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In this paper, the design and implementation process of an artificial neural network based predictor to
forecast a day ahead of the power consumption of a building HVAC system is presented. The featured
HVAC system is situated at MagicBox, a real self-sufficient solar house with a monitoring system. Day
ahead prediction of HVAC power consumption will remarkably enhance the Demand Side Management
techniques based on appliance scheduling to reach defined goals. Several multi step prediction models,
based on LSTM neural networks, are proposed. In addition, suitable data preprocessing and arrangement
techniques are set to adapt the raw dataset. Considering the targeted prediction horizon, the models
provide outstanding results in terms of test errors (NRMSE of 0.13) and correlation, between the temporal
behavior of the predictions and test time series to be forecasted, of 0.797. Moreover, these results are
compared to the simplified one hour ahead prediction that reaches nearly optimal test NRMSE of 0.052
and Pearson correlation coefficient of 0.972. These results provide an encouraging perspective for real-

time energy consumption prediction in buildings.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, there is an increasing concern in the society for the
correct consumption and use of energy. This phenomenon has mo-
tivated the development of new technologies turning into real sci-
entific challenges. One of the main problems in this context is to
find a suitable equilibrium between the energy consumption and
its generation. Unlike the ideal scenario of constant daily demand,
the existence of load peaks of aggregated consumption in the ac-
tivity hours and valleys with scarce demand (such as the night)
produce undesired demand curves that fits badly with the energy
generation. In short, valleys produce energy leaks (although it can
be reduced with the use of storage strategies) because of the low
demand. On the other hand, load peaks provoke unstable scenarios
where demand surpasses instantaneous generation capabilities.

To solve these problems, Demand Side Management (DSM)
strategies [1,2] have been studied and applied. Furthermore, in
the recent years, Smart Grids [3,4] have emerged to aid the DSM
purposes among other utilities. While the electrical grid was only
meant to transport energy from producers to consumers, the Smart
Grid focuses on analyzing users behavior and allows DSM tech-
niques in conventional and distributed electric networks. Diverse
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DSM algorithms that harness the smart grid capabilities have been
proposed. Most of them act as appliance controllers by means of
operation scheduling with the aim to optimize one or several ob-
jectives, such as Peak-to-Average Ratio reduction, cost minimiza-
tion or peak shaving. In [5], the authors propose a Generic DSM
model, based on genetic algorithms, for residential users to reduce
the Peak-to-Average Ratio, the total energy cost, and the waiting
time of appliances. In addition, several residential load controlling
techniques are described in [6]. It is based on the scheduling and
time shifting of the operation of the loads in order to smooth the
energy demand curve. It was shown how those methods reduce
the energy consumption cost and the Peak-to-Average Ratio. Fur-
thermore, in [7], the authors present simulated and real experi-
ments integrating battery energy storage system (BESS) and Pho-
tovoltaic (PV) generation along with Active Demand-Side Manage-
ment (ADSM) in a grid connected self sufficient house to maximize
the PV energy self consumption. Finally, in [8], DSM techniques im-
plemented by means of swarm intelligence are proposed.
However, the problem described above is too wide to be treated
globally in detail. This paper focuses on the consumption of heat-
ing, ventilation and air-conditioning (HVAC) systems. In the USA,
these systems represent more than 50% of the energy consump-
tion in residential buildings and in China, a sample of 30 buildings
exposed a 68% of residential consumption in average [9,10]. More-
over, knowing the future local consumption of the HVAC could al-
low demand response actions in grid connected systems or self-
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consumption actions if local generation is available. Nonetheless,
the HVAC behaviour can be treated as a time series with certain
periodicity. Therefore, to approach the time series prediction, dif-
ferent algorithms have been applied. For instance, linear regres-
sion models [11], autoregressive, moving average and autoregres-
sive integrated moving average models [12], support vector ma-
chines [13,14] and artificial neural networks [15-18], among others.

In [11], a predictor of the power consumption of an HVAC sys-
tem was implemented to aid the operation of two control strate-
gies. These strategies aim to increase the PV self-consumption and
grid-peak shaving respectively and were developed and assessed
in the frame of a self-sufficient solar house, MagicBox, with inte-
grated BESS, PV generation and monitoring systems. The HVAC pre-
dictor was based on a linear regression model and, as stated by the
authors, the design of more accurate forecasting techniques was
left as future research. The current paper can be seen as a contin-
uation in that direction. Indeed, in this research, a more complex
prediction system of the HVAC power consumption is designed,
implemented and assessed under the same self sufficient house.

