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Abstract

We present a novel robot simulator called ARGoS. The main focus of ARGoS is the real-time simu-

lation of massive heterogeneous swarms of robots. In contrast to existing robot simulators, which

obtain scalability by imposing limitations to the extent and accuracy of the robot models, in ARGoS

we pursue a deeply modular approach that allows the user both to add custom features easily and

to allocate computational resources where needed by the experiment at hand. In this respect, a

unique feature of ARGoS is the possibility to use multiple physics engines for different parts of the

environment. The physics engines can be of different kinds and robots can migrate from one to

another in a transparent way. This feature enables a whole new set of optimizations to improve

scalability and paves the way for a new approach to parallelism in robotic simulation. Results show

that ARGoS can simulate about 10,000 wheeled robots with full dynamics in real-time. We discuss

possible improvements to the architecture of ARGoS to achieve simulations of millions of entities in

real-time.

1 Introduction

Heterogeneous robotic systems are attracting increasing attention in the re-
search community, as witnessed by the pioneering projects FRONTS1 and Swar-
manoid2. The robotic platforms studied in these projects share three common
aspects: (a) a potentially large number of devices involved, (b) a high grade of
diversity among them, both at the physical and at the functional level, and (c)
the prospect of a wide impact in the research community, making these plat-
forms an enabler for a variety of innovative studies in the near future.

The growth of these new systems is mirrored by the parallel evolution of
novel software tools to design, develop and study them. For instance, Bachrach

1http://fronts.cti.gr/
2http://www.swarmanoid.org
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et al. have recently proposed a new programming paradigm, PROTO [1], that
allows a developer to abstract away from the specific actions and hardware
capabilities of individual devices in a heterogeneous swarm, and consider the
system as a unique, time- and space-aware entity.

In this paper, we argue that the distinctive features of heterogeneous robotic
systems (a)-(c) stress the limits in the scalability and flexibility of existing robot
simulators. We present a novel simulator named ARGoS (Autonomous Robots Go
Swarming) explicitly designed to address and solve the new issues arising from
the study of this new kind of robotic systems.

In the quest for an effective design, a first important aspect to consider is
that the study of heterogeneous robotic systems started recently and it is still
in a very early stage. It is impossible to foresee what kind of devices will be
developed in the next future. This calls for a particular flexibility requirement—
the support for robots with completely different features, both at the functional
and at the physical level. For instance, the Swarmanoid project studied the
coordination of three kinds of robots: wheeled robots with self-assembly capa-
bilities (foot-bots [3]), flying robots (eye-bots [21]) and climbing robots with
manipulation capabilities (hand-bots [4]). Allowing capable users to add new
devices (robots, sensors, actuators) in a comfortable manner, without the need
to modify the core of the architecture, is a non-trivial design challenge.

This kind of flexibility must coexist with more common needs. In research,
experiments may vary dramatically across different works and different people.
Even though some features, such as robot motion, are almost always necessary,
many other features are linked to the type of experiment at hand. For instance,
the quantities on which statistics must be calculated depend on the experiment.
Also, if the environment presents custom dynamics, such as objects being added
or removed as a result of the actions of the robots, these mechanisms need to be
implemented in the simulator. The need for specific and often divergent features
could make the design of a generic simulator intractably complex. Even worse,
adding features usually renders the learning curve of a tool much steeper, hin-
dering usability and maintainability, a phenomenon often referred to as feature
creep.

In addition, the very nature of the study of heterogeneous swarms calls for
high degrees of scalability for increasing numbers of individuals. To the best of
our knowledge, and as discussed in more detail in Section 2, the only general-
purpose simulator that explicitly addresses scalability for at least 1,000 robots
is Stage [24]. However, this result is obtained imposing assumptions and severe
limitations on the simulated models and the extent of their modification.

Marrying a high deal of flexibility with extreme scalability was another big
challenge in the design of ARGoS. As it will be explained in more detail, flexi-
bility is granted by the deeply modular architecture of ARGoS in which all the
main components are plug-ins—including robots, sensors, actuators and visual-
izations. A distinctive feature of ARGoS is the fact that multiple physics engines
can be run in parallel during an experiment. Physics engine are themselves plug-
ins, so experienced users can add new ones if necessary. The careful choice of
which plug-ins to use for an experiment is one of the means to obtain scalability.
In addition, the architecture of ARGoS was designed to be inherently multi-core.
As the reported results show, ARGoS profits of multi-core architectures to cut
run-time and exploit CPU resources efficiently.

In the rest of the paper, we describe the main principles and choices that
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drove us in the design and implementation of ARGoS. In Section 2, we describe
existing simulators and related work. Subsequently, we illustrate the main fea-
tures of ARGoS in Section 3. The focus of Section 4 is on the design of the
simulator. The experimental evaluation of its scalability is covered by Section 5.
We discuss possible improvements to achieve the goal of simulating millions of
robots in Section 6. The paper is concluded by Section 7.

2 Related Work

In the following, we discuss the features of existing multi-robot simulators. We
limit the discussion to those simulators that are widely used in the research
community and provide some deal of generality. A complete review of the state
of the art in robot simulation is beyond the scope of this paper. We suggest the
interested reader to refer to the survey of Kramer and Schultz [17].

