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Abstract—  

This article introduces NauSim, an open-source simulation 

tool designed for developing control algorithms Unmanned 

Underwater Vehicle (UUVs). NauSim is targeted at researchers 

and developers in underwater robotics, with a focus on Machine 

Learning (ML) based applications. Key design principles 

include a clean, flexible, and modular architecture that can 

easily integrate with various existing control paradigms. The 

simulation tool is made in Python, acknowledging its 

prominence in ML research. NauSim emphasizes simplicity in 

deploying control algorithms from the simulator to target 

hardware. To ensure applicability in real-world scenarios, 

NauSim strives to provide an experience that closely mimics 

real-life conditions, encompassing both sensory and physical 

interaction models. 

Keywords— Simulation, UUVs, Multi-vehicle systems, 

Sensors and actuators, Robot Navigation, Programming and 

Vision 

I. INTRODUCTION  

The development of marine robotics is emerging as a 
interdisciplinary field that integrates various disciplines, 
including engineering, computer science, and marine 
sciences. This field focuses on the advancement and 
deployment of both autonomous and remotely operated 
underwater drones, which have become essential tools in a 
variety of marine applications. These technological 
innovations have been pivotal in supporting numerous 
projects, including maintenance missions as seen in [11] and 
[9], Additionally, reef monitoring, as highlighted in [19], 
utilizes underwater drones to collect data and monitor the 
health of coral reefs, contributing significantly to conservation 
efforts. In the realm of aquaculture, fish farm monitoring, 
discussed in [4] and [3], benefits from these drones by 
providing continuous surveillance and management of fish 
stocks, thereby improving yield and sustainability. Moreover, 
underwater drones are employed in water quality control, as 
described in [13], to monitor and ensure the health of aquatic 
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environments, detecting pollutants and other harmful 
substances. 

Despite the growing importance of underwater robotics, 
the research and development of these technologies are 
fraught with challenges, mainly due to their dependence on 
aquatic environments. Any project in this area requires access 
to suitable bodies of water, such as rivers, seas, or lakes, which 
come with associated logistical problems. In addition, the 
variable and often unpredictable nature of these environments 
adds a layer of uncertainty to the test conditions, making it 
difficult to repeat tests or ensure the safety of the equipment. 
The alternative, a large enough water tank, is a costly option 
with limited availability. Additionally, the confined space of a 
tank, while providing a controlled environment, may not fully 
replicate the complexities of natural aquatic conditions, which 
can limit the effectiveness of testing. 

Furthermore, the characteristics of an underwater 
environment make test monitoring particularly challenging. 
Visibility may be limited, and the environment restricts the 
use of traditional monitoring equipment. There is also a risk 
of losing or damaging vehicles during testing due to 
unforeseen problems, such as technical failures or 
environmental hazards. This risk requires a cautious and often 
time-consuming approach to experimentation, where each 
step must be carefully planned and executed to mitigate 
potential losses. 

These challenges demand the use of simulators for the 
design and preliminary testing of vehicle behavior. Simulators 
mitigate the dependence on access to a water environment 
prior to the deployment phase and allow observation of 
underwater tasks when direct observation of the system is not 
feasible. This has led to numerous developments. Among the 
most recognized are the UWSim software, presented in [16], 
and the Gazebo UUV Simulator extension developed in [14],  
although these have not been updated for some time. With the 
aim of utilizing well-known platforms, there are packages that 
integrate simulation functionalities within MATLAB™ and 
Simulink™, such as the work presented in [22] and 
Simu2VITA in [6]. In recent years, the trend has been towards 
providing visual fidelity by leveraging the capabilities of 
commercial 3D engines, as evidenced in [15] (HoloOcean) 
and [1]  (UNav-Sim), albeit at the cost of making these 
simulators somewhat dependent on the structure and 
limitations of the engines. Ultimately, these developments are 
frequently associated with specific projects, and their features 
do not always align with the requirements of other endeavors. 

In this article we present NauSim, an open source 
simulation tool for underwater unmanned underwater vehicle 
(UUVs), designed according to the following guidelines: 

• It is a software designed with the objective of 
developing control algorithms for autonomous 
underwater vehicles, either individually or as group 
behavior, aimed at researchers and developers in 
underwater robotics, with emphasis, but not limited to 
Machine Learning (ML) based developments. The 
architecture has to be clean, flexible and modular.  

• It must be easily integrated with different existing 
control paradigms. The control algorithms are 
external to the simulator. Taking into account the 
importance that Python has acquired as a reference 
language (see [22] or [17] ) in ML, the simulator must 
be made or be compatible with this language. 

