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Abstract—Renewable generations are practical options to 

tackle the problem of cost and environmental damages of 

traditional energy production ways. Although green 

alternatives are cheap and clean, a precise consumption plan is 

mandatory to take the highest advantage of them. This paper 

proposes a novel optimization strategy where the produced 

energy of PV and grid is stored during valley hours on electric 

vehicles that are parked. Then, this saved energy is consumed 

when the grid is experiencing peak demands. This research uses 

consumption, PV generation, and parking data of Escuela 

Técnica Superior de Ingenieros de Telecomunicación at 

Universidad Politécnica de Madrid. The obtained results show 

that the electricity cost of the building will be reduced by 

following the proposed strategy. Moreover, EVs will take the 

advantage of the proposed strategy by means of receiving free 

charge.   

Keywords—green energy, photovoltaic, electric vehicles, 

saving energy, battery.  

I. INTRODUCTION 

Photovoltaic (PV) energy is an attractive renewable 
energy, whose cost is not meaningfully different from the 
retail one [1], providing the potential to reduce the overall cost 
of energy. However, to take full advantage of PV generated 
energy, it must be integrated with energy storage units and 
demand-response schemes [2-4]. 

If a building is equipped with PV units, there are two 
different scenarios that can happen during a day. The first 
situation is when the consumer demands less energy than the 
PV generated energy, while the second situation happens 
when the demand is higher than PV generation. In the first 
situation, which can be considered as the best-case scenario, 
the cost of energy is very low in comparison with the price of 
the grid. Moreover, in this situation, the remained energy from 
PV can be saved in storage units. Then, this saved energy will 
be injected into the gird when the demand increases. The 
second situation happens when PV generated energy is not 
enough to cover the demand of the consumer. Obviously, in 
this situation, the lack of energy must be covered by the 
energy from the grid. Therefore, the consumer must pay the 
energy cost imported from the grid. In any case, the overall 

cost of energy consumption can be reduced by means of 
optimization and scheduling techniques. 

This paper proposes a novel strategy to optimize the cost 
of energy in the case of grid import. This strategy has been 
developed under the scenario creation of the eNeuron project 
[5]. Saving energy based on the price of the grid is the 
backbone idea of the Energy Optimization System (EOS). In 
other words, the proposed strategy optimizes the consumption 
of PV generated energy for the objective of reducing the 
overall energy cost of a building. In this strategy, PV energy 
is saved when the price is low, and it is consumed during peak 
demands when the price is high. Even though the proposed 
optimization strategy starts with saving PV energy, in the case 
of having an empty storage capacity, it saves cheap energy 
from the grid, as well. 

Since saving energy is the core idea of the proposed 
strategy, energy storage is a vital part of it. There are different 
options for storing [6]. However, the price of storage units is 
its main disadvantage, because it increases the overall cost of 
the system. In order to mitigate it, in this paper, we use Electric 
Vehicles (EVs) as dynamic batteries. EVs have endless 
possibilities to help environment by means of reducing the 
level of greenhouse gas emission, if being charged by 
renewable energies [7, 8]. Even though, using batteries of EVs 
can result in overall cost reduction, mobility of EVs can affect 
the system in a negative way. Because of mobility of EVs, the 
number of accessible batteries is variable along the day. 
Furthermore, the challenges of designing an optimization 
strategy are not restricted just to mobility. Capacity of each 
battery, power rate, State of Charge (SoC), and the level of 
charge that each EV needs are other effective factors. Along 
with the mentioned parameters, the price of the energy from 
the grid, the level of the generated energy by PV, and the level 
of consumption influence the optimization process. With all 
the mentioned factors, the optimization strategy decides how 
to channel the energy flow to minimize the cost of energy. 

The rest of this paper is organized as follows. Section II 
describes the implementation environment. Section III details 
the proposed optimization strategy. Section IV is devoted to 
results of EOS, and finally, main conclusions are presented in 
section V.                       



II. IMPLEMENTATION ENVIRONMENT 

The proposed algorithm has been run on the information 
from Escuela Técnica Superior de Ingenieros de 
Telecomunicación (ETSIT) of Universidad Politécnica de 
Madrid (UPM), Spain.  

