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In this paper, the design and implementation process of an artificial neural network based predictor to 

forecast a day ahead of the power consumption of a building HVAC system is presented. The featured 

HVAC system is situated at MagicBox, a real self-sufficient solar house with a monitoring system. Day 

ahead prediction of HVAC power consumption will remarkably enhance the Demand Side Management 

techniques based on appliance scheduling to reach defined goals. Several multi step prediction models, 

based on LSTM neural networks, are proposed. In addition, suitable data preprocessing and arrangement 

techniques are set to adapt the raw dataset. Considering the targeted prediction horizon, the models 

provide outstanding results in terms of test errors (NRMSE of 0.13) and correlation, between the temporal 

behavior of the predictions and test time series to be forecasted, of 0.797. Moreover, these results are 

compared to the simplified one hour ahead prediction that reaches nearly optimal test NRMSE of 0.052 

and Pearson correlation coefficient of 0.972. These results provide an encouraging perspective for real- 

time energy consumption prediction in buildings. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Nowadays, there is an increasing concern in the society for the

orrect consumption and use of energy. This phenomenon has mo-

ivated the development of new technologies turning into real sci-

ntific challenges. One of the main problems in this context is to

nd a suitable equilibrium between the energy consumption and

ts generation. Unlike the ideal scenario of constant daily demand,

he existence of load peaks of aggregated consumption in the ac-

ivity hours and valleys with scarce demand (such as the night)

roduce undesired demand curves that fits badly with the energy

eneration. In short, valleys produce energy leaks (although it can

e reduced with the use of storage strategies) because of the low

emand. On the other hand, load peaks provoke unstable scenarios

here demand surpasses instantaneous generation capabilities. 

To solve these problems, Demand Side Management (DSM)

trategies [1,2] have been studied and applied. Furthermore, in

he recent years, Smart Grids [3,4] have emerged to aid the DSM

urposes among other utilities. While the electrical grid was only

eant to transport energy from producers to consumers, the Smart

rid focuses on analyzing users behavior and allows DSM tech-

iques in conventional and distributed electric networks. Diverse
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SM algorithms that harness the smart grid capabilities have been

roposed. Most of them act as appliance controllers by means of

peration scheduling with the aim to optimize one or several ob-

ectives, such as Peak-to-Average Ratio reduction, cost minimiza-

ion or peak shaving. In [5] , the authors propose a Generic DSM

odel, based on genetic algorithms, for residential users to reduce

he Peak-to-Average Ratio, the total energy cost, and the waiting

ime of appliances. In addition, several residential load controlling

echniques are described in [6] . It is based on the scheduling and

ime shifting of the operation of the loads in order to smooth the

nergy demand curve. It was shown how those methods reduce

he energy consumption cost and the Peak-to-Average Ratio. Fur-

hermore, in [7] , the authors present simulated and real experi-

ents integrating battery energy storage system (BESS) and Pho-

ovoltaic (PV) generation along with Active Demand-Side Manage-

ent (ADSM) in a grid connected self sufficient house to maximize

he PV energy self consumption. Finally, in [8] , DSM techniques im-

lemented by means of swarm intelligence are proposed. 

However, the problem described above is too wide to be treated

lobally in detail. This paper focuses on the consumption of heat-

ng, ventilation and air-conditioning (HVAC) systems. In the USA,

hese systems represent more than 50% of the energy consump-

ion in residential buildings and in China, a sample of 30 buildings

xposed a 68% of residential consumption in average [9,10] . More-

ver, knowing the future local consumption of the HVAC could al-

ow demand response actions in grid connected systems or self-

https://doi.org/10.1016/j.enbuild.2020.109952
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
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consumption actions if local generation is available. Nonetheless,

the HVAC behaviour can be treated as a time series with certain

periodicity. Therefore, to approach the time series prediction, dif-

ferent algorithms have been applied. For instance, linear regres-

sion models [11] , autoregressive, moving average and autoregres-

sive integrated moving average models [12] , support vector ma-

chines [13,14] and artificial neural networks [15–18] , among others.

In [11] , a predictor of the power consumption of an HVAC sys-

tem was implemented to aid the operation of two control strate-

gies. These strategies aim to increase the PV self-consumption and

grid-peak shaving respectively and were developed and assessed

in the frame of a self-sufficient solar house, MagicBox , with inte-

grated BESS, PV generation and monitoring systems. The HVAC pre-

dictor was based on a linear regression model and, as stated by the

authors, the design of more accurate forecasting techniques was

left as future research. The current paper can be seen as a contin-

uation in that direction. Indeed, in this research, a more complex

prediction system of the HVAC power consumption is designed,

implemented and assessed under the same self sufficient house. 

In order to design and implement a time series prediction

model, two main factors should be taken into consideration: the

algorithm that suitably fits the precise time series forecasting prob-

lem and the horizon of the predictions. Traditionally, the former

task was mainly faced by means of linear regression [11] and time

series analysis techniques. Regarding the latter approach, in [12] ,

the authors compared autoregressive, moving average and autore-

gressive integrated moving average for short term load forecasting.

Alternatively, machine learning algorithms have recently gained

popularity due to the increase of the fitness of the results and

their generalization capabilities (among many other advantages).

