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Abstract 

Pathological tremor, a prevalent movement disorder seen in 

essential tremor (ET) and Parkinson’s disease (PD) patients, is the 

most common tremor disorder impacting the quality of life of those 

who suffer from it. This study proposes a method to classify daily 

life activities using a single wrist-worn IMU for tremor patients. 

The used dataset involves IMU recordings from the dominant arm 

during 11 tasks performed by ET and PD patients. Signal features 

were extracted from different sized windows and used to train 

Random Forest (RF) and Support Vector Machine (SVM) models, 

training 10 different models overall. Results shows that although 

larger window sizes, particularly the 10 seconds window, provided 

highest average F1-score, certain specific activities were better 

classified with shorter windows. This approach outperforms prior 

studies by achieving improved classification outcomes and opens a 

new line in continuous tremor monitoring. Future research could 

explore the combination of various window lengths to identify 

optimal window durations for further accuracy refinement.  

1. Introduction 

Pathological tremor is the most common movement disorder, 

characterized by involuntary and rhythmic oscillations of a 

part of the body, affecting mostly the hands [1]. It is 

commonly seen in general medical practice; essential tremor 

(ET) affects approximately 4% of the population above 65 

years old [2], and Parkinson's disease (PD) has become the 

second most common neurodegenerative disorder after 

Alzheimer's disease [3]. While ET is mostly identified by the 

presence of tremors that occur during voluntary movements, 

PD is distinguished by tremors that manifest primarily at rest 

[1]. However, both frequently exhibit similar symptoms. 

Other than tremor, patients may also experience 

bradykinesia, rigidity and balance disorder [4]. 

As a direct cause of these symptoms, the quality of life of the 

patients affected by tremor is significantly impacted, 

gradually undermining their ability to perform their activities 

of their daily living (ADLs) from early stages and throughout 

the course of the disease [5].  

The most effective treatment of tremor is medication, 

although drugs are usually prescribed on a trial-and-error 

basis, which coupled with a wide range of side-effects, 

represent the major drawback of the actual therapeutic 

strategies [5]. Motor symptoms caused by pathological 

tremor are typically assessed based on the mechanical 

demonstration of tremor and quantified using movement 

disorder clinical scales such as the UPDRSIII (Unified 

Parkinson’s Disease Rating Scale) and the Fahn-Tolosa-

Marin scale [6]. However, these evaluation methods are 

hampered by the bias in the performance of the patients, 

which may be caused by placebo effects or the “white  coat 

syndrome”. In this case patients tend to apply an extra effort 

due to the presence of a clinician, resulting in a biased 

reflection of their motor ability. Additionally, this syndrome 

may also constrain the evaluation of the medication’s effect 

on the patient, which is essential to study the evolution of the 

symptoms with medication dosages [5], [7]. 

Nowadays, the combination of wearable sensing technology 

and data mining algorithms to recognize movement disorders 

has shown an increasing potential, as they can be used to 

quantify motor symptoms. In subjects with no tremor, 

ADLs’ classification with IMUs has grown in the past years, 

approaching recognition of postural movement and activities 

related to motion [8]. 

However, the application of these methods to patients, which 

increases the difficulty of the task due to the tremorous 

component of their movements, has not yielded conclusive 

results yet. Previous studies have focused on detecting and 

classifying ADLs in patients of PD and ET using several 

IMUs [5,9-11]. Particularly, one of these studies focused on 

classifying a series of fine and gross movement activities in 

patients using four IMUs along the arm, with the objective 

of moving towards an every-day life application that could 

allow a continuous monitoring [5]. 

In this paper, a new method which provides an improvement 

in the classification of activities is proposed. This method 

uses only one IMU on the wrist and aims to improve the 

classification performed by a previous study [5], using the 

same dataset and reducing the number of IMUs used from 

four to one. Increasing the precision of the classification of 

activities in PD and ET patients would contribute to the 

objective of continuous monitoring of tremorous movement 

and the assessment of the medication’s impact throughout 

the evolution of the disease. 