• The deployment on the target hardware of the control 
algorithms developed in the simulator has to be as 
simple as possible. 

• Since the results are oriented to use in real 
environments, it should provide an experience as 
close as possible to reality to the drone/drones, either 
in the sensing model, including the visual domain, or 
as a physical model of interaction.  

II. ARCHITECTURE 

 
The core of the NauSim architecture is based on the 

sensor-controller-actuator model, a fundamental framework in 
drone design and operation that ensures efficient and accurate 
execution of tasks. This model divides the functionality of the 
drone into three interconnected layers: sensors, controllers, 
and actuators. The sensors are responsible for collecting data 
from the environment, such as temperature, pressure, and 
visual information. The controllers process this data, making 
decisions based on pre-programmed algorithms or artificial 
intelligence to determine the appropriate actions. Finally, the 
actuators execute these actions, performing tasks such as 
maneuvering the drone, adjusting its position, or manipulating 
objects. 

This approach allows for continuous feedback and real-
time adjustments, configuring the drone as a versatile and 
adaptable tool. Sensors provide ongoing data to the 
controllers, which continuously evaluate this information and 
send commands to the actuators, ensuring the drone can 
respond dynamically to changes in its environment. This 
architecture not only enhances the drone's operational 
efficiency but also increases its reliability in performing 
complex tasks. Additionally, the sensor-controller-actuator 
architecture isolates the different components of the drone, 
promoting the reusability of already implemented parts. This 
modularity makes it easier to upgrade or replace individual 
components without redesigning the entire system. It also 
facilitates a seamless transition between the simulated and real 
robot.  

The interaction of this architecture with the simulated 
world is managed through a physical model, which translates 
the actions of the actuators into changes in the robot's state 
within the simulated space. A diagram illustrating the general 
organization of this development is shown in Fig. 1. 

A. Simulated enviroment 

A robotics simulator, regardless of its specific 
functionalities, is typically organized around a virtual space 
that represents the real world. This virtual space is where the 
simulation process takes place, allowing developers to test and 
refine their robotic systems in a controlled and repeatable 
environment. The visual representation of this virtual 
environment in the NauSim simulator is handled by the 
Panda3D engine. 

Developed by Disney Interactive in 2002 for its theme 
park virtual reality division, Panda3D [8] (originally ‘Platform 
Agnostic Networked Display Architecture’, although its use 
as an acronym has been lost over time) was released under 
BSD license in 2008, and has since been maintained and 



extended by an active community of users. Panda3D offers a 
complete set of functionalities, is fully cross-platform, and 
features an interface fully developed in Python. 

Panda3D is a scene graph-based engine. A scene graph is 
a general data structure commonly used in vector graphics 
editing applications and 3D engines. It imposes a hierarchy on 
the logical and often spatial representation of a graphical 
scene, organizing it as a collection of nodes forming a tree 
structure. A node may have multiple children but only one 
parent. Any effect applied to a parent node automatically 
propagates to all its child nodes. In a 3D engine, this typically 
involves associating a geometric transformation matrix to 
each and to determine the simulated space position, either 
relative to the global axes or to its parent node, concatenate 
those matrices. 

This hierarchical structure is well-suited to the abstract 
definition of space and the entities forming the simulated 
environment. For instance, a drone within the simulator can 
be 'loaded' with multiple sensors that can move or pivot 
relative to the parent object (the drone itself) while 
maintaining actualizing synchronization with the parent 
object. 

The configuration of a test scenario is  defined using  a 
.json, where multiple participating robots can be defined, each 
with different sensors, controllers and associated physical 
models. 

The simulator is not limited to any specific scenario editor, 
providing flexibility in creating and defining virtual 
environments. Virtual scenarios are defined using glTF (GL 
Transmission Format) files, which are commonly supported 
by most 3D modeling software. These glTF format generally 
consist on a text file (.gltf) using a json structure, that 
describes  the scene, along with separate files containing the 
geometry and texture data of the objects. This format is 
extensible through tags, allowing developers to define specific 
functions for the simulator. For example, they can include 
simplified geometry for collision detection, add invisible 

'walls' to limit the simulation area, or import geometry based 
on height maps directly into the 3D engine. Some examples of 
scenarios created for NauSim can be seen in Fig. 2. 

 

B. Sensors 

Sensors are the first layer, responsible for collecting data 
from the drone's environment. The real-time information 
provided by the sensors, together with possible 
communications with other drones are the only data input the 
drone has, form the basis for the decision-making processes 
within the drone control system and are therefore critical for 
the behavior of the drone either in an autonomous mission or 
during a training process.  