In order to design and implement a time series prediction
model, two main factors should be taken into consideration: the
algorithm that suitably fits the precise time series forecasting prob-
lem and the horizon of the predictions. Traditionally, the former
task was mainly faced by means of linear regression [11] and time
series analysis techniques. Regarding the latter approach, in [12],
the authors compared autoregressive, moving average and autore-
gressive integrated moving average for short term load forecasting.
Alternatively, machine learning algorithms have recently gained
popularity due to the increase of the fitness of the results and
their generalization capabilities (among many other advantages).
Support vector machines are an example of a machine learning
technique harnessed to address the time series prediction problem
[13,14,19]. Additionally, artificial neural networks (ANN) have been
used in [15,16]. Moreover, the use of recurrent neural networks
(RNN) is strongly recommended because they are able to retain
and consider the temporal variations of the time series throughout
their feedback connections. More precisely, HVAC power consump-
tion time series denote high periodicity, mainly because of the
daily and seasonal periodic nature of ambient variables and human
habits. This fact justifies the use of RNN as the prediction model
in the context of HVAC power consumption forecasting. In [17],
the authors take advantage of RNNs to develop a model to fore-
cast hourly energy consumption. Finally, in [20], a wavelet packet
decomposition is applied to a wind speed time series. Afterwards,
a one dimension convolutional neural network (non recurrent) is
used to predict the higher frequency components and a convolu-
tional neural network placed before a Long-Short Term Memory
(LSTM) [18] neural network forecasts the lower frequency varia-
tions. The predictions for one step to three steps ahead are com-
pared with other predictors. Additionally, in [21], the authors use
an LSTM neural network for petroleum production forecasting. In
the research presented in this manuscript, LSTM neural networks
are used.

Subsequently, the horizon of the predictions has to be chosen
according to the problem requirements. Short and long term pre-
dictions are the most known time horizons. As aforementioned,
the predictor designed here is thought to aid the DSM techniques
such as scheduling loads. Therefore short term forecasting is the
desirable time horizon for this application. In [22,23], the authors
compare different prediction models to forecast short term load
consumption. In addition, the authors of [24] addressed the HVAC
load short-term prediction problem by means of support vector re-
gression and ANN. The model was preceded by a preprocessing
stage based on correlation analysis, principal component analysis
and wavelet decomposition of the data. Moreover, in [25] a support
vector regression trained by means of a genetic algorithm (GA-SVR)

with wavelet decomposition is established to address short term
and ultra short term in a similar HVAC load prediction context.
However, as the prediction models in [24,25] are not dynamic, they
do not consider the periodicity of the forecasted time series. The
usage of systems with memory states could enhance the accuracy
of the predictions. In contrast, when the application requires larger
prediction horizons, long term forecasts should be considered. An
example of long term forecasting is studied in [26] with the use of
an encoder-decoder based LTSM ANN.

The LSTM neural networks proposed in this paper have been
trained using the backpropagation through time algorithm [27].
Moreover, the Adam optimizer [28] is proposed as the learning
wrapper that remarkably enhances the training process. Adam op-
timizer has been widely used in the literature when dealing with
deep learning architectures [20,26] due to its fast convergence, lit-
tle hyper-parameter tuning and adaptive learning rates for each pa-
rameter using the first and second moment estimates of the gradi-
ent.

The main contribution of this paper is the development and
verification of several models to perform short term forecasts of
the power consumption of HVAC systems in buildings. The pre-
dictor model consists of a stacked LSTM ANN trained by several
data obtained from the aforementioned self-sufficient solar house
MagicBox. The models will output the next day consumption pre-
diction based on the previous day behaviour, being able to re-
tain its temporal dependencies by means of the dynamic nature
of the LSTM ANN. This leads to an enhancement in the preci-
sion of the predictions. More precisely, the three presented models
show strong performance results highlighting test Pearson corre-
lation coefficients around 0.797 and normalized root mean square
error (NRMSE) of 0.13 for the most accurate model. Additionally,
one hour ahead predictions are separately performed and com-
pared to those mentioned before. The prediction of the next hour
of power consumption leads to outstanding Pearson correlation co-
efficient of 0.972 and NRMSE of 0.052 at the cost of reducing the
horizon of the forecasts. These results provide an encouraging per-
spective for real-time energy consumption prediction in buildings.

The remainder of this paper is as follows: Section 2 exposes the
theoretical preliminaries on recurrent neural networks that will
be used throughout this paper. Section 3 is devoted to the de-
sign process. The nature of the utilized dataset is commented, and
the aforementioned self-sufficient house, where the data was mea-
sured, is introduced. Afterwards, the preprocessing and arrange-
ment techniques for the data set are described. Finally, the main
architecture of the RNN models and the three multi step prediction
ahead architectures are presented and analyzed. Section 4 deals
with the implementation environment and the predictor hyper-
parameter optimization. In Section 5 the assessment of the de-
signed models is performed. Finally, Section 6 concludes the paper.

2. Theoretical preliminaries

The main tools utilized in the paper approach are artificial neu-
ral networks (see [29-31]). Indeed, as it is a time series predic-
tion problem, recurrent neural networks (RNN) [32] are selected;
note that this sort of networks excels when the treated problem
involves input and output data with sequential nature.

Within this scenario, let x;, and h,ﬁm) be the input and output

vectors at time step k, and let h;{”}; be the output vector at the

previous instant. In addition, let ®(™) be the activation function of
the mth layer and let W and U be the weight matrices that apply a
linear transformation to x; and hf{’f% respectively. Finally, let b be
a bias vector, that will be used to apply an affine transformation
to the linear transformation W and U. Then, Eq. (1) describes the
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Fig. 1. Computational graph of an LSTM layer. tanh( - ) denotes the application of tanh( - ) to the entries of W x, + Uchy + b, and tanh( - ) applies an hyperbolic tangent to

the entries of the cell state.

behaviour of a multilayer recurrent neural network,
hm™
e
hk
where m € {2,..., M} and M is the number of layers.