Stage/Gazebo [10, 16, 8] 3 The aim of the Player Project is to produce free
software to enable research in robot and sensor systems. Software code
is developed by an international team of robotics researchers and used in
many laboratories around the world. Player is a robot server that provides
full access and control of a robotic platform and of all its sensors and actu-
ators. Stage is a scalable simulator that is interfaced to Player. It simulates
a population of mobile robots moving and sensing in a two-dimensional
bitmapped environment. Physics is simulated in a purely kinematic fash-
ion and noise is explicitly neglected. These design choices make it possible
to simulate thousands of robots in real-time on an average laptop. Various
sensor models are provided, including sonar, scanning laser rangefinder,
pan-tilt-zoom camera with color blob detection and odometry. Stage de-
vices present a standard Player interface so few or no changes are required
to move between simulation and hardware. In November 2010, a new
version of Stage was released in which, among other features, support
for multi-thread simulations was added. Gazebo is a multi-robot simu-
lator that extends Stage’s capabilities for 3D outdoor environments. It
generates both realistic sensor feedback and physically plausible interac-
tions between objects using ODE’s libraries for the simulation of rigid-body
physics. Gazebo presents a standard Player interface in addition to its own
native interface. Controllers written for the Stage simulator can generally
be used with Gazebo without modification (and vice-versa).

USARSim [6] 4 Urban Search and Rescue Simulation (USARSim) is a high fi-
delity multi-robot simulator that was originally developed in the context
of the search and rescue (SAR) research activities of the Robocup contest
and which is now becoming one of the most complete general-purpose
tools for robotics in research and educations. Its development is driven
by a large community of researchers. It builds upon a widely used and
affordable commercial game engine, the Unreal Engine 2.0, produced by
Epic Games, which provides good accuracy of physics simulation, a num-
ber of geometrical and physical models, acceptable computational speed,

3http://playerstage.sourceforge.net
4http://usarsim.sourceforge.net
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and some deal of flexibility. Robots are customizable and can be con-
trolled by a client program through a TCP socket connection. USARSim
provides a large collection of robot models, including wheeled, legged,
flying, and underwater ones, and of fully configurable sensors and actua-
tors with associated noise models. Quantitative evaluations show a close
correspondence between results obtained within USARSim and with the
corresponding real world system or sensor.

Webots [18] 5 Webots is a commercial robotic simulator developed by Cyber-
botics Ltd. It provides an ODE-based accurate physics simulation and sev-
eral models of real robots such as Sony Aibo, Khepera, or Pioneer2. The
robots and the environment are described using the VRML standard for
graphical models, extended by nodes for the Webots elements, sensors,
and physical attributes. Mobile robots with any physical characteristics
can be designed, including flying, wheeled, and legged ones. Controllers
can be programmed in C++ or Java and connected to third party software
through a TCP/IP interface. An extensive library of tunable sensors and
actuators is provided, including distance and global positioning sensors,
compass, cameras, radio transmitters, incremental encoders, etc. A pow-
erful graphical visualization is realized with the use of OpenGL libraries.
Webots serves a large community of users across the globe and undergoes
continual updating.

ÜberSim [5] 6 The ÜberSim simulator is developed at Carnegie Mellon with
the intent to create an open source high-fidelity simulator for dynamic
robot soccer scenarios that enables rapid development of control systems
that can be transferred to real robots with a minimum of overhead. Über-
Sim makes use of ODE to provide realistic dynamics including motions
and physical interactions. It is targeted towards providing parametrized
robot classes that are easy to extend and reconfigure. Exploiting ODE’s ca-
pabilities, it provides the definition and use of robot shapes and actuators
which are generic enough to simulate a wide range of robot types. Cus-
tom robots can be modeled by programming their structure in C classes.
ÜberSim has a client/server architecture, where clients communicate with
the server over TCP sockets.

Breve [14] 7 Breve is a simulation package designed for realistic simulations of
large distributed and artificial life systems in continuous 3D worlds with
continuous time. Simulations are written by defining the behaviors and
interactions of agents using a simple object-oriented programming lan-
guage called Steve or in Python. Breve makes use of the ODE physics
engine libraries to provide facilities for rigid body simulation, collision
detection/response, and articulated body simulation. It is intended to
permit the rapid construction of complex multi-agent simulations in re-
alistic physical environments. Breve includes an OpenGL display engine
that allows observers to manipulate the perspective in the 3D world and
view the agents from any location and angle. Users can interact at run-

5http://www.cyberbotics.com
6http://www.cs.cmu.edu/~robosoccer/ubersim
7http://www.spiderland.org
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time with the simulation using a web interface. Multiple simulations can
interact and exchange individuals over the network.

TODO: Discuss the limits of existing simulators and relate them to hetero-
geneous swarms of robots.

3 Main Features

In this section, we highlight the main features of ARGoS, that will be more
technically discussed in the rest of the paper.

