the populations varies between 20 and

100 individuals with intervals of 10 individuals of

difference between them. Thus, 9 different population

sizes are tested.

– Generations The number of generations should be high

enough so that the algorithm can reach the solution

within it and was fixed to 1000 generations.

– Selection The one selected is the roulette-wheel method

where a number of individuals are selected randomly

based on their probability and its number is based on

the population size. However, based only on the

randomness of the process, diversity and the best fitted

solution of the problem can be lost. To solve this

problem, a combination of the roulette-wheel method

with the elitism is selected. Thus, a number of

individuals of the next generation is reserved to copy

directly which consists of the best individuals of the

previous generation. In this case, the number of elites is

fixed to 6.

– Crossover The crossover operator is applied over the

individuals obtained from the previous selection. The

idea of the operator is to choose two individuals, select

randomly a point in their chromosomes and then swap

the parts of the chromosomes. Therefore, two individ-

uals are created for the new generation with part of their

predecessors. The crossover operator only selects 1

point to cross the chromosome. This point is randomly

chosen among the different genes of the chromosome.

– Mutation The value of the gene is altered following a

Normal Gaussian distribution with a variance of

r ¼ 0:2, whose value will be added to the gene in

order to modify its value. Different mutation rates are

used. These rates are between 0.01 and 0.1 in steps of

0.01. So, there are 10 different mutation rates to select

the best choice for our algorithm.

– Fitness function FFð:Þ is in charge of evaluating the

performance of the different chromosomes. The condi-

tion of the FFi _sðtÞð Þ is relaxed, and a gradual transition

is made between the two states. Equation 17 shows a

gradual fitness function formulation:

FFi _sðtÞð Þ ¼

1 if j _sðtÞj\e

� j _sðtÞj � d
d� e

if e� j _sðtÞj � d

0 if j _sðtÞj[ d

8
>><

>>:
ð17Þ

where e is an inferior limit and d is a superior limit.

e\\d. If e is too low, the solution is nearer to _sðtÞ ¼ 0

and the GA will take a long time to converge. If e � d,
the fitness function has a discontinuity of two states,

being difficult to evolve. If d is too high, then almost all

the individuals will be able to score and the GA will not

evolve. Based on these concepts, these limits are fixed

to e ¼ 10�5 and d ¼ 10�2. During the simulation

results, this assumption will be checked. In addition, it

is necessary to discretize _sðtÞ used in the fitness func-

tion. Thus, a first approximation of _sðtÞ is based on the

definition of the derivative.

_sðtÞ ¼ lim
x!0

sðt þ DtÞ � sðtÞ
Dt

� s½k þ Dk� � s½k�
Dk

¼
Dk¼1

s½k þ 1� � s½k� ¼ Ds½k�
ð18Þ

However, from the difference of one sample, it might

be possible that the CTRNN could not extract the ten-

dency behavior of the signal. Thus, a second definition

is proposed consisting of the mean of an interval of

samples of the environment signal. Equation 19 reflects

this behavior.

Ds½k� ¼ 1

Ns

Xk�1

l¼k�Ns

s½lþ 1� � s½l� ð19Þ

where Ns is the number of samples over with the mean

is elaborated and with k�Ns. A value of Ns ¼ 10

samples is used to verify that this approximation is

correct and the better results than the instantaneous

difference are obtained. So, the same FFiðDs½k�Þ func-

tion has been defined with 2 approximations of the

derivative of the environment signal. Equation 17

shows the value of fitness for only one instant of time,
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so for the whole time length the value of individual

fitness is in Eq. 20.

FFi sð Þ ¼ 1

Ks

XKs�1

k¼0

FFi Ds½k�ð Þ ð20Þ

where Ks is the total number of samples of s[k]. The

fitness values of the different time instants have been

integrated, and then the mean of all of them is taken to

obtain the value of an individual. Consequently, the

average fitness value of the population is computed in

order to know how well the performance of the gen-

eration was during that realization (see Eq. 21).

FF sð Þ ¼ 1

Npop

XNpop

i¼1

FFi sð Þ

¼ 1

Npop � Ks

XNpop

i¼1

XKs�1

k¼0

FFi Ds½k�ð Þ

ð21Þ

where Npop is the number of individuals of the gener-

ation. Finally, each generation is evaluated over and

over again until the last generation or a plateau value is

reached. To sum up, 2 fitness functions are evaluated

based on how the derivative of the s(t) is done (see

Eqs. 18 and 19).