The models presented in this paper have been trained by means
of the backpropagation algorithm [33], and more precisely the
backpropagation through time (BPTT) variant [27]. BPTT is a learn-
ing algorithm that extends the backpropagation method to train
RNNs, and is based on the unfolding of the RNN to convert the
recurrent architecture into a multilayer perceptron. Thereafter, the
regular backpropagation method can be applied to the unfolded
RNN. For further details on backpropagation and BPTT algorithms,
refer to [29-31]. Furthermore, in order to improve the results of
these algorithms, the Adam optimizer is used (see [28]).

A typical disadvantage of the BPTT is the vanishing gradient
phenomenon that usually happens when the number 7, of time
steps used to unfold the RNN, is too large. In order to over-
come this difficulty we use a particular type of RNN, namely Long
short-term memory (LSTM) neural networks [18]. LSTM neural net-
works are able to maintain both short and long time dependencies
through its states. It is composed by gates that control the infor-
mation that is stored in the states by filtering the input and output
flows of data. These gates are called forget, input and output gates.
An LSTM unit contains two different states, the hidden state (hy)
and the cell state (ci). The former is analogous to the state of a
regular RNN described in Eq. (1). This state represents the output
value of the LSTM layer set by the output gate. In contrast, the cell
state (c;) is the actual memory that is controlled by the forget and
input gates.

Eq. (2) states the set of computations performed by an LSTM
layer with multiple units. In addition, the computational graph of
the formulas is depicted in Fig. 1.

™ (Wmh™ D 4 UMh™ +b™M)

& (Whx, + UDRY, 1+ bD) M

fk =0 (fok + Ufhk_1 + bf)
iy = o (Wixy + Uihy_; +b;)
0, = 0 (Wox; + Ughy_; + by)
¢, = iy o tanh(Wex; + Uchy_; +by)
Cy = fk 0Ck_1 +Cj,
h, = o, o tanh(cy)

In both, Eq. (2) and Fig. 1 f, i, and o, are the forget, input
and output gates respectively. o and tanh represent the sigmoid
and the hyperbolic tangent activation functions and o denotes the
Hadamard product.

Fig. 2. Frontal view of the MagicBox. The MagicBox is located at the ETSI de Tele-
comunicacién of the Universidad Politécnica de Madrid.

3. Design process
3.1. Data acquisition system

In order to develop the training process of the ANN through the
backpropagation algorithm, a dataset, containing the power con-
sumption records, and several inputs with a remarkable correlation
with the consumption, is required. To assess this task, a dataset
was extracted from a real solar house called http://www.magicbox.
etsit.upm.es/ MagicBox.

The MagicBox is a self-sufficient solar house (see Fig. 2) that
integrates sustainable elements based on renewable energies, self-
sufficiency energetic methods, bioclimatic architecture and recy-
cled construction materials [34]. In addition, it includes Informa-
tion and Communication Technologies to monitor and control the
house power flow. It includes PV generation, electricity storage
through batteries, a set of automated appliances and a connection
to the grid [35]. The PV installation consists of single-crystalline PV
generators that are distributed in four south-oriented surfaces with
different inclinations. The energy is collected in six arrays with a
total nominal power of 7.2kW,. In addition, the electrical system
embodies a battery energy storage system of 36kWh. In a grid-
connected installation, batteries are used to improve the electri-
cal behavior by controlling the maximum consumed and generated
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power at different hours or ensuring the electrical supply when a
grid breakdown occurs.

MagicBox includes typical electrical appliances of a highly elec-
trified home: washing machine, dryer, dishwasher, refrigerator,
cooking appliances, lighting, computers and entertainment appli-
ances. The appliances are integrated in a home automation system,
which allows them to be monitored and controlled by a remote
system [36]. Some appliances involve an instantaneous use because
of the user demand (e.g. lights, TVs, computers) while others can
be time-shifted.

MagicBox was originally designed to participate in the Solar
Decathlon 2005 contest (see [37,38]). Since then, multiple studies
have been developed on it. In [39] an heterogeneous collaborative
sensor network designed to manage the energy performance of the
MagicBox was described. In addition, [36] presented the operation
of a semi-distributed electrical demand-side management system
with the PV generation in order to improve the self-consumption.
Moreover, the optimization of the self-consumption in a system
with the PV generation coupled to a battery energy storage system
and connected to the grid was studied and tested in [11]. Finally,
in [8] a swarm intelligence approach has been implemented for
Demand-Side Management. In this paper, only the HVAC system
and the sensors that measure the different environmental variables
were utilized.

Due to the nature of the problem, the input dataset is strongly
related to the weather. On the one hand, outdoor measurement
variables such as the outdoor temperature [° C], the relative hu-
midity [%] and the irradiance [%] measurements are considered.
These input variables will provide the machine learning system
with an insight of the physical behaviour of the weather. On the
other hand, three indoor variables are included: the indoor CO,
level, the indoor temperature of the house and the reference tem-
perature set by the user to fit the desired indoor comfort tempera-
ture. Ideally, the indoor temperature and the reference temperature
should match. However, the dynamics of the MagicBox and the
outdoor climate conditions will prevent the indoor temperature to
exactly follow the reference value. It should be pointed out that
there were not occupants in the MagicBox during the monitored
period. In conclusion, the RNN will receive the 6 aforementioned
input variables and will output the forecasted power consumption.
This output variable will be provided to the RNN in the format
of target examples of the desired output values during the learn-
ing process. The distributed nodes related to this paper are located
in the electrical box and are directly connected to the tempera-
ture, humidity, CO,, power meters and the meteorological station.
Temperature, humidity and CO, sensors are based on the SCR110-
H from Schneider Electric with a real resolution of 0.1° C for tem-
perature, 0.1% for humidity and 1ppm for CO,. Electric meters are
based on the iEM3155 from Schneider Electric. Additionally, the
HVAC equipment (see [11]) is a two air-to-air electrical reversible
heat pumps from Daikin, corresponding to model FTX25KV1B. Its
main advantages, that have produced an important market pene-
tration, are the high efficiency of the heating and cooling processes
and the fact that both functionalities are joined in the same in-
stallation. The switch between cooling and heating can be readily
performed by inverting the operating cycle with a reversing valve.

