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a b s t r a c t

In this paper, we describe the development of a control system for Demand-Side Management in the res-
idential sector with Distributed Generation. The electrical system under study incorporates local PV
energy generation, an electricity storage system, connection to the grid and a home automation system.
The distributed control system is composed of two modules: a scheduler and a coordinator, both imple-
mented with neural networks. The control system enhances the local energy performance, scheduling the
tasks demanded by the user and maximizing the use of local generation.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, there is an increasing electricity demand and
an increasing cost of the raw materials. It is necessary to do a bet-
ter use of the electricity through proper management. Govern-
ments are passing laws to improve this management by means
of Demand-Side Management (DSM). Demand-Side Management
has been identified as one of the main strategies to be promoted
in order to guarantee security of electrical energy supply in the
European Union [1]. However, there is not a commonly accepted
definition for the term Demand-Side Management (DSM). In this
paper, DSM is defined as the actions that influence the way
consumers use electricity in order to achieve savings and higher
efficiency in energy use [2].

The combination of DSM with an automatic control of the
household demand leads to a new concept called Active Demand-
Side Management (ADSM) [3,4]. ADSM allows to modify the demand
profile in order to reduce the stress of the electrical system,
maximize consumption when the resources are available and
decrease congestion situations. There are several benefits of the
ll rights reserved.
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ADSM, such as reduction of losses and load shedding in the grid,
reduction in energy bills, demand curve smoothing or reduction in
the production cost [5,6]. Moreover, there are three main strategies
to implement ADSM [7]: (i) peak clipping, (ii) valley filling and (iii)
load shifting. However, as stated in Ref. [5], ADSM have several chal-
lenges to overcome such as the lack of ICT infrastructure, inappropri-
ate market structure or lack of incentives. Furthermore, ADSM has to
guarantee the comfort of the users and their preferences without
changing their behavior.

ADSM can be implemented based on different criteria, such as the
price of the energy, maximization of the self-consumption or limit-
ing the maximum power between others. The term self-consump-
tion on distributed generation electric networks focuses on the
usage of the own generated energy, while the energy provided by
the grid remains an optional generator or consumer [3]. This paper
focuses on ADSM with a load shifting strategy to maximize self-
consumption.

Different techniques to implement DSM have been proposed in
the literature [5]: load shifting, direct-load control, load limiters,
interruptible loads, frequency regulation, time-of-use pricing or
demand bidding between others. However, most of these proposals
have not yet been implemented in real environments. Moreover,
typically these studies focus on macroscopic impacts without
addressing their implementation at the lower level. Notwithstand-
ing, some researches focusing on designing real implementations
can be found. In Ref. [8], the authors implement a load control
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frequency and guarantee that the fluctuations of the load fre-
quency converge to a range. In Ref. [9] a direct-load controller
based on programmable logic is described, while in Ref. [10] the
authors make use of a fuzzy logic controller. Some approaches
try to maximize self-consumption by managing the flows of energy
in the industrial sector [11,12]. While others focus on the residen-
tial sector [3,13]. In the work presented by Ref. [14], measurement
data of seven households in Belgium have been used to acquire
relationships to dimension storage packages for grid connected
PV panel installations. A methodology for the evaluation of PV ar-
ray orientation, ADSM and storage to improve load matching has
been presented in Ref. [15]. The method was applied in simulations
to high-latitude data from detached houses and apartments in
Sweden to observe their impact. Furthermore, Artificial Neural
Networks (ANNs) have been extensively applied in energy systems
[12,16,17]. ANNs have characteristics of optimization, generaliza-
tion ability, adaptability, a legacy of information processing, failure
tolerance and low power consumption [18]. In Ref. [19] the author
presents several applications of ANNs in energy problems, such as
modelling and designing a solar steam generating plant, estimation
of a parabolic-trough collector’s intercept factor and local concen-
tration ratio, modelling and performance prediction of solar water-
heating systems, between others.

In this paper we implement a distributed ADSM controller
based on ANNs to maximize self-consumption in the residential
sector. The distributed control system presented is made up of sev-
eral ANNs located at the different appliances in a house provided
with local PV energy generation. The appliances self-organize in
a distributed way and a coordinator corrects their outputs in order
to enhance self-consumption. It is expected that our system would
schedule household tasks for the next day, coordinating the user
preferences and the predicted generated electricity, so that self-
consumption could be maximized. Thus, the system acts in an al-
most transparent way to the user and it is in charge of activating
the household tasks when the PV generator produces its maximum
of energy, leading to an increase of the energy efficiency.