Support vector machines are an example of a machine learning

technique harnessed to address the time series prediction problem

[13,14,19] . Additionally, artificial neural networks (ANN) have been

used in [15,16] . Moreover, the use of recurrent neural networks

(RNN) is strongly recommended because they are able to retain

and consider the temporal variations of the time series throughout

their feedback connections. More precisely, HVAC power consump-

tion time series denote high periodicity, mainly because of the

daily and seasonal periodic nature of ambient variables and human

habits. This fact justifies the use of RNN as the prediction model

in the context of HVAC power consumption forecasting. In [17] ,

the authors take advantage of RNNs to develop a model to fore-

cast hourly energy consumption. Finally, in [20] , a wavelet packet

decomposition is applied to a wind speed time series. Afterwards,

a one dimension convolutional neural network (non recurrent) is

used to predict the higher frequency components and a convolu-

tional neural network placed before a Long-Short Term Memory

(LSTM) [18] neural network forecasts the lower frequency varia-

tions. The predictions for one step to three steps ahead are com-

pared with other predictors. Additionally, in [21] , the authors use

an LSTM neural network for petroleum production forecasting. In

the research presented in this manuscript, LSTM neural networks

are used. 

Subsequently, the horizon of the predictions has to be chosen

according to the problem requirements. Short and long term pre-

dictions are the most known time horizons. As aforementioned,

the predictor designed here is thought to aid the DSM techniques

such as scheduling loads. Therefore short term forecasting is the

desirable time horizon for this application. In [22,23] , the authors

compare different prediction models to forecast short term load

consumption. In addition, the authors of [24] addressed the HVAC

load short-term prediction problem by means of support vector re-

gression and ANN. The model was preceded by a preprocessing

stage based on correlation analysis, principal component analysis

and wavelet decomposition of the data. Moreover, in [25] a support

vector regression trained by means of a genetic algorithm (GA-SVR)
ith wavelet decomposition is established to address short term

nd ultra short term in a similar HVAC load prediction context.

owever, as the prediction models in [24,25] are not dynamic, they

o not consider the periodicity of the forecasted time series. The

sage of systems with memory states could enhance the accuracy

f the predictions. In contrast, when the application requires larger

rediction horizons, long term forecasts should be considered. An

xample of long term forecasting is studied in [26] with the use of

n encoder–decoder based LTSM ANN. 

The LSTM neural networks proposed in this paper have been

rained using the backpropagation through time algorithm [27] .

oreover, the Adam optimizer [28] is proposed as the learning

rapper that remarkably enhances the training process. Adam op-

imizer has been widely used in the literature when dealing with

eep learning architectures [20,26] due to its fast convergence, lit-

le hyper-parameter tuning and adaptive learning rates for each pa-

ameter using the first and second moment estimates of the gradi-

nt. 

The main contribution of this paper is the development and

erification of several models to perform short term forecasts of

he power consumption of HVAC systems in buildings. The pre-

ictor model consists of a stacked LSTM ANN trained by several

ata obtained from the aforementioned self-sufficient solar house

agicBox. The models will output the next day consumption pre-

iction based on the previous day behaviour, being able to re-

ain its temporal dependencies by means of the dynamic nature

f the LSTM ANN. This leads to an enhancement in the preci-

ion of the predictions. More precisely, the three presented models

how strong performance results highlighting test Pearson corre-

ation coefficients around 0.797 and normalized root mean square

rror (NRMSE) of 0.13 for the most accurate model. Additionally,

ne hour ahead predictions are separately performed and com-

ared to those mentioned before. The prediction of the next hour

f power consumption leads to outstanding Pearson correlation co-

fficient of 0.972 and NRMSE of 0.052 at the cost of reducing the

orizon of the forecasts. These results provide an encouraging per-

pective for real-time energy consumption prediction in buildings. 

The remainder of this paper is as follows: Section 2 exposes the

heoretical preliminaries on recurrent neural networks that will

e used throughout this paper. Section 3 is devoted to the de-

ign process. The nature of the utilized dataset is commented, and

he aforementioned self-sufficient house, where the data was mea-

ured, is introduced. Afterwards, the preprocessing and arrange-

ent techniques for the data set are described. Finally, the main

rchitecture of the RNN models and the three multi step prediction

head architectures are presented and analyzed. Section 4 deals

ith the implementation environment and the predictor hyper-

arameter optimization. In Section 5 the assessment of the de-

igned models is performed. Finally, Section 6 concludes the paper.

. Theoretical preliminaries 

The main tools utilized in the paper approach are artificial neu-

al networks (see [29–31] ). Indeed, as it is a time series predic-

ion problem, recurrent neural networks (RNN) [32] are selected;

ote that this sort of networks excels when the treated problem

nvolves input and output data with sequential nature. 

Within this scenario, let x k and h 

(m ) 
k 

be the input and output

ectors at time step k , and let h 

(m ) 
k −1 

be the output vector at the

revious instant. In addition, let �( m ) be the activation function of

he m th layer and let W and U be the weight matrices that apply a

inear transformation to x k and h 

(m ) 
k −1 

, respectively. Finally, let b be

 bias vector, that will be used to apply an affine transformation

o the linear transformation W and U . Then, Eq. (1) describes the

http://www.magicbox.etsit.upm.es/
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Fig. 1. Computational graph of an LSTM layer. tanh( · ) denotes the application of tanh ( · ) to the entries of W c x k + U c h k + b c and tanh ( · ) applies an hyperbolic tangent to 

the entries of the cell state. 
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Fig. 2. Frontal view of the MagicBox. The MagicBox is located at the ETSI de Tele- 

comunicación of the Universidad Politécnica de Madrid . 
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ehaviour of a multilayer recurrent neural network, 

h 

(m ) 
k 

= �(m ) 
(
W 

(m ) h 

(m −1) 
k 

+ U 

(m ) h 

(m ) 
k −1 

+ b 

(m ) 
)

h 

(1) 
k 

= �(1) 
(
W 

(1) x k + U 

(1) h 

(1) 
k −1 

+ b 

(1) 
) (1) 

here m ∈ { 2 , . . . , M} and M is the number of layers. 