A. PV generation and electricity consumption 

ETSIT is equipped with 13.1kWp PV cells. The PV panels 
are installed on the roof and facades of its buildings. The tilt 
of the panels is ����� � 26° and are oriented south. Figure 1 
shows the generated PV and consumption (kW) from 1st 
January 2019 to 31st December 2019 on hourly basis. As the 
figure illustrates, the generated PV is far from being sufficient 
to fulfil the electricity demand of the school. The maximum 
generated PV is 12.293 kW while the minimum consumption 
is 32.163 kW in 2019 that shows the level of difference.    

 

Fig. 1. Hourly PV generation (green) and electricity consumption (red) 

B. Electricity Price 

It is straightforward that the main part of electricity 
demand must be supplied by the grid. There are three defined 
tariffs for the grid energy in Spain [9]: normal rate 2.0 A, night 
rate 2.0 DHA, and EV rate 2.0 DHS. Moreover, the price of 
each tariff changes every hour. Figure 2 is an example of the 
change of the tariffs throughout a day.    

 

Fig. 2. Tariffs A (red), DHA (green), DHS (blue)  

C. Mobility Information 

As aforementioned, batteries of EVs are the storage 
infrastructure of the proposed energy optimization strategy. 
To this end, the availability of EVs for charging and 
discharging is an important factor. There are some parking 
spaces at ETSIT where employees park their vehicles. To find 
out the number of available vehicles at each hour, data of the 

parking is extracted from [10]. The extracted data is in the 
format of “Arrived”, “Leave”, which determine the arrival and 
leaving time.  

In addition to availability information of EVs, there are 
other important factors that must be considered such as the 
battery capacity, SoC, and power of each battery. Nonetheless, 
the daily need of each vehicle must be taken into consideration 
because every EV must end up the day with at least that 
amount of energy. Except for the arriving and leaving time, 
the rest of parameters are produced randomly in this research. 
Furthermore, it must be emphasized that this paper uses 
uniform distribution to produce random numbers.  

This paper assumes that all the parked vehicles are electric 
powered ones. To determine battery capacity and power of 
EVs, two EV models namely, Nissan Leaf and BMW i4 are 
considered in this research. Table 1 details the properties of 
these EVs [10, 11]. The shares of these EV models in the 
parking are randomized.   

TABLE I.  PROPERTIES OF EV MODELS 

Model Capacity (kWh) Power (kW) 

Nissan Leaf 30 3.7 
BMW i4 eDrive 40 80 11 

Not only the model of each parked EV is determined 
randomly, also, the daily need of each EV is produced in a 
random way. To define charge each EV needs during a day, 
the distance that each EV covers in a normal day is obtained, 
first. Based on a survey done among employees of ETSIT 
each EV travels 30 km per day, on average [10]. Then, the 
consumption of considered EV models must be extracted. 
Information related to the Nissan Leaf is reported in [10]. 
Based on this information, the lowest consumption of the EV 
is 3.26 kWh per 100 km while the maximum recorded 
consumption is 22.91 kWh per 100 km. This paper uses [12] 
to obtain BMW i4 daily consumption. It is a website where 
consumers record their daily consumptions under real driving 
conditions. Based on analyzing 20 records of BMW i4, the 
minimum consumption is 17 kWh/100 km and the maximum 
consumption is 25.12 kWh/100 km. Since the average 
traveling distance of the employees of ETSIT is 30 km, the 
minimum and the maximum needs of a normal day for each 
EV are shown in Table 2. This paper produces a random 
number in between the maximum and minimum needs of each 
EV type to determine the charge that each EV needs for 
traveling during the corresponding day.  

TABLE II.  MAXIMUM AND MINIMUM NEED OF ETSIT EMPLOYEES 

Model Maximum (kWh) Minimum (kWh) 

Nissan Leaf 6.8 1 
BMW i4 eDrive 40 7.5 5.1 

To determine the SoC of each EV when arrives, we must 
pay attention to the maximum and minimum need of each EV, 
again. Table 3 shows the minimum and maximum SoC that 
each EV needs to satisfy its daily consumption after work. 
Subsequently, a random integer number in between the lowest 
and the highest is produced.  

