
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Exploring UUV Development with NauSim: An

Open-Source Simulation Platform

1st César Antonio Ortiz Toro

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

ca.ortiz@upm.es

4th Dictino Chaos-García

Departamento de Ciencias de la

Computación y Control Automático

UNED

 Madrid, Spain

dchaos@dia.uned.es

7th Juan Manuel Vidal-Pérez

Escuela de Ingenierías Marinas,

Náutica y Radioelectrónica

UCA

Cádiz, Spain

juan.vidal@uca.es

10th José Jesús Fraile-Ardanuy

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

jesus.fraile.ardanuy@upm.es

13th Joaquín Aranda-Almansa

Departamento de Ciencias de la

Computación y Control Automático

UNED

 Madrid, Spain

jaranda@dia.uned.es

16th Luis Magdalena-Layos

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

luis.magdalena@upm.es

2nd Cristina Cerrada-Collado,

Departamento de Ciencias de la

Computación y Control Automático

UNED

 Madrid, Spain

criscerrada@dia.uned.es

5th Karen Lyn García-Suárez

I. para el Desarrollo Tecnológico y la

Innovación en Comunicaciones

ULPGC

Las Palmas, Spain

 karen.garcia101@alu.ulpgc.es

8th Miguel Ángel Luque-Nieto

Instituto de Ingeniería Oceánica, E.T.S.

de Ingeniería de Telecomunicación

UMA

Málaga, Spain

luquen@uma.es

11th Vicente Negro-Valdecantos

Escuela Técnica Superior de ing. de

caminos canales y puertos

UPM

Madrid, Spain

vicente.negro@upm.es

14th Santiago Zazo-Bello

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

santiago.zazo@upm.es

17th Juan Parras-Moral

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

j.parras@upm.es

3rd David Moreno-Salinas

Departamento de Ciencias de la

Computación y Control Automático

UNED

 Madrid, Spain

dmoreno@dia.uned.es

 6th Pablo Otero-Roth

Instituto de Ingeniería Oceánica, E.T.S.

de Ingeniería de Telecomunicación

UMA

Málaga, Spain

pablo.otero@uma.es

9th Ana Isabel Vázquez

Escuela de Ingenierías Marinas,

Náutica y Radioelectrónica

UCA

Cádiz, Spain

anaisabel.vazquez@uca.es

12th Eugenio Jiménez-Yguacel

I. para el Desarrollo Tecnológico y la

Innovación en Comunicaciones

ULPGC

Las Palmas, Spain

eugenio.jimenez@ulpgc.es

15th Pedro José Zufiria-Zatarain

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

pedro.zufiria@upm.es

18th Alvaro Gutiérrez-Martín

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

a.gutierrez@upm.es

Abstract—

This article introduces NauSim, an open-source simulation

tool designed for developing control algorithms Unmanned

Underwater Vehicle (UUVs). NauSim is targeted at researchers

and developers in underwater robotics, with a focus on Machine

Learning (ML) based applications. Key design principles

include a clean, flexible, and modular architecture that can

easily integrate with various existing control paradigms. The

simulation tool is made in Python, acknowledging its

prominence in ML research. NauSim emphasizes simplicity in

deploying control algorithms from the simulator to target

hardware. To ensure applicability in real-world scenarios,

NauSim strives to provide an experience that closely mimics

real-life conditions, encompassing both sensory and physical

interaction models.

Keywords— Simulation, UUVs, Multi-vehicle systems,

Sensors and actuators, Robot Navigation, Programming and

Vision

I. INTRODUCTION

The development of marine robotics is emerging as a
interdisciplinary field that integrates various disciplines,
including engineering, computer science, and marine
sciences. This field focuses on the advancement and
deployment of both autonomous and remotely operated
underwater drones, which have become essential tools in a
variety of marine applications. These technological
innovations have been pivotal in supporting numerous
projects, including maintenance missions as seen in [11] and
[9], Additionally, reef monitoring, as highlighted in [19],
utilizes underwater drones to collect data and monitor the
health of coral reefs, contributing significantly to conservation
efforts. In the realm of aquaculture, fish farm monitoring,
discussed in [4] and [3], benefits from these drones by
providing continuous surveillance and management of fish
stocks, thereby improving yield and sustainability. Moreover,
underwater drones are employed in water quality control, as
described in [13], to monitor and ensure the health of aquatic

This work has been supported by Grant PID2020-112502RB-C41,

PID2020-112502RB-C42, PID2020-112502RB-C43 and PID2020-

112502RB-C44 funded by MCIN/AEI/10.13039/501100011033.

mailto:dmoreno@dia.uned.es
mailto:pablo.otero@uma.es
mailto:anaisabel.vazquez@uca.es

environments, detecting pollutants and other harmful
substances.

