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Abstract. This article presents an experiment which investigates how collaboration in a group of simple reactive
robots can be obtained through the exploitation of local interactions. A test-bed experiment is proposed in which
the task of the robots is to pull sticks out of the ground—an action which requires the collaboration of two robots
to be successful. The experiment is implemented in a physical setup composed of groups of 2 to 6 Khepera robots,
and in Webots, a 3D simulator of Khepera robots.

The results using these two implementations are compared with the predictions of a probabilistic modeling
methodology (A. Martinoli, A. Ijspeert, and F. Mondada, 1999, Robotics and Autonomous Systems, 29:51–63, 1999;
A. Martinoli, A. Ijspeert, and L. Gambardella, 1999, in Proceedings of Fifth European Conference on Artificial Life,
ECAL99, Lecture Notes in Computer Science, Springer Verlag: Berlin, pp. 575–584) which is here extended for the
characterization and the prediction of a collaborative manipulation experiment. Instead of computing trajectories
and sensory information, the probabilistic model represents the collaboration dynamics as a set of stochastic events
based on simple geometrical considerations. It is shown that the probabilistic model qualitatively and quantitatively
predicts the collaboration dynamics. It is significantly faster than a traditional sensor-based simulator such as Webots,
and its minimal set of parameters allows the experimenter to better identify the effect of characteristics of individual
robots on the team performance.
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Using these three implementations (the real robots, Webots and the probabilistic model), we make a quantitative
investigation of the influence of the number of workers (i.e., robots) and of the primary parameter of the robots’
controller—the gripping time parameter—on the collaboration rate, i.e., the number of sticks successfully taken out
of the ground over time. It is found that the experiment presents two significantly different dynamics depending on
the ratio between the amount of work (the number of sticks) and the number of robots, and that there is a super-
linear increase of the collaboration rate with the number of robots. Furthermore, we investigate the usefulness of
heterogeneity in the controllers’ parameters and of a simple signalling scheme among the robots. Results show that,
compared to homogeneous groups of robots without communication, heterogeneity and signalling can significantly
increase the collaboration rate when there are fewer robots than sticks, while presenting a less noticeable or even
negative effect otherwise.

Keywords: collective autonomous robotics, swarm intelligence, collaboration, sensor-based simulation,
probabilistic modeling

1. Introduction

Swarm Intelligence (SI) (Beni and Wang, 1989) is
an innovative computational and behavioral metaphor
for solving distributed problems, that takes its inspi-
ration from the biological examples provided by so-
cial insects—ants, termites, bees, and wasps—and by
swarming, flocking, herding, and shoaling phenomena
in vertebrates (Bonabeau et al., 1999). The abilities of
such systems appear to transcend the abilities of the
constituent individual agents. In most biological cases
studied so far, the robust and capable high level group
behavior has been found to be mediated by nothing
more than a small set of simple low level interactions
between individuals, and between individuals and the
environment. The SI approach emphasizes distributed-
ness and exploitation of direct (robot-to-robot) or in-
direct (via the environment) local interactions among
relatively simple agents.

The main advantages of the application of the SI
approach to the control of a group of robots are three-
fold: first, scalability: the control architecture is kept
exactly the same from a few units to thousands of units;
second, flexibility: units can be dynamically added or
removed, they can be given the ability to reallocate and
redistribute themselves in a self-organized way; third,
robustness: the resulting collective system is robust not
only through unit redundancy but also through the unit
minimalistic design (Boehringer et al., 1995). Although
a formal and quantitative definition of minimalism has
yet to be defined for collective systems, minimalistic
design in SI implies an effort to keep the resources for
computation, sensors, actuatuors, and communication
as low as possible for each unit, while aiming at having
an as smart as possible group behavior.

In the last few years, the SI control principles have
been successfully applied to a series of case stud-
ies in collective robotics: aggregation (Beckers et al.,
1994; Martinoli, 1999; Martinoli et al., 1999a) and
segregation (Holland and Melhuish, 1999), exploration
(Hayes et al., 2000), collaborative transportation (Kube
and Bonabeau, 2000), work division and task alloca-
tion (Krieger and Billeter, 2000), and self-assembling
(Hosokawa et al., 1998; Yoshida et al., 1999). All these
works have been performed using groups of 1 up to 12
simple, autonomous real robots, exploiting local com-
munication forms among teammates (implicit, through
the environment, or limited explicit, wireless commu-
nication), and fully distributed control. However, the
lack of rigorous, scalable methodologies for designing
and analyzing such fully distributed robotics systems
has, for the moment, prevented a more extensive appli-
cation of the SI approach to collective robotics. There
are indeed many applications such as traffic regula-
tion (Wang and Premvuti, 1995), waste cleaning (Gage,
1995; Parker, 1998), surveillance (Everett et al., 1993),
collective navigation (Mataric, 1994; Balch and Arkin,
1998), collaborative mapping (Yamauchi, 1999), or for-
aging (Mataric, 1994), which, so far, have been car-
ried out using approaches which can not be classi-
fied as SI (either because they made extensive use of
global communication, they had centralized control, or
used sophisticated sensors based on global references),
and for which, we believe, the SI approach would
be very well suited because of the advantages cited
above.

This article aims at contributing to research in swarm
intelligence (1) by making a quantitative study of how
collaboration in a group of simple reactive, autonomous
robots can be obtained and controlled through the
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exploitation of local interactions, and (2) by consol-
idating and extending a novel modeling methodology
(Martinoli et al., 1999a, 1999b) for characterizing and
predicting the collective behavior of (large) distributed
robotic systems.

Collaborative Robotics. One way to increase the
solving performance of a robot team without signif-
icantly modifying the robots capacities is collabora-
tion. In particular, when collaboration is obtained with
stigmergic mechanisms (i.e., implicit communication
via the environment) or with simple explicit commu-
nication schemes such as binary signaling, the task ac-
complished by the team can be more complex and its
performance enhanced without loosing autonomy or
increasing in a relevant way the complexity at the in-
dividual level. In some cases (e.g., Johnson and Bay,
1995; Boehringer et al., 1995; Mataric et al., 1995;
Ghanea-Hercock and Barnes, 1996; Khatib, 1999; Ota
and Arai, 1999; Humberstone and Smith, 2000; Kube
and Bonabeau, 2000; Wang et al., 2000) and the experi-
ment presented in this article, the task may even require
collaboration to be successfully performed, with single
robots not being able to carry out the task alone. Such
types of experiments can be defined to be “strictly col-
laborative” (Martinoli, 1999).

The experiment presented in this article is the follow-
up of initial tests presented in Martinoli and Mondada
(1995). The task is to locate sticks in a circular arena
and to pull them out of the ground.1 The task is carried
out by groups of two to six2 Khepera robots (Mondada
et al., 1993) equipped with grippers and capable of
distinguishing the sticks with their frontal sensors. Be-
cause of the length of a stick, a single robot is not
capable of pulling it out of the ground alone, and col-
laboration between two robots is necessary for pulling
a stick completely out. As the robots have only local
sensing capabilities and do not use explicit communi-
cation (except in one experiment), there is no explicit
coordination between robots. Coordination is purely
probabilistic and happens based on local interactions
(see the experiment description in Section 2). The ex-
periment is not intended to represent a real-life appli-
cation but to serve as a case study of the dynamics of
collaboration and as an abstraction of future collabora-
tive robotics applications.