3.1 The Simulator

ARGoS is a physics-based simulator. This means the agent bodies are simulated
through physics models. This kind of simulation is often referred to as embod-
ied. Moreover, ARGoS is a discrete-time simulator, which means that simulation
proceeds synchronously in a constant step-wise fashion. The need for scalabil-
ity and flexibility puts forwards a set of novel problems, that, as discussed in
Section 1, stress the limits of existing simulator designs. We solved these issues
through a set of novel design choices.

3.1.1 Multiple Physics Engines

ARGoS gives one the possibility to run multiple physics engines in parallel. This
feature is obtained by decoupling the simulated space from the physics rules
that update it. A physics engine is, in other words, a view of the simulated
space. For instance, the global 3D space could be decoupled into a 2D space
corresponding to the floor to simulate simple wheeled robots and a 3D engine
with avionics equations to simulate flying robots. Alternatively, different por-
tions of the environment can be managed by different physics engines. For
example, in an environment composed of different rooms, some rooms can be
simulated by 3D physics engines and others by 2D engines, depending on the
tasks to be performed by the robots.

In ARGoS, we assume that two robots managed by different physics engines
cannot collide with each other. However, partitioning the physical space in this
way does not influence other kinds of interactions between the robots, such
as communication. Furthermore, all robots can still perceive each other, for
instance through proximity sensors and cameras. The partitioning is only at the
level of which physics rules are used to update the simulated objects.

Another important aspect is that entities are not confined into a physics
engine for the entirety of an experiment. It is possible, if needed, to move
entities from one physics engine to another. This makes it possible, for example,
to simulate at maximum speed simple navigation in a corridor, while ensuring
the needed accuracy to those robots executing a more complex task inside a
room. When robots enter or exit the room, they switch physics engine. Once
again, at the level of the robot this is completely transparent—ARGoS performs
the transfer internally.
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The use of multiple physics engines presents a number of positive conse-
quences. Existing, well established physics engine libraries, such as Chipmunk8,
Bullet9 and ODE10, can be easily integrated into ARGoS. Custom physics engines
optimized for particular applications, such as particle engines or even grid-based
worlds, are easy to add too. The choice of the right physics engine is left to the
user as a result of considerations about where accuracy is actually needed.

Moreover, since entities in different physics engines do not collide with each
other, the engines must check collisions only among the entities they manage. In
a simulation with thousands of agents, if engines are carefully used the speedup
can be relevant, as shown in Section 5. In this way, even simple, custom physics
engines with poor scalability may be used in concert with others, resulting in
little impact on the overall performance.

Finally, the engines run in parallel, as explained in Section 3.1.4. In this
way, even though an individual engine is not inherently multi-thread, modern
multi-core architectures can be exploited efficiently.

3.1.2 Everything is a Plug-in

ARGoS supports a collaborative approach to development thanks to its modular
architecture. New modules can be added in an easy way, due to the fact that the
interfaces to implement are intentionally kept simple. Modules can be imple-
mented by different people in parallel, and be made readily available to other
users. In ARGoS, modules are implemented as plug-ins and basically everything
is a plug-in. For instance, besides physics engines, also robot controllers and
visualizations are plug-ins.

Robot sensors and actuators are particular plug-ins. From the control point
of view, the model of a robot is mainly encoded into how sensors and actua-
tors interact with the simulated environment. Different experiments typically
require different models, and, even in a specific experiment, it is often easier
to start with a basic sensor/actuator model (maybe noiseless) to kick-start the
work, and then pass on to more complex (and realistic) models. For these rea-
sons, developers can define multiple implementations of the same robot sensor
or actuator, and users can choose the one that suits best the experiment at hand.
This is another way (in addition to multiple physics engines) to tune modeling
accuracy where needed, while ensuring maximum performance.

Also the simulated entities that populate the global space are plug-ins of a
special kind, in that they can be built starting from simpler entity components,
which are entities too. This feature allows developers to insert new robots in a
clean and easy way, reusing the basic functionality offered by ARGoS. Moreover,
in some parts of ARGoS, such as those concerning physics and communication,
the fact that robots are nothing but a set of components made it easier to write
generic, clean and optimized code. An instance of this set of optimizations is
described in Section 4.3.

8http://code.google.com/p/chipmunk-physics/
9http://code.google.com/p/bullet/

10http://www.ode.org/
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3.1.3 The Loop Functions

To cope with the explosion of very specific and short-lived features (feature
creep) described in Section 1, in ARGoS we followed the common approach
of providing function hooks in strategical points of the simulation loop. The
hooked functions are user-defined and in ARGoS they are called loop functions.
There are hooks to customize the initialization and the end of an experiment, as
well as before and after each simulation step. It is also possible to define custom
end conditions for an experiment.

Loop functions allow one to access and modify the entire simulation. In this
way, the user can collect figures and statistics, and store complex data for later
analysis. It is also possible to interfere with the simulation, by moving, adding
or removing entities in the environment, or changing their internal state.

Finally, the loop functions are the place where many new features are pro-
totyped before being promoted to the main code.

3.1.4 Multi-Thread Architecture

Scalability is a major issue in simulators, even more so in swarm robotics ap-
plications. Thus, it is of vital importance to exploit the resources of modern
multi-core CPU architectures in the best way possible.