In addition to the sensors, a real-time distributed monitoring
system is installed in the MagicBox for its continuous supervision.
The monitoring system is based on an ad-hoc designed embed-
ded system connected through an RS-485 serial bus to several dis-
tributed nodes. The nodes are running a real-time operating sys-
tem which takes care of acquiring all measurements at specific
time frames. Every 10 ms, each node obtains information from all
the sensors to which it is connected. Every second, the monitor-
ing node performs the mean of the last 100 measurements and
stores it internally to be acquired by the main controller through
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data set | ' i
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Fig. 3. Diagram of the design process.

an RS-485 RTU-Modbus protocol. The main controller is based on
an embedded Linux operating system. It is made of a microcon-
troller with a UPS system and an electronic carrier to connect to
the nodes. Every minute, the main controller acquires all mea-
surements stored on the nodes and accumulates them on an in-
ternal SD card. This information is stored together with the date
and time. Moreover, every five minutes the main controller sends
the data stored to the monitoring server. The monitoring server
is in charge of synchronizing all data, performing all conversions
from electrical to physical measurements and running periodic
scripts which process the data and upload them to the monitor-
ing database. A monitoring website has been created to allow re-
searchers and the general public observe the behavior of the Mag-
icBox in real time. All the information presented in this manuscript
is extracted from that website and is accessible to the general pub-
lic. The data obtained to the analysis performed is gathered from
July 2016 until September 2019, although monitoring is still ongo-
ing. The time series dataset is currently composed by more than
1.5 million of samples with 1 min sampling period.

3.2. Data preprocessing

The data, as mentioned in Section 3.1, was obtained from sev-
eral sensors by an automated data acquisition system. This mea-
sured data is in a raw format. Thus, in order to train the RNN, an
appropriate set of preprocessing techniques should be applied to
the original data. Fig. 3 describes the steps and data flow followed
during the training and test processes. More precisely, the normal-
ization, sampling and data split blocks are the data preprocessing
stages described in this section.

The RNN receives, as input, r time series (r = 6) of data, and
generates, as output, s time series (s = 1); each time series is a
vector of length ¢ (representing the number of samples). It should
be pointed out that the RNN also receives the power consumption
in the previous day as input to forecast the next day. Therefore, in
practice, r is actually 7. For superindex i € {1,...,r+s},

X0
x)=| ®)
X
represents the corresponding time series, and subindex k denotes
the discrete time variable, with a sampling period of 1 min. This
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notation will be used in subsequent sections as well. Fig. 3 shows
a description of the data preprocessing process.

The first preprocessing technique considered is data normaliza-
tion. The dataset normalization selected consists of transforming
the original range of the time series into a range between 0 and 1.
More precisely, the preprocessing works as follows: let xlmin denote
the minimal value that x;(k) takes when the time k moves from 1
to ¢. That is,

x = min{x® [k e {1.....}}.

Similarly,
Xx = max{x(” |k e {1,.... ¢}}.

In this situation, the time series x,ii) is normalized as
(i) (i)

XD x®
X = (l;) i) (4)
Xmax — Xpin

In addition to the normalization technique, a data sampling
process is proposed. The main motivation is that the original one
minute sampling period of the data becomes unnecessary for the
problem solving. Therefore, in this paper, an increase of 15 min is
stated. The corresponding value of the new time series will be the
mean of the values of x() in the enlargement period, so that the
information within the 15 min is not lost. More precisely, the fol-
lowing variables are considered: the original discrete time variable
k (see Eq. (3)), which takes values from 1 to ¢ minutes, and a new
time variable, named k*, which takes values from T to nT minutes,
where nT is the greater multiple of T being smaller than ¢; in our
case T = 15 min. So, k = Tk*. Then, the new time series is defined
as

L0 _1

kT
N ®

k=(k*—1)T

The selected sampling period T in the multi step architectures
was set to 15 min. This resolution allows to reduce the number
of samples in the prediction of a day, from 1440 to 96. In order
to simplify notations, in the subsequent text, we denote x; as the
downsampled and normalized time series vector.

Finally, the original dataset A4, is divided into three different
subsets. Agaea 1S

Adata = (Atrain U Aval) U Atest,

where the first two subsets are devoted to the training and dynam-
ical validation of the training respectively, while the third subset
is used to test the final result of the training process. In addition,
due to the sequential nature of our problem, it is crucial that the
mentioned subsets contain ordered data to preserve the temporal
behaviour of the time series. In order to train and test the system,
the size of the described subsets were fixed to 80% for A.in, 5%
for A,,, and 15% for Agest.

