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Abstract. The emergence of communication through evolutionary com-
putation in a swarm of initially non-communicative robots is a highly
complex research topic that has vastly captured the attention in the
swarm robotics field. In this paper, we empirically study the emergence
of communication as a result of an evolutionary algorithm in a swarm of
simulated robots with the objective of solving an orientation consensus
problem. Specifically, the consensus is reached provided that the head-
ing orientations of the robots point into the same direction. The robots
are controlled by Continuous-Time Recurrent Neural Networks whose
parameters are evolved using a genetic algorithm. Once evolution is con-
cluded, we assess the performance and scalability of the swarm behavior
and the type of communication that emerged. The study is accomplished
by means of an statistical analysis of the communication variables pro-
duced in a sample of 50 independent simulations. The conducted analysis
suggests that the emerged communication is situated, meaning that both
the message content and its associated context about the environment
are informative and useful in the communication. Very interestingly, the
environment context is the only piece of information actually relevant for
reaching the consensus. On the contrary, the abstract message content
is crucial for drastically reducing the rotation speed of the robots after
the orientation consensus is achieved.

Keywords: Swarm Robotics · Orientation Consensus · Evolutionary
Robotics · Emergence of Communication

1 Introduction

In Swarm Robotics (SR) [15], multiple simple and homogeneous robots interact
and coordinate locally to solve cooperative problems. From the simple behaviors
of each robot and their local and decentralized interactions can emerge utterly
complex collective behaviors. A great exponent is the emergence of communi-
cation in a swarm of initially non-communicative agents. Generally, the emer-
gence of communication in swarm robotics is explored along with the field of
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
I. Maglogiannis et al. (Eds.): AIAI 2023, IFIP AICT 676, pp. 515–526, 2023.
https://doi.org/10.1007/978-3-031-34107-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34107-6_41&domain=pdf
http://orcid.org/0000-0003-2746-8677
http://orcid.org/0000-0001-8926-5328
https://doi.org/10.1007/978-3-031-34107-6_41


516 R. Sendra-Arranz and Á. Gutiérrez

Evolutionary Robotics [11]. Multiple studies have investigated from an empiri-
cal perspective the emergence and origins of communication in swarm robotics
using evolutionary algorithms (see e.g. [2,12,20]). According to [18], there are
two main types of emergent communication. Abstract Communication [2,9,20] is
a type of communication in which only the message content carries information.
The environmental context associated to the message is either not processed or
not relevant in the emerged communication. In contrast, Situated Communica-
tion [7,8,17] refers to communication scenarios in which both the message con-
tent and its corresponding environmental context carry information within the
communication. Environmental context can be, for instance, the signal strength
or the direction from where the message was received.

In this paper, we study the emergence of communication in simulated swarms
of robots in an orientation consensus problem, in which all the robots in
the swarm have to point to the same direction. The robot’s controller is a
Continuous-Time Recurrent Neural Network whose parameters are evolved using
a genetic algorithm. We use the minimal IR-based communication system pro-
posed in [17] as the communication system that the agents can use to complete
the task. At the beginning of the evolution, the behavior of the robots is non-
communicative. At some point in evolution, the semantics of the communication
and their respective processing should emerge as a useful aspect of the robot’s
behavior for reaching the orientation consensus. An exhaustive post-evolution
statistical analysis is accomplished using multiple independent simulations, with
the aim of discovering the type of semantics that emerged as a result of the
artificial evolution.

The structure of this document is as follows. Section 2 provides an overview
of previous works available in the literature related to the orientation consensus
task. Section 3 describes the main building blocks used in the experiment. Addi-
tionally, Sect. 4 presents the orientation consensus experiment and Sect. 5 shows
the results and the emerged communication once evolution is ended. Finally,
Sect. 6 concludes the paper.