– Seeds For each experiment, 30 different seeds have

been used to randomize the initialization of the

algorithm. Thus, each experiment is repeated 30 times

in different parts of the search space. With this number

of seeds, it is enough to discover the dependency with

the initial conditions and if the best solutions are

reached for these configurations of the GA.

In summary, the different parameters of the simulations are

reduced to Tables 1 and 2. Thus, there are 12 different

CTRNN structures which use 6 different intervals for their

free parameters and they are trained with a GA that has 9

different sizes of populations evolved in 1000 generations

with 3 basic genetic operators: selection with 6 elites, 1

crossover and 10 different mutations rates, evaluated for 2

fitness functions. Each experiment is repeated 30 times to

randomize the initial conditions of the algorithm, so the

number of simulations to be done is 388,800 in total.

5 Training

All the simulations under the set of parameters of Tables 1

and 2 are conducted by NeuralSim simulator. NeuralSim is

an open source simulator under GPLv3.0 license developed

in C??. It was build as a general purpose simulator to

prove different neural structures with different methods to

train them, learning algorithms and GAs. All the simula-

tions were run in a computing cluster of 60 unit processors

of AMD Opteron(tm) Processor 4180 with 40 GB of RAM

memory, under a distribution Rocks 6.1.1 (Sand Boa) of

64-bit architecture.

A continuous periodic signal of class C1, a sinusoidal

function, is used to evaluate the neural structure. The

sinusoid is used with a day period and 72 samples per

period to simulate a peak and a valley. Moreover, the input

signal is formed of 3 periods of 72 samples in order to

isolate the initial state of the CTRNN and reach a

stable state to evaluate the performance of the neural

controller.

Figure 7 shows the overall performance per structure for

all possible combination of parameters. The nomenclature

followed for referring to each structure is of the form

#ML#N, where #M 2 f1; 2g is the number of hidden

layers of the structure, and #N 2 f2; 3; 4g is the number of

neurons of the hidden layer, #N 2 f2; 3; 4g. At a first

glance, the performance of each structure is very similar.

All boxplots are composed by 32,400 points corresponding

to the individual with the best fitness value reached after

1000 generations for all the different configurations of the

CTRNN and GA parameters.

For the 12 structures, the value of the higher whisker is

located closely to 1.0 which is the maximum value that the

FFð:Þ can take. This assures that in all the structures, there

is a combination of parameters that ensures that _s½k�\10�5,

Table 1 Configuration of the ANN for the different simulations

ANN parameters Min Max

W and gm 17 67

hi 5 11

si – 1

# Hidden layers 1 2

# Hidden neurons 2 4

Total # of neurons 5 11

Total # structures 12

Total # intervals 6

Table 2 Configuration of the GA for the different simulations

Parameters Min Max

Chromosome length 22 78

Population size 20 100

# Generations – 1000

# Elites – 6

# Crossovers – 1

Mutation rate 0.01 0.1

# FF(.) – 2

# Seeds – 30
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where 10�5 is the higher limit of the fitness function. On

the other hand, the minimum fitness value for all the 12

structures is also near the vicinity of a 0.2 fitness value.

Thus, in those cases, the environment signal variations are

in between 10�2 and 10�5 (the limits of the fitness func-

tion) since the average fitness value is different from 0.

Both whiskers are situated to 1.5, the value of the

interquartile range (IQR), or 1:5 � jQ3� Q1j. Again, for all
the structures the Q1 is located above 0.2 but close to it and

the 25% of the simulations reached this maximum fitness.

Close to the Q1 is the median which represents the 50% of

the data. The median for all structures is close to a fitness

value of 0.25; however, structures with 4 neurons in the last

hidden layer have a little lower median value.