The remainder of this paper is as follows. Section 2 describes
the electrical energy system. In Section 3, the implementation of
the neural controller and its training is described. Section 4 pre-
sents the postevaluation of the neural controller implemented. Fi-
nally, Section 5 concludes this paper.
2. System under study

The ADSM system has been developed in a real solar house
named ‘‘Magic Box’’ (see Fig. 1). The house integrates sustainable
elements based on renewable energies, self-sufficiency energetic
methods, bioclimatic architecture and recycled construction
materials [20]. It includes PV generation, electricity storage through
Fig. 1. (a) Birds eye view and (b) s
batteries, a set of automated appliances and a connection to the grid
[21].

The PV installation consists of single-crystalline PV generators
distributed in four south-oriented surfaces with different inclina-
tions. The energy is collected in six arrays with a total nominal
power of 7.2 kWp. In addition, the electrical system embodies a
battery energy storage system of 36 kWh. In a grid-connected
installation, batteries are used to improve the electrical behavior
by controlling the maximum consumed and generated power at
different hours or ensuring the electrical supply when a grid break-
down occurs [22–24]. In this case of study, the battery system
stores the excess of PV generation and supplies it to the loads when
there is not enough local generation. This operation decreases the
exported and imported electricity from the grid.

‘‘Magic Box’’ includes typical electrical appliances of a highly
electrified home: washing machine, dryer, dishwasher, refrigera-
tor, cooking appliances, lighting, computers and entertainment
appliances. The appliances are integrated in a home automation
system, which allows them to be monitored and controlled by a re-
mote system [3]. Some appliances involve an instantaneous use
because of the user demand (e.g. lights, TVs, computers) while oth-
ers can be time-shifted. For this reason, we have defined two types
of appliances based on their operation mode:

� Deferrable loads, as the demand that can be displaced along the
day. In this case, the user set up time limits between which task
has to be carried out. E.g.: running the washing machine
between 10:00 h and 16:00 h.
� Non Deferrable loads, as the demand that is not controllable. It

represents the instantaneous appliances, like lights or TVs
or the continuous consumption, like the fridge or control
computers.

All the elements of the electrical system are connected to an AC
bus (see Fig. 2). This connection allows the energy exchange
between the different devices without an explicit hierarchy; there-
fore, it increases the system scalability. Notice that in our system,
the battery stores only the PV energy excess and it gives its stored
energy solely to the loads. Therefore, there are no energy ex-
changes between the battery storage system and the grid.

Based on this schematic flow of energy, the ADSM system tries
to reduce the consumption of electricity from the grid and to max-
imize the consumption from the PV generator and the battery
system.
3. System implementation

As aforementioned, the main objective of the ADSM system is to
maximize self-consumption. Therefore, the ADSM system must
outh frontage of ‘‘Magic Box’’.



Fig. 2. Topology of the electrical system.

Fig. 3. Example of user time constrain for three different tasks.
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schedule different appliance tasks commanded by the user
throughout the day. Only deferrable appliances can be controlled
by the system. However, deferrable and non deferrable appliances
are taken into account to analyze and validate the system.

To allow the ADSM system to create the scheduling, the user
must provide a list with the appliances to be executed within the
next 24 h. This list consists of the name of the appliance together
with the program variables and the time limits. A summary of
these variables is shown in Table 1. Note that the user is involved
in the ADSM system and he offers flexibility by giving time limits
to the appliances which must be executed.