Unfortunately, most of the wide spread libraries relevant for simulation are
not currently multi-thread, although a significant body of research is currently
dedicated to the design of parallel physics engines [12]. For instance, most
freely available physics engine libraries (such as Chipmunk, ODE and Bullet)
are still single-thread.

To overcome this issue and ensure a more efficient exploitation of computing
resources, the main architecture of ARGoS is inherently multi-thread. The main
simulation loop (which involves the simulation of robot sensors and actuators,
as well as control code of each robot) are executed in parallel threads. Such
threads are also responsible for the physics engines. Interestingly, as discussed
more in detail in Section 4.2, multi-threading does not affect plug-in develop-
ment, since the architecture was carefully designed to avoid race conditions
by (i) tightly compartmentalizing reading and writing phases and (ii) carefully
partitioning shared resources. Experiments show that threads improve perfor-
mance significantly and that ARGoS exploits computational resources efficiently
(see Section 5).

3.2 Behavioral Composition

Besides modularity, another feature of ARGoS that enables cooperative devel-
opment is the fact that robot control code is composable. In fact, control code
can be decomposed into modules called behaviors. ARGoS offers means to code
behaviors individually and then to put them together [9]. In this way, robot
control code is reusable. Researchers can concentrate on their part of the work
while exploiting the effort of other people.

In addition to this “native” set of facilities for behavioral decomposition, a
more low-level access to the robot interface is possible. In this way, a user can

7
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Figure 1: The architecture of the ARGoS simulator.

integrate more sophisticated software architectures, such as ROS11, YARP12,
OROCOS13, Carmen14, Orca15, or MOOS16.

3.3 Transfer to Real Robots

In addition to simulation capabilities, ARGoS offers to the user all the needed
tools in the development cycle of robot control code, from design to validation
on real robots.

For instance, code developed in simulation can be easily ported to real
robots. A robot controller, in fact, is implemented using an interface called
common control interface that abstracts the details of the underlying device, be
it simulated or real. For a user, therefore, there is no difference between coding
for simulation or reality.

Along with this abstraction, cross compilation is ensured by supporting the
most common compilation tool-chains.

Ongoing work in this matter is concentrated into adding support for more
high-level languages for robot code control, such as PROTO [1] and Herbal [7].

4 The Simulator

In the following, we will describe in detail the design of the most relevant parts
of the architecture of the ARGoS simulator.

11http://www.ros.org/wiki/ROS/Introduction
12http://eris.liralab.it/yarp/
13http://www.orocos.org/
14http://carmen.sourceforge.net/
15http://orca-robotics.sourceforge.net/
16http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php
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4.1 Modular Architecture

The architecture of ARGoS is the result of the synthesis of different, often di-
verging requirements. User needs such as flexibility (for instance, the possibil-
ity to tune the accuracy of the models) and scalability for increasing number
of simulated entities must coexist with ease of use and more prosaic engineer-
ing principles: simplicity, maintainability, symmetry, standardization, which in
turn make the addition of new extensions easier for developers. We opted for
a deeply modular architecture, in which all the parts that users may want to
override are plug-ins. A pictorial representation of the ARGoS architecture is
reported in Figure 1.

The glue that keeps everything together is a set of basic interfaces and a
global simulated space. The global space contains all the simulated entities and
stores their global position and orientation, along with other information not
related to physics, such as the robots’ current LED colors.

The position and orientation of the entities is updated by the physics engines.
To this aim, physics engines contain all the relevant information to update the
entities under their responsibility, such as position, orientation, speed, applied
forces, and so on. It is important to notice that, as discussed in Section 3.1.1,
physics engines correspond to a view of the global space. A two dimensional
physics engine located on the ground, for example, could map its xy plane to a
portion of the global xy plane. Similarly, if the two dimensional physics engine
was located along a wall, its xy plane would correspond to a portion of the
xz plane of the global space. Therefore, after a physics engine has updated
an entity in its view of the space, a geometrical transformation is applied to
transform the positional information into the representation of the global space.

The soundness of the status of the global space is guaranteed by a number
of design choices:

1. ARGoS is a discrete-time simulator, meaning that the status of the global
space is updated synchronously by steps of τ simulated milliseconds. At
each time step, all physics engines are called to integrate the status of the
entities by τ . In this way, the global time is kept synchronized and the
status of all the entities evolves at the same speed, even though physics
engines are executed in parallel threads.

2. Mobile entities can belong to only one physics engine at a time. An entity
is mobile when its position and orientation can change over time as a
result of an active choice (i.e., a robot and its controller) or as a result of
the physical interaction with other entities (i.e., an object being pulled or
pushed).

3. Mobile entities in different physics engines do not physically interact with
each other.

4. Immobile entities can belong to any number of physics engines. In this
way, walls and obstacles can be shared, leading to a consistent view of the
environment by all the engines.