Despite the growing importance of underwater robotics,
the research and development of these technologies are
fraught with challenges, mainly due to their dependence on
aquatic environments. Any project in this area requires access
to suitable bodies of water, such as rivers, seas, or lakes, which
come with associated logistical problems. In addition, the
variable and often unpredictable nature of these environments
adds a layer of uncertainty to the test conditions, making it
difficult to repeat tests or ensure the safety of the equipment.
The alternative, a large enough water tank, is a costly option
with limited availability. Additionally, the confined space of a
tank, while providing a controlled environment, may not fully
replicate the complexities of natural aquatic conditions, which
can limit the effectiveness of testing.

Furthermore, the characteristics of an underwater
environment make test monitoring particularly challenging.
Visibility may be limited, and the environment restricts the
use of traditional monitoring equipment. There is also a risk
of losing or damaging vehicles during testing due to
unforeseen problems, such as technical failures or
environmental hazards. This risk requires a cautious and often
time-consuming approach to experimentation, where each
step must be carefully planned and executed to mitigate
potential losses.

These challenges demand the use of simulators for the
design and preliminary testing of vehicle behavior. Simulators
mitigate the dependence on access to a water environment
prior to the deployment phase and allow observation of
underwater tasks when direct observation of the system is not
feasible. This has led to numerous developments. Among the
most recognized are the UWSim software, presented in [16],
and the Gazebo UUV Simulator extension developed in [14],
although these have not been updated for some time. With the
aim of utilizing well-known platforms, there are packages that
integrate simulation functionalities within MATLAB™ and
Simulink™, such as the work presented in [22] and
Simu2VITA in [6]. In recent years, the trend has been towards
providing visual fidelity by leveraging the capabilities of
commercial 3D engines, as evidenced in [15] (HoloOcean)
and [1] (UNav-Sim), albeit at the cost of making these
simulators somewhat dependent on the structure and
limitations of the engines. Ultimately, these developments are
frequently associated with specific projects, and their features
do not always align with the requirements of other endeavors.

In this article we present NauSim, an open source
simulation tool for underwater unmanned underwater vehicle
(UUVs), designed according to the following guidelines:

• It is a software designed with the objective of
developing control algorithms for autonomous
underwater vehicles, either individually or as group
behavior, aimed at researchers and developers in
underwater robotics, with emphasis, but not limited to
Machine Learning (ML) based developments. The
architecture has to be clean, flexible and modular.

• It must be easily integrated with different existing
control paradigms. The control algorithms are
external to the simulator. Taking into account the
importance that Python has acquired as a reference
language (see [22] or [17]) in ML, the simulator must
be made or be compatible with this language.

• The deployment on the target hardware of the control
algorithms developed in the simulator has to be as
simple as possible.

• Since the results are oriented to use in real
environments, it should provide an experience as
close as possible to reality to the drone/drones, either
in the sensing model, including the visual domain, or
as a physical model of interaction.

II. ARCHITECTURE

The core of the NauSim architecture is based on the

sensor-controller-actuator model, a fundamental framework in
drone design and operation that ensures efficient and accurate
execution of tasks. This model divides the functionality of the
drone into three interconnected layers: sensors, controllers,
and actuators. The sensors are responsible for collecting data
from the environment, such as temperature, pressure, and
visual information. The controllers process this data, making
decisions based on pre-programmed algorithms or artificial
intelligence to determine the appropriate actions. Finally, the
actuators execute these actions, performing tasks such as
maneuvering the drone, adjusting its position, or manipulating
objects.