The models presented in this paper have been trained by means

f the backpropagation algorithm [33] , and more precisely the

ackpropagation through time (BPTT) variant [27] . BPTT is a learn-

ng algorithm that extends the backpropagation method to train

NNs, and is based on the unfolding of the RNN to convert the

ecurrent architecture into a multilayer perceptron. Thereafter, the

egular backpropagation method can be applied to the unfolded

NN. For further details on backpropagation and BPTT algorithms,

efer to [29–31] . Furthermore, in order to improve the results of

hese algorithms, the Adam optimizer is used (see [28] ). 

A typical disadvantage of the BPTT is the vanishing gradient

henomenon that usually happens when the number τ , of time

teps used to unfold the RNN, is too large. In order to over-

ome this difficulty we use a particular type of RNN, namely Long

hort-term memory (LSTM) neural networks [18] . LSTM neural net-

orks are able to maintain both short and long time dependencies

hrough its states. It is composed by gates that control the infor-

ation that is stored in the states by filtering the input and output

ows of data. These gates are called forget, input and output gates.

n LSTM unit contains two different states, the hidden state ( h k )

nd the cell state ( c k ). The former is analogous to the state of a

egular RNN described in Eq. (1) . This state represents the output

alue of the LSTM layer set by the output gate. In contrast, the cell

tate ( c k ) is the actual memory that is controlled by the forget and

nput gates. 

Eq. (2) states the set of computations performed by an LSTM

ayer with multiple units. In addition, the computational graph of

he formulas is depicted in Fig. 1 . 

f k = σ (W f x k + U f h k −1 + b f ) 
i k = σ (W i x k + U i h k −1 + b i ) 

o k = σ (W o x k + U o h k −1 + b o ) 
c i k = i k ◦ tanh (W c x k + U c h k −1 + b c ) 

c k = f k ◦ c k −1 + c i k 
h k = o k ◦ tanh (c k ) 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ 

(2) 

In both, Eq. (2) and Fig. 1 f k , i k and o k are the forget, input

nd output gates respectively. σ and tanh represent the sigmoid

nd the hyperbolic tangent activation functions and ◦ denotes the

adamard product. 
. Design process 

.1. Data acquisition system 

In order to develop the training process of the ANN through the

ackpropagation algorithm, a dataset, containing the power con-

umption records, and several inputs with a remarkable correlation

ith the consumption, is required. To assess this task, a dataset

as extracted from a real solar house called http://www.magicbox.

tsit.upm.es/ MagicBox. 

The MagicBox is a self-sufficient solar house (see Fig. 2 ) that

ntegrates sustainable elements based on renewable energies, self-

ufficiency energetic methods, bioclimatic architecture and recy-

led construction materials [34] . In addition, it includes Informa-

ion and Communication Technologies to monitor and control the

ouse power flow. It includes PV generation, electricity storage

hrough batteries, a set of automated appliances and a connection

o the grid [35] . The PV installation consists of single-crystalline PV

enerators that are distributed in four south-oriented surfaces with

ifferent inclinations. The energy is collected in six arrays with a

otal nominal power of 7.2 kW p . In addition, the electrical system

mbodies a battery energy storage system of 36 kWh . In a grid-

onnected installation, batteries are used to improve the electri-

al behavior by controlling the maximum consumed and generated

http://www.magicbox.etsit.upm.es/
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Fig. 3. Diagram of the design process. 
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power at different hours or ensuring the electrical supply when a

grid breakdown occurs. 

MagicBox includes typical electrical appliances of a highly elec-

trified home: washing machine, dryer, dishwasher, refrigerator,

cooking appliances, lighting, computers and entertainment appli-

ances. The appliances are integrated in a home automation system,

which allows them to be monitored and controlled by a remote

system [36] . Some appliances involve an instantaneous use because

of the user demand (e.g. lights, TVs, computers) while others can

be time-shifted. 

MagicBox was originally designed to participate in the Solar

Decathlon 2005 contest (see [37,38] ). Since then, multiple studies

have been developed on it. In [39] an heterogeneous collaborative

sensor network designed to manage the energy performance of the

MagicBox was described. In addition, [36] presented the operation

of a semi-distributed electrical demand-side management system

with the PV generation in order to improve the self-consumption.

Moreover, the optimization of the self-consumption in a system

with the PV generation coupled to a battery energy storage system

and connected to the grid was studied and tested in [11] . Finally,

in [8] a swarm intelligence approach has been implemented for

Demand-Side Management. In this paper, only the HVAC system

and the sensors that measure the different environmental variables

were utilized. 

Due to the nature of the problem, the input dataset is strongly

related to the weather. On the one hand, outdoor measurement

variables such as the outdoor temperature [ ◦ C], the relative hu-

midity [%] and the irradiance [ W 

m 

2 ] measurements are considered.

These input variables will provide the machine learning system

with an insight of the physical behaviour of the weather. On the

other hand, three indoor variables are included: the indoor CO 2 

level, the indoor temperature of the house and the reference tem-

perature set by the user to fit the desired indoor comfort tempera-

ture. Ideally, the indoor temperature and the reference temperature

should match. However, the dynamics of the MagicBox and the

outdoor climate conditions will prevent the indoor temperature to

exactly follow the reference value. It should be pointed out that

there were not occupants in the MagicBox during the monitored

period. In conclusion, the RNN will receive the 6 aforementioned

input variables and will output the forecasted power consumption.

This output variable will be provided to the RNN in the format

of target examples of the desired output values during the learn-

ing process. The distributed nodes related to this paper are located

in the electrical box and are directly connected to the tempera-

ture, humidity, CO 2 , power meters and the meteorological station.

