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Abstract—Previous implementations of closed-loop 
peripheral electrical stimulation (PES) strategies have 
provided evidence about the effect of the stimulation timing 
on tremor reduction. However, these strategies have used 
traditional signal processing techniques that only consider 
phase prediction and might not model the non-stationary 
behavior of tremor. Here, we tested the use of long short-
term memory (LSTM) neural networks to predict tremor 
signals using kinematic data recorded from Essential 
Tremor (ET) patients. A dataset comprising wrist flexion-
extension data from 12 ET patients was pre-processed to 
feed the predictors. A total of 180 models resulting from the 
combination of network (neurons and layers of the LSTM 
networks, length of the input sequence and prediction 
horizon) and training parameters (learning rate) were 
trained, validated and tested. Predicted tremor signals 
using LSTM-based models presented high correlation 
values (from 0.709 to 0.998) with the expected values, with 
a phase delay between the predicted and real signals below 
15 ms, which corresponds approximately to 7.5% of a 
tremor cycle. The prediction horizon was the parameter 
with a higher impact on the prediction performance. The 
proposed LSTM-based models were capable of predicting 
both phase and amplitude of tremor signals outperforming 
results from previous studies (32-56% decreased phase 
prediction error compared to the out-of-phase method), 
which might provide a more robust PES-based closed-loop 
control applied to PES-based tremor reduction. 

 
Index Terms—machine learning, LSTM, peripheral electrical 
stimulation, tremor prediction, essential tremor. 
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I. Introduction 

athological tremors are defined as involuntary rhythmic 

movements of one or more body parts caused by neural 

disorders such as Essential Tremor (ET), Parkinson’s Disease 

or cerebellar ataxias, among others [1]. It is not only considered 

to be the most common motor disorder worldwide, but also to 

become a disabling condition hindering patients from 

performing activities of daily living (ADLs) [2]. Particularly, 

ET is the main neural disorder leading to pathological tremor, 

and its incidence and severity of symptoms increase with age, 

contributing to the worldwide aging challenge that society and 

healthcare systems must face in the next decades [3]. 

Currently, there is no known cure for ET. The available 

therapeutic solutions are insufficient and only address the 

symptoms [4]. Pharmacological treatments are the first line of 

treatment. However, between 30% and 50% of the ET 

population is non-responsive to medication or decides to 

discontinue the treatment due to the adverse effects [5]. 

Surgical interventions such as Deep Brain Stimulation or high-

intensity focused ultrasound are considered for drug-resistant 

patients with severe tremors [6]. As a counterpart, all surgical 

approaches require moderate hazardous procedures, which 

might result in severe side effects, preventing a large number of 

ET patients from receiving these treatments [7]. Therefore, in 
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the last two decades there has been a rising interest in 

developing alternative solutions to pharmacological and 

surgical therapies based on mechanical assistive devices or 

neuroprostheses [8]. 

Among these emerging techniques, peripheral electrical 

stimulation (PES) of afferent pathways has shown acute and 

short-term tremor reduction in several studies with minimum 

adverse effects [9]. PES of afferent pathways, also called 

sensory PES, comprises the application of electrical currents 

below motor threshold to recruit the afferent fibers driving 

sensory information to the central nervous system. Several 

studies hypothesize that modulation of afferent fibers disrupts 

the tremor oscillations, immediately preventing them from 

reaching the muscles. The first evidence on the effects of PES 

of afferent pathways on tremor reduction were reported by 

Dosen et al. [10], who hypothesized that the timely stimulation 

of afferent Ia fibers could activate reciprocal inhibition circuits 

at the spinal cord and acutely reduce the supraspinal tremor 

contribution to the antagonist motor output [11], [12]. In order 

to synchronize the electrical stimulation with the tremorgenic 

activity, a closed-loop control algorithm called out-of-phase 

strategy was applied  [10]. This strategy is based on the use of 

sequential electromyography (EMG) recordings and 

stimulation windows of a pair of antagonist muscles (e.g., 

flexor and extensor muscles of the wrist) (Fig. 1(a)). During the 

recording windows, the EMG signal is demodulated to extract 

the envelope of the tremor component by applying a band-pass 

filter (3-12 Hz) to the iterative Hilbert transform of the rectified 

signal [13]. After that, the peaks of the demodulated signal are 

identified and, if they are above a certain threshold, it is 

assumed that tremor is present, and the mean inter-burst interval 

(MIBI) is computed and used to predict the next tremor bursts. 

Finally, the stimulation window is enabled, and the electrical 

pulses are alternately delivered to the antagonist muscles 

synchronized with the predicted tremor bursts. Other groups 

have followed a similar approach by synchronizing the 

stimulation with the predicted physiological tremor activity 

measured through the EMG or kinematics [14]–[16]. 

Although tremor frequency is highly variable across 

pathologies, patients or disease progress, it is usually stable for 

the same patient along the same disease state [17]. The 

frequency band of pathological tremor is typically defined 

between 4 and 12 Hz, therefore tremor can be separated from 

most voluntary movements by means of frequency-based 

filtering techniques [18]. In practice, pathological tremors are 

nonstationary and nonlinear signals, mixed with other voluntary 

movements, challenging the signal processing paradigm [19]. 