Finally, the Q3 for all the simulations is above a 0.8

fitness value so that the 25% of the simulations are above

this value. Some differences between the values of Q3

depending on the structure can be observed. The best value

of the Q3 corresponds to the structure 1L4 (1 hidden layer

with 4 neurons), but in general the performance of the

architectures with only one hidden layer is only 1% above

the two layers architectures. This figure seems relatively

too low to state which structure is the best. However, it can

be concluded that the complexity introduced by the two

hidden layers does not achieve better results than the ones

with a hidden layer. The tuning is reduced since fewer

parameters are used and the processing capabilities are

more fitted to requirements of the problem.

The data corresponding to each structure are split in the

different ranges of the tuple W;Hf g. Figure 8 shows all

the results for the different ranges of values that the

parameters of the CTRNN can take. In order to reduce the

volume of data, the seeds of the different configurations

have been grouped to analyze the mean performance of

each evolution since all the structures behave similarly. A

first division has been made based on the form of the value

ranges. The two ranges selected are: (i) [0, a], only positive

values, and (ii) ½�a; a�, symmetric range of values.

For all the structures, when W;Hf g 2 ½0; a� there is no

difference in the fitness value for each one. In all these

cases, the structure is far from reaching the maximum

value of the fitness, so hardly these structures are evolved.

The neurons are saturated due to the monotonically

growing of the activation function together with the posi-

tive synapse, making impossible to evolve the structure to

reach its maximum. In addition, the deviation of the data is

too small for all the structures and it is less than IQR\0:02

(see Fig. 8a). Thus, it can be assumed that for this type of

ranges, the neural structure does not evolve properly and

this type of configuration can be discarded.

On the other hand, for structures in which

W;Hf g 2 ½�a; a�, the maximum fitness is almost reached.

The maximum whisker for all of them is between 0.9 and

1.0 fitness value. It can be observed that the median is

slightly higher for structures with only one layer rather than

the ones with two layers. Moreover, the data deviation

presented in one-layer structures is less than half the
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F
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Fig. 7 Overall fitness performance per structure for all the possible

configurations of the simulations. The nomenclature of the structure is

#ML#N with #Mbeing the number of hidden layers and #Nbeing

the number of hidden neurons. Each box comprises observations

ranging from the first to the third quartile. The median is indicated by

a horizontal bar, dividing the box into the upper and lower part. The

whiskers extend to the farthest data points that are within 1.5 times

the interquartile range. Outliers are shown as dots
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Fig. 8 Performance of the 12 structures divided by the range of values

that W;Hf g can take: a a range of values are grouped in two intervals

[0, a] and ½�a; a�. b three range of values of the form ½�a; a� with
a 2 1; 5; 10
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deviation of the two-hidden-layer structures. Structures

with two hidden layers have very similar performances,

and they are not so different to each other. On the other

hand, the increase in neurons in one hidden layer structures

reduces the variance of the result.

Figure 8b shows the performance for each value of a 2
f1; 5; 10g for the range of values of the form ½�a; a�. For
all the structures, the best performance is achieved for the

range of values in which a ¼ 5. The worst performance is

for the one in which a ¼ 10, which presents lower median

values than the other two intervals. The reason is because

of the length of the interval, since there are more param-

eters to choose and it makes difficult the GA to find a better

solution in the same number of generations. In spite of

having more dispersion than the rest of values ranges, a ¼
1 has a higher performance than a ¼ 10 since the median

for all the structures is higher. However, it is still lower

than the performance of a ¼ 5 for all the structures.

Therefore, the best performance is the one in which

W;Hf g 2 ½�5; 5�. In order to help with the decision of

which structure presents a better performance in this

interval, the numerical information has been gathered in

Table 3.

Among single hidden layer structures, there are not

significant differences among them, according to Table 3,

but in the overall performance of the three value ranges,

1L4 is clearly the best of the three. Finally, the best fitted

structure for the problem is 1L4 with W;Hf g 2 ½�5; 5�.