The sensors encompass both simulations of real-world 
sensors and virtual sensors. Real sensors might include 
accelerometers, sonars, GPS units, cameras, and lidar systems, 
which provide essential data about the drone's position, 
orientation, speed, and surrounding environment. Virtual 
sensors, sensors that have no real-world equivalents but 
designed to assist in the development and testing of for the 
development of control models, especially those related with 
machine learning. For example, a collision sensor can be 
simulated to detect potential impacts with obstacles, enabling 
the development of collision avoidance algorithms.  

To accurately simulate real conditions on a drone, sensors 
operate in a separate thread where the update rate of each 
sensor is defined independently. This approach reflects the 
variability in how different sensors collect data. For example, 
a GPS unit might update its position data once per second, 
while an accelerometer might provide data hundreds of times 
per second. This  allows for more accurate modeling of real-
world scenarios. Different sensors have different levels of 
precision and latency, and these characteristics can be 
replicated in the simulation environment ensuring that the 
simulated conditions closely match those the drone will 
encounter in the real world. Also, running the sensors in a 
separate thread, the simulator can minimize the impact of 

 
Fig.1. Schematic representation of the NauSim simulator architecture 

 



computationally expensive sensor simulations on overall 
performance.  

Sensors are defined as independent components and can 
be reused in new simulated robot models. There is no 
distinction between ‘simulated’ and ‘real’ sensors (defined as 
an ‘interface’ for accessing data from the corresponding 
hardware’), which makes it possible, once an ML model has 
been trained, to switch transparently between the sensors used 
in the simulator for training and their real counterparts. 

C. Controllers 

 
The controller serves as the second layer, functioning as 

the brain of the drone. It interprets input data to determine the 
current state of the drone and plans the necessary actions to 
achieve its objectives. This can involve vehicle stabilization, 
navigation, obstacle avoidance, and specific mission tasks. In 
the sensor-controller-actuator model, the controller does not 
interact directly with the environment; instead, it receives 
information via sensors and, in particular cases such as drone 
swarm simulations, through inter-robot communication. The 
interaction with the environment is mediated through 
actuators, enabling the use of the same controller for both a 
simulated drone and its real-world counterpart. 

It processes raw data from various sensors, such as GPS 
for location tracking, gyroscopes for orientation, 
accelerometers for movement detection, cameras for visual 
input, and other specialized sensors depending on the drone's 
application. This data is analyzed to assess the drone's current 
state, including its position, velocity, orientation, and 
environmental conditions.  Actuators, such as motors, servos, 
and other mechanical devices, execute the commands issued 
by the controller. This layer of abstraction allows the same 
controller software to be used in both simulated environments 
and real-world applications. Once validated, these controllers 
can be easily transferred to the objective hardware. 

The controller concept does not imply any specific 
technique; it can range from a minimal program designed "ad-
hoc" for a specific situation to complex  learning algorithms, 
such as genetic algorithms. The simulator's design allows for 
extending a drone's control functionalities using a hierarchy of 
controllers, where a parent controller's role is to select which 
child controller to deploy at any given moment. 

D. Actuators 

The final layer of the sensor-controller-actuator 
architecture is comprised of actuators, which execute the 
commands generated by the controller. Actuators include 
motors, servos, and other mechanical components that 
physically adjust the drone's position and orientation. 
Actuators include motors, servos, and other mechanical 
components that physically adjust the drone's position and 
orientation. The specific type of actuators used depends on the 
specific drone  

A simulated actuator functions within a virtual 
environment to replicate the behavior of real actuators. It 
translates the controller's commands into values that the 
simulation's physical engine can process. For example, in a 
simulation, the actuator might adjust the power levels of 
virtual motors to change the drone's position and orientation 
in the simulated space. This allows developers to test and 
refine control algorithms in a safe and controlled environment, 
ensuring that they function correctly before deploying them 
on a real drone. 

In a real-world setting, actuators are usually defined as an 
interface drone's hardware components. These interfaces can 
be managed through direct connections to the drone's control 
systems or through external control libraries that act as 
middleware such as MAVLink  [10] and ROS2 [12] . 

 

 
 

Fig.2.  Some examples of different scenes developed for NauSim, as 

they appear in the simulator. 



E. Physics engine  

Interaction with the virtual world is achieved through the 
simulation of a physical model associated with each robot. A 
physical model replicates the behaviors, properties, and 
dynamics of real-world objects within a virtual environment.  