TABLE III.  MAXIMUM AND MINIMUM SOC OF ETSIT EMPLOYEES 

Model Maximum (%) Minimum (%) 

Nissan Leaf 23 4 
BMW i4 eDrive 40 10 7 
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EVs are divided into two main categories: consumer and 
storage. If an EV at the arrival has enough energy to satisfy its 
daily needs, this EV is considered as a member of the storage 
category. On the other hand, if the current charge is not 
enough for its daily needs, this EV is considered as a member 
of the consumer category. Regardless the category, EVs must 

be interested to participate in the program. In fact, the program 
must be attractive enough to get permission for storing and 
subtracting energy from the vehicles. EVs in the consumer 
category need energy. Therefore, the possibility of charging is 
the incentive for them. However, in the case of EVs in the 
storage category, charging is not enough attractive. This paper 
considers an amount of free charge for EVs in the storage 
category to attract them to the program.   

III. ENERGY OPTIMIZATION SYSTEM 

Table 4 explains the parameters of the proposed 
optimization strategy. 

TABLE IV.  PARAMETERS OF EOS 

Symbol Description 

	 time step 


� Price of the grid at the current time step 


� Threshold price of EOS 


�  Generated PV by the building at the current time step 

���� Consumption of the building at the current time step 


������ Empty capacity of the batteries at the current time step 

�� ith Electric vehicle  

�� Minutes �� stays in the parking 

�� Potential PV energy ��  can receive 

�� PV energy that �� receives  
�� Battery power of �� 

�� Empty capacity of �� 

������ Energy bonus for �� 

�� Lack of energy   

�� Extracted energy from batteries 

 

Algorithm 1 shows the whole process of the designed 
optimization strategy. As the algorithm shows the process of 
EOS starts with categorizing EVs into storage and consumer. 
If a vehicle is in consumer category, the system charges it 
directly from the grid, regardless the other parameters. The 
main idea of charging consumer category is that these EVs can 
shift to battery in the next time steps. Subsequently, EOS will 
use these EVs capacity to save energy.  

Then, EOS receives the grid price of the current time step 
(
�). Time step (	) is fixed to one hour because the price of 
the grid energy changes at this frequency. Then, EOS receives 
the current PV (
�) and the current consumption (����) at 
the same time step. Based on 
�, two different scenarios will 
be followed. If the price of the energy is less than the price 
threshold (
� ), 
�  will be channeled toward the batteries. 
Otherwise, 
� must be consumed in the building.    

If 
� is less than the threshold, EOS measures the empty 
battery capacity (
������) of the EVs in the storage category 
to charge them by PV generated energy. To charge the 
batteries, EOS pays attention to different factors. The most 
important factor is the stay duration (��). EOS considers higher 
level of energy for an EV that will stay longer than the others 
because there is a higher chance to have access to this EV 
during peak demands. Equation 1 shows the relationship 
between duration of stay and the potential received energy. In 
this equation, �� is the time in minutes that an EV (��) will 

stay in the parking and �� is the potential energy that it can 

receive.  
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It must be mentioned that the EV’s battery power (��) 

along with its empty capacity (��) is another important factor 
in charging the battery. If the considered �� cannot be saved 

in the battery of ��  because of �� or ��, the additional energy 

will be transferred to the next battery.  

In charging EVs in the storage category, there are two 
possible scenarios, 
� > 
������  and 
� < 
������ . If 
� >

������, EOS fill the batteries at first, and the remained PV 
will be consumed in the building.    

On the other hand, if 
� < 
������, the process gets one 
more critical step. In this scenario, EOS fills the batteries with 

�, first. Afterwards, EOS tries to fill the rest of the remained 
capacities with the grid energy if the price is low enough. To 
this end, EOS checks the price of energy for the next time step 
(
�23). If 
� < 
�23, EOS does not charge the empty capacity 
of the batteries. If 
� > 
�23 but 
�23 < 
� , EOS considers 
it as an opportunity. In this situation, batteries with SoC < 80% 
are charged to reach 80%. Finally, if 
�23 > 
� , it shows an 
emergency case where all the batteries must be filled with the 
lower price energy. Figure 3 shows the diagram of EOP when 

� is low.  

Creating an incentive for the vehicles to take part in the 
EOS process is an important aspect. To fulfil this goal, EOS 
considers a bonus ( ������ ) for every ��  in the storage 
category because of using its battery. Moreover, the 
considered bonus is in the format of energy. In other words, 
each EV that is in storage category receives free charge up to 
a maximum value.      