Current out-of-phase demodulation strategies are limited by the 

tremor prediction accuracy and the absence of tremor amplitude 

information for the predictions. A subtle change in tremor phase 

of tens of milliseconds during the demodulation or stimulation 

windows can lead to errors in the predicted tremor bursts 

resulting in relevant de-synchronization issues. In extreme 

cases, the prediction error can lead to in-phase stimulation of 

the agonist muscle, eliciting the opposite modulation effect on 

the nervous system. Furthermore, the intensity of stimulation 

has to be predetermined, which does not allow any modulation 

to adapt it to the current tremor amplitude since the tremor 

amplitude is not considered in the prediction algorithm. 

To cope with these issues, Pascual-Valdunciel et al. [20] 

developed the selective and timely stimulation (SATS) strategy, 

which used a closed-loop algorithm based on consecutive real-

time recording of tremor activity and consequent stimulation 

windows, not including any prediction stage (Fig. 1(b)). The 

SATS strategy allows quasi-synchronous stimulation and 

overcomes the prediction errors compared to out-of-phase due 

to the real-time implementation. However, this strategy 

presents a main drawback: the tremor activity is estimated by 

means of computing the root mean square (RMS) values of the 

EMG signals from short recording windows (≂[10, 20] ms), 

 
 
Fig. 1. PES strategies. Filled lines represent recorded signals 
(kinematics or EMG envelope), while dashed lines represent non-
recorded (hypothetical) signals. Note that the displayed non-
recorded signals are not predicted or used by the control 
algorithms and represent the tremor component that the patient 
would exhibit.  Filled light and dark gray rectangles represent 
stimulation periods applied to the flexor and extensor muscles, 
respectively (pair of antagonist muscle). (a) Out-of-phase 
demodulation approach (closed-loop). The envelope of the tremor 
signal is computed to extract the period and predict the next 
tremorgenic cycles to synchronize the stimulation bursts. Only the 
tremor phase is predicted. (b) SATS strategy (closed-loop) uses 
continuous recordings to detect tremor in real-time and apply 
stimulation bursts to the antagonist muscle when the measured 
activity exceeds an adaptive threshold (horizontal dashed lines). 
No tremor prediction is applied in this strategy. (c) Calibrated open-
loop strategy delivers a stimulation pattern locked at the estimated 
tremor frequency. This strategy does not use tremor data to control 
the electrical stimulation. 
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which implies a limitation of temporal resolution. The 

physiological activity is always estimated with a delay related 

to the length of the RMS windows, and therefore the stimulation 

is always delivered a few milliseconds after the tremor activity 

is detected.  

Previous closed-loop stimulation strategies have been only 

tested in research scenarios limited to postural tasks [14]–[16], 

[20], [21]. Outside the clinic environment, a commercial 

wearable device has been tested in a clinical trial using a 

calibrated open-loop strategy, which delivers a stimulation 

pattern locked to the tremor frequency of the patient without 

considering the tremor phase (Fig. 1(c)) [22]. Though the open-

loop strategy allows convenient therapy translation from 

research to home environments, the stimulation applied is not 

optimal to specifically modulate the target neural circuits. 

An increasing number of neurorehabilitation devices, either 

based on PES or mechanical assistance, are operated by closed-

loop control algorithms synced with the real-time tremor 

oscillations measured through motion capture systems or 

electrophysiological signals [23]. In the case of active assistive 

upper-limb exoskeletons, mechanical actuators counteract 

tremor by applying opposite forces to the involuntary 

movements [24]. This application illustrates the importance of 

accurate estimation of the tremor component in order to 

synchronize the actuators to only interfere with the involuntary 

actions and minimize the disturbance of voluntary movements 

[25]. Different algorithms based on traditional time and 

frequency signal processing have been proposed for modeling 

and estimation of tremor, such as the Weighted Fourier Linear 

Combiner (WFLC), an adaptive tremor estimator based on the 

sinusoidal model [26]; or Wavelet Adaptive Kalman Estimation 

(WAKE) frameworks, which combine an adaptive Kalman 

filter followed by a wavelet transform to estimate tremor in real-

time [27]. Recurrent Neural Networks have been used with the 

same purpose of estimating tremor and isolating it from 

voluntary movements [28]. Although all these approaches 

estimate tremor in real-time, there is an absence of real 

predictive capabilities of the next tremor cycles, therefore, they 

would not be optimal for triggering synchronized stimulation 

with physiological activity. 

Forthcoming breakthroughs in the medical field related to the 

management of pathological tremor could be possible by means 

of integrating machine learning to monitoring systems [29] and 

tremor reduction interventions [30], [31]. Particularly, artificial 

neural networks (ANN) could mature into a solution to the 

tremor prediction paradigm. In the domain of tremor signals 

forecasting, Ibrahim et al. [32] proposed a hybrid 

convolutional-multilayer perceptron architecture to predict 

tremor and voluntary motion using kinematic signals from PD 

patients. Zanini et al. [33] tested several ANN designs resulting 

in MLP-encoders and Long Short-Term Memory (LSTM) 

neural networks as the best architectures to predict the envelope 

of EMG signals. Both studies were limited by the prediction 

horizon (PH) applied, which was restricted to 100 ms and 200 

ms respectively, a value equivalent up to just one cycle of 

tremor, if a 5 Hz tremor frequency is assumed. These PHs 

obtained with both EMG and kinematics data are insufficient if 

the prediction of several tremor cycles is required, or even the 

prediction of one tremor cycle for patients exhibiting tremor 

with a frequency below 5 Hz, since the minimum PH required 

for estimating the next tremor cycle must be above 200 ms. 