Temperature, humidity and CO 2 sensors are based on the SCR110-

H from Schneider Electric with a real resolution of 0.1 ◦ C for tem-

perature, 0.1% for humidity and 1ppm for CO 2 . Electric meters are

based on the iEM3155 from Schneider Electric. Additionally, the

HVAC equipment (see [11] ) is a two air-to-air electrical reversible

heat pumps from Daikin, corresponding to model FTX25KV1B. Its

main advantages, that have produced an important market pene-

tration, are the high efficiency of the heating and cooling processes

and the fact that both functionalities are joined in the same in-

stallation. The switch between cooling and heating can be readily

performed by inverting the operating cycle with a reversing valve. 

In addition to the sensors, a real-time distributed monitoring

system is installed in the MagicBox for its continuous supervision.

The monitoring system is based on an ad-hoc designed embed-

ded system connected through an RS-485 serial bus to several dis-

tributed nodes. The nodes are running a real-time operating sys-

tem which takes care of acquiring all measurements at specific

time frames. Every 10 ms, each node obtains information from all

the sensors to which it is connected. Every second, the monitor-

ing node performs the mean of the last 100 measurements and

stores it internally to be acquired by the main controller through
n RS-485 RTU-Modbus protocol. The main controller is based on

n embedded Linux operating system. It is made of a microcon-

roller with a UPS system and an electronic carrier to connect to

he nodes. Every minute, the main controller acquires all mea-

urements stored on the nodes and accumulates them on an in-

ernal SD card. This information is stored together with the date

nd time. Moreover, every five minutes the main controller sends

he data stored to the monitoring server. The monitoring server

s in charge of synchronizing all data, performing all conversions

rom electrical to physical measurements and running periodic

cripts which process the data and upload them to the monitor-

ng database. A monitoring website has been created to allow re-

earchers and the general public observe the behavior of the Mag-

cBox in real time. All the information presented in this manuscript

s extracted from that website and is accessible to the general pub-

ic. The data obtained to the analysis performed is gathered from

uly 2016 until September 2019, although monitoring is still ongo-

ng. The time series dataset is currently composed by more than

.5 million of samples with 1 min sampling period. 

.2. Data preprocessing 

The data, as mentioned in Section 3.1 , was obtained from sev-

ral sensors by an automated data acquisition system. This mea-

ured data is in a raw format. Thus, in order to train the RNN, an

ppropriate set of preprocessing techniques should be applied to

he original data. Fig. 3 describes the steps and data flow followed

uring the training and test processes. More precisely, the normal-

zation, sampling and data split blocks are the data preprocessing

tages described in this section. 

The RNN receives, as input, r time series ( r = 6 ) of data, and

enerates, as output, s time series ( s = 1 ); each time series is a

ector of length � (representing the number of samples). It should

e pointed out that the RNN also receives the power consumption

n the previous day as input to forecast the next day. Therefore, in

ractice, r is actually 7. For superindex i ∈ { 1 , . . . , r + s } , 

 

(i ) 
k 

= 

⎡ ⎢ ⎣ 

x (i ) 
1 
. . . 

x (i ) 
� 

⎤ ⎥ ⎦ 

(3)

epresents the corresponding time series, and subindex k denotes

he discrete time variable, with a sampling period of 1 min. This
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Fig. 4. Main structure of the proposed model. LSTM layers are building blocks con- 

taining LSTM neural networks and dense layer represents a single layer perceptron. 
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otation will be used in subsequent sections as well. Fig. 3 shows

 description of the data preprocessing process. 

The first preprocessing technique considered is data normaliza-

ion. The dataset normalization selected consists of transforming

he original range of the time series into a range between 0 and 1.

ore precisely, the preprocessing works as follows: let x min 
i 

denote

he minimal value that x i ( k ) takes when the time k moves from 1

o � . That is, 

 

(i ) 
min 

= min { x (i ) 
k 

| k ∈ { 1 , . . . , � }} . 
imilarly, 

 

(i ) 
max = max { x (i ) 

k 
| k ∈ { 1 , . . . , � }} . 

n this situation, the time series x (i ) 
k 

is normalized as 

 

 

(i ) 
k 

= 

x 

(i ) 
k 

− x 

(i ) 
min 

x 

(i ) 
max − x 

(i ) 
min 

(4) 

In addition to the normalization technique, a data sampling

rocess is proposed. The main motivation is that the original one

inute sampling period of the data becomes unnecessary for the

roblem solving. Therefore, in this paper, an increase of 15 min is

tated. The corresponding value of the new time series will be the

ean of the values of x ( i ) in the enlargement period, so that the

nformation within the 15 min is not lost. More precisely, the fol-

owing variables are considered: the original discrete time variable

 (see Eq. (3) ), which takes values from 1 to � minutes, and a new

ime variable, named k ∗, which takes values from T to nT minutes,

here nT is the greater multiple of T being smaller than � ; in our

ase T = 15 min. So, k = T k ∗. Then, the new time series is defined

s 

 

(i ) 
k ∗ = 

1 

T 

k ∗T ∑ 

k =(k ∗−1) T 

x 

(i ) 
k 

, z (i ) 
1 

= x 

(i ) 
1 

(5)

The selected sampling period T in the multi step architectures

as set to 15 min. This resolution allows to reduce the number

f samples in the prediction of a day, from 1440 to 96. In order

o simplify notations, in the subsequent text, we denote x k as the

ownsampled and normalized time series vector. 

Finally, the original dataset A data is divided into three different

ubsets. A data is 

 data = (A train ∪ A val ) ∪ A test , 

here the first two subsets are devoted to the training and dynam-

cal validation of the training respectively, while the third subset

s used to test the final result of the training process. In addition,

ue to the sequential nature of our problem, it is crucial that the

entioned subsets contain ordered data to preserve the temporal

ehaviour of the time series. In order to train and test the system,

he size of the described subsets were fixed to 80% for A train , 5%

or A val , and 15% for A test . 