The behavior of EOS in the case of experiencing a high 
price is as follows. When 
�  is higher than 
� , EOS 
discharges the batteries with respect to ������ . In this 
situation, EOS calculates the lack of energy (��) which is the 
difference between 
�  and ���� . This energy must be 
gained from batteries and in the case of not having enough 
battery response (��) it will be supplied by the grid. Also, if 
�� > ��, EOS sells the extra energy to the grid. Unlike the 
charging process, where longer stay EVs receive higher 
energy, discharging process starts with EVs that will stay 
shorter. Also, all the generated PV will be channelled to the 
building consumption. Figure 4 depicts the diagram of EOP 
when 
� is high.  

It must be emphasized that the proposed optimization 
strategy runs on the data of 2019. Therefore, all the parameters 
like the price of the next time step are known. In the case of 
not knowing these parameters, a prediction methodology is 
required to forecast them.  

IV. RESULTS 

This section explains the outcome of EOS on the extracted 
data. In this section, the results of using EOS for 24 hours are 
analyzed at first. Then it runs on a full year data and will be 
compared with different strategies. As algorithm 1 shows, the 
pre-defined threshold for the peak price determines the 
behavior of EOS at each time step. The threshold price is 



considered 0.14 per kWh. Figure 5 analyzes the result of 
running EOS on DHA tariff for a random day.  

As Figure 5 (a) shows, the empty capacity of batteries 
changes during a day based on the number of EVs in the 
battery category. As Figure 5(c) depicts, the first price higher 
than the threshold happens at 13:00 in this day. 

A particular emphasis must be placed on this time step, 
since the plots change meaningfully at this point. Based on the 
process of EOS, in the case of having a peak in the price of the 
grid at the next time, we must save as much energy as possible. 
As Figure 5(b) illustrates, the energy from the grid is used to 
fill batteries exactly before the peak. In addition, Figure 5(b) 
clarifies that the saved energy from the grid is used at the 
upcoming peaks to reduce the overall cost of energy. 

This paper compares EOS with two other strategies to 
evaluate the performance of the proposed optimization 
strategy. The first strategy is Normal Behavior (NB) of the 
building where all PV generated energy is sent to the building, 
directly. The second strategy is PV Saved (PS). In this 
strategy, only generated energy from PV is saved into the 
batteries when 
�  is less than 
� . Creating an incentive for 
EVs to participate in the program is an important aspect of 
EOS and PS strategies. We start the comparison between the 
strategies with considering no bonus and then, the bonus will 
be changed to observe the effects. In the case of having no 
bonus, each EV must pay the received energy during the 
parking hours. 

Algorithm 1: 

begin:  

  For 	 in the range of (0, 8760): (365 days and 24 hours per each day) 
    Split EVs into Battery and Consumer Categories 

    Read 
�, 
�, 
� , ����, 45� ��6��� 
    if 
� < 
�: 
       Calculate 
������ of EVs in Battery Category for charging 
       if 
������ < 
�  :  
         Charge batteries with respect to ��, ��, and ��  

         Consume the remained PV energy in the building 

       if  
������ > 
�  : 
          Charge batteries with respect to ��, ��, and �� 

          if 
�23 ≥ 
�: 
               Charge batteries with the grid (Emergency) 
          if 
� > 
�23: 

               Charge batteries with 8�9 < 80% (Opportunity) 
          if 
� < 
�23: 
               Do not charge batteries with grid 

   if 
� ≥ 
�  
      Consume 
�  
      Compute �� 
      Compute �� 
      Discharge batteries from shorter stay to longer stay 

      if �� > ��: 
         Sell �� − �� to the grid 
      else: 

         >?@A B��A � ���� − 
� − �� 
   Charge EVs in Consumer Category from Grid 
end  

 

Reducing the overall cost of energy is the main purpose of 
the proposed optimization strategy. To find out which 
scenario saves more, the three cases are compared based on 
different tariffs. Figure 6 shows the results of implementing 
three mentioned strategies on tariff 2.0 A for a random day. 