Before starting, the ADSM system must obtain the tasks that the
user wants to execute and the generation forecast. Once all the
information is ready, the system starts scheduling the different
tasks according to a specified energy criterion, maximizing self-
consumption in our case. Note that the ADSM system does not re-
duce the energy consumption, but moves the tasks throughout the
day favoring the use of the generated energy.
3.1. System inputs

� User information. The user establishes the tasks he wants to
carry out in the next 24 h. A task consists of selecting the appli-
ance, its program to execute and the temporal interval in which
the user would like to do the task, Tk = {Ak, Dtk}, where Tk is the
kth task to schedule, Ak is the appliance for the kth task, which
contains the variables of the program (temperature, spin revo-
lutions, etc.) and its duration, and Dtk = (tk,start, tk,end) is the tem-
poral interval of the kth task within which the user wants to
execute it. Ak is composed of the consumed power (PA,k), and
the duration of the program (DtA,k),Ak = {PA,k, DtA,k}. These data
are located at each aplliance. An example of the information
provided by the user is shown Fig. 3.
� Generation forecast. It is a forecast of the expected generated

power for the next 24 h, (PPV). The forecast consists of a vector
of 24 values, one for each hour of the day. PPV,h is the hth fore-
casted hour of generated power [25].
Table 1
Appliances variables supplied by the user to the control system for its scheduling on
the next 24 h.

Appliance Variable 1 Variable 2

Washing machine Temperature Spin revolutions
Dryer Spin revolutions Not used
Dishwasher Washing parameter Not used
Oven Temperature Cooking time
Hood Fan speed Light intensity
Refrigerator Temperature Not used
Freezer Temperature Not used
Air conditioning Temperature Cooling time
3.2. System architecture

The architecture of the ADSM system consists of three modules
(see Fig. 4):

� Scheduler. It is responsible for setting the time to execute the
task Tk taking into account the user constraints (Dtk), and the
generation forecast (PPV,0–23). It is a distributed layer; a neural
controller is present in each appliance. Each appliance control-
ler receives information about its corresponding task to be exe-
cuted. Each controller outputs the time at which the task has
been scheduled. Therefore, the output of this layer is a vector
of scheduled times (ts).
� Coordinator. It receives information from all the controllers of

the scheduling layer. It checks, and modifies if necessary, that
the tasks to be carried out do not overlap. Therefore, it requires
the vector of scheduled times (ts), and the time duration of each
task (DtA,k) as inputs. The output of this layer is a vector consist-
ing of the coordinated times (tc).
� Actuator. It performs the communication between the coordina-

tion layer and the physical appliances. The actuator starts the
tasks at the time indicated by the coordinator (tc).

3.2.1. System controller
The controller consists of several Multilayer Perceptrons (MLPs)

as ANNs [18]. Each MLP have three layers: input, hidden and out-
put layer. The coordinator consists of one MLP, while the scheduler
is composed of as many MLPs as tasks to schedule. Therefore, each
appliance schedules the time at which the task must be executed.
However, because of this modularity, the scheduling time of differ-
ent appliances could overlap in the time domain and the instant
power demand could be outsize. For this reason, it is necessary
the coordinator checks, and modifies if necessary, that the tasks
do not overlap.

In this paper, we use a Genetic Algorithm (GA) to adjust the free
parameters of the MLPs mapped into a genotype [26]. These free
parameters are: (i) input gains (gin,i), (ii) neural weights (wij) and
(iii) bias (hi). The GA is used because it has the potential to produce
a global minimum of the search space and thereby avoid local min-
ima. It consists of evolving a population of genotypes according to a
fitness function. In our controllers, the population consists of
100 genotypes. Each genotype is a vector of genes in which the gains,
weights and bias are mapped and whose length (gL) is expressed in
the following equation.

gL ¼ Gin þHhi þHout þWhi þWout ð1Þ

where Gin is the number of gains in the input layer, Hhi is the num-
ber of bias of the hidden layer, Hout is the number of bias in the out-
put layer, Whi is the number of synaptic weights in the hidden layer,
and Wout is the number of synaptic weights in the output layer.

The gene values are chosen in the range [0, 1]. Genotypes of the
first generation are generated randomly. The following generations
are produced by a combination of selection with elitism, crossover
and mutation. For each new generation, the five individuals with
the highest fitness values (called ‘‘elite’’) are retained unchanged.
The reminder of the new generation is generated by fitness-pro-
portional selection from the individuals of the previous generation.
In addition, the new genotypes are subjected to a simple crossover,



Fig. 4. Control architecture of the ADSM system.
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in which two individuals exchange their genes in one point from a
random position. Finally, a mutation process occurs. Every gene of
every genotype changes its value randomly with a probability of
p = 0.05. The fitness values are assigned to each individual accord-
ing to a fitness function built to the specific optimization problem,
one to tune the parameters of the ANNs of the scheduler and an-
other one for the ANN of the coordinator. Finally the components
of the genotype vector are mapped to produce the MLP parameters
within the following ranges: input gains gin,i 2 [0, 1], weights
wij 2 [�5, 5] and biases hi 2 [�5, 5].