A Prediction Tool for Collective Robotics. One of the
main difficulties in designing efficient robotic teams, is
the problem of characterizing and predicting how the

group behavior is affected by the hardware and software
characteristics of the individuals forming the group.
This is particularly true for large groups of robots con-
trolled in a fully distributed way. As hardware costs are
high and experimenting with real robots is time con-
suming, it is most useful to have prediction tools which
allow one to determine the optimal number of robots
or the optimal control parameters for an optimal team
performance, for instance, before setting all the details
of the experimental set-up. One popular approach is
to use detailed sensor-based simulations which simu-
late as realistically as possible the sensor and actua-
tor characteristics of the robots, including kinematic
noise, as well as the characteristics of the environment.
Although useful, these types of simulation have the
inconveniences that they are time-consuming both to
develop, and to run when the group of robots is large.
In addition, the number of parameters considered by
these types of simulation is so large that it is then diffi-
cult to extract those which really play a crucial role on
the team performance.

In this article, we present a simulation based on
a probabilistic model which is significantly easier to
implement and faster than a sensor-based simulation,
while being able to predict group behavior, in particular
the collaboration rate (the number of successful collab-
orations over time), with the same accuracy. The idea
of the probabilistic model is that, with simple reactive
autonomous robots and a distributed control scheme,
a collective manipulation experiment is essentially a
stochastic process based on simple geometrical con-
siderations. Using the same methodology described
in Martinoli et al. (1999a, 1999b), in which it was used
for the characterization of different clustering experi-
ments with different robotic platforms, the probabilistic
model represents the group of robots as a set of paral-
lel processes which, instead of computing trajectories
and sensory information, represent actions such as grip-
ping a stick or encountering another robot as stochastic
events.

Compared to previous applications of the method-
ology (Martinoli et al., 1999a, 1999b), the contribu-
tion of this article is four-fold. First, we demonstrate
that the methodology can successfully be applied to a
collective manipulation experiment in which the task
needs strict collaboration between robots, where spatial
and temporal coordination are needed for succeeding
in the task. This requires, among other things, the intro-
duction of probabilities which do no not only depend
on the current state of the environment (as for the
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clustering tasks), but also on the current state of the
other robots. Second, while controllers were fixed in
Martinoli et al. (1999a, 1999b), we illustrate here how
the probabilistic model can be used to make a detailed
quantitative investigation of the effect of varying pa-
rameters of the robots’ controller on the group behav-
ior. Third, we demonstrate that the methodology can
address heterogeneous as well as homogeneous groups
of robots. Fourth, we investigate a case (collaboration
using explicit signalling) in which the current method-
ology shows its limitations, and for which the model’s
predictions have to be corrected with the help of two
additional free parameters such as to fit the results ob-
tained with real robots and sensor-based simulations.

Three Sets of Experiments. In the next sections, we
present results of the stick pulling experiment in three
different implementations: the real Kheperas, a sensor-
based simulation (Webots, Michel, 1998), and the prob-
abilistic model. Three sets of experiments are carried
out to quantitatively investigate the effects of varia-
tions of robot controller implementations and number
of robots on group behavior, in particular, on the collab-
oration rate among robots, i.e., the number of sticks suc-
cessfully taken out of the ground over time. In the first
set, we investigate the case with homogeneous groups
of robots, that is, groups in which all robots are identical
from a hardware and software point of view. In the sec-
ond set, we test whether introducing heterogeneity at
the level of the controllers’ parameters can improve the
team performance compared to homogeneous groups.
In the last set, which is only carried out with Webots
and the probabilistic model, we analyze the effect of a
simple signalling scheme among the robots.

Figure 1. Physical set-up for the stick pulling experiment.

2. The Stick Pulling Experiment

2.1. The Physical Setup

The experiment is carried out in a circular arena (80 cm
of diameter) delimited by a white wall. Four holes situ-
ated at the corners of a square with 30 cm edges, contain
white sticks (15 cm long, diameter of 1.6 cm) which,
in their lowest position, stick 5 cm out of the ground
(Fig. 1).

Groups of 2 to 6 Khepera robots, equipped with grip-
per turrets, are used to pull the sticks out of the ground.
Because of their thinness, the sticks can be distin-
guished from the wall and from other robots3 using the
six frontal IR proximity sensors of the Khepera. Two
Kheperas are necessary for pulling a stick completely
out of the ground. Collaboration is thus required, with
a first robot taking the stick half out of the ground, until
a second robot approaches the stick from the opposite
direction and lifts the stick completely (see the right
hand-side of Figs. 1 and 3). As described in the next
section, the robots are able to determine whether an-
other robot is holding the same stick using information
about the gripper’s arm position. After a successful col-
laboration, the stick taken out of the ground is released
by the robot, and replaced in its hole by the experi-
menter.

2.2. The Robots’ Controllers

The behavior of a robot is determined by a simple
hand-coded program consisting of a loop through sev-
eral functional blocks (Fig. 2). The default behavior is
to look for sticks, that is, to wander in the arena in a
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Figure 2. Flowchart of the robots’ controller.

straight line until something is detected by the frontal
proximity sensors, in which case the robot turns to-
wards the detected object and starts a detection proce-
dure. The detection procedure consists of taking mul-
tiple sensor samples of the same object with the robot
turning on itself once to the left and once to the right
(similarly to, Martinoli et al., 1999a). A stick is rec-
ognized from obstacles (the wall or other robots) if,
within these measurements, the number of proximity
sensors returning a significant signal does not exceed
two. The multiple measurements enables an increased
spatial resolution and a filtering of noise, leading to a
perfect distinction of sticks and preventing, in particu-
lar, moving robots to be mistaken for sticks.

If the detected object is an obstacle, the robot turns
away from it, performs obstacle avoidance for a few

seconds, and returns to the looking-for-sticks proce-
dure. If the object is a stick, the robot backtracks for a
predefined distance (a few centimeters), grips the stick
and pulls it up. During pulling, the robot can determine
whether another robot is already gripping the same
stick by measuring the speed of elevation of the grip-
per arm.4 If the elevation is fast, the robot assumes that
the stick is free (no other robot holding it) and we call
such a grip a grip1. If the elevation is slow, the robot
assumes that another robot is already holding that stick
and therefore “braking” the elevation. Such a grip is
called grip2.

Robot Making a grip1. When a robot makes a grip1,
it holds the stick half out of the ground and releases it
when either the duration of the grip exceeds a gripping



154 Ijspeert et al.

Figure 3. Collaborative sequence.

time parameter (which is then considered as a failed
collaboration) or another robot comes to make a grip2
(successful collaboration, see Fig. 3). The robot can
detect when another robot is making a grip2 because
the force exerted by that robot on the stick leads to a
slight elevation of its arm’s position compared to the
arm’s programmed position. Once the stick is released,
the robot turns away, performs obstacle avoidance for
a few seconds, and returns to the looking-for-sticks
procedure. The gripping time parameter therefore cor-
responds to the maximum duration a robot will wait
with the stick lifted, from the moment the gripper el-
evation sensor indicates that the gripper is completely
lifted. This parameter plays a primary role in determin-
ing the number of successful collaborations, and this
role will be thoroughfully investigated in the experi-
ments of Section 4.