Drawing from the previous studies, it has been shown that 

PES of afferent pathways requires high time synchronization 

with the tremorgenic activity. Thereby, there is a need of 

validating a tremor prediction algorithm capable of reliably 

forecasting more than one cycle of tremor oscillations, 

consequently allowing to timely trigger the stimulation system 

with an adaptive intensity to the estimated tremor amplitude and 

subsequent optimization of the tremor reduction strategy. The 

purpose of this study was to design and implement a tremor 

series predictor based on LSTM neural networks. Kinematic 

signals from ET patients, specifically wrist flexion-extension 

angle displacement, were used to train, validate and test offline 

LSTM neural network models with assorted architectures 

(number of LSTM layers and hidden neurons), training 

parameters (learning rate), input sequence lengths and PHs. The 

training results presented here were examined to characterize 

the best model performance and determine the viability of the 

LSTM neural networks as tremor predictors compared to the 

traditional out-of-phase demodulation implementation. 

 
 
Fig. 2. Schematic of the data recording and pre-processing steps. First, kinematic signals were acquired through IMUs during postural tasks 
from ET patients (left panel). Then, signals were converted to Euler angles, band-pass filtered in the tremor band and normalized (center panel). 
Lastly, the signals were split into the training, validation and test sets (right panel).   
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The proposed LSTM predictor architecture seeks to 

overcome in the following points the results reported by 

previous studies on the prediction of pathological tremor 

signals: 

• Prediction of the full tremor waveform, including 

tremor phase and amplitude. 

• High precision accuracy (>0.7 correlation). 

• PH between 100 ms and 1 s (200 ms is the highest 

PH explored for other ANNs). 

• Lower phase delay prediction compared to 

traditional methods (out-of-phase). 

II. METHODS 

A. Participants and data recording 

Twelve patients (age range of 62-82 years old) diagnosed 

with ET were recruited from the Movement Disorder Clinic of 

Gregorio Marañón Hospital (Madrid, Spain). A neurologist 

specialized in movement disorders diagnosed and assessed the 

tremor condition of the patients. The main inclusion criteria 

comprised the presence of postural tremor of at least one upper-

limb, predominantly wrist flexion-extension tremor at the wrist, 

and no diagnosis of additional neurological or musculoskeletal 

pathologies. All the participants voluntarily signed the 

informed consent form to participate in the procedures, which 

were conducted in accordance with the Declaration of Helsinki 

and approved by the Ethics Committee of the hospital and the 

Spanish Agency of Medicines and Medical Devices (AEMPS - 

record 714/18/EC). 

A motion capture system (Tech-MCS, Technaid S.L., 

Madrid, Spain) comprising four Inertial Measurement Units 

(IMUs) was used for the acquisition of the kinematic data. Each 

of the four sensors was located over the dorsal side of the hand 

and the forearm of both upper limbs. Raw quaternions 

representing the spatial orientation of the IMUs were sampled 

at 50 Hz (equivalent to a sampling period of 20 ms) and stored 

for offline analysis. The presence of tremor while patients are 

holding a static posture is distinctive for ET, hence, they were 

asked to hold during 60 seconds any of the following postures 

against gravity to elicit tremor: both arms outstretched and 

pronated; or both arms with the elbows flexed and facing 

stretched fingers (Fig. 2). Patients were required to attend two 

experimental recording sessions performed in different weeks, 

in which a minimum of three trials were recorded for each 

patient. 

B. Data pre-processing 

The tremor prediction method here proposed requires several 

preprocessing steps over the raw kinematic data. Flexion-

extension displacement angle was selected as the input signal 

for the tremor forecasting since the ET patients typically exhibit 

predominant tremor at this axis. Raw quaternions from the two 

aligned sensors on the hand and forearm were converted into 

Euler angles representing the rotation matrix of the wrist joint 

[20]. Since postural tremor in ET oscillates between 4 and 9 Hz, 

the tremor signal can be isolated by means of frequency filtering 

[34]. Though the voluntary components present in the 

kinematic data were limited due to the postural task execution, 

a third order Butterworth zero-phase band-pass filter between 4 

and 10 Hz was applied on the angle data. LSTMs networks use 

tanh and sigmoid activation functions with [-1, 1] and [0, 1] 

output ranges respectively. Then, all data were normalized 

between 0 and 1 with the min–max feature scaling to prevent 

abnormal prediction values [35]. 

Each of the recording trials was segmented into 2-second 

recording of the angular variation of the pathological flexion-

extension wrist movements. Overall, a total of 7,000 temporal 

sequences from twelve ET patients were stored and selected to 

comprise the final dataset. Then, the dataset was randomly 

divided into 3 subsets: training set, validation set and test set. 

The train set contains 70% of the data (4900 segments) and is 

used to train the models; the validation set comprises 15% of 

the data (1050 segments) and is used to validate the models 

along the training process to prevent overfitting; and the test set 

contains 15% of the data (1050 segments) to assess the 

performance of the models. Fig. 2 summarizes the 

preprocessing steps applied to the raw kinematic data prior to 

LSTM neural network training. 

 
 
Fig. 3. Predictor architecture diagrams. (a) Computational graph of a LSTM cell. (b) Architecture of the prediction models based on LSTM neural 

networks. The design illustrated in the figure represents the models comprised of two LSTM layers. Adapted from [30]. 
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C. Network architecture 

Feedforward ANNs are not an optimal solution for time 

series forecasting due to the lack of connections between 

neurons in the same layer and their structure without interlayer 

feedback prevent them from having time dependence [36]. 