.3. Neural architecture 

This subsection is devoted to introduce the recurrent neural

etwork used to forecast the consumption of the HVAC system. The

eneric model will be adapted and optimized along the remaining

ections, and all the subsequent models described throughout this

aper are extensions, or modifications, of this architecture. 

Let H be the prediction horizon ( H = 96 ), that corresponds to

ne day prediction. The main structure of the proposed model (see

ig. 4 ) is formed by two LSTM layers ( L 1 and L 2 ), with N 1 LSTM

nits in L 1 and N 2 in L 2 , followed by a perceptron layer to output

he corresponding prediction (the selected values for N 1 and N 2 are

hown in Section 4 ). L 1 and L 2 consist of the LSTM computational

raph described in Section 2 (see Fig. 1 ). 
To be more precise, let X denote the matrix 

 = (x 

(1) 
k 

, . . . , x 

(7) 
k 

) = 

⎡ ⎢ ⎣ 

x (1) 
1 

· · · x (7) 
1 

. . . 
. . . 

. . . 

x (1) 
� · · · x (7) 

� 

⎤ ⎥ ⎦ 

(6)

here x (i ) 
k 

is as in Eq. (3) . Furthermore, let x k denote the k th row

f X , that is 

 k = 

[
x (1) 

k 
, · · · , x (7) 

k 

]T 
(7) 

 1 receives x k as input to generate h 

(1) 
k 

as output (see Eq. (2) and

ig. 1 ). h 

(1) 
k 

is a vector whose length equals the number of units

n the layer ( N 1 ). This new vector h 

(1) 
k 

is then taken as input of

 2 . Afterwards, L 2 generates a new vector, h 

(2) 
k 

, with length is N 2 .

inally, the non-recurrent fully-connected layer gets h 

(2) 
k 

to derive

he power consumption predictions ˆ y k +1 , . . . , ̂  y k + H . 

.4. Prediction techniques 

The main objective of the RNN is to make short term multi step

redictions of the consumption. More precisely, the model will

ake previous data in order to forecast the next day. The follow-

ng formula describes the main behaviour of multi step prediction:

 ̂

 y k +1 , ̂  y k +2 , . . . , ̂  y k + H ] = 

ˆ f (x k , h 

(1) 
k −1 

, c (1) 
k −1 

, h 

(2) 
k −1 

, c (2) 
k −1 

) (8)

n this subsection, we consider different modifications, of the

ain RNN described above, to obtain different multi step predic-

ors. These models are designed using unfolding techniques of the

NN so that a deeper understanding of the temporal behavior is

chieved. 

First multi step prediction approach: MSPM-1 

The first approach, referred to as Multi Step Prediction Model 1

MSPM-1), is to forecast all the values between k + 1 and k + H

t once. Therefore, at each time step, the RNN will receive the

bserved input data at that precise time instant and will output

he estimated evolution of the time series for the next 24 h. This

odel will require H neurons in the output layer,where H is the
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Fig. 5. Unrolling of the MSPM-1. 
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number of future predictions to be forecasted. Thus, each neu-

ron in this non-recurrent layer is responsible of the estimation

of a single time step of the power consumption. The day ahead

prediction is formed by the union of all the outputs of the layer

neurons. 

Fig. 5 shows the unrolling of MSPM-1. The variable τ represents

the number of past time steps to be considered during the training

stage to perform backpropagation through time algorithm. Notice

that large values of τ would produce stronger vanishing of the gra-

dient. Alternatively, in the evaluation and deployment stages, the

predictions are performed in an online way. Thus, in these cases,

τ time steps should be elapsed in order to make the first fore-

cast. This unavoidable issue is caused by the fact that the predictor

requires at least a sequence of τ samples in order start perform-

ing the estimations. In addition, it should be mentioned that the

model provides not only the value at k + H time step but also pre-

dicts the evolution of the time series between k and k + H. These

values may be useful depending on the precise DSM strategy to be

used afterwards. Therefore, the subsequent prediction model, pro-

poses some modifications to cover those cases that only require

the point estimation ˆ y k + H . 
Second multi step prediction approach: MSPM-2 

The second proposed model complements the previous one so

that, at each time step k it only provides the prediction of y k + H . In
fact, it is direct to realize that the predictor MSPM-1 is a general-

ization of MSPM-2. Therefore, it is supported on a simpler struc-

ture that can be used in order to accomplish the short term pre-

diction when just the estimate ˆ y k + H is needed. In some cases, the

time series evolution between k and k + H discrete instants can be

approximated by an interpolation using these extreme values. 

Fig. 6 illustrates MSPM-2. In this architecture the output per-

ceptron layer consists of a single neuron. Unlike in MSPM-1, this

predictor uses a multilayer perceptron with 2 layers. This is a hid-

den layer with 20 neurons and the output layer with a single neu-

ron. 

Third multi step prediction approach: MSPM-3 

Finally, the MSPM-3 is presented. This approach is based on

the encoder–decoder ANN proposed in [40] , as well as on the

sequence–to–sequence neural network described in [41] . It has

been widely used in scenarios that require the transformation be-

tween a sequence in one domain to a sequence in another domain.

Some examples are the field of machine translation, such as in

[42] , or multi-step time series prediction problems [26] as the one

treated in this work. The architecture is composed by two basic

recurrent layers: the encoder or reader and the decoder or writer.

The encoder is responsible of transforming an input sequence of

data into a fixed-length vector representing the whole sequence,
amely, the context ( z k ). In contrast, the decoder receives the con-

ext produced by the encoder and generates the decoded sequence,

hich is indeed the output sequence. More precisely, the decoder

ses the latent representation z k as the initial state for its dynam-

cs. 