Robot Making a grip2. When a robot makes a grip2,
the pulling of the stick is temporarily braked until the
robot making the grip1 releases its grip. The arm even-
tually reaches the programmed position, which corre-
sponds to a complete lift of the stick out of the ground.
To mark the successful collaboration, a small “success

dance” (moving the arm up and down) is performed.
Similarly to the end of grip1, the robot then releases
the stick (which has to be replaced in the hole by the
experimenter) and resumes looking for sticks.

Note that, because of the way sticks are recognized
(i.e. only by their thinness), a stick which is held by one
robot can only be recognized when approached from
the opposite side, within a certain angle (approx. 125
degrees, see also Fig. 6). In that case, the robot hold-
ing the stick is far enough for it not to be detected by
the frontal proximity sensors. For the other angles of
approach, both the stick and the robot are detected and
the whole is therefore taken for an obstacle. This lim-
its the probabilities for collaborations, but ensures that
the second robot approaches the stick within an angle
which allows it to grasp the stick without its gripper
getting entangled with the first robot.

2.3. Simulations with Webots

In order to more systematically investigate the collabo-
ration dynamics, we also implemented the experiment
in Webots, a 3D simulator of Khepera robots. The
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Figure 4. Implementation of the experiment in Webots, a 3D simulator of Khepera robots (Michel, 1998).

simulator computes trajectories and sensory input of
the robots in an arena corresponding to the physical
set-up (Fig. 4). The simulation is sufficiently faithful
for the controllers to be transfered to real robots without
changes,5 and for the robot behaviors to be very simi-
lar to those of the real robots (see Results). The mean
acceleration ratio for this experiment with 5 robots be-
tween Webots and real time is about 15 on a Ultra Sun1
workstation.

3. The Probabilistic Model

The central idea of the probabilistic model is to de-
scribe the experiment as a series of stochastic events
with probabilities based on simple geometrical con-
siderations. The states of the robots are defined by a
program with exactly the same structure as that of the
controllers of the real robots (Fig. 2), but, instead of
computing the detailed sensory information and trajec-
tories of the robots, the change of states is determined
by the throwing of dice (Fig. 5). In other words, the
probabilistic nature of interactions during an experi-
ment is captured by the transformation of determinis-

tic branch operators of the real robot/webots controllers
into probabilistic branch operators in the probabilistic
model.

Look-for-Sticks Mode. Once a robot is in the look-for-
sticks mode, it will, at each iteration, have probabili-
ties PN of encountering nothing, PW of encountering
a wall, PR of encountering a robot, and PS of finding a
stick. Sticks can be distinguished between those that
are available for a grip1 PG1 (if they are free) and those
available for a grip2 PG2 (if another robot holds them),
with PS = PG1 + PG2.

These different probabilities depend on the respec-
tive detection areas of the different elements in the
arena, AW for the surrounding wall, AR one robot,
and AS one stick (Fig. 6), relative to the area of the
whole arena AA. These detection areas in turn depend
on the physical dimensions of each element, its sur-
face features (e.g., IR reflectivity), the sensor range of
robots, and the controller’s parameters used in the de-
tection procedure. These areas are measured from the
corresponding detection distances using the real robots
(Table 1).
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Figure 5. Flowchart of the robots’ controller in the probabilistic simulation.

The probabilities PN , PR , PG1 and PG2 also de-
pend on the current state of the environment, i.e., the
number of robots NR , and the number of sticks avail-
able for a grip1 NG1 and for a grip2 NG2 (where
NG1 + NG2 = NS , the total number of sticks):

PW = AW /AA (1)

PR = NR · AR/AA (2)

PG1(t) = NG1(t) · AS/AA (3)

PG2(t) = NG2(t) · RG2 · AS/AA (4)

PN (t) = 1 − (PW + PR + PG1(t) + PG2(t)) (5)

Variables which vary with time during an experiment
are indicated by their dependency on current iteration
t . Note that PG2 is computed by taking into account
that a stick available for a grip2 (i.e., which is held
by another robot) is only recognized when approached
from an angle within an RG2 ratio (approximately 35%,
see Fig. 6).6

The probabilities defined by Eqs. (1–5) are based on
the following assumptions: (1) robots move around the
arena with a uniform distribution (i.e., they do not tend
to stay longer or shorter in one part of the arena), and
(2) the sticks are sufficiently spaced to be accessible
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Table 1. Parameters used in the probabilistic model. The robot and
stick detection distances are given from center (of the robot) to center
(of the object). The interference duration is the time lost by a robot
for recognizing another robot as an obstacle and turning away from it.

Variable Value

Arena radius 40.0 cm

Robot detection width (WR) 14.0 cm

Robot speed (VR) 8.0 cm/sec

Wall detection distance 6.0 cm

Robot detection distance 10.0 cm

Stick detection distance 6.4 cm

Angle ratio for grip2 (RG2) 35%

Duration of one iteration 1.15 sec

Time for distinguishing and gripping a stick 10.0 sec (9 iterations)

Success dance duration 6.0 sec (5 iterations)

Obstacle avoidance duration 1.0 sec (1 iteration)

Interference duration 2.0 sec (2 iterations)

from all sides. These assumptions will be discussed in
Section 5.

Other Modes and Other Robots. It is worth noticing
that the description level of both the robot controller’s

Figure 6. Geometrical aspects considered for the probabilities’ calculation.

and the probabilistic process’ flowcharts is arbitrarily
defined by the experimenter. The level is chosen so that
behavioral states that do not exert direct influence on the
considered metrics (i.e., in this experiment, the collab-
oration rate) are simply summarized in blocks whose
real time duration is taken into account in the proba-
bilistic model. For instance, when the robot is in either
the detection, obstacle-avoidance, grip-and-success-
dance, or release mode, its behavior is frozen for a fixed
number of iterations (corresponding to the time mea-
sured with a real robot, see below) in one of these states.
The whole simulation consists of running several pro-
cesses described in Fig. 5 in parallel, with one process
per robot, while keeping track of the state of the envi-
ronment (i.e., NG1(t) and NG2(t), the numbers of sticks
available for grip1 and for grip2, respectively). The dif-
ferent processes for the different robots influence each
other indirectly by modifying NG1(t) and NG2(t), but
also directly when a collaboration occurs: when a robot
makes a grip2, one of the robots making a grip17 is ran-
domly chosen to release the stick it is holding.

Time-Iterations Transformation. Similarly to the
methodology proposed in Martinoli et al. (1999b), the
correspondence between iterations in the probabilistic
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simulation and time in the real experiment is obtained
by linking the number of iterations and the time needed
to systematically cover the whole arena in the prob-
abilistic simulation and in the real experiment, re-
spectively. In the probabilistic simulation N = AA/AS

iterations would be needed for the systematic search
for sticks (i.e., without passing twice one the same
position), while this would take a duration of T =
AA/(VR · WR) in the real experiment, where VR and
WR are the robot’s mean forward speed and detection
width.8 The duration of one iteration therefore corre-
sponds to AS/(VR · WR) (in this case 1.15 seconds, see
Table 1). Using this correspondence factor, it is possi-
ble to translate the different durations appearing in the
real experiment, such as the gripping time, the duration
of obstacle avoidance, and the duration of the detection
procedure into numbers of iteration.