3.3. Neural architecture

This subsection is devoted to introduce the recurrent neural
network used to forecast the consumption of the HVAC system. The
generic model will be adapted and optimized along the remaining
sections, and all the subsequent models described throughout this
paper are extensions, or modifications, of this architecture.

Let H be the prediction horizon (H = 96), that corresponds to
one day prediction. The main structure of the proposed model (see
Fig. 4) is formed by two LSTM layers (L; and L,), with N; LSTM
units in Ly and N, in L,, followed by a perceptron layer to output
the corresponding prediction (the selected values for N; and N, are
shown in Section 4). L; and L, consist of the LSTM computational
graph described in Section 2 (see Fig. 1).

i

Dense Layer

AAAAAAAAAAAL

LSTM L1

T

~—

Xk

Fig. 4. Main structure of the proposed model. LSTM layers are building blocks con-
taining LSTM neural networks and dense layer represents a single layer perceptron.

To be more precise, let X denote the matrix

A0 kD
X=x", ... x")= o (6)
D kD
where xl({i) is as in Eq. (3). Furthermore, let x;, denote the kth row
of X, that is
T
X =[x, %] (7)

Ly receives X as input to generate hf{” as output (see Eq. (2) and
Fig. 1). hl({l) is a vector whose length equals the number of units
in the layer (N;). This new vector h,(cl) is then taken as input of
L,. Afterwards, L, generates a new vector, hl(f),
Finally, the non-recurrent fully-connected layer gets h;{z) to derive
the power consumption predictions 1, ...

with length is N,.

’y\k+H-
3.4. Prediction techniques

The main objective of the RNN is to make short term multi step
predictions of the consumption. More precisely, the model will
take previous data in order to forecast the next day. The follow-
ing formula describes the main behaviour of multi step prediction:

. D o) K@
Vienl = Fx b eV b e (8)

Wit1: Tesas - - k—1° k=1

In this subsection, we consider different modifications, of the
main RNN described above, to obtain different multi step predic-
tors. These models are designed using unfolding techniques of the
RNN so that a deeper understanding of the temporal behavior is
achieved.

First multi step prediction approach: MSPM-1

The first approach, referred to as Multi Step Prediction Model 1
(MSPM-1), is to forecast all the values between k+1 and k+ H
at once. Therefore, at each time step, the RNN will receive the
observed input data at that precise time instant and will output
the estimated evolution of the time series for the next 24 h. This
model will require H neurons in the output layer,where H is the



6 R. Sendra-Arranz and A. Gutiérrez/Energy & Buildings 216 (2020) 109952

Uk—r41  Uh—rtH Uk—7+2  Gh—ri1+H
Dense Dense
T (2) T (2)
hk—r hk—T+1
LSTM " LSTM
@ @
T k—T1 T k—74+1
(1) (1)
hk—T hk—T+1
LSTM o LSTM -
RO M
T k—T1 T k—71+1
Xi—7 Xk—7+1

U Ok—1+H  Uer1 UkeH

by T

Dense Dense
i y 1
h”,
—— LSTM > LSTM
<@
k—1
o
k—1
— LSTM o LSTM
T
Xk—1 Xk

Fig. 5. Unrolling of the MSPM-1.

number of future predictions to be forecasted. Thus, each neu-
ron in this non-recurrent layer is responsible of the estimation
of a single time step of the power consumption. The day ahead
prediction is formed by the union of all the outputs of the layer
neurons.

Fig. 5 shows the unrolling of MSPM-1. The variable T represents
the number of past time steps to be considered during the training
stage to perform backpropagation through time algorithm. Notice
that large values of T would produce stronger vanishing of the gra-
dient. Alternatively, in the evaluation and deployment stages, the
predictions are performed in an online way. Thus, in these cases,
T time steps should be elapsed in order to make the first fore-
cast. This unavoidable issue is caused by the fact that the predictor
requires at least a sequence of t samples in order start perform-
ing the estimations. In addition, it should be mentioned that the
model provides not only the value at k + H time step but also pre-
dicts the evolution of the time series between k and k + H. These
values may be useful depending on the precise DSM strategy to be
used afterwards. Therefore, the subsequent prediction model, pro-
poses some modifications to cover those cases that only require
the point estimation y, y.

Second multi step prediction approach: MSPM-2

The second proposed model complements the previous one so
that, at each time step k it only provides the prediction of y;,y. In
fact, it is direct to realize that the predictor MSPM-1 is a general-
ization of MSPM-2. Therefore, it is supported on a simpler struc-
ture that can be used in order to accomplish the short term pre-
diction when just the estimate ., is needed. In some cases, the
time series evolution between k and k + H discrete instants can be
approximated by an interpolation using these extreme values.

Fig. 6 illustrates MSPM-2. In this architecture the output per-
ceptron layer consists of a single neuron. Unlike in MSPM-1, this
predictor uses a multilayer perceptron with 2 layers. This is a hid-
den layer with 20 neurons and the output layer with a single neu-
ron.

Third multi step prediction approach: MSPM-3

Finally, the MSPM-3 is presented. This approach is based on
the encoder-decoder ANN proposed in [40], as well as on the
sequence-to-sequence neural network described in [41]. It has
been widely used in scenarios that require the transformation be-
tween a sequence in one domain to a sequence in another domain.
Some examples are the field of machine translation, such as in
[42], or multi-step time series prediction problems [26] as the one
treated in this work. The architecture is composed by two basic
recurrent layers: the encoder or reader and the decoder or writer.
The encoder is responsible of transforming an input sequence of
data into a fixed-length vector representing the whole sequence,

namely, the context (z;). In contrast, the decoder receives the con-
text produced by the encoder and generates the decoded sequence,
which is indeed the output sequence. More precisely, the decoder
uses the latent representation z; as the initial state for its dynam-
ics.