Robot controllers interact with the environment through simulated sensors
and actuators. Sensors read from the state of the global space. It is for this
reason that communication and sensing can happen independently of how the
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Algorithm 1 The simplified main loop of the ARGoS simulator.
1: while experiment is not finished do
2: for all robots do
3: Update sensor readings
4: Execute control step
5: end for
6: for all robots do
7: Update robot status
8: end for
9: for all physics engines do

10: Update physics
11: end for
12: end while

} read from global space

} write into global space

} write into global space

entities are partitioned into physics engines. Actuators update a robot’s state.
For instance, a robot’s LED actuator updates the portion of the robot state that
stores the current LED colors.

Visualizations access the state of the global space and output a representa-
tion of it for the user. At the time of writing, the only interactive visualization
available is based on Qt417 and OpenGL and allows the user to manage the sim-
ulated environment in an intuitive way. Two additional non-interactive visual-
izations are present: (i) a high quality visualization based on the well known
ray-tracing software POV-Ray18 and (ii) a text-based visualization mainly de-
signed for interaction with scripts and plotting programs such as Gnuplot19.TODO:
show screenshots

4.2 Multi-Thread Architecture

The architecture of ARGoS was designed to be inherently multi-thread, to ex-
ploit more efficiently the resources of modern multi-core CPUs, even though the
libraries used in the plug-ins are not multi-thread. Multi-threading is embedded
in the simulation loop. To understand how it works, we start by introducing the
main concepts on information flow in the simulation loop. Subsequently, we
explain how the computation is partitioned into multiple threads.

During the execution of the simulation loop, multiple threads access the
global space for reading or writing. Thus, the global space is a shared resource
on which, in principle, race conditions may occur. Solving race conditions with
semaphores, though, is not optimal because of the high performance costs in-
volved. In the main loop of ARGoS, therefore, we removed race conditions alto-
gether. As it can be seen from the pseudo-code reported in Algorithm 1, access
to the global space for reading and writing happens in different moments. A
diagrammatic representation of the simulation loop is also reported in Figure 2.

For each cycle of the simulation, the first phase is read-only (lines 2–5 and
Figure 2(a)). In this phase, all sensor readings are stored in the robot sensor
objects. Then, the controllers read from the sensors to select the actions to per-

17http://doc.qt.nokia.com/
18http://www.povray.org/
19http://www.gnuplot.info/
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(a) Sensor update and control step.
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(b) Robot state update, excluding physics-related information.
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(c) Update of the physics-related entity information.

Figure 2: Information flow in the various phases of the main simulation loop
of ARGoS. The robot entities live in the global space. A controller and a set
of sensors and actuators are associated to each robot. (a) In the initial phase,
robot sensors collect information from the global space. Subsequently, robot
controllers query the sensors and update the actuators with the chosen actions
to perform. (b) The chosen actions stored in the actuators are executed, that
is, the robot state is updated. At this point, positions and orientations have
not been updated yet. (c) The physics engines calculate new positions and
orientations for the mobile entities under their responsibility. Collisions are
solved where necessary.
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Figure 3: The multi-threading schema of ARGoS is scatter-gather. The master
thread, marked with ‘m’, coordinates the activity of the slave threads, marked
with ‘s’. The sense+control, act and physics phases are performed by P parallel
threads. P is defined by the user.

form. The actions are stored in the actuator objects, but they are not executed
yet. Being read-only, this phase excludes race conditions.

In the next two phases, the actions stored in the actuator objects are exe-
cuted. First, the actuators update the portion of the state of the robots that does
not involve physics calculations (lines 6–8). For instance, message exchanging
happens in this phase. As depicted in Figure 2(b), each actuator is linked to a
single robot entity. Therefore, even though actuators are updated in different
threads, race conditions are not possible. At the end of this phase, positions and
orientations of entities have not been updated yet.

It is the purpose of the last phase (lines 9–11 and Figure 2(c)) to perform
such activity. Physics engines are called in parallel to update the entities under
their control. Each physics engine first calculates new positions and orientations
in its internal representation of the space, solving collisions where needed. Sub-
sequently, physics engines store the updated information in the global space.
Recalling the discussion in Section 4.1, race conditions are avoided because of
design choices #2 (mobile entities can belong to only one physics engine at
a time) and #3 (mobile entities in different physics engines do not physically
interact with each other).

Multi-threading follows a scatter-gather paradigm. The three phases that
form the simulation loop are coordinated by a main thread, marked with ‘m’ in
Figure 3. At the beginning of the experiment, the main thread creates P slave
threads to execute the different phases of the simulation loop. Each of these
threads is initially idle, awaiting a signal from the main thread to proceed. The
number P of threads to create is set by the user as part of the configuration of
the experiment. The lifetime of these threads overlaps that of the main thread,
to avoid wasting time destroying and recreating them at each iteration of the
simulation loop. The slave threads are marked with ‘s’ in Figure 3.

To execute the first phase of the simulation loop, the main thread sends the
start signal to the P slave threads. As a consequence, the slave threads first
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calculate the portion of robot entities to update, and then execute lines 2–5
of Algorithm 1 over such portion. At the end of the computation, each thread
sends the done signal to the main thread and switches to idle state.

After all the slave threads have sent the done signal, the main thread sends
back another start signal to trigger the second phase of the simulation loop.
Similarly to the previous phase, the slave threads execute lines 6–8 of Algo-
rithm 1 over their portion of robot entities to update, send the done signal to
the main thread, and finally switch to idle state.