As the program requires little computation, it is very
fast (at least 300 times faster than Webots). Table 1
gives all the parameters used in the simulation. These
parameters have all been measured from systematic
tests with two real robots in the environment. This prob-
abilistic model has therefore no free parameters.

4. Results

We present the results of several experiments imple-
mented at the three different levels: the physical set-
up, Webots, and the probabilistic simulation. In the
first set of experiments, the influence of the gripping
time parameter on the collaboration rate is tested with
homogeneous groups of robots, i.e., groups of identi-
cal robots (same hardware and same controller). These
experiments also evaluate how well the probabilistic
model describes the collaboration dynamics. In a sec-
ond set of experiments, we investigate whether the col-
laboration rate can be increased by using groups of
heterogeneous, rather than homogeneous, robots.9 The
heterogeneity is introduced at a software level, with
robots differing from each other by their gripping time
parameter. Finally, in a third set of experiments which
are only carried out with Webots and with the proba-
bilistic model, the benefits of a simple communication
scheme—directional signalling—is investigated.

4.1. Homogeneous Population

We carried out several experiments in order to quan-
tify the influence of the number of robots and the

gripping time parameter on the collaboration dynam-
ics, in particular on the collaboration rate. All robots
have exactly the same controller—the population is
homogeneous—and the experiments are carried out in
the same environment (fixed size and fixed number of
sticks, see Section 2.1).

With the real Kheperas, a total of 20 runs are carried
out with groups of 2 to 6 robots and time parameters
equal to 5, 30, 100, and 500 seconds. Each run lasted
approximately 20 minutes (the time for the batteries
to discharge). With Webots, the influence of the time
parameter is tested more systematically, with time pa-
rameters varying between 5 and 1000 seconds.10 Each
run lasts 30 minutes (simulated time) and is repeated
5 times. Finally, with the probabilistic model, the time
parameter is varied between 5 and 1000 seconds by
5-second steps, and each 30-minute run (simulated
time) is repeated 100 times. The choice of repeating a
run a different number of times depending on the imple-
mentation (respectively, once, 5, or 100 times, with the
Kheperas, Webots and the probabilistic model), is due
to the significant differences in the (real) time necessary
for carrying out each run in each implementation.

Figures 7, left and right, present the results of these
different runs and illustrates the influence of the grip-
ping time parameter on the collaboration rate and the
relative collaboration rate per robot (i.e., the number of
collaborations over time to which one robot participates
by either making a grip1 or a grip2). Several observa-
tions can be made. First, the results with the three dif-
ferent implementations present a good correspondence
qualitatively and quantitatively. In particular, almost all
the collaboration rates with real robots are within one
standard deviation of the mean values obtained either
with Webots or the probabilistic model (two standard
deviations at maximum). For Webots, this means that
the sensor-based simulator faithfully reproduces the
sensory information and trajectories of real robots. For
the probabilistic model, it shows that, although it is very
simple, it incorporates the essential characteristics de-
termining the collaboration dynamics. The probabilis-
tic model and Webots also present a very good quanti-
tative agreement. While the averaged data are smoother
with the probabilistic model than with Webots—they
are namely the average of 100 runs instead of 5—they
have very similar standard deviations, and their mean
values ± one standard deviation always overlap for all
group sizes and all gripping time parameters. Figures 8
left and right show that the probabilistic model also
correctly predicts the rate of failed collaboration and
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Figure 7. Left: Collaboration rate as a function of the gripping time in homogeneous groups of robots. The large single markers correspond
to the results with the real robots, the linked small markers to those with the Webots simulator, and the underlying continuous lines to those
with the probabilistic simulation. Right: Relative collaboration rate per robot (i.e., the average number of collaborations over time to which one
robot participates by either making a grip1 or a grip2). Errorbars correspond to ± standard deviations of the results with the probabilistic model
(thicker bars) and with Webot (thin lines). For reasons of clarity, only some errorbars are shown and results are only shown for gripping time
parameters up to 600s.

the average time for a robot to find and grasp a stick.
For a given group size, the rate of failed collaboration is
found to decrease almost exponentially with the grip-
ping time parameter, while the average time to find and
grasp a stick remains approximately constant.

Figure 8. Left: failed collaboration rate with homogeneous groups of robots. Right: average time to find and grip a stick with homogeneous
groups of robots. The large single markers correspond to the results with the real robots, the linked small markers to those with the Webots
simulator, and the underlying continuous lines to those with the probabilistic simulation. Errorbars correspond to ± standard deviations of the
results with the probabilistic model (thicker bars) and with Webot (thin lines). Note that the correspondance between Webots and the probabilitic
model on one side, and the real robots on the other side, is less good for the groups of 5 and 6 robots with gripping time parameter equal to
500 sec. We believe this is due a statistical artifact which will disappear when more runs with the real robots will be carried out (see the future
work Section).

Second, the results demonstrate the importance of
the influence of the gripping time parameter on the col-
laboration rate. As could intuitively be predicted, there
is a different relation between the collaboration rate
and the time parameter depending on the ratio between
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Figure 9. Collaboration rates (left) and relative collaboration rates (right) predicted by the probabilistic model for homogeneous groups of
robots with size larger than six.

number of robots and number of sticks. When there are
more robots than sticks, the collaboration rate increases
monotonically with the gripping time parameter, until
a plateau corresponding to the optimal collaboration
rate. In other words, it is in this case a good strategy
for a robot gripping a stick to wait a very long time
for another robot to give a hand, because there will
always be at least one “free” robot available. By con-
trast, when there are fewer robots than sticks, waiting
a very long time becomes a bad strategy, as the few
robots lose time holding different sticks. For instance
(an extreme case), an infinite gripping time parameter
would lead to a null collaboration rate with all robots
eventually holding a different stick permanently. It is
therefore important, when there are fewer robots than
sticks, to adjust the gripping time parameter such as to
optimize the collaboration rate.

The results also show that, at least with groups of
up to 6 robots, the collaboration rate significantly in-
creases with the number of robots, independently of the
gripping time parameter. Interestingly, this increase is
super-linear; that is, increasing the number of robots
not only increases the global performance of the group
(the total collaboration rate, Fig. 7 Left) but also the
performance of each individual (the collaboration rate
per robot, Fig. 7 Right). However, as can logically be
expected, increasing the number of robots will even-
tually lead to a diminution of the collaboration rate
due to overcrowding and excessive interference. Only
6 Kheperas were available for experiments with real
robots. The probabilistic model predicts that the in-

crease of the collaboration rate remains super-linear for
groups up to 7 robots, then becomes almost linear for
groups up to 11 robots (Fig. 9, right). The model also
predicts that the maximal collaboration rate is obtained
with groups of 11 robots and that the collaboration rate
then quickly decreases for larger groups due to exces-
sive interference between robots (Fig. 9, left). For the
group of 13 robots, the probability of making a grip
is zero in the probabilistic simulation (PG1 = PG2 = 0)
because the probability of encountering another robot,
PR , becomes equal to one (the total area of detection
of a group of 13 robots indeed covers the whole area
of the arena). Note that, for this last situation, the prob-
abilistic model probably over-estimates this effect of
interference compared to experiments with real robots,
as, unless the arena is really too crowded, small move-
ments within the group of robots can still allow, po-
tentially, some robots to be sufficiently isolated to suc-
cessfully grip a stick once in a while (i.e., PG1 and PG2

are not strictly zero). These boundary effects will be
further discussed in Section 5.