RNNs overcome this limitation by introducing recurrent 

connections among the hidden neurons and producing an output 

at each time step [37]. The RNNs are trained using the Back-

Propagation Through Time (BPTT) algorithm that considers the 

time dimension, so the loss function of a given time step 

depends on the previous time step [38]. However, the BPTT 

algorithm within RNNs presents some drawbacks related to the 

vanishing and exploding gradients at time steps well before the 

current one, which prevents the network from learning long-

term patterns [39]. These issues are addressed by LSTM neural 

networks, a particular sort of RNN capable of preserving both 

short and long-term dependencies through the use of an 

automatic loop to allow gradients to flow for a long time 

without vanishing [40]. 

The operation of a LSTM cell is supported by four structures 

named gates: the forget gate (𝑓𝑘), the entry gate (𝑖𝑘), the status 

gate (𝑐̃𝑘) and the exit gate (𝑜𝑘). Information flows through the 

different gates encoded in two different states: the cell state (ck) 

and the hidden state (hk). The cell state represents the current 

memory of the cell, while the hidden state represents the output 

value of the LSTM network. Equation (1) and Fig. 3 represent 

the mathematical operations and computational diagram of a 

LSTM cell. W and U represent the weight matrices for the input 

and hidden state, and b represent the biases. σ and tanh 

represent the sigmoid and hyperbolic tangent activation 

functions. As a simplified operation account of a LSTM neural 

network, given an input data sequence of length k, the first data 

point k1 enters the first LSTM cell and generates the first hidden 

and cell states (h1, c1) through the four gates. Consequently, the 

following data points (k2...k) are recursively fed into the network 

until the final hidden state (hk) is generated, storing the relevant 

patterns of the sequence. 

 

 

{
  
 

  
 
𝑓𝑘 =  𝜎(𝑊𝑓𝑥𝑘 + 𝑈𝑓ℎ𝑘−1 + 𝑏𝑓)

𝑖𝑘 =  𝜎(𝑊𝑖𝑥𝑘 + 𝑈𝑖ℎ𝑘−1 + 𝑏𝑖)

𝑜𝑘 =  𝜎(𝑊𝑜𝑥𝑘 + 𝑈𝑜ℎ𝑘−1 + 𝑏𝑜)

𝑐̃𝑘 =  tanh(𝑊𝑐𝑥𝑘 + 𝑈𝑘ℎ𝑘−1 + 𝑏𝑐)

𝑐𝑘 = 𝑓𝑘 ∘ 𝑐𝑘−1 +  𝑐̃𝑘 ∘ 𝑖𝑘
ℎ𝑘 = 𝑜𝑘 ∘ tanh (𝑐𝑘)

     (1) 

 

D. Predictor architecture 

The formulated forecasting problem requires an angle 

displacement data sequence that inputs into the neural network, 

which outputs the predicted angle data sequence subsequent to 

the input data. Two neural architectures were implemented and 

tested to elucidate the design impact on the prediction 

performance. In the first design, the angle data sequence input 

into one LSTM layer. Here, the time sequence was unfolded 

and the output corresponding to the hidden state of the first 

layer at the last time step (ℎ𝑘
1 ) was fed into a linear layer 

composed of one neuron and a sigmoid activation function, 

which ultimately provided the predicted sequence of the angle 

displacement. The second design is an extension of the 

previous, in which the output sequence ℎ𝑘
1  from the first LSTM 

layer was fed into a second LSTM layer. Later, the output ℎ𝑘
2  

from that second layer was used as input of the linear layer to 

finally compute the forecasted data sequence. Deepening into 

the architecture, each of the LSTM layers was composed of a 

set of neurons determining the computational power of the 

network. In this implementation, three similar numbers of 

neurons for all the LSTM layers were tested: 20, 35 and 50 

neurons, in order to find a trade-off between computational 

power and cost. 

The main goal of this study was to research the feasibility of 

LSTM neural networks as pathological tremor predictors. 

Hence, the input and output data sequence lengths are 

fundamental parameters to be explored to validate a future real 

application of PES in which the electrical stimulation must be 

synchronized with the accurately predicted tremor burst. The 

input sequence (IS) is defined as the window containing the past 

values of angle displacement used as input to the model. Two 

IS windows were proposed in this implementation: 600 ms (30 

samples) and 1000 ms (50 samples). The output sequence or PH 

is the time sequence length of the predicted values. In this study, 

five PH values were explored: 100 ms (5 samples), 200 ms (10 

samples), 400 ms (20 samples), 600 ms (30 samples) and 

1000ms (50 samples). It is noteworthy that data from the first 

of the two seconds of the trial were used as IS sequences, while 

the data from the last second of the trial were used as PH 

sequences. 
Regarding the network training parameters, the Adam 

optimizer was selected as the algorithm to compute an adaptive 

update of the weights and biases of the network based on 

previous LSTM neural network designs used to forecast time 

series [41]. Furthermore, three learning rate values (α=0.001, 

α=0.0005 and α=0.0001) are proposed to explore the best 

training parameters for each of the predictor’s implementation, 

since the learning rate is a parameter implied in 

backpropagation training algorithm convergence. During the 

training and validation processes, an early stopping procedure 

was applied to prevent overfitting by ceasing the training 

iterations if the loss function value for the validation set stops 

decreasing [42]. In the aggregate, the combination of all 

parameters led to 180 models to be trained, validated and tested. 