This approach allows for continuous feedback and real-
time adjustments, configuring the drone as a versatile and
adaptable tool. Sensors provide ongoing data to the
controllers, which continuously evaluate this information and
send commands to the actuators, ensuring the drone can
respond dynamically to changes in its environment. This
architecture not only enhances the drone's operational
efficiency but also increases its reliability in performing
complex tasks. Additionally, the sensor-controller-actuator
architecture isolates the different components of the drone,
promoting the reusability of already implemented parts. This
modularity makes it easier to upgrade or replace individual
components without redesigning the entire system. It also
facilitates a seamless transition between the simulated and real
robot.

The interaction of this architecture with the simulated
world is managed through a physical model, which translates
the actions of the actuators into changes in the robot's state
within the simulated space. A diagram illustrating the general
organization of this development is shown in Fig. 1.

A. Simulated enviroment

A robotics simulator, regardless of its specific
functionalities, is typically organized around a virtual space
that represents the real world. This virtual space is where the
simulation process takes place, allowing developers to test and
refine their robotic systems in a controlled and repeatable
environment. The visual representation of this virtual
environment in the NauSim simulator is handled by the
Panda3D engine.

Developed by Disney Interactive in 2002 for its theme
park virtual reality division, Panda3D [8] (originally ‘Platform
Agnostic Networked Display Architecture’, although its use
as an acronym has been lost over time) was released under
BSD license in 2008, and has since been maintained and

extended by an active community of users. Panda3D offers a
complete set of functionalities, is fully cross-platform, and
features an interface fully developed in Python.

Panda3D is a scene graph-based engine. A scene graph is
a general data structure commonly used in vector graphics
editing applications and 3D engines. It imposes a hierarchy on
the logical and often spatial representation of a graphical
scene, organizing it as a collection of nodes forming a tree
structure. A node may have multiple children but only one
parent. Any effect applied to a parent node automatically
propagates to all its child nodes. In a 3D engine, this typically
involves associating a geometric transformation matrix to
each and to determine the simulated space position, either
relative to the global axes or to its parent node, concatenate
those matrices.

This hierarchical structure is well-suited to the abstract
definition of space and the entities forming the simulated
environment. For instance, a drone within the simulator can
be 'loaded' with multiple sensors that can move or pivot
relative to the parent object (the drone itself) while
maintaining actualizing synchronization with the parent
object.

The configuration of a test scenario is defined using a
.json, where multiple participating robots can be defined, each
with different sensors, controllers and associated physical
models.

The simulator is not limited to any specific scenario editor,
providing flexibility in creating and defining virtual
environments. Virtual scenarios are defined using glTF (GL
Transmission Format) files, which are commonly supported
by most 3D modeling software. These glTF format generally
consist on a text file (.gltf) using a json structure, that
describes the scene, along with separate files containing the
geometry and texture data of the objects. This format is
extensible through tags, allowing developers to define specific
functions for the simulator. For example, they can include
simplified geometry for collision detection, add invisible

'walls' to limit the simulation area, or import geometry based
on height maps directly into the 3D engine. Some examples of
scenarios created for NauSim can be seen in Fig. 2.

B. Sensors

Sensors are the first layer, responsible for collecting data
from the drone's environment. The real-time information
provided by the sensors, together with possible
communications with other drones are the only data input the
drone has, form the basis for the decision-making processes
within the drone control system and are therefore critical for
the behavior of the drone either in an autonomous mission or
during a training process.

The sensors encompass both simulations of real-world
sensors and virtual sensors. Real sensors might include
accelerometers, sonars, GPS units, cameras, and lidar systems,
which provide essential data about the drone's position,
orientation, speed, and surrounding environment. Virtual
sensors, sensors that have no real-world equivalents but
designed to assist in the development and testing of for the
development of control models, especially those related with
machine learning. For example, a collision sensor can be
simulated to detect potential impacts with obstacles, enabling
the development of collision avoidance algorithms.

To accurately simulate real conditions on a drone, sensors
operate in a separate thread where the update rate of each
sensor is defined independently. This approach reflects the
variability in how different sensors collect data. For example,
a GPS unit might update its position data once per second,
while an accelerometer might provide data hundreds of times
per second. This allows for more accurate modeling of real-
world scenarios. Different sensors have different levels of
precision and latency, and these characteristics can be
replicated in the simulation environment ensuring that the
simulated conditions closely match those the drone will
encounter in the real world. Also, running the sensors in a
separate thread, the simulator can minimize the impact of

Fig.1. Schematic representation of the NauSim simulator architecture

computationally expensive sensor simulations on overall
performance.