4.2. Heterogeneous Population

The experiments carried out so far used groups of
robots with identical controllers. In order to investigate
whether heterogeneity could increase the collaboration
rate of a group of robots of a given size, we carried out
a series of experiments in which robots in a group have
different gripping time parameters. The heterogeneity
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is therefore at a software level and concerns only a
single parameter.

The experiments were mainly carried out with
Webots and the probabilistic model (see below for the
implementation with real Kheperas), with groups of 2
to 6 robots. The time parameters are varied between
5 and 1000 seconds in an approximately geometrical
progression (5, 10, 15, 20, 30, 50, 100, 200, 500, and
1000 seconds). In order to reduce the number of possi-
ble combinations of different time parameters among
a group of robots, groups are split into 2 subgroups,11

with a given time parameter for each subgroup. All
possible combinations of time parameters between the
two subgroups are tested (55 runs). Each run lasts 30
minutes (simulated time) and is repeated 5 times in
Webots and 100 times in the probabilistic model.

Figure 10 illustrates the collaboration rate as a func-
tion of the gripping time in a group of two robots, with
both the Webots and the probabilistic model implemen-
tations. Although the collaboration rates are slightly
higher with the probabilistic model, and the function
representing the dependency of the collaboration rate
on the different gripping time parameters smoother (it
is namely the average of 100 trials instead of 5 with
Webots), the probabilistic model gives a good predic-
tion of the results with Webots.

Figure 10. Collaboration rate as a function of the gripping time in a heterogeneous population of two robots. The collaboration rate is
proportional to the darkness in the graph. Left: Results with the Webots simulator, right: results with the probabilistic simulation. In both graphs,
the diagonal line corresponds to the collaboration rate in homogeneous groups of robots (time parameter A = time parameter B).

The main outcome of these experiments is that het-
erogeneity can improve the collaboration rate when
there are fewer robots than sticks. For instance, in the
case of groups of 2 robots (Fig. 10), the optimal col-
laboration rate in the heterogeneous group (gripping
time parameter A = 5 s, and gripping time parameter
B = 500 s) is approximately 50% better than with the
homogeneous population (gripping time parameter =
30 s). With groups of 2 or 3 robots, i.e., when the num-
ber of robots is less than the number of sticks, optimal
collaboration is indeed obtained when one group of
robots has a very small gripping time parameter, and
the other, a large one (i.e., the dark areas close to the
horizontal and vertical axes in Fig. 10). This could be
seen as the latter group specializing in performing the
grip1s (and in waiting for a hand), and the former in
performing grip2s, with short grips without waiting. In
three initial experiments, we tested a similar special-
ization with groups of 2 to 4 real Kheperas. The groups
were divided into 2 subgroups with gripping time pa-
rameters of 5 and 500 seconds. Although these single
runs are by no means statistically significant, a 45% in-
crease of the optimal collaboration rate compared to the
homogeneous group was also observed with the group
of 2 robots, while there was no significant increase for
groups of 3 and 4 robots.
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Figure 11. Ratio of optimal collaboration rates between heterogeneous and homogeneous groups of robots. The size of the error bars corresponds
to the propagation of the standard deviations of the different runs with the optimal gripping time parameter(s): �(A/B) = �A/B̄ + �B/ Ā ,
where �(A/B) is the size of the error bar, �A and Ā are the standard deviation and average value of the heterogeneous runs with the optimal
gripping time parameters, and �B and B̄ are the standard deviation and average value of the homogeneous runs with the optimal gripping time
parameter.

As illustrated in Fig. 11 which summarizes the differ-
ences of optimal collaboration rates between homoge-
neous and heterogeneous groups, the benefits of hetero-
geneity disappear when the number of robots exceeds
the number of sticks. In that case, the optimal strategy
is having all robots waiting a long time once they found
a stick, similarly to the homogeneous groups.

4.3. Communication

In this last section, we investigate whether introducing
a simple communication scheme among the robots can
increase the collaboration rate by introducing a less lo-
cal and more explicit interaction between robots. The
experiments are only carried out with Webots and with
the probabilistic model, but are based on the IrDA com-
munication turrets developed for the Khepera robots
(Martinoli et al., 1997). These turrets allow local com-
munication through 4 directional IR emitters and re-
ceivers, separated by angles of 90 degrees.12

A simple signaling scheme is implemented as fol-
lows. Once a robot grips a stick, it emits a continuous

signal in a 60◦ cone through its frontal emitter (“call
for help”). The signal can be perceived by other robots
within the whole arena (signaling range is fixed and
larger than the arena’s size), as long as they are lo-
cated within the emission cone. Robots which are in
the looking-for-sticks mode and which sense that sig-
nal perform a phototaxis towards it until they detect
an object, in which case they start the detection pro-
cedure as described in Section 2.2. As the emission is
directional, robots moving towards the emitter tend to
arrive to the caller robot with the right angle for making
a grip2, unless they encounter another object on their
way (a robot or another stick).

Figure 12 left shows the effect of the signaling
scheme on the collaboration rate compared to the
experiment without signaling (in the Webots imple-
mentation). The signaling systematically improves the
collaboration rate, independently of the gripping time
parameter. The effect is most visible with groups of
few robots, for which the signaling nearly doubles the
collaboration rate.

In its current version, the probabilistic model is not
perfectly suited for including such a signaling scheme,
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Figure 12. Collaboration rate as a function of the gripping time in a homogeneous population of robots with a simple signaling scheme. Left:
Results with the Webots simulator. The results with (continuous lines) and without (dotted lines) signaling are superposed; the collaboration rate is
systematically higher with signaling. Right: superposition of the results with Webots (linked markers) and the probabilistic simulation (continuous
lines). Errorbars correspond to ± standard deviations of the results with the probabilistic model (thicker bars) and with Webot (thin lines).

because the effect of signaling on the probabilities of
finding sticks and robots cannot be determined from
simple geometrical considerations as before. Difficul-
ties arise partly because the area covered by the call
depends significantly on the orientation of the caller13

and should be averaged, but mainly because signal-
ing alters the distribution of robots over the arena, and
therefore changes the probabilities of meeting other
robots in a way which is hard to measure. However, by
simply adding two free parameters which modulate the
probabilities for making a grip2 and for finding robots,
the model can be adapted to present a good fit of the re-
sults obtained with Webots. Figure 10 right presents a
superposition of the results with Webots and those with
the probabilistic model, when the probability of mak-
ing a grip2 (PG2) is increased by 80% and that of find-
ing a robot (PR) by 30%. These increases corresponds
to what could intuitively be predicted: signaling sig-
nificantly increases the probabilities of collaborations
(i.e., of making a grip2), but also of encountering other
robots, as several robots may move towards the same
call, therefore increasing the chances of interferences
between them. With these new probabilities for making
a grip2 and for findings robots, the probabilistic model
predicts that, for groups larger than 9 robots, this simple
signalling scheme has a negative effect on the collabo-
ration rate, and that groups without signaling perform
better than with signaling (Fig. 13).

In summary, a simple signaling scheme as presented
here can significantly improve the collaboration rate

Figure 13. Comparison of collaboration rates predicted by the prob-
abilistic model for homogeneous groups of robots with size larger
than six, with and without signaling.

as long as the increase of probability of collabora-
tion outweighs the increase of interference between
robots.