The framework used to implement the predictor models is 

PyTorch library from Python [43]. 

E. Evaluation of prediction accuracy 

To assess the accuracy of the predicted sequences provided 

by the different models in relation to the real or target values a 

set of metrics and statistical analyses were performed: the mean 

square error (MSE), which was previously used in the training 

procedures as the loss function; the root mean square error 

(RMSE) [28], frequently used to assess forecasting accuracy in 

other studies [32]; and the Pearson’s correlation coefficient 

(ρy,ŷ), which provides information about the linear relationship 

between the predictions and the expected values.  The minimum 

phase delay or delay between the predicted and the expected 

values is a fundamental outcome in the application of PES 

synced with the tremorgenic activity. Hence, the phase delay 

(PD) of the predictions of the models were compared to the PD 

values resulting from the out-of-phase prediction approach 

implemented in [21]. The PD was measured by the following 
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method: local maxima were detected in both real and predicted 

signals; then, the time of the maxima from the expected signals 

were subtracted from the corresponding time maxima from the 

predicted signals; and finally, the PD average was computed for 

each trial. A similar procedure was followed to assess the PD 

results achieved by the out-of-phase prediction algorithm. The 

out-of-phase algorithm implementation consisted of extracting 

the envelope of the signal in the tremor frequency band as done 

in the B. Pre-processing section. Then, the local maxima 

corresponding to individual tremor oscillations were identified, 

and the period of the signal was estimated by computing the 

mean inter-burst interval (MIBI). The next tremor bursts were 

predicted by adding the MIBI to the timing of the last tremor 

burst detected. Finally, the PD was computed by means of 

subtracting the tremor time peaks predicted by the out-of-phase 

approach from the time peaks extracted from the local maxima 

identified in the expected signals. 

In addition to the overall suitability assessment of the model 

to predict pathological tremor, this study sought to provide 

insight into how the different network and training parameters 

impact the prediction outcomes. Since five parameters were 

explored (LSTMlayers, LSTMneurons, PH, IS and LR), after 

checking normality of the ρy,ŷ results, a 5-way ANOVA test was 

applied. Afterwards, a post-hoc analysis with Bonferroni 

correction was applied to check individual differences at the 

group level. 

Regarding the comparison of the PD between the predicted 

and expected tremor cycles obtained for the LSTM neural 

networks and out-of-phase methods, the PD values did not 

follow a normal distribution and a non-parametric Friedman 

test was applied to the data. Then, Durbin-Conover post-hoc 

analysis with Bonferroni correction were applied to test the 

difference between the LSTM models and out-of-phase 

approach. 

III. RESULTS 

In this section, the tremor prediction models trained and 

validated following the procedures described in the Methods 

section were tested and their performance was analyzed through 

the metrics previously proposed. Two aims have been identified 

in this section: identifying the relationship among the different 

network and training parameters with the models’ performance; 

and assessing the suitability of the models to accurately and 

reliably predict tremor signals. 

Overall, 180 prediction models based on LSTM neural 

networks were trained, validated and ultimately trained in 1050 

tremor sequences, each of them comprising two seconds of 

wrist angle displacement data windows recorded from twelve 

ET patients.  The model showing the best performance achieved 

ρy,ŷ = 0.999, MSE = 0.0001𝑜
2
and RMSE = 0.01𝑜(Table I, first 

line) while the model showing the worst performance achieved 

ρy,ŷ = 0.573, MSE =  0.0423𝑜
2
and RMSE = 0.197𝑜. 

A linear correlation analysis was performed among the 

different performance assessment metrics in order to explore 

the reliability and dependence of each of the metrics. Results 

showed correlation values more negative than -0.98 for all 

metrics, proving any of the proposed metrics could serve as 

 
 
Fig 4. (a) Correlation among the different prediction performance metrics. (b) Correlation between ρy,ŷ and each of the architecture and training 
parameters of the prediction models. (c) Partial correlation (PH fixed as constant factor) between ρy,ŷ and each of the architecture and training 
parameters of the prediction models. (d-g) Boxplots representing ρy,ŷ values for all the models grouped by PH and LSTMlayers (d), Input Sequence 
(e), learning rate (f) and LSTMneurons (g). * Represents statistical significance (p<0.05) at the group level. 
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indicators of the quality of the predictions (Fig. 4(a)). Since ρy,ŷ 

provides normalized and easily interpretable information about 

the fitting between the target and the predicted signals, this 

metric is preferred to review the results displayed  along this 

section. The 180 models explored resulted from the 

combination of all the training and network parameters 

described in the previous section. In order to explore how each 

of the training and network parameters impact prediction 

performance, a linear correlation analysis was applied between 

the ρy,ŷ and each of the parameters. A significant negative 

correlation (-0.974) was found between PH and ρy,ŷ, indicating 

better fitness between the predictions provided by the models 

and the real signals for shorter prediction windows, while the 

increase of the prediction error raised with longer prediction 

windows (Fig. 4(b)). No other significant correlation was found 

for the remaining parameters. However, this analysis included 

ρy,ŷ values resulting from each of the models combining a set of 

parameters, thus, inter-variable effects could mask other linear 

relationships. Then, a partial correlation analysis controlling the 

independent variable PH was applied. This analysis showed a 

significant linear relationship between ρy,ŷ and each of the 

parameters, though the correlation values were lower compared 

TABLE I 

OPTIMAL TREMOR PREDICTION MODELS 

Layers Neurons 
Learning 

Rate 

Input Sequence 

(ms) 