6 Post-evaluation

A process of post-evaluation is performed to test the evo-

lution. This process will consist of studying the output of

the evolved neural controller for the characteristics of the

environment described in Fig. 5. In order to carry out the

post-evaluation, 7 figures of merit are declared. To analyze

the waveform of s[k], 4 central moments have been used

which are computed in terms of the signal mean value, the

next 2 coefficients evaluate its variability, and the last one

measures when the algorithm reaches a stable operating

mode:

– Mean (l0 ¼ l) The mean is the central value that in

average the signal takes through a time period. This

parameter is calculated as in Eq. 22.

l0 ¼ l ¼ E½X� ¼ 1

K

XK

k¼1

s½k� ð22Þ

– Variance (l2 ¼ r2) The variance is a measure of the

dispersion of the data around a value, in this case l. For
the experiment, it will indicate how far the points of

s[k] are spread out from its average. r2 is the second

central moment and its mathematical expression is as

follows:

l2 ¼ r2 ¼ E X � E X½ �ð Þ2
h i

¼ 1

K

XK

k¼1

ðs½k� � lÞ2 ð23Þ

– Skewness ðl3Þ This parameter measures the asymmetry

of the data. Thus, it indicates how the signal is

distributed around its average in a time period. It can

be interpreted for positive values as the signal is above

l most of the time. Whereas if it is below l, it indicates
that most of the time the signal is below the data. In

case of 0, the data are around the mean. This is the third

central moment, and it is calculated as:

l3 ¼ E X � E X½ �ð Þ3
h i

¼
1
K

PK
k¼1ðs½k� � lÞ3

r3
ð24Þ

Table 3 Statistical data of the

simulation performance for all

the structures where a ¼ 5

Structure Min Q1 Median Q3 Max IQR Mean SD

1L2 81.92 87.16 90.28 91.41 92.95 4.25 88.51 4.46

1L3 82.63 88.05 90.98 91.85 93.08 3.80 89.29 4.17

1L4 85.34 89.08 90.99 91.89 93.16 2.81 89.84 3.36

2L22 71.51 83.88 88.88 92.12 94.12 8.24 86.93 6.82

2L23 70.16 83.23 89.78 92.49 94.14 9.26 87.04 7.00

2L24 74.29 84.80 90.43 92.48 94.68 7.69 87.54 6.98

2L32 72.67 84.47 89.17 92.42 93.73 7.95 87.33 6.40

2L33 72.02 84.31 89.87 92.55 94.26 8.24 87.47 6.83

2L34 76.75 85.72 90.18 92.67 94.18 6.95 88.35 5.65

2L42 72.32 83.96 89.51 92.36 94.25 8.40 87.22 6.57

2L43 75.56 84.67 90.81 92.71 94.68 8.04 88.09 6.46

2L44 79.53 87.28 91.45 92.73 94.76 5.45 89.07 5.62

The fitness value is expressed in %
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– Kurtosis (l4) This is another measure of the form of the

signal as l4. In this case, the kurtosis is studying the

dispersion of a signal related to the average through the

points closest to it compared with those points of the

distant ends. Therefore, a high value of l4 means that

there are lots of points around the mean, but at the same

time lots of them are also in the ends of the signal. On

the contrary, a low value means that all the points are

concentrated in the average of the signal. The mathe-

matical expression is:

l4 ¼ E X � E X½ �ð Þ4
h i

¼
1
K

PK
k¼1ðs½k� � lÞ4

r4
ð25Þ

– Coefficient of variation (cv) This parameter establishes

a relationship between the average of the signal and its

variance. When the data are around the mean, this

coefficient is next to 0 and otherwise the data will

present mean deviations. This coefficient is described

mathematically in Eq. 26.

cv ¼
r
l ð26Þ

– Crest factor (Cf ) The last parameter related to the form

of the signal is the crest factor. This factor measures the

waveform through the ratio of maximum values of the

signals compared to its effective value. Thus, it

indicates how high the peaks are present in the form

of the signal. A Cf of 1 indicates that the signal does not

have any present peak and it is constant, whereas higher

values indicate how accused those peaks are. This

factor compares the maximum of a signal with respect

to rms of the signal for a time period (see Eq. 27).