5. Discussion

This article presented an experiment in collaborative
robotics with the motivations: (1) to investigate the col-
laboration dynamics of a group of simple autonomous
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reactive robots, and (2) to develop a tool—the proba-
bilistic model—for the characterization and prediction
of such an experiment.

Probabilistic Model. As mentioned, the central idea
of the probabilistic model is to represent the dynam-
ics of a group of robots as a series of stochastic events
without considering individual trajectories and sensory
measurements. Similarly to Martinoli et al. (1999a,
1999b) where the same approach was taken for the
characterization of two different clustering problems,
the benefits of the model are two-fold. First, it allows
one to pin down the essential characteristics deter-
mining the collaboration dynamics. The approach is
minimalistic—it includes very few parameters—and
aims at capturing only the system parameters which
play a relevant role for the metrics in which the experi-
menter is interested, in our case the collaboration rate.
For instance, we took into account parameters such as
the robots’ speeds, their detection width, and their grip-
ping time parameter, and did not consider lower level
parameters such as the PID parameters of the wheel
controllers, the exact positions of the sensors, and the
height of the robots, to name a few, as these parameters
have either a negligible effect on the metrics we were
interested in, or their effect was taken in account by
the higher-level parameters that we had chosen.14 In
our experiments, the surprisingly good fits between the
results with the probabilistic model and those with the
real robots and Webots, lead to think that the model rep-
resents correctly the dynamics of the experiment, and
that it includes all the essential parameters defining it.

The second benefit is the development of a tool for
prediction. The model requires only two robots for
the setting of all its parameters (i.e., there are no free
parameters in the simulation), and these parameters
(timings and geometrical considerations) can easily be
measured. Notice that the modeling methodology we
used in this paper produces “micro-models”: at the lo-
cal level, the robot-to-robot and robot-to-environment
interactions are very precisely defined, with the gran-
ularity of details chosen by the experimenter; this
micro-model can then be used to predict the collec-
tive behavior (the “macro-behavior”) with significantly
bigger groups of robots via probabilistic simulations.
Because of its speed, the probabilistic simulation is par-
ticularly well suited for experimenting with very large
groups of robots, and therefore to test the behavior of
real swarms. Of special interest, is the possibility of
optimizing the number of robots, their hardware and

software characteristics for a given objective, before
developing dedicated hardware and setting up all the
details of the experiment. In that respect, the advantages
of the probabilistic model, compared to more complex,
sensor-based simulations such as Webots, are the fol-
lowing. First, the probabilistic model is very easy to
implement: it consists of a very limited number of lines
of code, and is closely based on the flowcharts of the
robots controllers. As described in Section 3, it only
requires the transformation of local perception situa-
tions into probabilities, i.e., in our case, the transfor-
mation of deterministic branch operators of the robotic
controller into probabilistic ones. A sensor-based sim-
ulation requires on the other hand the complete spec-
ification of the sensor and actuator properties of the
robot, as well as accurate models of the environment.
Second, it has few parameters which can readily be
measured from a few robots (from two robots in this ex-
periment): as mentioned above, the probabilistic model
relies on high level parameters (such as the detection
range of a stick, the robot detection width, i.e., param-
eters that summarize both physical characteristics of
sensors, and control thresholds). Unlike sensor-based
simulations, it does not require the detailed character-
ization of each individual sensor (e.g., their position,
orientation, detection range, opening angle, or intrinsic
noise). Finally, it is very fast: it requires few computa-
tions, and comprehensive characterizations of the ex-
periment can be obtained in minutes. This is especially
important for computation-intensive tasks such as op-
timization. Even if sensor-based simulation are faster
than running experiments with real robots, making a
systematic search for optimal multiple control param-
eters is often prohibitive with such a type of simulation.
In our case, computations which might take almost a
year with Webots, can be carried out in one day with the
probabilistic model, assuming that the same computer
is used.

Note that the probabilistic framework presented here
can also serve as basis for a more explicit characteri-
zation of the experiment dynamics in terms of time-
dependent probabilistic equations (macro-models). An
example of such an extension of the approach to a col-
lective exploration task is given in Billard et al. (1999).

Types of Experiments to Which the Probabilistic
Model Can Be Applied, and Limitations. The mod-
eling methodology used in this paper was specifi-
cally designed to predict the dynamics of collective
manipulation experiments using distributed control and
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autonomous, reactive robots. It therefore addresses
problems which are pseudo-stochastic in nature, i.e.,
problems which involve groups of robots with limited
navigation capabilities whose trajectories are pseudo-
random because of their multiple interactions with
other robots and the environment, and because of the
noise in their sensors. In that case, trajectories, that is,
correlated sequences of robot positions, can be approx-
imated at the level of environmental changes by uncor-
related sequences of random positions, as illustrated
by the good agreement of collaboration rates between
the probabilistic model and the two other implemen-
tations. Unlike sensor-based simulations, the method-
ology can therefore only be applied to describe the
average dynamics of a group of robots and average ef-
fect of the group of robots on its environment, a shared
resource, rather than giving also examples of instances
of an experiment (e.g., typical trajectories followed by
the group of robots or which stick was pulled out by
which robot).

The methodology currently relies on the assumption
that the coverage of the arena by the groups of robots
is uniform. In our case, this means that the probabili-
ties of basic events (detecting a robot, a stick or a wall)
only depend on geometrical considerations, and do not
depend on time (except for our state variables, i.e., the
number of grip1s and grip2s made at any time) nor
on the positions/orientations of the robots. Uniform
coverage might not always be the case, and depends
on the environment—e.g., it could have bottle necks
leading to higher density of robots in some parts of
the environment—, on the robots’ configuration—e.g.,
their size, the positioning of their sensors—, and/or
on the robots’ controllers—e.g., robots might be pro-
grammed to follow beacons or to move in flocks. See
Hayes et al. (2000) for probabilistic models that take
into account these effects.

As illustrated by the experiments with signaling, ex-
periments in which the probabilities of events are not
constant in space and time, but depend on the behavior,
position, and orientation of other robots are less
straightforwardly implemented. They require some
kind of averaging of the probabilities as was realized
with the modification of PR and PG2 for fitting the
Webots results. This problem can however be solved
by either adding free parameters, or extending the
model to represent these specific effects more appro-
priately. For some situations, it might be worth intro-
ducing a non-uniform probabilistic density function for
the robots’ positions. Experiments with robots that are

programmed to generally remain close to walls, for
instance, could include a density function in which
robots have higher probabilities to be close to a wall.

In our experiments, the probabilistic model also re-
lies on the assumption that the sticks are accessible
from all sides for a grip1, which was the case in the
real experiments with sticks being sufficiently spaced
from each other and from the wall. In some situations,
the exact position of a stick might become relevant, and
the probabilistic model would need to be modified to
take that into account. For instance, a stick which is
close to the wall and only partially accessible would
lead (1) to a reduction of its probability to be detected
for a grip1 (this could easily be measured, or deduced
from geometrical considerations), but also (2) to a more
subtle effect on the probability of a grip2 as this proba-
bility would depend on the angle with which the grip1
is made (low probability if the robot making the grip1 is
headed towards the wall, higher probability if the robot
making the grip1 is parallel to the wall). Similar situ-
ations might occur when sticks are close to each other
in which case having a robot gripping one of the sticks
could potentially reduce the probabilities of grips on
the other sticks. In its current form, the probabilistic
model is not well suited to describe these situations
which depend on the trajectories, positions, and orien-
tations of each robot.