As it can be observed, in some hours, particularly when 
the price of the grid is not high, EOS costs more than the other 
two cases. It happens because EOS is trying to save energy as 
much as it can. In this way, more energy is available for the 

peak demands. In addition, Figure 6 shows that in some hours 
the cost of EOS is negative. It shows that in those hours the 
extracted energy from batteries plus 
�  is greater than 
���?���C  and the additional energy is sold to the grid. In the 
other words, not only the electricity is free for the building 
during those hours, but also, the building can make money 
with selling to the grid. Furthermore, Figures 7 depicts the 
results of the implementations on 2.0 DHA and 2.0 DHS 
tariffs, respectively. 

 

Fig. 3. Diagram of EOS with low 
� 

 

Fig. 4. Diagram of EOS with high 
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Fig. 5. Running EOS on DHA tariff for one day (a) comparison of empty 
capacity of batteries and PV (b) saving grid on batteries and battery response 
(c) DHA price 

 

Fig. 6. Results on tariff 2.0 A without bonus, NB (red), PS (yellow), EOS 
(green)  

Table 5 draws a comparison between the three strategies 
in terms of annual cost of electricity when no bonus is 
considered for PS and EOS strategies. The proposed 
optimization strategy has the best performance in all the 
tariffs. Based on the results, the annual cost reduction of EOS 
in comparison with NB is 1.7%, 7.1%, and 7.09% on tariffs 
2.0 A, 2.0 DHA, and 2.0 DHs, respectively. The reduction rate 
of EOS in comparison with PS is 0.19%, 2.7%, and 2.7% on 
tariffs 2.0 A, 2.0 DHA, and 2.0 DHs, respectively. Also, the 

results proved that saving just PV energy is a better strategy 
than consume it directly in the building. In addition to the 
comparison on an annual basis, seasonal comparison is 
important, too. To perform seasonal comparison between the 
strategies, one day from each season is selected. Table 6 
details the selected days of each season along with the results 
of running the strategies on the different tariffs.  

  

 

 

Fig. 7. a) Results on tariff 2.0 DHA without bonus, NB (red), PS (yellow), 
EOS (green) and b) Results on tariff 2.0 DHS without bonus, NB (red), PS 
(yellow), EOS (green) 

TABLE V.  ANNUAL COST OF ELECTRICITY WITH NO BONUS 

 Strategies 

Tariffs NB PS EOS 

2.0 A 175512.2407 172866.9152 172521.3187 

2.0 DHA 146624.2999 143101.0129 139127.0208 

2.0 DHS 147025.0312 143501.7353 139534.8400 

TABLE VI.  SEASONAL COST OF ELECTRICITY WITHOUT BONUS 

Season Date Strategy 2.0A 2.0DHA 2.0DHS 

Winter 1/1/2019 
EOS 283.60 219.53 215.37 
PS 285.12 225.24 228.95 
NB 303.57 254.38 256.60 

Spring 1/5/2019 
EOS 389.02 302.96 305.33 
PS 388.67 311.01 312.79 
NB 396.85 322.75 324.40 

Summer 1/8/2019 
EOS 298.09 219.54 222.82 
PS 298.94 246.26 248.42 
NB 308.67 259.50 261.57 

Autumn 1/10/2019 
EOS 548.83 433.55 437.36 
PS 551.38 447.36 450.74 
NB 565.82 466.11 469.41 

  As Table 6 proves, EOS can reduce the cost in almost all 
the tariffs and all seasons. Cost rate during spring and tariff 
2.0 A is the only exception where PS has better performance 
than EOS. According to this table, the best performance of 
EOS compared to NB on tariffs 2.0 A, 2.0 DHA, and 2.0 DHS 
happens in winter when the overall cost is reduced by 6.57%, 
13.69%, and 16.06%, respectively. The reduction rates of 
EOS and PS in comparison with the normal behavior of the 
building are in Table 7. 