Prediction 

Horizon (ms) 
ρy,ŷ 

MSE 

(º2) 

RMSE 

(º) 

Phase delay 

LSTM (ms) 

Phase delay out-of-

phase (ms) 

2 35 0.0005 600 100 0.998 0.0002 0.013 - - 

2 35 0.001 600 200 0.977 0.0021 0.039 - - 

2 50 0.001 600 400 0.889 0.0105 0.089 8±9* 18±14* 

2 50 0.001 600 600 0.824 0.0178 0.119 10±7* 20±13* 

2 35 0.001 600 1000 0.709 0.0307 0.163 14±9* 21±12* 

2 50 0.001 1000 100 0.999 0.0001 0.010 - - 

2 50 0.0005 1000 200 0.984 0.0015 0.033 - - 

2 50 0.001 1000 400 0.909 0.0094 0.085 8±9* 15±13* 

2 50 0.001 1000 600 0.853 0.0156 0.112 10±9* 17±12* 

2 50 0.0005 1000 1000 0.757 0.0249 0.146 13±9* 18±11* 

* Represents significant statistical differences between the LSTM and the out-of-phase methods (p<0.05). 

 

 
 
Fig 5. Learning curves for the training and validation datasets corresponding to the optimal LSTM predictors summarized in Table I. In order to 
prevent overfitting, the final model selected was that one showing the lowest average loss across 5 epochs for the validation test (red vertical 
dashed lines). The length of the global steps displayed in the figures include all the training steps until the stop function was activated since no 
decrease in the average validation loss was achieved in the last 40 training epochs. 

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3209316

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Pascual-Valdunciel et al.: Prediction of Pathological Tremor signals using Long Short-Term Memory Neural Networks                                                                            8 

to the interaction between ρy,ŷ and PH  (Fig. 4(c)). Based on 

these results, those prediction models comprising two LSTM 

layers with 50 neurons in each layer, trained with a learning rate 

value of 0.001 and 1000 ms of input tremor data (IS) tend to 

provide the optimal predictions. Figs 4. (d-g) show ρy,ŷ values 

grouped by PH and each of the remaining parameters 

(LSTMlayers, LSTMneurons, LR and IS). In spite of the variability, 

the linear trend shown in the correlation and partial correlation 

analyses is observable for all the variables. In addition, the 5-

way ANOVA analysis (factors: layers, neurons, LR, IS and PH) 

showed significant statistical differences for ρy,ŷ. When 

applying the post-hoc tests with corrections for multiple group 

comparisons, statistically significant differences (p<0.001) in 

ρy,ŷ were reported within each group (LSTMlayers : 1 vs 2; 

LSTMneurons: 20 vs 35 vs 50; IS: 600 ms vs 1000 ms; PH: 100 

ms vs 200 ms vs 400 ms vs 600 ms vs 1000 ms). For LR, 

statistical differences were only reported between LR = 0.0001 

and LR = 0.0005 or LR=0.001. 

Table I summarizes the performance metrics and the training 

parameters for the best models tested, for all combinations of 

IS and PH. The learning curves for the training and validation 

datasets can be found in Fig. 5. The linear relationship 

previously detected between the PH and ρy,ŷ is observable for 

the optimal models as well. The highest correlation 

performance metric (ρy,ŷ = 0.999) was accomplished by the 

model predicting 100 ms of tremor signals using 1000 ms as 

input data, while the optimal model to predict 1000 ms of 

tremor signals using 1000 ms of input data achieved ρy,ŷ = 

0.756. Regarding the PD between the predicted and the real 

signals, all the optimum models performed successfully, 

providing average phase shift values between 8±9 ms and 13±9 

ms. Note that the phase shift metric was not assessed for the 

models targeting PH = 100 ms and PH = 200 ms, since the 

fitness for those values was near optimal, and the tremor 

frequency was likely too low to exhibit a complete tremor 

cycles in those short window, and therefore, the first tremor 

oscillation phase predicted by the out-of-phase method would 

not fall in that window, and therefore, the peak detection 

algorithm could not be accurately applied.  When comparing 

the phase lag values provided by the LSTM models predictions 

with output values of the out-of-phase demodulation method, 

all the LSTM-based models outperformed the standard 

demodulation method for all the conditions Fig. 6(a). Friedman 

and post-hoc tests revealed that the LSTM models achieved 

lower PD values compared to the out-of-phase demodulation 

method for all the combinations of IS and PH (p<0.05, Table I, 

Fig. 6(b)). For instance, the optimal models (IS = 600ms) 

predicting PH = 400 ms, PH = 600 ms and PH = 1000 ms 

achieved a relative decrease in phase lag of 56%, 47% and 32% 

compared to the results provided by the out-of-phase 

demodulation method. Additionally, for both tremor prediction 

approaches a linear relationship between the PH and the PD in 

the predicted signals can be observed, which ultimately depicts 

the natural time-varying dynamics of pathological tremor. 