As briefly discussed in Section 4, the probabilistic
model also needs to be improved to better describe
boundary effects such as, for instance, situations with
many robots whose total area of detection comes close
to, or exceeds, the total area of the arena. In such an
“overcrowded” situation, the probabilistic model needs
to be modified to take into account the fact that de-
tection areas overlap (despite their obstacle-avoidance
behavior, robots are forced to remain within each oth-
ers detection range). There is no fundamental obstacle
to consider this overlap in the modeling methodology,
but the exact overlap might be difficult to assess as it
intimately depends on details of the robots’ behavior
during obstacle avoidance e.g., how much and how fast
they turn away from an obstacle in comparison to how
much time and space they need to perform a gripping
operation.

Finally, some types of robot’s controllers might
be difficult to be implemented into the probabilistic
model. Creating the probabilistic model requires that
the controllers (e.g., rule-based, behavior-based, neu-
ral networks-based controllers) present a relation from
sensory space to action space which can be classified
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into a discrete set of actions triggered by well defined
sensor-states. These different actions are then repre-
sented by branches in the probabilistic model, and
probabilities are attached to each of these actions to
represent how often they occur with the real robots.15

Controllers for which such a clear and discrete mapping
does not exist, e.g., whose actions depend in a complex
way on low level information from the individual sen-
sors, are therefore not suitable to be modelled with this
methodology. Note, however, that only actions which
are meaningful for the chosen metrics need to be distin-
guished. In our case, for instance, obstacle-avoidance
is implemented in a trivial neural network and is con-
sidered as a single action (i.e., turning away from an
obstacle by 30 degrees or 60 degrees are not consid-
ered as different actions) which is then captured in the
model only by its effective duration measured on a real
robot. A last limitation is that the current methodology
does not deal with adaptive controllers, and it remains
to be seen how much adaptation it can integrate (see
future works below).

A Swarm Intelligence Approach Towards Collabora-
tion. The experiment presented in this article is one
of the few experiments in strictly collaborative robotics
implemented with real robots rather than only in simu-
lation, and, more generally, one of the few experiments
in collaborative robotics with groups of more than three
robots. The experiment presented here is characterized
(1) by the fact that it uses robots which are simple, re-
active, and with local and noisy sensory information,
(2) by the fact that the robots are autonomous and do
not rely on an external supervisor or a robot leader,
and (3) by the fact that collaboration is obtained by ex-
ploiting only local interactions (stigmergic or explicit
communication mechanisms such as directional sig-
naling). Collaboration occurs when there is a spatial
and temporal coordination between two robots. In the
experiments without signalling, this coordination hap-
pens randomly rather than being actively sought, as
robots do not coordinate their actions except through
a stigmergic communication, i.e., by influencing the
state of the environment (the state of the sticks).

Similar collaborative experiments with a SI ap-
proach were, for instance, presented in Beckers
et al. (1994), Holland and Melhuish (1999), Kube
and Bonabeau (2000), Krieger and Billeter (2000),
Hosokawa et al. (1998), and Yoshida et al. (1999).
This is in contrast with many other experiments which,
for instance, either relied on a central supervisor

(Humberstone and Smith, 2000) or robot leaders (Wang
et al., 2000) for generating guide lines and coordinating
the group behavior, used extensive wireless communi-
cation for action coordination and compensating sen-
sory weaknesses (Parker, 1994; Mataric et al., 1995), or
used more sophisticated sensors (e.g., force and torque
sensors) and models of the dynamics of the robot-
to-environment interaction (Boehringer et al., 1995;
Khatib, 1999; Ota and Arai, 1999).

Consistently with the SI approach, we minimized the
complexity of the individual units by using the simplest
possible sensing and communication capabilities, with-
out centralized control. We therefore obtained good
scalability of the system by avoiding global commu-
nication schemes and corresponding bottlenecks due
to a limited bandwidth. The price to be payed for re-
nouncing to any form of global information and global
networking is system efficiency since action coordina-
tion and collaboration is based on probabilistic rather
than deterministic rules.

Collaboration Dynamics. The collaborative essence
of the experiment leads to the following observations.

First, the dynamics of the experiment—the relation
between collaboration rate and gripping time param-
eter, for instance—differ significantly depending on
the ratio between number of workers (i.e., robots) and
amount of work (i.e., number of sticks). This is due
to the necessity for spatial and temporal coordination
between at least two robots for successful collabora-
tions. When there are few robots and a large amount of
work (many sticks), special care must be given to pre-
vent robots to disperse spatially and “temporally” (tem-
poral dispersion corresponding to the situation where
robots arrive at a same stick but with important time
differences). Optimizing the time overlap for collabo-
ration can be obtained by optimizing the gripping time
parameters, as investigated with homogeneous and het-
erogeneous groups. Having homogeneous groups with
a too high or especially a too low time parameter indeed
leads to a strongly suboptimal performance. As ob-
served in Section 4.2, the best performance is then ob-
tained with heterogeneous groups and specialization.
A natural continuation of this work would therefore
be to implement adaptive rules for the robots to de-
termine themselves their gripping time parameter, as,
ideally, the robots should be able to adapt to the cur-
rent work load and number of robots in the arena (as in
Parker, 2000; Touzet, 2000, for instance). It would also
be worth investigating simple ways to prevent spatial
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dispersion (other than signalling) with, for instance, the
implementation of a following-routine such that robots
travel in pairs.

Although quantitative analysis is often missing in
related research, we believe that the importance of
the ratio between number of workers and amount of
work can be generalized to a whole range of similar
collaborative tasks, including object-pushing (Parker,
1994; Boehringer et al., 1995; Mataric et al., 1995;
Wang et al., 2000), transportation (Johnson and Bay,
1995; Ghanea-Hercock and Barnes, 1996; Ota and
Arai, 1999; Humberstone and Smith, 2000) and manip-
ulation (Fujita and Kimura, 1998; Khatib, 1999), and
that similarly strong differences of the “qualitative dy-
namics” of the experiment can be made between under-
staffed and adequately staffed groups of robots for a
given amount of work. The exact dynamics depends,
of course, on the details of task. In the box pushing
experiment presented in Kube and Bonabeau (2000),
for instance, the size and type of box is found to signif-
icantly influence the mean execution time of moving a
box towards a goal for a given group size. When the
influence of the group size is tested, it is found that
pushing a box is done fastest with the smallest group
of robots tested (with three robots). Had the box been
heavier, the results would probably have been quite dif-
ferent (and closer to the experiment presented in this
paper) with small groups being less efficient or even
unable to move the box. As mentioned by the authors
“. . . performance is dependent on some yet to be deter-
mined task density function.” In this paper, we experi-
mentally defined such a function for a specific task in a
specific environment. Our investigation is however not
exhaustive (we did not, for instance, vary the number
of sticks, see below), and further experiments to char-
acterize such a task density in a broader sense will be
mentioned below.

Second, the need for collaboration leads to a col-
laboration rate which, in groups up to a certain size,
increases super-linearly with the number of robots. As
mentioned, increasing the number of robots not only
increases the global performance of the group, but also
the performance of each individual. This is rarely the
case in autonomous collective robotics which is not
strictly collaborative.16 The increase of performance
becomes sub-linear when the effects of interference
outweigh the benefits of having more robots for col-
laboration.