3.2.2. Scheduler
The scheduler selects the time at which the tasks required by

the user must be executed, maximizing self-consumption and giv-
ing priority to the user. Therefore, the inputs of the scheduler are
the time limits of the tasks selected by the user (Dtk) and the gen-
eration forecast (PPV). The scheduler controllers, once the inputs
are established, start scheduling each task independently (see
Fig. 5).

The architecture of the scheduler, as explained in Section 3.2.1,
consists of as many homogeneous MLPs as tasks established by the
user. One scheduler MLP is shown in Fig. 6. Each MLP is composed
of 26 neurons in the input layer (xin = {tk,start, tk,end, PPV,0, . . . , PPV,23}),
13 neurons in the hidden layer and 1 neuron in the output layer
(y40 = ts,k). Each neuron is governed by the following equation.

yi ¼
gin;i � xin;i i 2 f1; . . . ;26g

r
PNin

j¼1
wij � yj þ hi

 !
i 2 f27; . . . ;40g

8><
>:

with rðxÞ ¼ 1
1þ e�x

ð2Þ
Fig. 5. Scheduler architecture.
where Nin is the number of inputs of the neuron and yj are the out-
puts of the neurons of the previous layer.

As aforementioned, the free parameters of the MLP are mapped
into a genotype. In this case, the number of genes of each genotype
is gL = 26 + 13 + 1 + (26 � 13) + (13 � 1) = 391 genes. The fitness
function of the GA is built to achieve the objective of maximizing
self-consumption. Therefore, the fitness function evaluates how
close is the MLP output (ts,k), from the maximum of the forecasted
generated power within the time interval provided by the user (D
tk), for K tasks and L forecasted generation power profiles. The
mathematical expression of the fitness function can be observed
in the following equation.

FFs
k;l ts;k; P

l
PV

h i
¼

0 if ts;k R Dtk

g ts;k; P
l
PV

� �
ifts;k 2 Dtk

(

with g ts;k; P
l
PV

� �
¼

0 if ts;k < ck;l � 2
Pl

PV ðts;kÞ
Ck;l
� 0:5 if ck;l � 2 P ts;k < ck;l � 1

Pl
PV ðts;kÞ
Ck;l
� 0:25 if ck;l � 1 P ts;k < ck;l

Pl
PV ðts;kÞ
Ck;l

¼ 1 if ts;k ¼ ck;l

Pl
PV ðts;kÞ
Ck;l
� 0:25 if ck;l < ts;k 6 ck;l þ 1

Pl
PV ðts;kÞ
Ck;l
� 0:5 if ck;l þ 1 < ts;k 6 ck;l þ 2

0 if ts;k > ck;l þ 2

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð3Þ

where Ck,l is the maximum value of the forecasted generated power
inside the time interval provided by the user (Dtk) for the lth

profile, ck,l is the time at which Ck,l occurs, and Pl
PV ðts;kÞ is the lth

forecasted generation power value for ts,k. Remember that, ts,k is
the scheduling time of the kth task and Dtk is the temporal interval
of the user for the kth task.

Finally, the fitness value for one individual FFs
ind

� �
is the arith-

metic mean of all the situations (K tasks and L forecasted genera-
tion power profiles) in which the genotype was evaluated (see
Eq. (4)).