Sensors are defined as independent components and can
be reused in new simulated robot models. There is no
distinction between ‘simulated’ and ‘real’ sensors (defined as
an ‘interface’ for accessing data from the corresponding
hardware’), which makes it possible, once an ML model has
been trained, to switch transparently between the sensors used
in the simulator for training and their real counterparts.

C. Controllers

The controller serves as the second layer, functioning as

the brain of the drone. It interprets input data to determine the
current state of the drone and plans the necessary actions to
achieve its objectives. This can involve vehicle stabilization,
navigation, obstacle avoidance, and specific mission tasks. In
the sensor-controller-actuator model, the controller does not
interact directly with the environment; instead, it receives
information via sensors and, in particular cases such as drone
swarm simulations, through inter-robot communication. The
interaction with the environment is mediated through
actuators, enabling the use of the same controller for both a
simulated drone and its real-world counterpart.

It processes raw data from various sensors, such as GPS
for location tracking, gyroscopes for orientation,
accelerometers for movement detection, cameras for visual
input, and other specialized sensors depending on the drone's
application. This data is analyzed to assess the drone's current
state, including its position, velocity, orientation, and
environmental conditions. Actuators, such as motors, servos,
and other mechanical devices, execute the commands issued
by the controller. This layer of abstraction allows the same
controller software to be used in both simulated environments
and real-world applications. Once validated, these controllers
can be easily transferred to the objective hardware.

The controller concept does not imply any specific
technique; it can range from a minimal program designed "ad-
hoc" for a specific situation to complex learning algorithms,
such as genetic algorithms. The simulator's design allows for
extending a drone's control functionalities using a hierarchy of
controllers, where a parent controller's role is to select which
child controller to deploy at any given moment.

D. Actuators

The final layer of the sensor-controller-actuator
architecture is comprised of actuators, which execute the
commands generated by the controller. Actuators include
motors, servos, and other mechanical components that
physically adjust the drone's position and orientation.
Actuators include motors, servos, and other mechanical
components that physically adjust the drone's position and
orientation. The specific type of actuators used depends on the
specific drone

A simulated actuator functions within a virtual
environment to replicate the behavior of real actuators. It
translates the controller's commands into values that the
simulation's physical engine can process. For example, in a
simulation, the actuator might adjust the power levels of
virtual motors to change the drone's position and orientation
in the simulated space. This allows developers to test and
refine control algorithms in a safe and controlled environment,
ensuring that they function correctly before deploying them
on a real drone.

In a real-world setting, actuators are usually defined as an
interface drone's hardware components. These interfaces can
be managed through direct connections to the drone's control
systems or through external control libraries that act as
middleware such as MAVLink [10] and ROS2 [12] .

Fig.2. Some examples of different scenes developed for NauSim, as

they appear in the simulator.

E. Physics engine

Interaction with the virtual world is achieved through the
simulation of a physical model associated with each robot. A
physical model replicates the behaviors, properties, and
dynamics of real-world objects within a virtual environment.

The primary function of the physical model is to translate
the commands generated by virtual actuators into changes in
the robot's position, orientation, and other physical attributes
within the simulated space. I. e. when a virtual actuator adjusts
the power levels of motors, the physical model calculates the
resulting movement of the robot based on principles such as
Newtonian mechanics, inertia, and buoyancy.

NauSim does not associate the concept of a physical model
with any specific algorithm or technique; it is possible to
develop a model for each type of robot with the desired level
of complexity.

As an alternative, Panda3D integrates an interface with
two independent external physical models:

• Open Dynamics Engine (ODE): Developed by Russell
L. Smith and presented in [20], Open Dynamics
Engine (ODE) is an open-source physics engine,
robust and versatile, with a long history of use in
various fields such as games, robotics, virtual reality,
and engineering-oriented simulations. ODE is
optimized for CPU performance, especially through
multithreading support.

• Bullet: Developed in its current form by [5], Bullet is
a benchmark in the field of real-time physical
simulation, known for its precision, adaptability, and
computational efficiency. While this engine supports
multithreaded execution, its overall design has been
made with a view to using SIMD optimizations to
leverage GPU capabilities.