Fig. 7 illustrates tremor prediction examples for the optimal 

models summarized in Table I. It is noteworthy the capability 

of the models to fit the predictions to the real signals for all the 

PH and IS displayed. The relationship between prediction 

performance and PH is emphasized once again, since for shorter 

prediction windows higher accuracy was achieved, being nearly 

optimal for the 100 ms and 200 ms prediction windows. Though 

a positive partial correlation was found between the IS and the 

models performance, this relationship was masked by the strong 

dependence on the PH, and only for longer PH values the 

performance improvement is noticeable. For instance, the 

models predicting 200 ms signals using IS = 600 ms and IS = 

1000 ms performed ρy,ŷ = 0.977 and ρy,ŷ = 0.984, respectively; 

while the models predicting 1000 ms signals using IS = 600 ms 

 
 
Fig 6. (a) Illustration of the tremor prediction performed by a LSTM neural network model (upper panel, IS = 600 ms, PH = 1000 ms) and the 
traditional out-of-phase approach (lower panel, IS = 600 ms, PH = 1000 ms). (b) Boxplots representing phase delay (PD) values obtained by 
the optimal models described in Table I and the out-of-phase method for the same test dataset. Horizontal bars represent median values, error 
bars represent standard deviations, and the boxes represent the interquartile range. * Represents statistical significance (p<0.05) between 
groups. 

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3209316

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Pascual-Valdunciel et al.: Prediction of Pathological Tremor signals using Long Short-Term Memory Neural Networks                                                                            9 

and IS = 1000 ms performed ρy,ŷ = 0.709 and ρy,ŷ = 0.757, 

respectively (Table I). In Fig. 7, it is possible to observe the 

non-stationary tremor behavior and how this time variability 

impacts predictions. The models tend to provide better fittings, 

in both tremor amplitude and phase when the tremor sequence 

remains stable. Although the non-stationary tremor pattern was 

even present in short time frames, such as the time windows 

used in this study, the predictors could capture those amplitude 

and phase variations through time (Figs. 7 (d, e)). On the 

contrary, the out-of-phase tremor prediction method showed 

limited adaptive capacity to forecast the phase of varying 

tremor patterns, as it can be observed in the results displayed in 

Table I and Figs. 7 (e, h). 

IV. DISCUSSION 

In this study we showed that it is possible to predict wrist 

flexion-extension tremor signals recorded from ET patients 

with high accuracy through the use of LSTM neural networks. 

A set of 180 models was trained, validated and tested with wrist 

flexion-extension angle data recorded from 12 ET patients. The 

architecture of the predictors was comprised of one or two 

layers of LSTM neural networks  connected to a linear layer 

which output the predictions. 

The combination of five training and network parameters 

(LSTMlayers, LSTMneurons, PH, IS and LR) was explored to 

determine the optimal model features to predict the tremor 

signals. Overall, the PH was the parameter showing higher 

impact on the model performance, since it was highly correlated 

(-0.974) with ρy,ŷ, which represents the prediction accuracy of 

the predicted signals when compared to the real signals. Longer 

PH led to larger prediction errors, a behavior expected when 

considering the variability of tremor phase and amplitude 

throughout time. The additional parameters showed significant 

positive partial correlation with ρy,ŷ. Generally, the models 

comprised of 2 LSTMlayers, 50 LSTMneurons, input sequence of 

1000 ms and trained with a learning rate of 0.001 achieved 

better predictions. A limited set of network and training 

parameters (LSTMlayers, LSTMneurons, and learning rate) was 

heuristically selected to explore their influence in the prediction 

and to limit the computation time. If these predictors would be 

implemented in a real-time PES-based system, optimization of 

the prediction performance, network complexity and 

computational cost should be considered. Increasing the 

number of LSTMlayers and LSTMneurons might imply an 

unnecessarily increase of the network complexity that would 

not translate into a significant performance improvement.  

Regarding the capabilities of the LSTM-based models to 

predict tremor signals, the performance results were successful 

with ρy,ŷ values ranging from 0.709 to 0.998. Shorter prediction 

windows implied better fitness to the real signals, both in 

amplitude and tremor phase. When predicting longer tremor 

sequences, the prediction error increased, though the 

predictions were highly correlated to the expected values. 

Previous studies aiming at tremor forecasting using neural 

networks were limited to short prediction horizons, as 

illustrated by results provided by Zanini et al. [33], where one 

tremor cycle was predicted based on two seconds of input data; 

or Ibrahim et al. [32], where predictions horizons between 10 

ms and 100 ms were provided. On the other hand, algorithms to 

estimate tremor such as WFLC [26] or WAKE [28]  do not 

present forecasting capabilities and therefore the application of 

electrical stimuli could not be anticipated to the tremorgenic 

activity. Compared to these implementations, the PH explored 

in this study went beyond the 200 ms limitation, which would 

allow prediction of several tremor cycles from just one input 

sequence no longer than 600 ms. 

The use of modern deep learning structures, such as the 

transformer networks, could have been considered for this 

 
 

Fig 7. Each row from (a) to (j) illustrates the tremor predictions 
provided by the models summarized in Table I following the 
equivalent vertical order. Each column represents a random set of 
real and predicted signals from the test set. Dashed green lines 
represent the next tremorgenic bursts predictions provided by the 
out-of-phase demodulation algorithm.  
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application. Transformer networks are used in the time series 

forecasting of widely used datasets and are gaining interest for 

their performance and reduced training times [44]. 

Nevertheless, some studies have shown that transformer 

networks involve a higher number of hyperparameters and 

require a much more complex fine-tuning, which might not be 

translated to better outcomes compared to linear or LSTM 

models in certain applications [45]. Due to these statements, the 

LSTM networks were selected to solve the tremor forecasting 

problem in this study, while future work could focus on the 

comparison of different deep learning algorithms. 