The final phase, physics update, is executed in an analogous fashion. The
main thread sends them the start signal, and each physics engine executes lines
9–11 of Algorithm 1 over the set of mobile entities under its responsibility. Once
more, the done signal informs the main thread of the end of the computation by
a slave thread.

As the experimental evaluation in Section 5 shows, the usage of threads im-
proves the performance of the ARGoS simulator. A notable aspect of the archi-
tecture of ARGoS is that the performance advantage given by multi-threading
does not entail an increase in complexity for plug-in developers. In fact, due
to the way information flows in the simulation loop, plug-ins do not need to
synchronize or cope with resource conflicts. As a consequence, libraries that do
not support multi-threading can be used inside a plug-in without unpredictable
side effects.

4.3 Handling Spatial Data

To perform their computation, sensors and actuators need to access the infor-
mation present in the global space. Most of the communication devices, as well
as sensors like cameras, infrared and laser devices, are typically simulated by
casting rays and checking for intersections with nearby objects. Clearly, to per-
form these calculations, it is necessary to have access to the geometrical shape
of the body of an object.

In traditional simulator designs, such as those of Stage and Webots, this is
not a problem, since the simulated space contains both the state of the objects
and the information about their bodies. On the contrary, in ARGoS the shape
of an object is stored inside the physics engines, not in the global space. This
design choice could potentially pose a crucial issue: since the physics engines
to use are set by the user, sensor and actuator developers cannot foresee which
engines will be selected. Moreover, thousands of ray cast operations are usually
performed even in a simple simulation, making it one of the most expensive
activities, if not the most. Optimizing these operations has dramatic impact on
the overall performance.

To solve these issues, we designed the interfaces of the global space and of
the physics engines to interoperate in an efficient manner and let each entity in
the global space store its 3D bounding box.

The query is split in two phases. First, the global space builds a list of can-
didate entities whose bounding box intersects the given ray. This operation is
performed very efficiently. Since entities are composable (see Section 3.1.2),
each entity that occupies a portion of the global space has a component called
embodied entity that stores its position, orientation and bounding box. In this
way, the code that checks for intersections is general and fast, as it needs only
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to go through the embodied components of an entity. No expensive type con-
versions are necessary. Furthermore, the list of candidate entities is built with
logarithmic complexity, thanks to the fact that embodied entities are indexed in
a space hash [23].

In the second phase of the ray intersection query, the global space delegates
each ray-candidate intersection computation to the physics engines. To make
this possible in an efficient manner, the interface of a physics engine has been
divided in two parts: (1) an interface to interact with the engine itself and its
local view of the global space and (2) an interface that defines the properties of
and interactions with the individual entities in the local view of the space. We
refer to this type of entity as physics entity. Each embodied entity in the global
space is associated to a physics entity.20 The physics entity interface offers a
method to calculate the intersection of a ray with its body, and returns the
position of the closest intersection point (if any) to the starting point of the ray
in the global space. Therefore, to complete the query, the global space needs
only to loop through the candidate entities and call that method for each of
them.

When a ray intersection check is due, from the point of view of a sen-
sor/actuator developer it is enough to query the global space providing the
starting and ending points of the ray, without the need to know which engine
will be chosen by the user. Also, since the global space filters the candidate enti-
ties efficiently, it is not necessary for physics engines to offer optimized ray cast
operations—only a simple ray-shape intersection routine is necessary. There-
fore, even simple, non scalable engines have little impact on performance.

5 Experimental Evaluation

In the following, we study the performance of the ARGoS simulator for different
configurations.

To date, there is little work in assessing the performance of general purpose
simulators for numbers of agents comparable to interesting swarm robotics sce-
narios (∼ 1, 000). For this reason, in the literature no standard benchmark has
been proposed. To the best of our knowledge, the only simulator whose scala-
bility was studied for thousands of agents is Stage [24]. In that work, Vaughan
studies Stage’s performance in a very simple experiment in which robots dif-
fuse in an environment while avoiding collisions with obstacles. The rationale
for this choice is that typically the performance bottleneck is in checking and
solving collisions among the simulated objects. The robot controllers are inten-
tionally kept simple and minimal to highlight the performance of the simulator,
while performing a fairly meaningful task. The experiments show the effect of
increasing the number of agents and the size of the environment on the time to
complete a simulation.

For our evaluation, we employ an experimental setup similar to Vaughan’s.
Figure 4 depicts a screenshot of the arena where the robots disperse. The
arena is a square whose side is 40 m long. The space is structured into a set
of connected rooms that loosely mimic the layout of a real indoor scenario.

20Immobile entities can be associated to multiple physics entities, but mobile entities are always
associated to only one.
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Figure 4: A screenshot from ARGoS showing the simulated arena created for
experimental evaluation.

Analogously to Stage’s evaluation, which was performed with a basic robot
model, in our experiments we used the simplest robot available in ARGoS: the
e-puck [19]. Each robot executes the diffusion routine reported in Algorithm 2.