2 Related Work

Orientation consensus is an important cooperative task as it is one of the pillars
of flocking behaviors according to Reynolds’ rules [14]. Therefore, the problem
of heading alignment has been principally studied and assessed in the context of
flocking experiments. Heading alignment is addressed in [21] for a self-organized
flocking in swarms of mobile robots using a virtual heading sensor. Each robot
senses its own orientation with respect to the North reference, using a digital
compass, and broadcasts it to its neighborhood. In [5], the authors propose
heading alignment behavior in which a only subset of robots, called informed,
are aware of a common objective direction. Informed agents communicate the
goal direction to its neighboring robots while uninformed agents relay the average
incoming message from its vicinity. Robots correctly achieve alignment with their
heading pointing to the goal direction. The swarm members know an absolute
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reference throughout measuring the light intensity emitted by a light source.
In a more recent work, the authors of [13] successfully evolve neural controllers
for flocking behaviors. Their fitness is composed by cohesion, separation and
alignment terms. Focusing on alignment, robots have an alignment sensor that
measures its orientation relative to the average orientation of its neighborhood.
In [8], an evolutionary algorithm optimizes the parameters of a recurrent neural
network. The emerged behavior was a situated communication because it did
not harness the message information itself but the physical conditions of the
communication. The orientation consensus is not only a highly relevant behavior
in terrestrial swarms of robots but also in underwater environments (see e.g. [16,
19]), where the coordinated navigation must be precise and robust.

3 Materials and Methods

3.1 The Robots and the Communication System

In this paper, we solve the orientation consensus problem using a simulated
swarm of static robots placed in a flat square arena. The set of robots is denoted
as R. As navigation is not required, robots are seen as static point particles,
represented by a position xr and a heading orientation θr. Even though robots
cannot move, they are able to rotate along their center of mass in order to alter
their heading orientation.

The robots can communicate and cooperate among them to solve the pro-
posed task by using the communication system proposed in [17]. It is an IR-based
minimal communication system with a local and constrained communication
range of 80 cm. Using this system, the robots can only perceive a single mes-
sage at each time step of the simulations from one of four possible discretized
orientations. The received information not only comprises the abstract message
content but also the relevant context information about the environment (e.g.
the signal strength of the received signal or the orientation from where it was
sensed). The robot’s controller, which is fed by both the received message and its
associated context, elaborates a new two-dimensional message to be broadcasted
using the communication transmitter. Before sending the message, it is subject
to a quantization mapping that converts the raw message into one symbol in the
set C defined in Eq. 1.

C =
{

0,
1

K − 1
, . . . ,

K − 2
K − 1

, 1
}M

(1)

where M is the dimension of the transmitted message. In this paper, we fix the
values of M = 2 and K = 4, leading to 16 possible two-dimensional symbols.

At the reception side, a message from another robot can be perceived from
one of 4 possible IR receivers located at different orientations of the robot perime-
ter. Thus, the robot can know the relative orientation from where the message
was received among the discretized values in the set {θr, θr + π/2, θr + π, θr +
3π/2}. The communication system of the robots can be either in send mode,
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transmitting their own created message, or in relay mode, by emitting a copy of
the message received from other robots. This communication state can be con-
trolled by the robot through the binary signal MODE. If this signal is 1 then
the robots enters the send mode. Otherwise, the robot is in relay mode provided
that MODE is zero.

3.2 Continuous-Time Recurrent Neural Networks

We use a Continuous-Time Recurrent Neural Network (CTRNN) [1] as the model
to control the robot actions. CTRNNs are artificial neural networks with feed-
back connections that operate in continuous time. The employed neuron model
is the rate model [3] whose single neuron dynamics are defined in Eqs. 2 and 3.

τm
∂vk(t)

∂t
= −vk(t) + Ik(t)

uk(t) = fk (vk(t) + βk)

⎫⎪⎬
⎪⎭ (2)

Equation 2 depicts the single neuron’s voltage (vk(t)) and activation (uk(t))
dynamics. βk and fk(·) are the neuron’s bias and activation function, respec-
tively. In addition, τm is the neurons time constant. Ik(t) is the total current fed
to the neuron’s soma which is calculated as in Eq. 3,

Ik(t) =
∑

i∈Nk

wkiui(t) +
∑

j∈N φ
k

wφ
kjφj(t) (3)

where wki is the weight of the synapse connecting pre-synaptic neuron i with
post-synaptic neuron k and wφ

kj denotes the weight of the synapse between the
j-th input and neuron k. φj(t) is the j-th input signal being fed to the CTRNN
and Nk and N φ

k are the sets respectively comprising the pre-synaptic neurons
and pre-synaptic inputs to neuron k.