III. USE CASES

The development of this simulator is framed within the
NAUTILUS project (Swarms of uNderwAter aUTonomous

vehIcLes gUided by artificial intelligence: ItS time has come).
This project aims to develop swarms of small, low-cost
autonomous vehicles responsible for managing coordinated
activities, supporting research in the area, providing services
such as positioning, data collection, and battery recharging for
fixed or mobile nodes deployed without direct human
intervention. The swarm will act as a single, decentralized
system where collective information will be disseminated
among the individuals. The swarm will autonomously decide
where to deploy each individual and adapt its spatial coverage
based on the environmental state and its needs.

As a vehicle, NAUTILUS uses the popular BlueROV2
[18] in its heavy configuration (Fig. 3). This version of the
ROV features four thrusters for horizontal locomotion and
four thrusters for vertical locomotion, allowing six degrees of
freedom in maneuvers. The vehicle is controlled by a
Raspberry Pi and integrates an inertial measurement unit
(IMU), a magnetometer, and a pressure sensor on an external
expansion board (the "Navigator"). The vehicle's software is
distributed as open source, allowing it to work with a wide
variety of hardware, such as sonar sensors, cameras, and an
inertial navigation system. Moreover, although the
BlueROV2 is a tethered underwater vehicle, the use of open-
source code opens the possibility of extending the vehicle's
control software to convert it into a UUV.

As an extension to the basic sensors configuration, each
vehicle has been equipped with an echo-sounding device and
a mechanical scanning sonar for navigation and image
acquisition. Developing realistic models of these sensors is
part of the simulator's development.

For the physical model simulation of this vehicle, two
versions have been adapted and implemented, based on the
mathematical simulation models of BlueROV2 dynamics
developed in [23], derived from the work presented in [7].: a
simplified one for the BlueROV2 basic configuration and a
complete one, that also includes the blueROV2 heavy
configuration.

Some of the scenarios and developments associated with
this project are shown below.

A. Flocking

One of the first controllers implemented in NauSim was a
PID controller based on virtual GPS positioning. A
Proportional-Integral-Derivative (PID) controller is a control
mechanism for dynamic feedback systems used in industrial
and engineering applications. It is designed to minimize the
error between the desired and actual state by adjusting the
control inputs through three types of actions: the proportional
component, which adjusts the output proportionally to the
current error; the integral component, which takes into
account the accumulation of past errors to eliminate steady-
state deviations; and the derivative component, which predicts
future errors based on the rate of change.

Using this PID controller, a scenario is proposed where
one of the drones acts as a leader and six others as followers.
The leader drone is configured to move, by means of a PID
controller, along a predetermined route, defined by a series of
points. In the rest of the drones, over the PID controller a
modification to the classical flocking rules is implemented, in
order to maintain a formation. These rules include maintaining
a safe distance to avoid collisions, aligning their direction and
speed with the leader and nearby drones, and staying close to

Fig. 3. BlueROV2 in its heavy configuration.

the center of the group. As the leader drone navigates the
terrain, the followers dynamically adjust their positions to
create a cohesive and synchronized flight pattern. Results of
running this scenario can be seen in Fig. 4.

Of course, this scenario is not intended to be realistic, since
its execution depends on two of the major problems faced by
AUVs, communication and positioning. However, by
modifying the transfer rate, noise and accuracy of the
communication module and the virtual positioning sensors, it
is possible to have a baseline to assess the performance needs,
robustness and reliability of the system under various
conditions.

B. Sonar simulation

While a basic approach is relatively simple to implement,
the complexities associated with sub-acoustic acoustic
phenomena such as reflections, propagation characteristics
and scattering make a realistic implementation a very complex
task, especially in the area of high-frequency sonar with which
AUVs are often equipped. However, in an autonomous drone
the sonar is one of its main windows to the world, so a realistic
simulation of this contributes directly to the development of
these vehicles and associated marine technologies, providing
a tool with which to virtually test these sonar systems in
various navigation and data acquisition scenarios.