Fig. 7 represents the architecture of the unfolded encoder-
decoder neural network. It can be noticed that in MSPM-3, both
encoder and decoder are LSTM layers. The feedforward dense layer
adapts the decoded sequence to generate the actual prediction.
Moreover, the prediction is used as the input in the next time step
of the decoding process. The input of the decoder at the first de-
coding instant is the true current value of the power consumption
¥y It should be noticed that even though Fig. 7 only depicts the de-
coding of the context at discrete instant k, this decoding procedure
is performed every time step in order to obtain all the predictions
between k+ 1 and k + H.

4. Implementation environment and predictor hyper-parameter
optimization

In order to implement the designed models, a programming
environment and a hyper-parameter selection process has been
fixed. With respect to the programming environment, all the mod-
els were implemented, trained and tested using the Python’s li-
brary Pytorch [43]. The code related to the paper was uploaded to
a Github repository’.

The chosen hyper-parameters to be studied have been: the
number of units and the learning rate «. These are some of
the most relevant features of the RNN structures and the learn-
ing algorithm. On the one hand, the number of units should be
large enough to provide the RNN with an adequate computational
power. In addition, an excess of parameters could produce overfit-
ting with large training times. On the other hand, the learning rate
is responsible of enabling a proper convergence in the backpropa-
gation algorithm as fast as possible. Another important decision to
be taken involves the learning opimizer. In all the models, Adam
[28] optimizer was fixed. Some alternatives to Adam optimizer are
stochastic gradient descent and RMSprop [44]. However, due to its
adaptive learning rate, fast convergence and little hyper-parameter
tuning, Adam is the most used optimizer for deep learning archi-
tectures in the literature [20,26].

Boxplot representation were used to depict the empirical pro-
cess. The x axis of these plots represents the studied hyper-
parameter, and the y axis shows the distribution of the absolute
error of the predictions defined as |yk+H — Vipn| With ke {z,...0—

1 https://github.com/Robolabo/LSTM-HVAC
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for the corresponding model.

Fig. 8 a, compares the impact that the number of units produces
when using the different MSPMs. For simplicity, only the models
with Ny = N, are depicted. In addition, Fig. 8 b, shows the impact
of the learning rate (o) within the designed models. A learning
rate of o =0.001, and Adam optimizer were used when assess-
ing the number of units. Additionally, 30 units in both layers and
Adam optimizer were fixed in order to evaluate the impact of o on
the prediction. In both scenarios, a T of 96 past time steps, corre-
sponding to an entire day, was applied.

Fig. 8 a shows that at least 20 units are required to provide the
RNN with enough computational power. On the contrary, the pre-
dictors with more than 20 units per layer produce a highly similar
absolute error distribution. Therefore, for simplicity, the number of
units per LSTM layer was fixed to 20. Indeed, a large number of
units would imply longer training times and could produce over-
fitting.

In Fig. 8 b, it can be appreciated how, for large values, the pre-
dictions lead to very high errors. For values lower than 0.005, the
absolute errors considerably decrease and distributions tend to be
remarkably similar. A value of o = 0.001 was selected for all the
models in order to obtain a tradeoff between training speed and
stability. Notice that other values of o could have been a feasible
choice as well. Table 1 collects the selected hyper-parameters for
all the prediction models.

5. Results

This section is devoted to the performance evaluation analysis
of the proposed models. For this purpose, several metric compar-
isons will be studied. Moreover, different figures will be displayed
to illustrate the accuracy of the estimations. The training and test-
ing process of the models use the hyper-parameters highlighted in
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Fig. 8. Comparison of models: number of units in (a) and the learning rate («) in
(b). Each boxplot comprises observations ranging from the first to the third quartile.
The median is indicated by a horizontal bar, dividing the box into the upper and
lower parts. The whiskers extend to the farthest data points that are within 1.5
times the interquartile range. Outliers are shown with a red points. A value of @ =
1-10-3 was used to train the models in (a) and a 30 units in both layers were
used in the case of (b). All the assessed predictors used v =96 corresponding to
the previous day and were trained with Adam optimizer. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Absolute Error [W]

Table 1. Moreover, a downsampling of 15 min is carried out by fol-
lowing the guidelines described in Section 3. Firstly, the LSTM ar-
chitectures were trained in order to address the 24 h ahead fore-
cast (see Section 3 for architectural details). Finally, the treated
24 h ahead prediction is compared to the 1 h ahead estimations.
In the evaluation stage, the trained predictors are sequentially
fed with the | — H testing input samples. Thereafter, each predic-

tor produces a set of estimations § = [f/HH,...ill]T. It should be
pointed out that the first T + H predictions are not considered be-
cause the models require 7 input samples to proceed and the fore-
cast is H steps ahead. Secondly, although some predictors estimate
the whole sequence between k and k + H, for a proper comparison
of the models, the assessment was applied only to the estimations
of k+ H at each discrete instant. This decision diverges from the
training phase, in which the minimization of the cost function con-

siders the sample mean of all the output predictions. With this in-
formation in mind, the following assessment metrics will be used:

e The mean squared error (MSE)