Moreover, the characterization of the effect of the input 

sequence length in the prediction performance is a novel 

contribution of this study, since prior contributions did not 

characterize the phase delay of the predicted signals and how 

this issue could impact the development of closed-loop PES 

strategies. Results shows that it is possible to predict up to one 

second of tremor behavior based on 600 ms of recorded data. 

Regarding the phase delay, the LSTM models outperformed the 

accuracy in phase prediction compared to the out-of-phase 

traditional demodulation approach by reducing the phase delay 

up to 57%. For the training set, statistical analysis showed that 

the LSTM models achieved more reduced phase delays 

compared to the out-of-phase method for all the IS and PH 

combinations. 

Although the closed-loop SATS strategy has been proved to 

reduce acute tremor [20], the tremor detection method suffers 

from a delay related to the length of the recording window. 

Performance comparation between SATS and the LSTM 

models is not straightforward, since the first one is an activity-

estimation algorithm while the second one is a predictor. 

However, the average PD achieved by the LSTM models for 

the shortest PH assessed here (400 ms) was estimated in 8±9 

ms, while additional studies have been estimated that the tremor 

detection average delay of some SATS strategy implementation 

is 17 ± 8 ms [46]. Hence, the LSTM models provide higher time 

accuracy compared to both SATS and out-of-phase approaches. 

Both traditional strategies, as well as LSTM predictors, have 

been tested on data recorded during postural tremor. In future 

studies it would be beneficial to explore the forecasting 

capabilities in data recorded from kinetic and action tremor, 

which are tremor manifestations occurring during the execution 

of activities of daily living. 

On the whole, the models were able to capture tremor 

variability within the input signals and consequently they were 

capable of adapting the output signals to changes in tremor 

amplitude or phase. This feature is highly valuable since the 

models were not trained or tested for single patient data, which 

can contain patient-specific patterns. Thus, the patient-

generalized models overcame the limitation of the study arising 

from the reduced number of patients’ data used to train the 

models. Predictions far ahead in time led to higher prediction 

inaccuracies, a fact probably related to the non-stationary 

tremor behavior. In future studies it would be valuable to 

characterize the relationship between tremor variability and 

prediction performance, as well as the development of patient-

specific models which could better capture individual tremor 

patterns and minimize prediction error related to inter-patient 

variability. 

PES of afferent pathways is becoming a promising 

alternative to manage pathological tremor [47]. Precise and 

timely recruitment of the afferent pathways, which might 

disrupt the tremorgenic input at the central nervous system, is a 

fundamental feature to optimize neuromodulation mechanisms. 

Specifically, precision below the order of tens of milliseconds 

is required to induce neural plasticity [48] as shown by different 

studies using paired associative stimulation (PAS) protocols. In 

these interventions PES stimulation is synchronized either with 

physiological events, such as motor activity [49] or tremor [20], 

or others forms of central nervous system stimulation such as 

transcranial magnetic stimulation [50]. The goal of these 

protocols is to converge different inputs (e.g., the afferent fibers 

recruited via PES and the tremor neural oscillations) into the 

same synapse in order to promote plasticity accordingly to 

Hebbian principles [51]. Hence, there is a need for developing 

robust closed-loop control algorithms capable of predicting the 

tremorgenic activity to deliver precise stimulation. 

The forecasting models developed and tested in this study 

overcome tremor prediction performance from previous 

implementations, achieving correlation values of 0.984, 0.909, 

0.853 and 0.757 for prediction of one, two, three and five tremor 

cycles (assuming 5 Hz tremor). Particularly, not only the phase 

delay between the predicted and the real signals was improved 

compared to the out-of-phase demodulation method, but also 

the models here proposed could estimate the tremor waveform 

and amplitude. This latter feature opens the possibility of novel 

PES strategies based on adaptive stimulation intensities in 

relation to the forecasted tremor amplitude. Future work should 

explore the implementation and optimization of these 

prediction models to operate in real-time PES interventions, 

which should consider the technical framework to ensure 

accurate and reliable stimulation during ADLs, as well as the 

possible acute change in tremor dynamics elicited by PES, a 

phenomenon which has not been explored so far. 

Additionally, the EMG signals could be used as control 

signals instead of kinematics , since the angle displacement 

presents a characterized electromechanical delay with the 

muscle activity, and the stimulation delivered would be closer 

to the physiological activity timing. The LSTM-based 

predictors could be suitable to be trained with the envelope of 

the EMG in the tremor band, similarly to the approach proposed 

by Zanini et al. [33]. Interestingly, the results of longer PH 

achieved here could be extended with EMG data and improve 

the state-of-the-art results, allowing the synchronization of 

several cycles of stimulation based on EMG with higher 

accuracy. On the other hand, closed-loop systems based on 

kinematic signals might be more suitable to translate the 

application to the home environment where the quality of the 

electrophysiological measurements might be compromised by 

external factors. As an alternative, multimodal concurrent input 

signals such as kinematics (e.g., acceleration) and EMG from a 

pair of antagonist muscles would allow to explore different 

capabilities and performance of the proposed models towards 

the development of wearable devices or neuroprostheses in out-

of-lab environments. 

APPENDIX 

Source code used to build the LSTM neural network 

predictors is available in the following repository: 
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https://github.com/Robolabo/LSTM_tremor_prediction_JBHI.

git 
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