Thus, based on the method presented in [6], a sonar model
based on Screen Space Reflections (SSR) has been developed.
SSR is a method commonly used in the generation of real-time
3D graphics to compute realistic reflections in the
environment. SSR approximates reflections by tracing rays in
screen space, rather than in the entire 3D scene, which
significantly reduces the computational burden. By capturing
the interactions of sound waves with objects and surfaces in
the screen space, the use of SSR can effectively represent
realistic reflections and refractions of sonar signals, as well as
alternative paths and secondary reflections, all in real time. A
comparison of the results with real sampling can be seen in
Fig. 5.

C. Wall-tracking

We propose the design of a wall-tracking controller, where
the output will be deployed on the target vehicle. The test
scenario is a swimming pool, so we can assume flat walls and
right angles. The wall tracker acts as a state machine where
the vehicle first orients itself towards the first structure it
encounters, approaches a predetermined distance from it and
starts moving parallel to the structure, maintaining the
distance. If it detects a blockage in its path, it rotates until the
obstacle disappears and starts again in the initial state. If it

Fig.4. Flocking simulation using NauSim. The trajectories followed by

each drone are shown as dotted lines. The leader's trajectory is shown

in light green.

Fig. 5. Sonar simulation compared to real data. The left side shows the virtual scenario together with the real data (video and sonar overlay). On the

right side the simulation results are shown. Real and simulated results are visualized using PingViewer™.

misses the wall or is unable to maintain its orientation, the
vehicle starts again in the initial state.

The main constraints in this scenario are the result of the
limitations of mechanical sonar, which is used to detect walls.
A mechanical sonar needs to physically move the head to
sample at a given angle; to cover the necessary arc of view for
this controller is required so that there will only be one
complete update of the world around the vehicle every 2
seconds. Taking into account the maximum speed of the drone
this means more than 2 meters of distance travelled.

Moreover, the nature of sonar makes it difficult to
differentiate between giving a distance to an obstacle if other
sources of reflections are present, such as the ground or the
air-water boundary. Having straight walls makes the task
easier, but the detecting algorithm (based on finding the
maximum sum subarray in the sonar signal, defined the subs
arrays by a fixed window, once the noise has been cleaned.)
has to be properly validated. Therefore, the sonar simulation
presented in the previous section has been used in the
validation of the controller, modified to take into account the
delay imposed by the hardware.

 In a non-simulated environment, the controller behaves
(except for the differences in starting conditions) similarly to
the simulated version, resulting in comparable trajectories and
the same obstacle behavior. Fig. 6 shows a snapshot of a test
using the objective hardware in a real environment .

IV. CONCLUSIONS

In this work, we present NauSim, a simulation
environment developed with the purpose of providing
researchers and students with a platform for testing,
developing and verifying sensor configurations and control
algorithms in underwater vehicles, with special emphasis on
the use of ML-based controllers. The simulation environment
provides a fast, simple and, most importantly, cost-effective
alternative to pool and sea testing, facilitating faster and less
costly development of underwater robotic solutions.
NAUTILUS covers a wide range of possible usage scenarios,
including rapid virtual prototyping, design testing, or control
algorithm development, both for individual robots and large
heterogeneous swarms. It should be noted that this simulation
environment is still under development (currently in revision

59), with plans to extend the functionalities with new sensors,
controllers and other robot models.

REFERENCES

[1] Amer, A., Álvarez-Tuñon, O., Ugurlu, H. I˙ ., Sejersen, J. L. F.,
Brodskiy, Y.,Kayacan, E., 2023. Unav-sim: A visually realistic
underwater robotics simulator and synthetic data-generation
framework. In: 2023 21st International Conference on Advanced
Robotics (ICAR). IEEE, pp. 570–576.

[2] Betancourt, J., Coral, W., Colorado, J., 2020. An integrated rov
solution for underwater net-cage inspection in fish farms using
computer vision. SN Applied Sciences 2 (12), 1946.

[3] Cerqueira, R., Trocoli, T., Neves, G., Joyeux, S., Albiez, J., Oliveira,
L., 2017. A novel gpu-based sonar simulator for real-time applications.
Computers & Graphics 68, 66–76.

[4] Cheng, L., Tan, X., Yao, D., Xu, W., Wu, H., Chen, Y., 2021. A fishery
water quality monitoring and prediction evaluation system for floating
uav based on time series. Sensors 21 (13), 4451.