Cf ¼
jsjpeak
srms

����
K

ð27Þ

– Time of convergence (tc) The last parameter used is the

convergence time of the neural controller to flatten the

environment signal. It is a measure of the stability of

the algorithm indicating when the signal becomes

stable and abandons the transitory state. Hence, it is

considered that the environment has reached a

stable state when the r2 is less than an established

minimum during a period of time. This is expressed in

Eq. 28.

tc ¼ jr2j\r2min

��K ð28Þ

The different measurements have been introduced to

evaluate the response of the evolved neural controller. The

best chromosome with higher fitness value has been chosen

for the neural architecture of 1 hidden layer and 4 neurons

inside it with its free parameters of the form

W;Hf g 2 ½�5; 5�. To begin the post-evaluation, it is

necessary to select several waveforms of z[k] that the

neural controller has to smooth. 6 different signals have

been selected, each with different characteristics. These

signals are chosen in order to evaluate the adaptability and

the ability of generalization of the network. Their mathe-

matical expressions are gathered in Eq. 29f.

z1½k� ¼ 0 ð29aÞ

z2½k� ¼ sinðf � kÞ ð29bÞ

z3½k� ¼ sinð2 � f � kÞ ð29cÞ

z4½k� ¼ sin
f � k
2

� �
ð29dÞ

z5½k� ¼
a � k if 0� k\

K

2
;

1� a � k if
K

2
� k�K:

8
><

>:
ð29eÞ

z6½k� ¼
0 if 0� k\

K

2
;

1 if
K

2
� k�K:

8
><

>:
ð29fÞ

The first signal z1½k� of Eq. 29a is a constant signal of

zero value. This signal is used to test the response of the

network in absence of any other element, only its own

output. Then, z2½k� is a periodic sinusoid with the same

frequency of the one used during the evolution (see

Eq. 29b). z2½k� was chosen to test that the fitness value

obtained after the evolution was correct, and it is able to

compute the opposed derivative of the input signal. z3½k�
and z4½k�, whose expressions are gathered in Eqs. 29c

and 29d, are both sinusoid waveforms, but with different

frequencies. z3½k� has a frequency double of the sinusoid of

z2½k� and z4½k� has half of the frequency. These two signals

test how the network responds to changes in the speed of

the waveforms. Finally, two other signals were defined that

present some peculiarities in their form and in the deriva-

tive of both of them. Both are periodic but its derivative

suffers some sudden changes. z5½k� is a triangular signal

which is periodic and continuous, but the sign of the

derivative changes suddenly at the peak (see Eq. 29e). And

z6½k� is a square signal with a duty cycle of 50% (half of the

period is at 0 and the rest is at 1), which is also periodic but

not continuous (see Eq. 29f). In both cases, these signals

are used to analyze what happen when the derivative

change (z5½k�) or it is undefined (z6½k�) to evaluate the

response of the network to signals of different nature to the

ones proposed for the training.

The post-evaluation was done by evaluating the

behavior of s[k] over a period of the waveform selected

when the algorithm has reached its stable state. Moreover,

normality in the data output has been checked prior to post-

evaluation in order to provide reliable interpretation.
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Notice that geometric aspects of robust testing must be

taken into account [33]. All the results to the signals

described above are presented in Table 4. In addition,

Fig. 9 shows the different waveforms for each of the sig-

nals post-evaluated. In general, the algorithm is able to

compute the derivative of the environment signal, to

oppose to it and to flatten it. Moreover, it also converges in

few steps to a stable state in which it will remain until the

end of the simulation.

However, the results are not the same for all the signals

due to its characteristics. In the case of the absence of

input, z1½k�, it can be observed in Fig. 9a that x[k] is con-

stant and also s[k] since there is no other signal. Thus, in

the absence of z[k], the network obtains a constant output.

Table 4 shows that l is located at a value of 1 and the rest

of the dispersion parameters are zero. The Cf has the best

value that it can take which is 1 because it does not present

any peaks. The tc of the network is quickly, in 14 time steps

it reaches the stable state in which it will remain until the

end.

The next signal, z2½k� is the same signal used for the

training, so it is expected a high performance. Table 4

shows that s[k] is centered in 1 again and there is not any

dispersion around l. Its r2 is negligible, the skew of the

signal is near zero and they are very concentrated in the

mean since the kurtosis is also negligible. The cv also

indicates that the dispersion of the data is small and Cf

confirms the absence of peaks for s[k] since is near to the

optimum. tc is again very low in 25 time steps the algo-

rithm has already converged. The waveforms of Fig. 9b

show that x[k] is in antiphase to z2½k� to produce a flattened

s[k].

z3½k� and z4½k� are again two sinusoids to prove the

behavior of the network when the frequency of the sinusoid

varies. In the case of z3½k�, it can be observed in Fig. 9c that
the controller does not behave as great as in Fig. 9b,

because it presents a ripple in s[k]. In Table 4, the moments

r2, l3 and l4 are higher than ones for z2½k� so the data

dispersion is bigger. And also the form of the waveform

presents some peaks that are also present in the value of Cf .