The primary function of the physical model is to translate 
the commands generated by virtual actuators into changes in 
the robot's position, orientation, and other physical attributes 
within the simulated space. I. e. when a virtual actuator adjusts 
the power levels of motors, the physical model calculates the 
resulting movement of the robot based on principles such as 
Newtonian mechanics, inertia, and buoyancy.  

NauSim does not associate the concept of a physical model 
with any specific algorithm or technique; it is possible to 
develop a model for each type of robot with the desired level 
of complexity.  

As an alternative, Panda3D integrates an interface with 
two independent external physical models: 

• Open Dynamics Engine (ODE): Developed by Russell 
L. Smith and presented in [20], Open Dynamics 
Engine (ODE) is an open-source physics engine, 
robust and versatile, with a long history of use in 
various fields such as games, robotics, virtual reality, 
and engineering-oriented simulations. ODE is 
optimized for CPU performance, especially through 
multithreading support. 

• Bullet: Developed in its current form by [5], Bullet is 
a benchmark in the field of real-time physical 
simulation, known for its precision, adaptability, and 
computational efficiency. While this engine supports 
multithreaded execution, its overall design has been 
made with a view to using SIMD optimizations to 
leverage GPU capabilities. 

III. USE CASES 

The development of this simulator is framed within the 
NAUTILUS project (Swarms of uNderwAter aUTonomous 

vehIcLes gUided by artificial intelligence: ItS time has come). 
This project aims to develop swarms of small, low-cost 
autonomous vehicles responsible for managing coordinated 
activities, supporting research in the area, providing services 
such as positioning, data collection, and battery recharging for 
fixed or mobile nodes deployed without direct human 
intervention. The swarm will act as a single, decentralized 
system where collective information will be disseminated 
among the individuals. The swarm will autonomously decide 
where to deploy each individual and adapt its spatial coverage 
based on the environmental state and its needs. 

As a vehicle, NAUTILUS uses the popular BlueROV2 
[18] in its heavy configuration (Fig. 3). This version of the 
ROV features four thrusters for horizontal locomotion and 
four thrusters for vertical locomotion, allowing six degrees of 
freedom in maneuvers. The vehicle is controlled by a 
Raspberry Pi and integrates an inertial measurement unit 
(IMU), a magnetometer, and a pressure sensor on an external 
expansion board (the "Navigator"). The vehicle's software is 
distributed as open source, allowing it to work with a wide 
variety of hardware, such as sonar sensors, cameras, and an 
inertial navigation system. Moreover, although the 
BlueROV2 is a tethered underwater vehicle, the use of open-
source code opens the possibility of extending the vehicle's 
control software to convert it into a UUV. 

As an extension to the basic sensors configuration, each 
vehicle has been equipped with an echo-sounding device and 
a mechanical scanning sonar for navigation and image 
acquisition. Developing realistic models of these sensors is 
part of the simulator's development. 

For the physical model simulation of this vehicle, two 
versions have been adapted and implemented, based on the 
mathematical simulation models of BlueROV2 dynamics 
developed in [23], derived from the work presented in  [7].: a 
simplified one for the BlueROV2 basic configuration and a 
complete one, that also includes the blueROV2 heavy 
configuration. 

Some of the scenarios and developments associated with 
this project are shown below. 

A. Flocking 

One of the first controllers implemented in NauSim  was a 
PID controller based on virtual GPS positioning. A 
Proportional-Integral-Derivative (PID) controller is a control 
mechanism for dynamic feedback systems used in industrial 
and engineering applications. It is designed to minimize the 
error between the desired and actual state by adjusting the 
control inputs through three types of actions: the proportional 
component, which adjusts the output proportionally to the 
current error; the integral component, which takes into 
account the accumulation of past errors to eliminate steady-
state deviations; and the derivative component, which predicts 
future errors based on the rate of change. 

Using this PID controller, a scenario is proposed where 
one of the drones acts as a leader and six others as followers. 
The leader drone is configured to move, by means of a PID 
controller, along a predetermined route, defined by a series of 
points. In the rest of the drones, over the PID controller a 
modification to the classical flocking rules is implemented, in 
order to maintain a formation. These rules include maintaining 
a safe distance to avoid collisions, aligning their direction and 
speed with the leader and nearby drones, and staying close to 

 
 

Fig. 3. BlueROV2 in its heavy configuration. 
 



the center of the group. As the leader drone navigates the 
terrain, the followers dynamically adjust their positions to 
create a cohesive and synchronized flight pattern. Results of 
running this scenario can be seen in Fig. 4. 