- 1 S
MSE(y.y) = I—7_H Z i — Vo)? 9)
k=t+H

o The root mean squared error (RMSE):

1
L Geowp (10)

RMSE@.Y) = [ ——
k=t+H

e The normalized root mean squared error (NRMSE):

1 N 2
17-5171-1 Z <Yk—Yk) (1)

izriH \ Ymax

NRMSE(§, y) =

» The Pearson correlation coefficient (o ):

B -y § - 1)l

v.§ "
0y0y

(12)

where the expected value was approximated by the sample mean
of | — T — H samples. The evaluation of the previously defined met-
rics applied to all the models is arranged in Table 2. Although it
was briefly commented before, all the metrics and figures in this
section denote the fitness of the H steps ahead predictions.

Fig. 9 shows the response of MSPM-1, MSPM-2 and MSPM-3
against the 24 h ahead prediction problem when the test data is
provided. In both Fig. 9 and Table 2 it can be distinguished that
the predictions of all the proposed models provide similar results
in terms of errors, correlation and curve fitting. MSPM-2 slightly
outstands the other models with a NRMSE of 0.130 and correla-
tion coefficient of 0.797 at the cost of predicting just the H-step
ahead value. On the contrary, even though MSPM-1 and MSPM-2
produce inferior estimations in terms of errors and correlation co-
efficient, they can be used in those DSM strategies that require the
consumption during the entire posterior day.

In Fig. 9, it can be observed that the segment of time series to
be forecasted follows two models with noticeably different means
and variances. This issue imposes the modelling of a time series
that behaves differently depending on the discrete time instant
(the time series is highly non-stationary). In fact, MSPM-1 and
MSPM-3 encounter some problems when estimating the first part
of the testing sequence and provide proficient predictions when
the second window of the time series is addressed. On the con-
trary, MSPM-2 is able to approximate more accurately the power
consumption at the beginning of the evaluation but is not able to
fully capture the amplitude of all the peaks in the second part of
the sequence. In addition. it is utterly interesting to analyse the
predictions when the time series behavior is switched (around day
5). In this case, it can be highlighted that there is a transient pe-
riod of time that the LSTM models require in order to realize the
behavioral modifications of the environment and adapt their fore-
casts with the aid of the LSTM inner state dynamics.

To conclude with the verification of the models, a compari-
son between the aforementioned output time series is described.
Fig. 10 depicts the correlation between the predicted and the real
time series for all the treated models. At the top of the figures, the
power consumption distribution of the target time series can be
observed. On the right side, the distribution of the predicted power
consumption appears. The dark purple areas represent a high den-
sity of points and clearer purple areas denote a low density of
samples. The figures support the Pearson correlation coefficient ex-
posed in Table 2. Although there is margin for improvement, the
graphs illustrate a remarkable linear relationship between ground
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Fig. 9. Assessment of MSPM-1 (a), assessment of MSPM-2 (b) and assessment of MSPM-3 (c) when test dataset is provided. As the predictions are 24 h ahead with 15 min
of time resolution, the valid predictions start to be generated at k = T + 96. Although MSPM-1 and MSPM-3 jointly estimate all the values between k +1 and k + 96, only
the estimates J,q¢ are depicted.
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Table 2

Collection of all the model’'s metrics for training and test data set. The shown MSE values correspond to the
normalized targets and predictions time series.

Training Test
Model MSE RMSE[W]  NRMSE Pyg MSE RMSE[W]  NRMSE Pyy
MSPM-1 8.23.103 113.39 0.094 0.795 0.0175 158.75 0.135 0.789
MSPM-2 8.77-1073 110.24 0.091 0.821 0.0170 157.13 0.130 0.797
MSPM-3 9.95.103 117.55 0.113 0.788 0.0174 157.89 0.131 0.782
800 \-’—\ ’\’—\
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ES 600 s
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Fig. 10. Representation of the correlation between the model's predictions and the target time series. (a) MSPM-1's predictions. (b) MSPM-2’s predictions. (c¢) MSPM-3's
predictions. The darker means a higher density of samples in an area and clearer regions denote a low density of samples. Although MSPM-1 and MSPM-3 jointly estimate

all the values between k+ 1 and k + 96, only the estimates J;,q¢ are depicted.
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Fig. 11. Comparison of the predictions made by the models when the test data set is provided. As the predictions are 24 h ahead with 15 min of time resolution, the
valid predictions start to be generated at k = v + 96. Although MSPM-1 and MSPM-3 jointly estimate all the values between k+ 1 and k + 96, only the estimates ;95 are

depicted.

truth time series and estimated time series. Notice that a perfect
linear relationship would imply that [py ¢ = 1.

Fig. 11 jointly depicts the 24 h ahead predictions of all the mod-
els in a single graph for a clearer comparison of the forecasts.

Moreover, Fig. 12 shows the predictions of the models paying
attention to a four day window to deeply appreciate the fitting of
the time series. MSPM-2 generates outstanding predictions, being
able to mainly capture the target time series with low delay. On
the contrary, MSPM-3 produces delayed responses only in the ris-
ing intervals. However, the delay is still much lower than the pre-
diction horizon. MSPM-1 exposes a balanced behavior, with pre-
dictions that are not highly delayed with respect to the targets but
are unable to fully capture the peak consumption.