FFs
ind ¼

PK
k¼1

PL
l¼1FFs

k;l

K � L ð4Þ

The dataset for the evolution of the scheduler MLPs was com-
posed of L = 142 forecasted generation power profiles of the year
2009, (l 2 {0, . . . , 141}), and the time preferences of the user for each
task where intervals of Dtk = 4 h which vary along the day in steps of



Fig. 7. ANN structure of the coordinator.Fig. 6. Structure of one ANN of the scheduler.
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2 h (k 2 {0, . . . , 11}) were selected. The evolution was carried out on
different steps. Firstly, the system was evolved with 10 profiles of
the 142 available. Once it reached a steady-state value, we stopped
the evolution. Then, the evolution was restarted with 30 profiles
for the individuals of the last generation evolved with 10 profiles.
After reaching again a plateau, we stopped the evolution. We re-
peated the same process with 50, 90 and 142 profiles. For the differ-
ent steps of the evolution, we only changed the number of forecasted
generation power profiles, maintaining the time preferences of the
user explained before. The results of the evolution are shown in
Table 2. The maximum number of generations selected was
10,000, but the algorithm reached a steady-state before accomplish-
ing the total number of generations. In addition, the fitness value, to
which the GA converges, is a compromise value for all the forecasted
power profiles and all the temporal intervals defined by the user. The
best individual of the las generation evolved with 142 profiles was
set as the parameters of the scheduler MLPs.

3.2.3. Coordinator
As aforementioned, the aim of the coordinator is that tasks do

not overlap during their execution. The coordinator will try to fit
for the closest scheduled times with no overlap. The inputs for
the coordinator are the scheduled times (ts) and the duration of
each task, (DtA,k). The output of the coordinator is a vector of time
references at which the selected tasks must be executed (tc).

The coordinator is composed of one MLP whose number of
neurons depends on the number of tasks. So that, the input layer
has 2 � K neurons, with xin = {ts,1, DtA,1, ts,2, DtA,2, . . . , ts,K, DtA,K},
the hidden layer has K + 1 neurons and the output layer has K
neurons, where K is the number of tasks (see Fig. 7). The ANN is
governed by Eq. (5) and its outputs (yi = tc,j; i 2 {3K + 2, . . . , 4K + 1},
j 2 {1, . . . , K}) create a vector of coordinated times (tc).
Table 2
Results of evolution for a scheduler ANN.

No profiles Best fitness Generations

10 0.9091740680 2189
30 0.9172684079 996
50 0.9027720441 287
90 0.8171219180 2189

142 0.7026183810 847
yi ¼
gin;i � xin;i i 2 f1; . . . ;2Kg

r
PNin

j¼1
wij � Ij � yj þ hi

 !
i 2 f2K þ 1; . . . ;4K þ 1g

8><
>:

with rðxÞ ¼ 1
1þ e�x

ð5Þ

where Nin is the number of inputs of the neuron, yj is the output of
the previous layer neurons, and Ij 2 0, 1 is an inhibitor signal ex-
plained hereafter.

The inhibitor signal is introduced in the ANN to give modularity
to this network. Modularity is very convenient when the number of
tasks to be executed is unknown. However, an ANN with an unde-
fined structure cannot be evolved with the characteristics of the GA
presented in this paper. Thus, the coordinator is implemented to
handle seven tasks (K = 7), which is the maximum number of
deferrable appliances in ‘‘Magic Box’’ (see Section 2). In the case
that not all the seven tasks are activated, the remaining entries
are zero. The inhibitors have been established between the hidden
layer and output layer to inhibit the connection of the entries
which are zero. Therefore, the neurons in the hidden layer, as-
signed to the tasks that are not going to be coordinated, do not
interfere in the calculation of the coordinated time for the active
tasks.

As previously explained, the length of the coordinator
genotype is gL(K) = 2 � K + (K + 1) + (2 � K � (K + 1)) + ((K + 1) � K)
= 3 � K2 + 7 � K + 1. In the evolution of the coordinator, the ANN is
evolved with K = 7 tasks; therefore, the length of the genotype is
gL(7) = 3 � 72 + 7 � 7 + 1 = 197 genes.

The evaluation of each genotype is made according to a fitness
function developed to fulfill the objective of spreading the tasks in
order not to overlap in the time domain. The fitness function for
this evolution consists of two functions: one function FFc

1 k;m

� �
evaluates the overlapping between the coordinated outputs, while
the second one FFc

2 k;m

� �
measures the similarity between the ANN

outputs (coordinated times tc) and its inputs (scheduled times ts).
The mathematical expression of each function is shown in Eqs. (6)
and (7).

FFc
1 k;m ¼

1
d � jtf 1j if 0 6 jtf 1j < d

4
3
d � jtf 1j � 1

2 if d
4 6 jtf 1j < d

2

1 if d
2 6 jtf 1j

8><
>: ð6Þ
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Fig. 8. (a) Example of three overlapped tasks provided by the scheduler. (b) Result of the coordination layer for the same tasks.