3.3 Genetic Algorithm

A Genetic Algorithm (GA) [6] is used to evolve the parameters of the CTRNN
models that define the behavior of the agents. GA is a biologically inspired
population based optimization algorithm that mimics how natural selection and
survival of the fittest processes work in nature. A population of candidate solu-
tions, namely individuals, genotypes or chromosomes, are updated with the aim
of maximizing some performance score defined by a fitness function. Using the
evaluated fitness value associated to each genotype, a set of genetic operators are
sequentially applied to the overall population in order to generate the population
of the next generation or iteration of the GA. In this paper, we use a Gaussian
mutation operator that applies a Gaussian noise with a given standard deviation
to the real-valued genes with a small probability of mutation. Additionally, the
tournament selection [10] is used as the operator to choose which genotypes are
used as parents to create the new generation. Finally, the BLX-α operator [4] is
the crossover method.
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4 The Experiment

4.1 Description of the Experiment

We address the problem of orientation consensus in swarms of robots. By ori-
entation consensus we refer to the task in which all the robots in the swarm
have to point to the same direction. Thereafter, the orientations of all robots
θr(t) must converge to the same value for reaching the best performance. For
this aim, the swarm of robots is static, so that the positions of the agents are
fixed during the simulations. The robots can only modify their heading orien-
tations by means of rotation movements, either clockwise or counterclockwise,
at an angular speed modulated by their corresponding neural controller. Robots
do not have access to any absolute sensing reference, such a light source or a
compass, that would utterly ease the orientation consensus achievement. Agents
must infer the orientation of their neighbors relative to its own orientation merely
using the minimal communication system exposed in Sect. 3.1, which makes it a
challenging experiment.

At the beginning of each simulation, the positions xr are randomly sam-
pled with a random spatial graph initialization that guarantees that there are
no isolated nodes. Heading orientations are also randomly initialized. During
evolution, every simulation is executed 600 time steps with swarms of 10 robots.

4.2 Fitness Function

The fitness function is composed by two terms that are merged in a multiplicative
way. The fitness score of a single agent r at time step t is shown in Eq. 4.

f(t, r) =
(

1 − min{2π − |θr(t) − θ(t)|, |θr(t) − θ(t)|}
π

)
· (1 − |awr(t)|) (4)

where the first term measures the orientation deviation or misalignment of the
robot with respect to the mean orientation of the swarm formulated in Eq. 5.

θ(t) = arg

(∑
r∈R

ejθr(t)

)
(5)

Thereafter, the first term in the product of Eq. 4 will linearly increase as
the orientation of the robot r tends to the mean orientation of the swarm. The
maximum value of this term corresponds to the scenario in which the orientation
consensus is reached. The second part of the fitness function rewards robots for
reducing their rotation velocity. The partial fitness of this term will rise as the
absolute value awr, which is the signal that controls the speed and sense of
rotation, is diminished.

The function f(t, r) computes the fitness for one robot and at an specific time
instant. Therefore, to obtain the total fitness score resulting from an evaluation
of T time steps and a swarm of R robots, Eq. 6 is applied.
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Ftot =
1

R T

T∑
t=1

∑
r∈R

f(t, r) (6)

4.3 Neural Controller

Figure 1 shows the CTRNN architecture that defines the behavior of the robots.
It is composed by the input layer of dimension 7, two hidden layers, called H1 and
H2, of 10 neurons and the output ensemble with 4 neurons. Even though it is not
shown in the figure for the sake of simplifying the diagram, there are some synapses
joining the output layer with H1. These feedback connections are chosen randomly
only once at the beginning of evolution and are the same for all the population
genotypes. The total amount of these backward connections is 12, which is a 30%
of the maximum number of connections between these two layers.

Input Layer

Hidden Layer H1

Hidden Layer H2

Output Layer

awr aTX aMODE

(
cos(θRX)
sin(θRX)

)(
cos(θTX)
sin(θTX)

)
mRXMODE

Fig. 1. CTRNN architecture used for controlling the robots. Even though it is not
shown in the figure for the sake of simplifying the diagram, there are some synapses
joining the output layer with H1. These feedback connections are chosen randomly only
once at the beginning of evolution and are the same for all the population genotypes.