In addition, tc is approximately double the one of z2½k�. On

the contrary, when the frequency is lower, the results are

very similar to the one obtained for z2½k�. Low values for

the dispersion coefficients, r2, l3, l4 and cv. And also a

very close value of Cf to 1, so that it has not any pro-

nounced peak. tc is also as low as z2½k�. Thus, the neural

controller behaves similar for frequencies less than the one

selected for the evolution. For frequencies higher than the

one selected in the evolution, they reduce the variability of

the signal but they present some peaks in the resultant

waveform.

z5½k� has little dispersion around the mean as the value of

the r2 and cv are low (see Table 4). In addition, the data are

concentrated in the mean and with no skew above or below

due to moments l3 and mu4 are also low. The waveform is

also really flatten as it can be seen in Fig. 9e and checked

with a Cf close to 1. And the convergence time is low, only

35 time steps. On the other hand, the performance of z6½k�
is the worst compared to the rest of signals. There is more

dispersion around the mean because the r2, l4 and cv are

higher compared to the rest. The data are not skewed

because it presents a relative low value. About the form in

Fig. 9f, the presence of peaks can be observed at the point

in which the signal changes of state. Therefore, Cf has a

high value far from 1 because of the presence of those

peaks. However, the response of the network is very fast

and in only 24 steps the network has converged.

Table 5 shows a comparison summary of the algorithm

application. In the case of z1½k�, there is no improvement

due to the absence of signal at the input of the network.

There is a reduction in Cf in all cases. In the best of the

cases (for signals z2½k� and z4½k�), a reduction of 60% was

achieved, whereas in the worst case (for signal z6½k�), a
reduction of 15% was achieved. Thus, the application of

the algorithm always reduces the peaks, increasing the

flattening of the s[k].

A last trial was carried out in order to test how the neural

controller performs with a signal similar to the grid

aggregated consumption. Thus, an artificial grid signal is

made based on the principal components of its spectrum. It

is used the sum of three sinusoids with the weekly, daily

and half daily frequency components. The mathematical

expression is gathered in Eq. 30.

Table 4 Summary of the post-

evaluation results for the 6

different signals

Signal l r2 l3 l4 cv Cf tc

z1½k� 1.000 0.00 0.00 0.00 0.00 1.0000 14

z2½k� 0.999 2:98 � 10�7 4:77 � 10�7 �1:13 � 10�6 5:46 � 10�4 1.0008 25

z3½k� 1.003 1:59 � 10�3 �1:67 � 10�5 9:65 � 10�6 3:98 � 10�2 1.0880 56

z4½k� 0.998 4:65 � 10�5 �2:38 � 10�7 2:98 � 10�7 6:83 � 10�3 1.0101 28

z5½k� 1.003 3:67 � 10�5 �9:54 � 10�7 1:91 � 10�6 6:04 � 10�3 1.0149 35

z6½k� 0.994 6:68 � 10�2 8:97 � 10�4 6:37 � 10�2 2:60 � 10�1 1.9468 24
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z7½k� ¼ A1 � cos 14 � f � k þ u1ð Þ þ A2 � cos 7 � f � k þ u2ð Þ
þ A3 � cos f � k þ u3ð Þ þ l

ð30Þ

Hence, each sinusoid possesses a frequency in each com-

ponent and the amplitude of z7½k� is between 1 and 0.5

since the consumption of a real grid is greater than 0. The

application of the controller to this signal can be observed

in Fig. 10. It can be observed that the result is as expected

with the previous signals, the network is able to compute

the derivative, change its sign and be in antiphase to z7½k�
producing an almost constant s[k]. l of s[k] is in 1.004 and