Finally, the preliminary experiment with the direc-
tional signalling scheme showed how introducing a

less local interaction between robots could significantly
improve the collaboration rate, especially with small
groups of robots. The interesting aspects of signaling
are clear: they increase the probabilities of having the
right spatial and temporal coordination for collabora-
tions and they reduce the overall stochasticity of collab-
orations. In this simple case, where there is no agree-
ment between robots receiving a call about which one
should handle it, signaling also increases the interfer-
ence between robots which means that for big groups
of robots signalling leads to worse collaboration rates
than no signaling. While a detailed analysis of the re-
spective benefits of different communication protocols
is out of the scope of the current article, the analysis of
which communication protocol and range is most ap-
propriate for a given task and a given number of robots
is a central question in collective robotics (Balch and
Arkin, 1994; Yoshida et al., 1998).

An interesting observation from these experiments
is that for a given environment, a given task and a given
initial group of robots, there are often multiple ways to
improve the collaboration rate among the group. The
collaboration rate can indeed be improved by, for in-
stance, adding or removing robots, giving them better
sensors, improving their controllers and adding spe-
cialization, or introducing signaling. Figure 12 left, for
instance, shows that, given a group of 3 robots with-
out communication, an almost identical improvement
of collaboration rate can be obtained by either adding
a fourth robot or giving the capacity to the 3 robots to
communicate and use the signaling scheme described
above. Each of these means has its advantages and
drawbacks in terms of costs, time to implement, com-
plexity (consistently with the minimalism idea of the
SI approach), and system robustness. As mentioned
above, having a prediction tool such as the probabilistic
model is therefore most useful for investigating these
issues and taking costs into considerations before hav-
ing to effectively buy and/or implement the different
possibilities.

Future Work. The experiments presented in this arti-
cle are by no means exhaustive, and need to be extended
in several directions. First, the predictions of collabo-
ration rates for groups larger than 6 robots need to be
tested with Webots and the real robots. Of particular
interest, is the predicted collapse of collaboration rate
for groups larger than 11 robots. Second, more experi-
ments need to be made with Webots and the real robots
in order to assess how well the probabilistic model
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predicts the collaboration rate of the real robots com-
pared to Webots from a statistical point of view. Current
numbers of runs are too limited and too different from
one type of implementation to the other to allow sta-
tistical tests to be used in a meaningful way. Further
experiments are also required to characterize the task
density function, not only as a function of the number
of robots, but also of the number of sticks and the size
of the arena. Experiments with very large number of
sticks would be especially interesting in order to in-
vestigate how much heterogeneity in the gripping time
parameters can improve the collaboration rate in a large
group of heterogeneous robots compared to homoge-
neous robots. Finally, it would be interesting to test
whether the methodology could be applied to adaptive
controllers. The current probabilistic model could cer-
tainly help to develop an adaptive rule for each robot to
determine its gripping time parameter given the number
of successful and unsuccessful collaborations it makes
as well as the number of obstacles it encounters, for
instance. It remains to be investigated however how
much the methodology is applicable when the whole
controller organization is adaptive rather than just a few
parameters.

6. Conclusion

This article investigated the collaboration dynamics
among groups of simple, reactive, autonomous robots
involved in a collaborative stick pulling task. In par-
ticular, a probabilistic model was developed for the
characterization and the prediction of such dynamics.
It was found that, by representing the experiment as a
set of stochastic events with probabilities based on sim-
ple geometrical considerations, the probabilistic model
was able to provide a very good prediction, both quali-
tatively and quantitatively, of the collaboration dynam-
ics as a function of two main parameters studied in the
experiment, the number of robots and their gripping
time parameter.

Four observations can be made from the experi-
ments. First, the experiments showed that there are
two different dynamics depending on the ratio between
the number of robots and the number of sticks. Sec-
ond, with group sizes up to certain size (six robots),
the collaboration rate increases super-linearly with the
number of robots. Third, heterogeneity in the robots’
controller parameters increases the collaboration rate
when there are fewer robots than sticks while hav-
ing no significant effect otherwise. Finally, the experi-

ments showed that a simple signalling scheme can
significantly improve the collaboration rate among
robots unless the group of robots is large (larger than
nine robots) in which case the increased interference
between robots due to the chosen signaling scheme out-
weighs the benefits of increased coordination between
robots.
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Notes

1. Although the experiment is not intended to reproduce a biologi-
cal system, the experiment presents several similarities with the
matches extraction and transportation performed by some ant
colonies (Chauvin and Janin, 1975).

2. Six was the maximum number of real robots available for the ex-
periments. Consistently with the SI approach, there is absolutely
no limitation in the size of the team from a control architecture
point of view.

3. To increase their reflectivity, robots have a belt of white paper,
as well as a thin band of IR-reflective stickers in their back (not
shown on the picture).

4. The gripper turret is equipped with a sensor giving the arm’s
elevation angle.

5. In Webots 2.0, Webots API commands can be directly cross-
compiled into Khepera BIOS commands and downloaded into
the real robots.

6. Note also that, while the number of robots is fixed for each ex-
periment reported in this article, this is not a prerequisite. For
instance, the number of robots could be varied during an exper-
iment to investigate the effect on the collaboration dynamics of
a sudden increase or decrease of the number of robots.

7. Equation 4 ensures that a grip2 can only occur when at least
one other robot is making a grip1. If no robot is making a grip1,
NG2(t) = 0.

8. We define a systematic search as the search which takes the
minimum time (or number of iterations) to discover all the ele-
ments (robots or sticks) in the arena. It therefore corresponds to
traveling around the arena without passing twice on the same po-
sition (in this mental experiment, the robot is supposed to “pass
through” the elements in the arena without having to detour). For
the probabilistic model, the discretization of the arena area must
therefore be realized with the detection area of the smallest of the
elements in the arena, in this case the stick, for N = AA/AS to
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be the minimum number of iterations for detecting all elements
in the arena.

9. From a hardware point of view, the group is homogeneous (ex-
cept, of course, for some minimal component differences in the
real robotic platform). Heterogeneity in this article therefore only
refers to differences in software control parameters.

10. In Webots, the gripping time parameter is varied with 5-second
steps between 5 and 200 seconds and 25-second steps between
225 and 1000 seconds.

11. The subgroups are of equal size if the number of robots is even,
and closest to half the number of robots, if odd (i.e. a group of
5 robots is split in subgroups of 2 and 3).

12. The emitters and receivers are on the front, the back, and the
sides of the Kheperas.

13. The area covered by the call is much smaller when the caller is
facing a near wall, than when it has its back to it.

14. The intuition of the engineer plays, of course, an important role
in selecting the parameters she/he thinks play a major role on
the metrics chosen for an experiment. An iterative process be-
tween defining the parameters to be included into the model and
comparing the predictions with real data might be necessary to
gradually identify the parameters. Note also that some experi-
ments might not be suited to be modelled by this approach (see
below).

15. Note that the controllers need not to be deterministic, the proba-
bilistic model can easily integrate probabilistic action-selection,
as long as the internal probabilities for each action given a
sensori-state are known.

16. In Mataric et al. (1995) another strictly collaborative experiment,
superlinearity in the pushing time was also reported for the group
of 2 robots.
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