To keep the evaluation meaningful with respect to typical use cases, we run
all the experiments with full 2D dynamics, including collision checking and com-
plete force calculations. The employed engine is based on Chipmunk, a simple
and fast 2D physics library largely used in games and physics-based simulations.
In comparison, Stage’s engine is based on 2D kinematic calculations.

We employ as performance measures two classic quantities:

Wall clock time (w): it corresponds to the real elapsed time between applica-
tion start and end, or, equivalently, run-time length as experienced by the
user. Multi-tasking operating systems switch between processes continu-
ously, so usually in a second of perceived computation many applications
obtain a time slice. Therefore, this measure is usually noisy because it in-
cludes also the time spent running the other active applications. To hinder
unwanted interference, we run our experiments on dedicated machines in
which the active processes were limited to only those required for a nor-
mal execution of the operating system.

CPU usage (u): it is a derived measure. To calculate it, first we measure the
total CPU time c obtained by the process running the experiment. The
difference between w and c is that the latter is increased only when the
process is actively using the CPU. In multi-thread systems, c is calculated
as the sum of the active time slices obtained by the process on each core
ci:

c =
∑

i

ci.
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Algorithm 2 The basic diffusion algorithm executed by the robots in the exper-
iments for performance evaluation. Proximity sensor readings are 2D vectors
whose length is 0 when nothing is sensed and 1 when the sensed object is
touching the sensing robot.

1: Read the N proximity sensor readings as 2D vectors ~ri

2: ~v ← ~0
3: for all readings ~ri, i ∈ [1, N ] do
4: ~v ← ~v + ~ri

5: end for
6: ~v ← ~v/N
7: if angle(~v) ∈ ‘go straight’ range then
8: Go straight
9: else

10: if angle(~v) > 0 then
11: Turn right
12: else
13: Turn left
14: end if
15: end if

Therefore, c does not account for parallelism—spending 20 active seconds
on core 1 and 10 on core 2 with perfect parallelism results in c = 30 s, but
the user would experience w ≈ 20 s. CPU usage is defined as

u =
c

w
.

In single-core CPUs or in single-thread applications, u ≤ 1. With multi-
thread applications on multi-core CPUs, the aim is to obtain u > 1. De-
noting with K the number of available cores, we have perfect parallelism
when u = K. Perfect parallelism corresponds to the maximum CPU usage
possible.

Experiments aim to assess the effect on w and u of different configurations of
the described experiment. In particular, we identify three factors that strongly
influence performance: (a) the number of e-pucks N , (b) the number of parallel
slave threads P , and (c) the way the environment is partitioned into multiple
physics engines.

Concerning the number of e-pucks, we run experiments with N ∈ [1, 105].
As for the number of slave threads P , it is a well known result that maximum
performance is obtained when P = K [11]—when the threads are less than
the cores, not all the cores are used, lowering u; when the threads are more
than the cores, the operating system must spend time switching between the
threads, decreasing c and increasing w, which results again in a lower u. To test
the effect of the number of threads P , we run our experiments on a machine
with 16 cores21, and let P ∈ {0, 2, 4, 8, 16}. Finally, we defined five ways to
partition the environment among multiple physics engines, each differing from
another in how many engines are used and how they are distributed. We refer

21Each machine has two AMD Opteron Magny-Cours processors 6128, each with 8 cores. The
total size of the RAM is 16 Gb.
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to a partitioning with the symbol FE , where E is the number of physics engines
employed. The partitionings are depicted in Figure 5. For each experimental
setting < N, P, FE >, we run 40 trials.

Each trial simulates T = 60 s of virtual time. In the first stages of the analysis
of the data, we observed that the initialization of the experiment was polluting
the measures of w and u significantly, making comparisons difficult. For low
numbers of e-pucks (1 to 100) most of the initialization time was due to XML
parsing and the creation of the plug-in objects. The time in the actual simula-
tion loop was dominated by this phase, contributing to w only marginally. On
the other hand, for numbers of e-pucks above 1,000, the most expensive initial-
ization activity was placing the robots in the environment, which is performed
by the main thread. This was significantly lowering the measures of u. There-
fore, to ensure meaningful comparisons in the entire range of N we considered,
the measures of wall clock time and CPU usage were taken only inside the main
simulation loop, discarding initialization time.

Results are reported in Figures 6 and 7. The first result that we would like to
highlight is the fact that some configurations reach real-time with swarm sizes
of 10,000 robots. This is a remarkable result, given that it has been obtained in
experiments with complete dynamics calculations.

The effect of increasing threads is positive on wall clock time. Parallelism
indeed lowers computation times, even when only one physics engine is em-
ployed. Partitioning the space into multiple physics engines has two positive
effects: it not only lowers wall clock time, but it also increases CPU usage.
The expected result that maximum performance is reached when the number of
threads is equal to the number of core is matched by the showed graphs. Even
though wall clock time changes little when 8 or 16 threads are used, it is evident
from Figure 7 that CPU resources are exploited much better.

TODO: Elaborate more

6 Vision: Millions of Robots in Real-Time

The results shown in Section 5 show that ARGoS can simulate 10,000 simple
wheeled robots in real-time. An interesting research question is how to reach
the next level—a real-time simulation of 100,000 or one million entities.