Fig. 7 represents the architecture of the unfolded encoder–

ecoder neural network. It can be noticed that in MSPM-3, both

ncoder and decoder are LSTM layers. The feedforward dense layer

dapts the decoded sequence to generate the actual prediction.

oreover, the prediction is used as the input in the next time step

f the decoding process. The input of the decoder at the first de-

oding instant is the true current value of the power consumption

 k It should be noticed that even though Fig. 7 only depicts the de-

oding of the context at discrete instant k , this decoding procedure

s performed every time step in order to obtain all the predictions

etween k + 1 and k + H. 

. Implementation environment and predictor hyper-parameter

ptimization 

In order to implement the designed models, a programming

nvironment and a hyper-parameter selection process has been

xed. With respect to the programming environment, all the mod-

ls were implemented, trained and tested using the Python’s li-

rary Pytorch [43] . The code related to the paper was uploaded to

 Github repository 1 . 

The chosen hyper-parameters to be studied have been: the

umber of units and the learning rate α. These are some of

he most relevant features of the RNN structures and the learn-

ng algorithm. On the one hand, the number of units should be

arge enough to provide the RNN with an adequate computational

ower. In addition, an excess of parameters could produce overfit-

ing with large training times. On the other hand, the learning rate

s responsible of enabling a proper convergence in the backpropa-

ation algorithm as fast as possible. Another important decision to

e taken involves the learning opimizer. In all the models, Adam

28] optimizer was fixed. Some alternatives to Adam optimizer are

tochastic gradient descent and RMSprop [44] . However, due to its

daptive learning rate, fast convergence and little hyper-parameter

uning, Adam is the most used optimizer for deep learning archi-

ectures in the literature [20,26] . 

Boxplot representation were used to depict the empirical pro-

ess. The x axis of these plots represents the studied hyper-

arameter, and the y axis shows the distribution of the absolute

rror of the predictions defined as 
∣∣y k + H − ˆ y k + H 

∣∣ with k ∈ { τ, . . . � −
1 https://github.com/Robolabo/LSTM-HVAC 

https://github.com/Robolabo/LSTM-HVAC
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Fig. 6. Unrolling of the MSPM-2. 

Fig. 7. Unrolling of the MSPM-3. 
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Table 1 

Summary of the selected hyper-parameters for 

the MSMPs. 

τ Layers Units Optimizer α

96 2 32 Adam 0.001 

 

d  

a  

r  

m  

s  

c  

a

5

 

o  

i  

t  

i  
} , where � is the sample size of the test data subset. Thus each

ox shows the distribution of the absolute error of the H step

head predictions for the hyper-parameter to be assessed. 

 = 

(∣∣y τ+ H − ˆ y τ+ H 
∣∣, . . . , ∣∣y i + H − ˆ y i + H 

∣∣, . . . , ∣∣y � − ˆ y � 
∣∣)

or the corresponding model. 

Fig. 8 a, compares the impact that the number of units produces

hen using the different MSPMs. For simplicity, only the models

ith N 1 = N 2 are depicted. In addition, Fig. 8 b, shows the impact

f the learning rate ( α) within the designed models. A learning

ate of α = 0 . 001 , and Adam optimizer were used when assess-

ng the number of units. Additionally, 30 units in both layers and

dam optimizer were fixed in order to evaluate the impact of α on

he prediction. In both scenarios, a τ of 96 past time steps, corre-

ponding to an entire day, was applied. 

Fig. 8 a shows that at least 20 units are required to provide the

NN with enough computational power. On the contrary, the pre-

ictors with more than 20 units per layer produce a highly similar

bsolute error distribution. Therefore, for simplicity, the number of

nits per LSTM layer was fixed to 20. Indeed, a large number of

nits would imply longer training times and could produce over-

tting. 
In Fig. 8 b, it can be appreciated how, for large values, the pre-

ictions lead to very high errors. For values lower than 0.005, the

bsolute errors considerably decrease and distributions tend to be

emarkably similar. A value of α = 0 . 001 was selected for all the

odels in order to obtain a tradeoff between training speed and

tability. Notice that other values of α could have been a feasible

hoice as well. Table 1 collects the selected hyper-parameters for

ll the prediction models. 

. Results 

This section is devoted to the performance evaluation analysis

f the proposed models. For this purpose, several metric compar-

sons will be studied. Moreover, different figures will be displayed

o illustrate the accuracy of the estimations. The training and test-

ng process of the models use the hyper-parameters highlighted in
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Fig. 8. Comparison of models: number of units in (a) and the learning rate ( α) in 

(b). Each boxplot comprises observations ranging from the first to the third quartile. 

The median is indicated by a horizontal bar, dividing the box into the upper and 

lower parts. The whiskers extend to the farthest data points that are within 1.5 

times the interquartile range. Outliers are shown with a red points. A value of α = 

1 · 10 −3 was used to train the models in (a) and a 30 units in both layers were 

used in the case of (b). All the assessed predictors used τ = 96 corresponding to 

the previous day and were trained with Adam optimizer. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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Table 1 . Moreover, a downsampling of 15 min is carried out by fol-

lowing the guidelines described in Section 3 . Firstly, the LSTM ar-

chitectures were trained in order to address the 24 h ahead fore-

cast (see Section 3 for architectural details). Finally, the treated

24 h ahead prediction is compared to the 1 h ahead estimations. 