2. Methodology 

A dataset which contains records from 4 IMUs, placed over 

the dominant arm is used. This database contains ET and PD 

patients’ data carrying out different tasks according to a 

specific protocol [5]. Nonetheless, this work focuses on the 

IMU placed at the third distal of the forearm, analyzing 



 

closest kinematic movements to the wrist. The recorded and 

analyzed activities were:  

● Combing hair (CB) 

● Buttoning the buttons of a lab coat (BB) 

● Cutting a fake steak (CE) 

● Eating the previously cut pieces with a fork (EF) 

● Simulate drinking (SD) 

● Opening and closing a tupperware container (OT) 

● Turning 3 pages in a book/magazine (TB) 

● Printing their name/signing a document (SN) 

● Simulate tooth brushing (TB) 

● Turning doorknob (TD) 

● Resting arms on table (RE) 

These tasks encompass both fine and proximal movements, 

portraying two levels of precision.  

2.1.  Data characteristics 

The dataset is composed of acceleration and angular velocity 

in all three axes (x, y, z) from 16 patients, whose gender and 

age were not required. Each participant carried out the 11 

aforementioned tasks, repeating each of them between three 

and six times, except for the “RE” task, which was only 

performed once. The tremorous and voluntary movements 

were separated by an adaptative algorithm based on 

frequency separation, and the signals were resampled at 

1kHz  [5].  

2.2  Preprocessing and filtering 

As a first step, the data was exported to dataframes to 

visualize and analyze the IMU signals. 

First of all, a data screening was implemented. The signals 

were then analyzed empirically, considering the time 

distribution of each task. The signals that were farthest from 

the distribution center were discarded, as they could 

potentially represent erroneous recordings and lead to 

misclassification.  

2.3  Feature extraction 

Considering that the duration of the signals was different and 

variable for different tasks and patients, the signals were 

divided in different sized overlapping windows. The selected 

windows were (see Figure 1):  

● 2.5 seconds with 1 second of overlap 

● 5 seconds with 2 second of overlap 

● 10 second with 4 second of overlap 

● 15 second with 6 second of overlap 

● 20 second with 8 second of overlap 

Once the signals were segmented, the following features 

were extracted from each window [5], [11]: mean, standard 

deviation, median, maximum, minimum, difference between 

first and last value of window, variance, and RMS. 

 

2.4  Classification approach 

The features for each window were extracted and collected 

in five different dataframes corresponding to the different 

windows sizes. The dataset was divided into test and train 

groups with a 30-70% proportion respectively. It is worth 

noting that this division was done within patients, making 

sure that the patients within the train group were not in the 

same test group to avoid bias and overfitting problems. In 

this way, 11 patients were used for training and 5 for testing. 

All the samples were normalized using MaxMinScaler from 

sklearn’s library in Python. 

Then, two models were used: a Random Forest (RF) and a 

Support Vector Machine (SVM) classifier. Both models 

were trained with the five different window sizes proposed, 

hence ten different models were trained and tested.  

3. Results  

The F1-score was the selected metric to assess the 

performance of the classification models. Table 1 shows the 

average F1-score calculated for the ten different models. 

Although the SVM model provides slightly better results,  

 

F1 

score 
2.5s 5s 10s 15s 20s 

SVM 70.65% 77.64% 81.22% 79.76% 75.48% 

RF 67.73% 74.11% 80.05% 77.93% 77.34% 

Table 1: Average F1-score of different classifiers 

Figure 1: Methodology followed to train and test different models 

based on segmentation of different sized windows. 



 

 

Figure 2: Bar graph showing the F1-score obtained in the classification using different time windows, in both SVM (a) and RF (b) models.  

 

there is no significant difference, so it cannot be determined 

that one model is better than the other.  

The trained and tested model with the 10 seconds window 

performed the best classification in both models, followed 

by the 15 seconds one. This shows that larger windows 

provided better results than the shorter ones. 

However, to fully understand how each individual task was 

being classified by the different models, Figure 2 shows the 

F1-score obtained by different windows for both the SVM 

(Figure 2a) and RF (Figure 2b).  

Despite the fact that the highest average F1-scores were 

given by larger windows, these Figures show that, 

depending on the task, some of them were better classified 

with models trained with shorter windows.  

4. Discussion 

The assessment and evaluation of tremor and its evolution 

with medication dosages remains a challenging problem. 