The input layer comprises the relevant signals from the communication
receiver of the robot. mRX is the two-dimensional vector that contains the
received message from the agent’s neighborhood at the current time step. Addi-
tionally, MODE is the binary signal, described in Sect. 3.1, that decides the
operation mode of the communication system of the robot. θTX and θRX are the
discretized orientations from where the message was transmitted and received,
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respectively, which are relative to the corresponding heading orientations of the
sender and the listener robots. The output neurons are split into three layers.
Firstly, aMODE ∈ [0, 1] is the signal used to generate the new state of MODE. It
is subject to a post-processing step that converts it to a value of 0 or 1 by using
a Heaviside or step function. Additionally, aTX ∈ [0, 1]2 is the new message to
be broadcasted if MODE = 1. awr ∈ [−1, 1] is the signal that directly controls
the speed and sense of the rotation of the robots. The activation function of all
the neurons is the sigmoid function, except for the output neuron generating the
signal awr, that employs the hyperbolic tangent function.

The genetic algorithm evolution lasts 1000 generations and the population
is composed of 100 individuals. Among these 100 individuals, the 2 best per-
forming genotypes are directly selected as elites every generation. It evaluates
in 5 independent trials or simulations the fitness of each individual in order to
slightly reduce the variance of the estimation. The probability of mutating a
CTRNN parameter is 0.05 while the probability of recombining two genotypes
to produce two children individuals is 0.9. A tournament selection is used with a
tournament size of 3 and a value of α = 0.5 is used in the BLX-α crossover. The
genetic algorithm evolves the weights, neuron biases and membrane time con-
stants of the CTRNN. These parameters are bounded as follows: wij ∈ [−5, 5],
βi ∈ [−2, 2] and τi ∈ [0.3, 32], for any neurons i and j.

Fig. 2. Frames of a simulation of the orientation consensus experiment. Blue dots
depict the robots in the swarm and red arrows show the orientations of the agents.
(Color figure online)
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5 Results

The evolved agents successfully solve the task of orientation consensus as it
can be observed in Fig. 2, where snapshots of the simulation at different time
steps are sketched. Blue balls represent the robots in the swarm and red arrows
illustrate their heading orientations. The swarm of robots successfully reaches the
orientation consensus at time step 100. For further time instants the consensus
is correctly maintained, albeit some slight variations of the consensus value can
be noticed.

Fig. 3. (a) Temporal evolution of the orientation of the robots in a simulation with
swarm size of 20. Each curve corresponds to the orientation of one of the agents. (b)
Temporal evolution of the orientation of the robots in a simulation with any communi-
cation variable inhibited (black) and with the message content inhibited (red). Curves
in each color represent the orientations of the robots in the swarm in the corresponding
simulation conditions. In both figures, the orientation range of [0, 2π) is extended to
the set of real numbers merely for visualization purposes. (Color figure online)

Figure 3a displays an example of the results in a simulation with 20 robots.
Each curve represents the evolution of the orientation of the robots. After a tran-
sient period of about 100 time steps, the robots tend to reach the orientation
consensus by matching their heading direction with the orientation of its neigh-
borhood. Even though consensus is approximately fulfilled, robots still rotate
with very low angular speed in order to preserve orientation agreement. This
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residual rotation can be observed in the figure as the slope in the orientations of
the robots, albeit this slope is merely about 0.01 radians per time step.

We now assess the scalability of the evolved system. For this aim, we intro-
duce the misalignment metric defined as in Eq. 7,

Mθ(t) =
1
R

∑
r∈R

min
{|θr(t) − θ(t)|, 2π − |θr(t) − θ(t)|} (7)

which essentially measures the mean orientation deviation of each robot with
respect to the mean orientation of the swarm. The optimal value of this metric
is zero, corresponding to a perfect heading orientation consensus. The mean
orientation θ was already formulated in Eq. 5.

Fig. 4. Temporal evolution of the misalignment metric (see Eq. 7) distribution using 50
simulation trials and diverse swarm sizes. The darker curves represent the median of the
misalignment using all 50 collected samples. Alternatively, the clearer areas indicate, at
each time instant, the first and third and quantiles. In (a), the scalability of the system
is assessed by increasing the swarm size from 3 robots up to 50 robots. On the contrary,
(b) studies the relevance of each controller input related to the communication. Each
curve represents the evolution of the orientation misalignment when a different signal
inhibited or nullified.