In the evaluation stage, the trained predictors are sequentially

fed with the l − H testing input samples. Thereafter, each predic-

tor produces a set of estimations ˆ y = 

[
ˆ y τ+ H , . . . ̂  y l 

]T 
. It should be

pointed out that the first τ + H predictions are not considered be-

cause the models require τ input samples to proceed and the fore-

cast is H steps ahead. Secondly, although some predictors estimate

the whole sequence between k and k + H, for a proper comparison

of the models, the assessment was applied only to the estimations

of k + H at each discrete instant. This decision diverges from the

training phase, in which the minimization of the cost function con-
iders the sample mean of all the output predictions. With this in-

ormation in mind, the following assessment metrics will be used:

• The mean squared error (MSE) 

MSE ( ̂  y , y ) = 

1 

l − τ − H 

l ∑ 

k = τ+ H 
( ̂  y k − y k ) 

2 (9)

• The root mean squared error (RMSE): 

RMSE ( ̂  y , y ) = 

√ 

1 

l − τ − H 

l ∑ 

k = τ+ H 
( ̂  y k − y k ) 2 (10)

• The normalized root mean squared error (NRMSE): 

NRMSE ( ̂  y , y ) = 

√ 

1 

l − τ − H 

l ∑ 

i = τ+ H 

(
ˆ y k − y k 

y max 

)2 

(11)

• The Pearson correlation coefficient ( ρy, ̂ y ): 

ρy , ̂ y = 

E[(y − μy )( ̂  y − μˆ y )] 

σy σˆ y 

(12)

here the expected value was approximated by the sample mean

f l − τ − H samples. The evaluation of the previously defined met-

ics applied to all the models is arranged in Table 2 . Although it

as briefly commented before, all the metrics and figures in this

ection denote the fitness of the H steps ahead predictions. 

Fig. 9 shows the response of MSPM-1, MSPM-2 and MSPM-3

gainst the 24 h ahead prediction problem when the test data is

rovided. In both Fig. 9 and Table 2 it can be distinguished that

he predictions of all the proposed models provide similar results

n terms of errors, correlation and curve fitting. MSPM-2 slightly

utstands the other models with a NRMSE of 0.130 and correla-

ion coefficient of 0.797 at the cost of predicting just the H -step

head value. On the contrary, even though MSPM-1 and MSPM-2

roduce inferior estimations in terms of errors and correlation co-

fficient, they can be used in those DSM strategies that require the

onsumption during the entire posterior day. 

In Fig. 9 , it can be observed that the segment of time series to

e forecasted follows two models with noticeably different means

nd variances. This issue imposes the modelling of a time series

hat behaves differently depending on the discrete time instant

the time series is highly non-stationary). In fact, MSPM-1 and

SPM-3 encounter some problems when estimating the first part

f the testing sequence and provide proficient predictions when

he second window of the time series is addressed. On the con-

rary, MSPM-2 is able to approximate more accurately the power

onsumption at the beginning of the evaluation but is not able to

ully capture the amplitude of all the peaks in the second part of

he sequence. In addition. it is utterly interesting to analyse the

redictions when the time series behavior is switched (around day

). In this case, it can be highlighted that there is a transient pe-

iod of time that the LSTM models require in order to realize the

ehavioral modifications of the environment and adapt their fore-

asts with the aid of the LSTM inner state dynamics. 

To conclude with the verification of the models, a compari-

on between the aforementioned output time series is described.

ig. 10 depicts the correlation between the predicted and the real

ime series for all the treated models. At the top of the figures, the

ower consumption distribution of the target time series can be

bserved. On the right side, the distribution of the predicted power

onsumption appears. The dark purple areas represent a high den-

ity of points and clearer purple areas denote a low density of

amples. The figures support the Pearson correlation coefficient ex-

osed in Table 2 . Although there is margin for improvement, the

raphs illustrate a remarkable linear relationship between ground
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Fig. 9. Assessment of MSPM-1 (a), assessment of MSPM-2 (b) and assessment of MSPM-3 (c) when test dataset is provided. As the predictions are 24 h ahead with 15 min 

of time resolution, the valid predictions start to be generated at k = τ + 96 . Although MSPM-1 and MSPM-3 jointly estimate all the values between k + 1 and k + 96 , only 

the estimates ˆ y k +96 are depicted. 
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Table 2 

Collection of all the model’s metrics for training and test data set. The shown MSE values correspond to the 

normalized targets and predictions time series. 

Training Test 

Model MSE RMSE[ W ] NRMSE ρy, ̂ y MSE RMSE[ W ] NRMSE ρy, ̂ y 

MSPM-1 8 . 23 · 10 −3 113.39 0.094 0.795 0.0175 158.75 0.135 0.789 

MSPM-2 8 . 77 · 10 −3 110.24 0.091 0.821 0.0170 157.13 0.130 0.797 

MSPM-3 9 . 95 · 10 −3 117.55 0.113 0.788 0.0174 157.89 0.131 0.782 

Fig. 10. Representation of the correlation between the model’s predictions and the target time series. (a) MSPM-1’s predictions. (b) MSPM-2’s predictions. (c) MSPM-3’s 

predictions. The darker means a higher density of samples in an area and clearer regions denote a low density of samples. Although MSPM-1 and MSPM-3 jointly estimate 

all the values between k + 1 and k + 96 , only the estimates ˆ y k +96 are depicted. 

Fig. 11. Comparison of the predictions made by the models when the test data set is provided. As the predictions are 24 h ahead with 15 min of time resolution, the 

valid predictions start to be generated at k = τ + 96 . Although MSPM-1 and MSPM-3 jointly estimate all the values between k + 1 and k + 96 , only the estimates ˆ y k +96 are 

depicted. 
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truth time series and estimated time series. Notice that a perfect

linear relationship would imply that | ρy , ̂ y | = 1 . 

Fig. 11 jointly depicts the 24 h ahead predictions of all the mod-

els in a single graph for a clearer comparison of the forecasts. 