The existing clinical evaluation methods are limited by the 

bias in the performance of the patients and the subjectivity 

of the evaluator. This could be improved by implementing 

a continuous monitoring in an every-day life application 

which could allow to correlate the tremor to the activity 

carried out. However, the recent developed state-of-art 

methods in ADL classification in tremor patients have not 

yielded conclusive evidence yet. They use fixed size 

windows to train machine learning models, but there is no 

clear consensus on which window size should be preferably 

used. Most designs are based on randomly chosen values 

from past successful cases, which may not necessarily be 

the optimal fit for the particular problem being addressed. 

In this paper, a different methodology to classify ADLs 

considering the segmentation of the signals in different 

time-sized overlapping windows is presented. Although it 

was noted that the best results were generally given by the 

10 seconds window, the performance of the classifiers was 

analyzed task by task.  

On the one hand, some of the tasks were found to be better 

classified with shorter windows, such as OT and TB tasks. 

For these tasks, the F1-score was higher with the 5 seconds 

windows trained model. None of the tasks showed to be 

better classified with 2.5 seconds windows.  

On the other hand, most of the tasks were best classified 

with windows between 10 and 20 seconds. For example, for 

CB, SD, and TD tasks the larger windows, 15 seconds, and 

20 seconds windows, provided a higher F1-score. 

Regarding BB, BT, and EF tasks, it was seen that windows 

equal to 10 seconds or above provided better results, taking 

into consideration both SVM and RF models. Finally, RE 

and SN tasks showed smaller differences between the 

results provided by different windows, reaching similar F1-

score values for each of them.   



 

Table 2 shows the different results obtained from the tested 

models for every different task. The first column shows the 

F1-scores achieved in [5]. It is worth noting that this 

previous study did not include RE’s classification results, 

although the data was present and labeled in the dataset. For 

this reason, the value doesn’t appear in the first column, but 

was obtained for the following ones. The following two 

columns show the results obtained from both classifiers, 

SVM and RF, trained and tested with the segmentation of 

10 seconds windows, as it gave the best overall results. 

Finally, the last two columns show the results obtained 

considering the optimal window which gave the highest F1-

score for each task (see Figure 2).  

These last two columns provided the best results, increasing 

notably the performance in the classification from the 

previous studies [5]. Therefore, a classification based on 

different time-sized windows seems to improve the 

prediction of ADLs. 

5. Conclusion and future development 

In this study, a different methodology to classify ADLs 

based on different time-sized windows was presented, 

which brings flexibility in the recognition of different tasks 

and movements carried out by the ET and PD patients. In 

general, it can be stated that considering the 10 seconds 

window models, the methodology presented gives better 

results than the ones shown in previous studies, considering 

that only one of the IMUs (the one on the wrist) was taken 

into consideration, instead of four in the arm. 

Results show that although the segmentation in 10 seconds 

windows provided a better overall classification, some tasks 

are better classified depending on the window size, 

providing even better results than the ones obtained 

considering only the 10 seconds window model.  

Consequently, this supposes a step forward in the objective 

of real-time activity classification for the study and 

evaluation of medication dosage and its effects on tremor. 

In the light of the results presented in this paper, a 

classification based on the combination of different time 

windows which segments the signals in different sizes 

should be considered as a future development. Moreover, a 

new algorithm to evaluate the optimal window length 

should be developed. 
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Tasks 
Previous 

results 

10s 

SVM 
10s RF 

max 

SVM 

max 

RF 

BB 

BT 

CB 

CE 

EF 

OT 

RE 

SD 

SN 

TB 

TD 

86,55% 

85,00% 

82,80% 

52,31% 

46,40% 

32,43% 

- 

83,34% 

71,43% 

33,33% 

92,21% 

93,15% 

95,24% 

91,53% 

78,72% 

79,25% 

43,24% 

95,65% 

85,25% 

84,44% 

52,46% 

94,55% 

97,06% 

97,78% 

88,24% 

65,96% 

74,51% 

36,36% 

100% 

82,14% 

81,32% 

62,50% 

94,74% 

98,18% 

100% 

93,88% 

82,54% 

84,44% 

52,00% 

97,92% 

88,14% 

84,44% 

62,90% 

96,15% 

97,06% 

97,78% 

98,04% 

65,96% 

78,26% 

42,31% 

100% 

92,31% 

81,32% 

64,00% 

98,11% 

Table 2: F1-score obtained for each task and model.  