Table 3
Results of the evaluation of the scheduling layer.

ts,k ’ ck,l jts,k � ck,lj 6 1h jts,k � ck,lj > 1h

Scheduler 87% 10% 3%

Table 4
Results of the evaluation of the coordination layer.

Right Dtk 6 10min Dtk > 10 min

Coordinator 89% 7% 4%

Table 5
Results of the evaluation of the whole system.

Right scheduling/right
coordination

Failure scheduling/failure
coordination

Whole
system

85% 15%
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where d is the maximum program duration of all the tasks,
(d = max(DtA,k); k 2 {1, . . . , K}), and jtf1j is the absolute value of
the difference between the outputs of the ANN (jtf1j= jtc,k � tc,jj,
j 2 {1, . . . , K}; j – k).

FFc
2 k;m ¼

� 3
2�d � jtf 2j þ 1 if 0 6 jtf 2j < d

2

� 1
2�d � jtf 2j þ 1

2 if d
2 6 jtf 2j < d

0 if d 6 jtf 2j

8><
>: ð7Þ

where jtf2j is the absolute value of the difference between a task
output and its corresponding input (jtf2j = jts,k � tc,kj, k 2 {0, . . . , K}).

The final fitness value of one individual FFc
ind

� �
is presented in

the following equation.

FFc
ind ¼

1
M
�
XM

m¼1

2
K � ðK � 1Þ �

XK�1

k¼1

FFc
1 k;m

 !
� 1

K
�
XK�1

k¼1

FFc
2 k;m

 !" #
ð8Þ

where K is the number of tasks and M is the number of cases of the
evolution explained hereafter.

The dataset of the coordinator during the evolution consists of
the duration of seven tasks, one for each controllable appliance
of ‘‘Magic Box’’ (DtA = {DtA,1, DtA,2, . . . , DtA,7}), which remains con-
stant during the entire evolution process, and the scheduled times
(ts = {ts,1, ts,2, . . . , ts,7}) whose values for the evolution vary from 10
a.m. to 8 p.m, selected as the temporary interval of sunny hours.
Therefore, M is the number of combinations of the seven scheduled
times along the 10 h, that is M = 107 combinations.

As can be deduced, the coordinator evolution evaluates if the
outputs of the ANN meet the goal of not being overlapped and
resembling as much as possible to the inputs. In this way, the best
fitness value, which has been achieved for 10,000 generations, was
0.38. Notice that the best fitness value reached is far from the max-
imum fitness value max FFc

ind

� �
¼ 1

� �
. This is because of the geo-

metric mean of FFc
1 k;m and FFc

2 k;m shown in Eq. (8). However, we
observe that in average each of them achieves a value of 0.62, being
a compromise of all the M = 107 combinations defined in the evo-
lution. Fig. 8 shows an example of the separation of the tasks for
a selected case of the evolution.

4. Postevaluation

In this section, we evaluate the output of the scheduler, the
output of the coordinator and the result of the complete ADSM
control system. The dataset used to evaluate the system consist
of forecasted generated power profiles of the year 2009 not used
in the evolution (223 profiles), and three tasks (T1, T2 and T3)
whose time intervals (Dt1, Dt2 and Dt3) defined by the user are
composed of 4 h which varies along the day in steps of 2 h. The
tasks defined are:

� Task 1: a washing machine with program 1, whose variables are
90 �C and 1200 r.p.m. (A1), and executed for all the time inter-
vals defined previously (T1 = {A1, Dt1}).
� Task 2: a dryer with program 3, whose variable is 1200 r.p.m.
(A2), and executed for all the time intervals defined previously
(T2 = {A2, Dt2}).
� Task 3: a dishwasher with program 5 (A3), and executed for all

the time intervals defined previously (T3 = {A3, Dt3}).

For the aforementioned dataset, the scheduler situates the exe-
cution time for each of the three appliances inside the time con-
strains of the user in all the cases. However, it locates the
execution time at the time when the maximum of the forecasted
generation power profile occurs in 87% of the cases. In 10% of the
cases it was deviated less than one hour from the maximum and
in the remaining 3%, it was deviated in more than one hour (see
Table 3).