We believe that a possible way to approach this issue involves a better dis-
tribution of the computation. In the rest of this section, we discuss two promis-
ing improvements with respect to the distributed architecture currently imple-
mented in ARGoS.

6.1 More Sophisticated Threading Models

The scatter-gather paradigm currently implemented in the architecture of the
ARGoS simulator was chosen for its simplicity. However, we are currently work-
ing on an enhancement that involves substituting scatter-gather with the h-
dispatch paradigm [11]. The advantages of the latter paradigm are that (i) it
opens the way for better computational load balancing among the slave threads
and (ii) it supports in a natural way computation on GPGPU hardware.

It is a well known result [13] that the use of GPGPU hardware can greatly
improve the performance of large loops under specific assumptions on the op-
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(a) E = 1 engine (F1). (b) E = 2 engines (F2).

(c) E = 4 engines (F4). (d) E = 8 engines (F8).

(e) E = 16 engines (F16).

Figure 5: The different space partitionings (F1 to F16) of the arena used to
evaluate ARGoS’ performance.
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(a) E = 1 engine (F1).
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(b) E = 2 engines (F2).
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(c) E = 4 engines (F4).
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(d) E = 8 engines (F8).
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(e) E = 16 engines (F16).

Figure 6: Average wall clock times for different experimental settings. Each
point corresponds to a set of 40 trials with a specific configuration < N,P, FE >.
Points under the dashed line mean that the simulations were faster than real
time; above it, they were slower. The standard deviation is omitted because its
value is so small that it would be invisible in the graph.
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(a) E = 1 engine (F1).
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(b) E = 2 engines (F2).
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(c) E = 4 engines (F4).
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(d) E = 8 engines (F8).
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Figure 7: Average CPU usage for different experimental settings. Each point
corresponds to a set of 40 trials with a specific configuration < N,P, FE >.
The standard deviation is omitted because its value is so small that it would be
invisible in the graph.
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erations submitted to the GPU, such as the absence of branches [20]. A hetero-
genenous threading model comprising threads on CPU and on GPU may result
in a sizable improvement in performance. GPGPU computation may be useful
in lightening the main CPU from calculating the millions of ray cast operations
needed by most of the simulated sensors and communication devices of the
robots.

6.2 Multi-Processor Architecture

In ARGoS, computation is distributed only among the cores of a single CPU.
However, distribution could happen also across multiple CPUs.

The most successful massively multi-player online games (MMOG) can sus-
tain the simultaneous connection of millions of users playing in real-time. These
architectures exploit the fact that each user runs locally a thick client that takes
care of most of the calculations related to its neighborhood, partially exchanging
the results with other users whose avatars are nearby in the virtual world. These
systems often retain a certain deal of centralization, requiring that some of
the exchanged information pass through the main servers, because such games
must prove robust to cheating [2].

MMOG architectures can be a source of inspiration to reach the goal of mil-
lions of entities simulated in real-time [15, 22]. There are two complementary
ways to distribute a simulation among multiple CPUs: (i) employing ARGoS’
spatial decomposition, in which physics engines become thick clients that up-
date in parallel the space; and (ii) making the space itself distributed, for exam-
ple implementing each entity as a node in a peer-to-peer or publish-subscribe
system.

It is our intention to explore these research directions and study their effec-
tiveness over performance.

7 Conclusions and Future Work

In this paper we introduced ARGoS, a simulator specifically designed for large
heterogeneous swarms of robots. With respect to existing simulators, ARGoS
offers a more flexible architecture that (i) enables the user to allocate accu-
racy (and therefore CPU resources) to the relevant parts of an experiment, and
(ii) makes it easy to modify or add functionality as new plug-ins, promoting
exchange and cooperation among researchers.

A unique feature of design of ARGoS is that multiple physics engines can
be used at the same time, partitioning the space into independent sub-spaces.
Each sub-space can have its own update rules, and the latter can be optimized
for the experiment at hand. Robots can migrate from a physics engine to another
transparently.

In addition, the multi-thread architecture of ARGoS, despite its simplicity,
proves very scalable, showing low run-times while increasing the exploitation of
the multiple cores of modern CPU architectures. Results in Section 5 show that
ARGoS can simulate 10,000 robots in real-time, using multiple physics engines
in 2D with full dynamics. It is important to notice that the development of new
plug-ins is not influenced by the presence of multiple running threads—shared
resources and reading/writing phases were designed to avoid race conditions.
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Future work will be mainly devoted to support new robot types and to fur-
ther increase scalability. The simplest way to increase performance is to opti-
mize code. So far, systematic code profiling has not been our main concern, but
it is likely to improve the overall performance to some extent.

The most interesting research directions, in our opinion, involve reaching
real-time performance for swarms composed of millions of entities. Clearly,
it is not possible to achieve these figures by mere code optimization. More
sophisticated architectures, such as those mentioned in Section 6, may be vi-
able solutions: (i) employing a heterogeneous threading model performing the
computation both on CPU and on GPU and (ii) modifying the multi-thread ar-
chitecture of ARGoS into a mixed multi-thread and multi-process architecture,
in which multiple physics engines and the global space are distributed across
different machines.
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