[5] Coumans, E., 2015. Bullet physics simulation. In: ACM SIGGRAPH
2015 Courses. p. 1.

[6] de Cerqueira Gava, P. D., Nascimento J´unior, C. L., Belchior de
Franc，a Silva,J. R., Adabo, G. J., 2022. Simu2vita: A general purpose
underwater vehicle simulator. Sensors 22 (9), 3255.

[7] Fossen, T. I., 2011. Handbook of marine craft hydrodynamics and
motion control. John Wiley & Sons.

[8] Goslin, M., Mine, M. R., 2004. The panda3d graphics engine.
Computer 37 (10), 112–114.

[9] Hu, S., Feng, A., Shi, J., Li, J., Khan, F., Zhu, H., Chen, J., Chen, G.,
2022. Underwater gas leak detection using an autonomous underwater
vehicle (robotic fish). Process Safety and Environmental Protection
167, 89–96.

[10] Koub ˆ aa, A., Allouch, A., Alajlan, M., Javed, Y., Belghith, A.,
Khalgui, M.,2019. Micro air vehicle link (mavlink) in a nutshell: A
survey. IEEE Access 7, 87658–87680.

[11] Liniger, J., Jensen, A. L., Pedersen, S., Sorensen, H., Mai, C., 2022. On
the autonomous inspection and classification of marine growth on
subsea structures. In: OCEANS 2022-Chennai. IEEE, pp. 1–7.

[12] Macenski, S., Foote, T., Gerkey, B., Lalancette, C.,Woodall,W., 2022.
Robot operating system 2: Design, architecture, and uses in the wild.
Science robotics 7 (66), eabm6074

[13] Madeo, D., Pozzebon, A., Mocenni, C., Bertoni, D., 2020. A low-cost
unmanned surface vehicle for pervasive water quality monitoring.
IEEE Transactions on Instrumentation and Measurement 69 (4), 1433–
1444.

[14] Manhaes, M. M. M., Scherer, S. A., Voss, M., Douat, L. R.,
Rauschenbach, T., 2016. Uuv simulator: A gazebo-based package for

Fig. 6. Sequence of images showing the results of the wall-tracking controller in a real scenario. It can be seen how the vehicle moves parallel to the left
wall of the pool, while moving back and forth to adjust its distance.

underwater intervention and multi-robot simulation. In: OCEANS
2016 MTS/IEEE Monterey. Ieee, pp. 1–8.

[15] Potokar, E., Ashford, S., Kaess, M., Mangelson, J. G., 2022.
Holoocean: An underwater robotics simulator. In: 2022 International
Conference on Robotics and Automation (ICRA). IEEE, pp. 3040–
3046.

[16] Prats, M., Perez, J., Fern´andez, J. J., Sanz, P. J., 2012. An open source
tool for simulation and supervision of underwater intervention
missions. In: 2012 IEEE/RSJ international conference on Intelligent
Robots and Systems. IEEE, pp. 2577–2582.

[17] Raschka, S., Patterson, J., Nolet, C., 2020. Machine learning in python:
Main developments and technology trends in data science, machine
learning, and artificial intelligence. Information 11 (4), 193.

[18] Robotics, B., 2016. Bluerov2: The world’s most affordable high-
performance rov. BlueROV2 Datasheet; Blue Robotics: Torrance, CA,
USA.

[19] Rofallski, R., Tholen, C., Helmholz, P., Parnum, I., Luhmann, T., 2020.
Measuring artificial reefs using a multi-camera system for unmanned
underwater vehicles. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences-ISPRS Archives 43
(B2), 999–1008.

[20] Smith, R., et al., 2005. Open dynamics engine.

[21] Sultonov, S., 2023. Importance of python programming language in
machine learning. International Bulletin of Engineering and
Technology 3 (9), 28–30.

[22] von Benzon, M., Sorensen, F. F., Uth, E., Jouffroy, J., Liniger, J.,
Pedersen, S., 2022. An open-source benchmark simulator: Control of a
bluerov2 underwater robot. Journal of Marine Science and Engineering
10 (12), 1898.

[23] Wu, C.-J., 2018. 6-dof modelling and control of a remotely operated
vehicle. Ph.D. thesis.