The dataset used for the validation of the coordinator was com-
posed of the duration of the three tasks described above (DtA,1, D-
tA,2 and DtA,3), and the vector of the scheduled times obtained from
the scheduler. The results of the evaluation are as follows: the
tasks were spread in the time domain complying with the tempo-
rary interval constraints set by the user, in 89% of the cases. Only in
7% of the cases the tasks were deviated from the temporary inter-
val in less than 10 min and in the remaining 4%, tc,k was deviated
from the temporary interval in more than 10 min (see Table 4).

Finally the verification of the whole system was made to ex-
plore the combination of the two modules. The system was suc-
cessful in both the scheduler and coordinator modules in an 85%
of the situations. The remaining 15% had failures in the scheduler,
the coordinator or both (see Table 5).
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Fig. 9. Example of the whole process of the ADSM system: (a) inputs for the ADSM system, (b) response of the scheduler and (c) final response of the ADSM system.
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To better understand the behavior of the system, an example is
described in what follows. Let us assume the tasks proposed by the
user are the following:

� Task 1: a washing machine with program 1, whose variables are
90 �C and 1200 r.p.m. (A1), with an execution time interval (Dt1)
defined between 12 a.m. and 4 p.m. (T1 = {A1, Dt1}).
� Task 2: a dryer with program 3, whose variable is 1200 r.p.m.

(A2), with an execution time interval (Dt2) defined between
10 a.m. and 7 p.m. (T2 = {A2, Dt2}).
� Task 3: a dishwasher with program 5 (A3), with an execution

time interval (Dt3) defined between 8 a.m. and 8 p.m.
(T3 = {A3, Dt3}).

In Fig. 9a, the time intervals and PV profile inputs to the neural
controller can be observed. In Fig. 9b, the response of the scheduler
is shown. In this case the scheduled times of the three tasks are the
same because the time intervals provided by the user are wide
open. Therefore, the scheduler controllers select the same time
for the task execution (close to the maximum of the forecasted
generation power profile). Finally, Fig. 9c shows the result after
coordination. The coordinator has separated the scheduling time
of the three tasks to avoid overlapping. The coordinated times
are the times in which the tasks are going to be executed the next
day. Note that the three tasks are under the PV generation curve, so
that self-consumption is guaranteed.
5. Conclusion

We have developed a control system using ANNs tuned by GAs
to implement an ADSM system for the residential sector. Results
show that ANNs are able to implement an ADSM system that meets
the user requirements and schedules the tasks for the next day to
improve the electrical local behavior. This concept is related to the
idea of the self-consumption of the local energy. The implemented
ADSM system, with a strategy of load shifting, maximizes the con-
sumption of PV generated energy increasing self-consumption.

The ADSM system inherits the properties of the applied algo-
rithms. So that, the system is robust against failures because of
the distributed flow of information inside the ANNs. We have
shown that, with a small amount of information, the system is
capable of establishing a plan of action to start controllable appli-
ances in a distributed way.

In the execution of the neural controllers, we have shown that
the tasks overlap in the time domain because of the distributed
architecture of the scheduler. However, this problem was solved
with a coordinator which splits the overlapped tasks. The evalua-
tion of the whole system was made taking into account that (i)
the tasks cannot overlap, (ii) must be inside the user interval and
(iii) should be near the forecasted maximum power value. This
objective was accomplished in 85% of the evaluated cases. There-
fore we have shown that it is possible to use distributed algorithms
to build ADSM systems, but also that the energy efficiency can be
raised maximizing the self-consumption of the local energy.

For a future perspective, we observe that ADSM techniques give
the user the possibility to control his energy behavior because of
the feedback information. This information is obtained through
the constant monitoring of the energy flow of the electrical system.
With this monitoring, the user could reduce the rates of energy
consumption at home [27]. The benefits for the users are not only
related to the understanding of its consumption behavior, but also
they obtain economical benefits by not consuming energy from the
grid. These techniques also benefit the grid, reducing the transpor-
tation losses and load shedding because of the self-consumption of
local energy. Moreover, the use of these techniques will play an
important role in the future smart-grids, helping to guarantee
the energy supply and reducing the raw materials imports [28].
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