TABLE VII.  SEASONAL REDUCTION RATE WITHOUT BONUS 

  Reduction (Comparison with NB) 

Season Strategy 2.0A (%) 2.0DHA (%) 2.0DHS (%) 

Winter 
EOS 6.57 13.69 16.06 
PS 6.07 11.45 10.77 

Spring 
EOS 1.97 6.13 5.87 
PS 2.06 3.63 3.57 

Summer 
EOS 3.42 13.39 14.81 
PS 3.15 5.10 5.02 

Autumn 
EOS 3 6.98 6.82 
PS 2.55 4.02 3.97 
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(b) Saving Grid on Batteries (red) Battery Response 
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(c) Price of Grid 

Time Step 

C
o

st
 

Time Step Time Step 

C
o
st

 

C
o
st

 

(a) (b) 



To evaluate the performance of EOS, it is run with 
different percentage of the bonus. It must be emphasized that 
������ for �� , is a percentage of its battery capacity. In this 
paper, the bonus is set to 5%, 10%, and 15%. In addition, if an 
EV receives energy higher than the considered bonus, it must 
pay the cost of that energy. On the other hand, there is a 
possibility that an EV leaves the parking before receiving full 
bonus. Table 8 shows the results of running EOS with bonus 
on different tariffs. Also, this table compares the results of 
EOS with PS and NB, as well. As Table 8 shows, increasing 
the rate of the bonus increases the cost of the building in the 
case of using EOS. It happens because the cost of the bonus 
must be paid by the building.  

Table 9 shows the annual reduction rate when considering 
different bonus. According to the results, if we consider 5% 
bonus for EVs in storage category, the annual cost of EOS 
increases but still it has the best performance on tariffs 2.0 
DHA and 2.0 DHS. Also, on tariff 2.0 A, even though it 
performs better than NB, it is not as good as PS. Increasing the 
bonus to 10% changes the performance quality of EOS in 
comparison with the other strategies. Although EOS still has 
the best performance on tariffs DHA and DHS, it isn’t as good 
as PS and NB on tariff 2.0 A. Implementation results show 
that increasing the bonus to 15% leads to diminishing in the 
performance of EOS on all the tariffs. Furthermore, it can be 
deduced from these results that if we increase the bonus, EOS 
will result in more cost than the other strategies. Because, with 
increasing the bonus, smaller portion of the saved energy, 
which is paid by the building, can be re-used.      

TABLE VIII.  ANNUAL COST OF ELECTRICITY WITH BONUS 

  Tariffs 

Bonus Rate Strategy 2.0A 2.0DHA 2.0DHS 

5% 
EOS 175475.45 142643.37 143018.55 
PS 174798.18 145406.15 145785.86 
NB 175512.24 146624.29 147025.03 

10% 
EOS 178181.57 145769.09 146158.88 
PS 176001.88 146759.57 147148.92 
NB 175512.24 146624.29 147025.03 

15% 
EOS 180551.35 148508.79 148907.20 
PS 176738.74 147571.53 147974.64 
NB 175512.24 146624.29 147025.03 

TABLE IX.  ANNUAL REDUCTION RATE WITH BONUS 

  Reduction (Comparison with NB) 

Bonus  Strategy 2.0A (%) 2.0DHA (%) 2.0DHA (%) 

5% 
EOS 0.02 2.71 2.72 

PS 0.4 0.83 0.84 

10% 
EOS Not Reduced 0.58 0.58 

PS Not Reduced Not Reduced Not Reduced 

15% 
EOS Not Reduced Not Reduced Not Reduced 

PS Not Reduced Not Reduced Not Reduced 

V. CONCLUSIONS 

In this paper, a novel optimization strategy to reduce the 
cost of energy consumption is presented. The proposed 
strategy saves PV and cheap grid energy into batteries of the 
parked electric vehicles. When the price of the grid energy is 
high, the saved energy is fed back into the building. In this 
way, the overall cost of the building is reduced. Moreover, the 
proposed strategy considers free charge for participated EVs 
to create incentive for them. The proposed optimization 
strategy is tested on the information from Escuela Técnica 
Superior de Ingenieros de Telecomunicación of Universidad 

Politécnica de Madrid on three available tariffs in Spain. 
Moreover, different levels of free charges for EVs are tested. 
According to the obtained results, the proposed optimization 
strategy can reduce overall energy cost even if we consider 
5% free charge for each EV. Also, in the case of considering 
10% free charge for EVs, still the overall cost of the school is 
reduced on tariffs DHA and DHS. In addition, the results show 
that even saving just PV energy when the price is low can 
reduce the overall energy cost of the building, too. Finally, a 
more extended scenario of EOS will be analyzed under one of 
the innovative use cases reported in the eNeuron project.   
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