r2 of the signal is 1:84 � 10�5, so s[k] does not present

much variation and is close to the l. s[k] is concentrated in

the value of l since the skew is low, mu3 ¼ � 8:34 � 10�7

and l4 ¼ 3:10 � 10�6. The Cf of z7½k� is also reduced,

Cf ðs½k�Þ ¼ 1:0078 and Cf ðz½k�Þ ¼ 1:2703, so the reduction

of applying the neural network is a 26:05%. This factor is

also closer to the ideal value of 1. Finally, the convergence

time of the algorithm is 31 steps, again the CTRNN reaches

quickly a stable state.
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Fig. 9 Waveforms for the post-

evaluated signals selected: a
z1½k�, absence of z[k], b z2½k�,
sinusoidal z[k] with the same

frequency used for evolution, c
z3½k�, sinusoidal z[k] with
double frequency than the one

in b, d z4½k�, sinusoidal z[k] with
half frequency than the one in b,
e z5½k�, triangular z[k] and (f)

z6½k�, square z[k]. In red is the

environment signal, s[k], in blue

is the non-controllable signal,

z[k], and in green is the output

of the CTRNN, x[k] (color

figure online)

Table 5 Comparison of Cf with and without the evolved neural

controller

Signal zCf
sCf

DCf

sCf
ð%Þ

z1½k� – 1 0

z2½k� 1.63065 1.00083 62.9302

z3½k� 1.63137 1.08802 49.9397

z4½k� 1.63166 1.01013 61.5298

z5½k� 1.32944 1.01495 30.9859

z6½k� 2.27303 1.94682 16.7563
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To sum up, the application of the evolved neural net-

work always improves the behavior of the environment

signal. Reducing the variability of the z[k] and obtaining an

antiphase signal from the CTRNN. In the case of signals

with the same nature as the one evolved, the results are

better than in other cases. For signals in which the

derivative does not exist, the algorithm does not perform so

well, but still it could also reduce the variability of the

signal, converging quickly to a steady state.

7 Conclusions

In this paper, a neural network for the smoothness of

continuous signals, with the electrical grid as an example,

has been presented. A grid is composed by a series of

facilities, which consume electricity and could have some

source of local generation. Hence, they have been divided

from the controllability point of view of its consumption in

controllable and non-controllable facilities.

388,800 simulations were conducted to obtain the best

neural architecture consisting of 1 input layer with 2 neu-

rons, 1 hidden layer with 4 neurons and 1 output layer with

1 neuron corresponding to the output of the neural con-

troller taking values for the free parameters inside the

interval ½�5; 5�.
A series of post-evaluation experiments have been done

in which the first 4th central moments and the cv were

analyzed. Then, the Cf was evaluated to know the form of

the resultant environment signal. These coefficients were

tested with seven different signals which possess different

characteristics. In all the cases, good results were achieved.

In the case in which the derivate is not defined, it was able

to reduce its variability but not as well as with continuous

and class C1 signals. With abrupt changes (triangular), the

controller is able to produce a flattened s[k]; however with

discontinuities (square), it is almost impossible and peaks

are produced at the discontinuity point.

The evolved neural controller is the central block of the

DSM controller. However, its direct application in the grid

will create some problems to the network because users

will try to consume the same power at the same time. In

this case, greater variabilities of the aggregated consump-

tion could be reached, contrary to the objective of the

controller. Therefore, a coordination algorithm must be

implemented in a future to produce collectively the anti-

phase consumption necessary to flatten the aggregated

consumption.
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(2011) Heterogeneous collaborative sensor network for electrical

management of an automated house with pv energy. Sensors

11(12):11544–11559

11. Castillo-Cagigal M, Matallanas E, Monasterio-Huelin F, Martı́n

EC, Gutiérrez A (2016) Multifrequency-coupled oscillators for

distributed multiagent coordination. IEEE Trans Ind Inform

12(3):941–951

0.0

0.5

1.0

1.5

0 200 400 600

k

A
m

pl
itu

de

z[k] x[k] s[k]

Fig. 10 Result of the post-evaluation for a z[k] with a waveform

similar to the grid. In red is the environment signal, s[k], in blue is the

non-controllable signal, z[k], and in green is the output of the

CTRNN, x[k] (color figure online)

Neural Computing and Applications (2020) 32:5745–5760 5759

123



12. Dillon TS (1991) Artificial neural network applications to power

systems and their relationship to symbolic methods. Int J Electr

Power Energy Syst 13(2):66–72

13. Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Mat-

schoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G,
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