Moreover, Fig. 12 shows the predictions of the models paying

attention to a four day window to deeply appreciate the fitting of

the time series. MSPM-2 generates outstanding predictions, being

able to mainly capture the target time series with low delay. On

the contrary, MSPM-3 produces delayed responses only in the ris-

ing intervals. However, the delay is still much lower than the pre-

diction horizon. MSPM-1 exposes a balanced behavior, with pre-

dictions that are not highly delayed with respect to the targets but

are unable to fully capture the peak consumption. 
Finally, the predictors have been separately trained for the

ne step ahead forecasting problem. The aim is to compare the

mpact of the prediction horizon on the estimations. Fig. 13

hows the 1 h step ahead predictions of all the proposed mod-

ls when test subset is provided. The fitness of the estimations

n this case is nearly optimal. Moreover, in some intervals, the

esponses are denoised versions of the original time series to be

orecasted. 

Additionally, Table 3 gathers the analysed metrics applied to the

est subset in the frame of the one hour ahead prediction problem.

SPM-2 is slightly superior than the other predictors, highlighting

 Pearson correlation coefficient of 0.972 and NRMSE and RMSE of

.052 and 62.47 respectively. 
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Fig. 12. Predictions of the models in a window of 4 days. Although MSPM-1 and MSPM-3 jointly estimate all the values between k + 1 and k + 96 , only the estimates ˆ y k +96 

are depicted. 

Fig. 13. One hour ahead predictions of the models when test subset is provided. As the predictions are 1 h ahead with 15 min of time resolution, the valid predictions start 

to be generated at k = τ + 4 . Although MSPM-1 and MSPM-3 jointly estimate all the values between k + 1 and k + 4 , only the estimates ˆ y k +4 are depicted. 

Table 3 

Collection of all the model’s metrics for test data when predict- 

ing one hour ahead. The shown MSE values correspond to the 

normalized targets and predictions time series. 

Model MSE RMSE[ W ] NRMSE ρy, ̂ y 

MSPM-1 3 . 17 · 10 −3 67.25 0.055 0.965 

MSPM-2 2 . 7 · 10 −3 62.47 0.052 0.972 

MSPM-3 3 . 16 · 10 −3 67.42 0.056 0.966 
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The results obtained in the 1 h ahead prediction are superior to

hose in the case of the 24 h forecast. This performance degrada-

ion is feasible due to the fact that the prediction horizon is much

igher. On the one hand the use of the former forecasting scheme

ill allow the planning of remarkably accurate DSM strategies in

ery near future scenarios. On the other hand, the latter predictor

llows the development of longer term DSM scheduling at the cost

f having higher uncertainty due to the increased error in the pre-

ictions. Depending on the precise DSM application requirements,
 tradeoff between the one hour ahead and one day ahead must

e considered. 

. Conclusion and future lines 

The forecast of the power consumed by an HVAC system lo-

ated in a self sufficient solar house was the addressed prob-

em. The house, called http://www.magicbox.etsit.upm.es/ Mag-

cBox and located at the Escuela Técnica Superior de Ingenieros de

elecomunicación (ETSIT) of the Universidad Politécnica de Madrid

UPM), is equipped with a monitoring system to acquire the data.

he main goal was to predict the next day of the power time series

iven the previous day to feed a future demand-side management

ystem. To accomplish this task several prediction models were

roposed. These models are RNNs based on LSTM layers to capture

he sequential nature of the time series. The designed RNNs were

mplemented with the ANN Python’s library Pytorch. The model

ith highest accuracy of the predictions reaches a test Pearson

orrelation coefficient of 0.797 and normalized root mean square

http://www.magicbox.etsit.upm.es/
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error (NRMSE) of 0.13. In addition to the 24 h ahead prediction,

a simplified problem of hourly prediction is treated. With the re-

duction of the prediction horizon the models generate estimations

that lead to outstanding results supported by a test Pearson corre-

lation coefficient of 0.972 and a normalized root mean square er-

ror (NRMSE) of 0.052. A balance between error of the forecasts and

prediction horizon must be fixed by the requirements of the DSM

strategies that harness the proposed models. During the training

and testing process, it was observed that the input variables CO 2 

and relative humidity have little impact on the performance of the

models. This issue was not deeply explored, and thus, a rigurous

study of importance of each input variable towards predicting the

power consumption of HVAC systems may enhance the accuracy of

the estimations. 

Other research lines can be proposed as future work. Firstly, the

integration of the developed predictor into a distributed DSM sys-

tem to be controlled as a deferable load is the main extension to

this work to be considered in the future. Subsequently, the im-

provement of the predictors to gain accuracy in the 24 h ahead

forecast or the increase of the prediction horizon to longer term

scheduling can be studied. The development of a non-Markovian

multi-step ahead predictor to properly model time series that do

not satisfy the Markov property is an appealing topic. More pre-

cisely, it would receive not only the hidden and cell states at the

current iteration but also the states at k − 2 , . . . , k − L . Addition-

ally, the mixture between convolutional neural networks and LSTM

networks in a single architecture or the use of temporal convolu-

tional networks can be addressed. Other non-architectural ideas to

increase the performance of the models is to accomplish more ef-

ficient hyper-parameter tuning strategies such genetic algorithms

or Bayesian optimization or, as already mentioned, to assess the

importance of each variable in the process of predicting the power

consumption. Furthermore, the exploration of time series data aug-

mentation with generative adversarial networks is also an impor-

tant future research line to considered. Finally, a better solution

to deal with the behavioral changes in the time series exposed in

Section 5 can be analyzed. Differentiation of the power consump-

tion time series aiming to convert it into a stationary process can

be assessed in order to solve the issue. Alternatively, the creation

of a pool of prediction models and an algorithm that decides which

predictor in that set should be used depending on the time inter-

val should also be explored. 
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