Of course, this scenario is not intended to be realistic, since 
its execution depends on two of the major problems faced by 
AUVs, communication and positioning. However, by 
modifying the transfer rate, noise and accuracy of the 
communication module and the virtual positioning sensors, it 
is possible to have a baseline to assess the performance needs, 
robustness and reliability of the system under various 
conditions. 

B. Sonar simulation 

While a basic approach is relatively simple to implement, 
the complexities associated with sub-acoustic acoustic 
phenomena such as reflections, propagation characteristics 
and scattering make a realistic implementation a very complex 
task, especially in the area of high-frequency sonar with which 
AUVs are often equipped. However, in an autonomous drone 
the sonar is one of its main windows to the world, so a realistic 
simulation of this contributes directly to the development of 
these vehicles and associated marine technologies, providing 
a tool with which to virtually test these sonar systems in 
various navigation and data acquisition scenarios. 

Thus, based on the method presented in [6], a sonar model 
based on Screen Space Reflections (SSR) has been developed. 
SSR is a method commonly used in the generation of real-time 
3D graphics to compute realistic reflections in the 
environment. SSR approximates reflections by tracing rays in 
screen space, rather than in the entire 3D scene, which 
significantly reduces the computational burden. By capturing 
the interactions of sound waves with objects and surfaces in 
the screen space, the use of SSR can effectively represent 
realistic reflections and refractions of sonar signals, as well as 
alternative paths and secondary reflections, all in real time. A 
comparison of the results with real sampling can be seen in 
Fig. 5. 

C. Wall-tracking 

We propose the design of a wall-tracking controller, where 
the output will be deployed on the target vehicle. The test 
scenario is a swimming pool, so we can assume flat walls and 
right angles. The wall tracker acts as a state machine where 
the vehicle first orients itself towards the first structure it 
encounters, approaches a predetermined distance from it and 
starts moving parallel to the structure, maintaining the 
distance. If it detects a blockage in its path, it rotates until the 
obstacle disappears and starts again in the initial state. If it 

 
 
Fig.4. Flocking simulation using NauSim. The trajectories followed by 

each drone are shown as dotted lines. The leader's trajectory is shown 

in light green. 
 

 
 
Fig. 5. Sonar simulation compared to real data. The left side shows the virtual scenario together with the real data (video and sonar overlay). On the 

right side the simulation results are shown. Real and simulated results are visualized using PingViewer™. 

 



misses the wall or is unable to maintain its orientation, the 
vehicle starts again in the initial state. 

The main constraints in this scenario are the result of the 
limitations of mechanical sonar, which is used to detect walls. 
A mechanical sonar needs to physically move the head to 
sample at a given angle; to cover the necessary arc of view for 
this controller is required so that there will only be one 
complete update of the world around the vehicle every 2 
seconds. Taking into account the maximum speed of the drone 
this means more than 2 meters of distance travelled.  

Moreover, the nature of sonar makes it difficult to 
differentiate between giving a distance to an obstacle if other 
sources of reflections are present, such as the ground or the 
air-water boundary.  Having straight walls makes the task 
easier, but the detecting algorithm (based on finding the 
maximum sum subarray in the sonar signal, defined the subs 
arrays by a fixed window, once the noise has been cleaned. ) 
has to be properly validated. Therefore, the sonar simulation 
presented in the previous section has been used in the 
validation of the controller, modified to take into account the 
delay imposed by the hardware. 

   In a non-simulated environment, the controller behaves 
(except for the differences in starting conditions) similarly to 
the simulated version, resulting in comparable trajectories and 
the same obstacle behavior. Fig. 6 shows a snapshot  of a  test 
using the objective hardware in a real environment . 

IV. CONCLUSIONS 

In this work, we present NauSim, a simulation 
environment developed with the purpose of providing 
researchers and students with a platform for testing, 
developing and verifying sensor configurations and control 
algorithms in underwater vehicles, with special emphasis on 
the use of ML-based controllers. The simulation environment 
provides a fast, simple and, most importantly, cost-effective 
alternative to pool and sea testing, facilitating faster and less 
costly development of underwater robotic solutions. 
NAUTILUS covers a wide range of possible usage scenarios, 
including rapid virtual prototyping, design testing, or control 
algorithm development, both for individual robots and large 
heterogeneous swarms. It should be noted that this simulation 
environment is still under development (currently in revision 

59), with plans to extend the functionalities with new sensors, 
controllers and other robot models. 
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