Unlike the results shown in Fig. 3a, that uniquely represent one sample that
could be biased, for the scalability evaluation we use a sample of 50 independent
simulations. Thereafter, Fig. 4a illustrates the performance with diverse swarm
sizes and using the 50 samples to build each curve. At each time instant, the
darker curves denote the median value of the misalignment metric across the
50 simulations. Moreover, the shadow areas are delimited by the first and third
quantiles. As the swarm size increases, the time elapsed before convergence to
the consensus is increased. Additionally, the convergence value or steady state
misalignment slightly grows as the swarm size scales. However, the consensus is
approximately fulfilled even in the worst case scenario of 50 robots and consid-
ering the sparsity and low connectivity degree of the swarm due to the local and
constrained IR communication.
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The emerged communication semantics are also analysed. Figure 4b shows
the misalignment evolution when different variables are inhibited or nullified.
The deletion of mRX , θRX and θTX are considered and compared to the results
without inhibition. The state of the communication (variable MODE) was not
studied because we observed that all the robots remain always in the send mode.
The curves in the figure indicate that θRX and θTX are both crucial for solving
the problem. On the contrary, the inhibition of mRX leads to an equivalent mis-
alignment evolution compared to the normal conditions. Therefore, apparently,
this fact suggests that the message content by itself is not relevant for reaching
the orientation consensus.

However, Fig. 3b provides a different perspective that refutes the previous
statement. It compares the temporal evolution of the orientation for a single
simulation. Black curves represent the heading orientations of the robots in the
trial with normal conditions and, alternatively, red curves depict simulations
with mRX nullified. Even though the inhibition of the message content is not
significantly relevant for the consensus itself, it is clearly used for the reduction
of the rotation speed of the robots once consensus is reached. This property is
not reflected in the misalignment metric and, thus, Fig. 4b incorrectly categorizes
mRX as an irrelevant signal.

Fig. 5. Proportion estimates and 95% confidence intervals of the times each symbol is
transmitted conditioned to the status of pairwise communication.

To conclude the post-analysis of the emerged communication, Fig. 5 deep-
ens into the semantics or meanings of the transmitted symbols. It depicts the
estimate of the proportion of times that a robot sends each symbol message
when pairwise orientation consensus between sender and listener robots is ful-
filled. The CTRNN only generates the symbols (0, 0) and (0.33, 0.33) among the
16 available symbols and, thus, only those symbols are shown in the figure. In
addition to the point estimates, the plot additionally illustrates the confidence
intervals with 95% of confidence level and using the results from 50 indepen-
dent trials. When pairwise orientation consensus is reached, the symbol 0.33
is mostly generated. Alternatively, when robots are not aligned, there is not a
statistically significant difference in the proportion of times that each symbol is
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generated. This information matches with the observations of Fig. 3b, indicating
the relevance of the message once the consensus is achieved.

6 Conclusions

In this paper we studied the emergence of communication in swarm robotics in an
orientation consensus problem. The simulated static robots, that are controlled
by CTRNN neural networks evolved using a genetic algorithm, must coordinate
with the goal of pointing into the same direction. The simulated robots can
use the minimal IR-based communication system previously proposed in [17] for
solving the proposed task. After the artificial evolution, a statistical analysis was
carried out to assess the performance, scalability and emergent communication of
the swarm of robots. The results demonstrate that the robots correctly reach the
desired orientation consensus with low error and good scalability. Moreover, the
assessment suggests that the emergent communication is a situated communica-
tion in which both the pure message and the environmental context are highly
relevant. Specifically, the context is the only critical information for reaching the
consensus itself. Nonetheless, even though the message seems to be irrelevant
for the consensus achievement, it is highly important for the reduction of the
rotation speed once the consensus is fulfilled.
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21. Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile
robot swarms. Swarm Intell. 2(2), 97–120 (2008)

https://doi.org/10.1007/978-3-030-00533-7_2
https://doi.org/10.1007/3-540-44811-X_38
https://doi.org/10.1007/978-3-540-30552-1_2
https://doi.org/10.1007/978-3-540-74913-4_40

	Emergence of Communication Through Artificial Evolution in an Orientation Consensus Task in Swarm Robotics
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 The Robots and the Communication System
	3.2 Continuous-Time Recurrent Neural Networks
	3.3 Genetic Algorithm

	4 The Experiment
	4.1 Description of the Experiment
	4.2 Fitness Function
	4.3 Neural Controller

	5 Results
	6 Conclusions
	References