Finally, the predictors have been separately trained for the
one step ahead forecasting problem. The aim is to compare the
impact of the prediction horizon on the estimations. Fig. 13
shows the 1 h step ahead predictions of all the proposed mod-
els when test subset is provided. The fitness of the estimations
in this case is nearly optimal. Moreover, in some intervals, the
responses are denoised versions of the original time series to be
forecasted.

Additionally, Table 3 gathers the analysed metrics applied to the
test subset in the frame of the one hour ahead prediction problem.
MSPM-2 is slightly superior than the other predictors, highlighting
a Pearson correlation coefficient of 0.972 and NRMSE and RMSE of
0.052 and 62.47 respectively.
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are depicted.

1200
—— Test targets

—— Predictions MSPM1
1000

800

600

Power [W]

400

200

—— Predictions MSPM2
—— Predictions MSPM3

11
days

13 15 17 19

Fig. 13. One hour ahead predictions of the models when test subset is provided. As the predictions are 1 h ahead with 15 min of time resolution, the valid predictions start
to be generated at k = 7 + 4. Although MSPM-1 and MSPM-3 jointly estimate all the values between k + 1 and k + 4, only the estimates 4 are depicted.

Table 3

Collection of all the model’s metrics for test data when predict-
ing one hour ahead. The shown MSE values correspond to the
normalized targets and predictions time series.

Model MSE RMSE[W]  NRMSE  p,;

MSPM-1 3.17-1073 67.25 0.055  0.965
MSPM-2 2.7-10°3 62.47 0052 0972
MSPM-3 3.16-10-3 67.42 0.056  0.966

The results obtained in the 1 h ahead prediction are superior to
those in the case of the 24 h forecast. This performance degrada-
tion is feasible due to the fact that the prediction horizon is much
higher. On the one hand the use of the former forecasting scheme
will allow the planning of remarkably accurate DSM strategies in
very near future scenarios. On the other hand, the latter predictor
allows the development of longer term DSM scheduling at the cost
of having higher uncertainty due to the increased error in the pre-
dictions. Depending on the precise DSM application requirements,

a tradeoff between the one hour ahead and one day ahead must
be considered.

6. Conclusion and future lines

The forecast of the power consumed by an HVAC system lo-
cated in a self sufficient solar house was the addressed prob-
lem. The house, called http://www.magicbox.etsit.upm.es/ Mag-
icBox and located at the Escuela Técnica Superior de Ingenieros de
Telecomunicacién (ETSIT) of the Universidad Politécnica de Madrid
(UPM), is equipped with a monitoring system to acquire the data.
The main goal was to predict the next day of the power time series
given the previous day to feed a future demand-side management
system. To accomplish this task several prediction models were
proposed. These models are RNNs based on LSTM layers to capture
the sequential nature of the time series. The designed RNNs were
implemented with the ANN Python’s library Pytorch. The model
with highest accuracy of the predictions reaches a test Pearson
correlation coefficient of 0.797 and normalized root mean square


http://www.magicbox.etsit.upm.es/

12 R. Sendra-Arranz and A. Gutiérrez/Energy & Buildings 216 (2020) 109952

error (NRMSE) of 0.13. In addition to the 24 h ahead prediction,
a simplified problem of hourly prediction is treated. With the re-
duction of the prediction horizon the models generate estimations
that lead to outstanding results supported by a test Pearson corre-
lation coefficient of 0.972 and a normalized root mean square er-
ror (NRMSE) of 0.052. A balance between error of the forecasts and
prediction horizon must be fixed by the requirements of the DSM
strategies that harness the proposed models. During the training
and testing process, it was observed that the input variables CO,
and relative humidity have little impact on the performance of the
models. This issue was not deeply explored, and thus, a rigurous
study of importance of each input variable towards predicting the
power consumption of HVAC systems may enhance the accuracy of
the estimations.

Other research lines can be proposed as future work. Firstly, the
integration of the developed predictor into a distributed DSM sys-
tem to be controlled as a deferable load is the main extension to
this work to be considered in the future. Subsequently, the im-
provement of the predictors to gain accuracy in the 24 h ahead
forecast or the increase of the prediction horizon to longer term
scheduling can be studied. The development of a non-Markovian
multi-step ahead predictor to properly model time series that do
not satisfy the Markov property is an appealing topic. More pre-
cisely, it would receive not only the hidden and cell states at the
current iteration but also the states at k—2,...,k — L. Addition-
ally, the mixture between convolutional neural networks and LSTM
networks in a single architecture or the use of temporal convolu-
tional networks can be addressed. Other non-architectural ideas to
increase the performance of the models is to accomplish more ef-
ficient hyper-parameter tuning strategies such genetic algorithms
or Bayesian optimization or, as already mentioned, to assess the
importance of each variable in the process of predicting the power
consumption. Furthermore, the exploration of time series data aug-
mentation with generative adversarial networks is also an impor-
tant future research line to considered. Finally, a better solution
to deal with the behavioral changes in the time series exposed in
Section 5 can be analyzed. Differentiation of the power consump-
tion time series aiming to convert it into a stationary process can
be assessed in order to solve the issue. Alternatively, the creation
of a pool of prediction models and an algorithm that decides which
predictor in that set should be used depending on the time inter-
val should also be explored.
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