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1 Introduction
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Figure 1.1: Block diagram of a haptic system.

The objective of this document is to introduce haptic systems. The dynamic equations of their
more important components will be developed and some characteristics of their operation will be
demonstrated. Figure 1.1 shows the different components of a haptic system and their relationship,
where Fe(t) and FV(kT ) represent variable forces with respect to the continuous and discrete time,
respectively and X(t), Ẋ(t) represent the position and velocity of the end of the haptic system or
robot.

The study is limited to robots of one DOF, made up of a DC motor and a rigid load attached
by means of a reduction gearbox. Section 2 presents the dynamic equations of a DC motor and
Section 3 the dynamic equation of the load by means of the Euler-Lagrange formulation and its
integration in the simplified equation of the DC motor.

In Section 4 the equations of the effect of applying an external force to the end of the robot, in
the case that there is not haptic feedback, are obtained. If there is not haptic feedback, there is not a
closed-loop between the haptic device and the human operator, nor a virtual environment, as shown
in Figure 1.2. Under these circumstances, a position control system is developed in Section 5 and
a gravity torque compensator control system in Section 6. The main idea is to show how to design
a control system that allows i) that the human operator can move the end of the haptic system by
applying a force and ii) that the haptic system stops moving when no force is applied. The control
technique used is shown in Section 5. The main reason to develop this technique is that it allows
to conduct some studies as if the haptic system were lineal. This eases the analysis and allows to
visualize, in a simple way, some characteristics of haptic systems of more than 1 DOF.

Human operator

H

Haptic

Device

M

Fe(t)
[

X(t)

Ẋ(t)

]

Figure 1.2: Force applied to the end of the haptic system.

Up to that point, Figure 1.2 is completely explained, where the force applied by the human
operator does not depend on the haptic device movement, that is, there is not haptic feedback.
In [1] this study is completely developed, including hands with robotic fingers and focusing on the

2



real objects grasping problem.
Later on, Section 7 introduces the concept of haptic feedback and a virtual environment with

virtual objects exerting forces over the DC motor of the haptic device. In Section 8 a mathematical
model in discrete time of a simple virtual object, a torsion spring with viscous friction, is developed.

Finally, Section 9 incorporates all the control elements previously studied, emphasizing the haptic
stability and demonstrating why oscillations can appear at the end of the haptic robot.

Therefore, the main idea of the document is to introduce step by step the design of a haptic
system, although limited to a 1 DOF robot. The extension to haptic devices of more DOFs does
not substantially change what is developed here, except for the fact that the dynamic equations are
more complex, and therefore the analysis requires more sophisticated techniques.

2 DC Motor

Figure 2.1 represents a DC motor.

Rm Lm

Jm

Bm

um(t) eb(t)i(t)

θ̇m(t)

τm(t)

Figure 2.1: DC motor.

The electric equation of the motor is

um(t) = Rmi(t) + Lm
di(t)

dt
+ eb(t) (2.1)

where um(t) represents the input voltage, i(t) the electric current, eb(t) the counter-electromotive
force (back-EMF), Rm the terminal resistance and Lm the robot inductance.

The mechanical equation of the motor is

τm(t) = Jmθ̈m(t) + τl(t) + τf (t) (2.2)

where τm(t) represents the motor torque, θ̈m(t) the angular acceleration of the motor, Jm the rotor
inertia, τl(t) the load torque from the motor axis and τf (t) the friction torque which considers
different friction components such as the damping one amongst others.

In what follows, only the damping viscous torque will be taken into account, therefore

τm(t) = Jmθ̈m(t) +Bmθ̇m(t) + τl(t) (2.3)

where θ̇m(t) is the angular motor velocity, Bmθ̇m(t) the damping viscous torque with Bm the damping
viscous constant.

Typically, a DC motor satisfies the following electromechanical coupling equations:

eb(t) = kbθ̇m(t)

τm(t) = kmi(t)

(2.4a)

(2.4b)

where kb and km are motor constants, back-EMF constant and torque constant, respectively. When
they are expressed in the same unit system, kb = km.

Let the electric time constant te and the mechanical time constant tm (whose units in the
international system are in seconds), be defined as:

te =
Lm

Rm
(2.5a)

tm =
RmJm

RmBm + kbkm
(2.5b)
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The DC motor equations can be simplified taking into account that the electric constant of a
DC motor is usually much smaller than its mechanical constant, that is, te ≪ tm. This can be
interpreted as neglecting the inductance Lm contribution in the electric equation. Therefore, the
electric equation given by Equation 2.1 can be rewritten as:

um(t) = Rmi(t) + kbθ̇m(t) (2.6)

By solving the mechanical equation (Equation 2.3) for i(t), taking into account Equation 2.4b
and substituting in Equation 2.6, the simplified equation of a DC motor is obtained

um(t) =
RmJm
km

θ̈m(t) +

(
RmBm

km
+ kb

)
θ̇m(t) +

Rm

km
τl(t) (2.7)

Equation 2.7 represents, in the absence of load, a first order linear differential equation for the
variable of angular velocity and a second order linear differential equation for the variable of angular
position.

It will be relevant to write the simplified equation in terms of the torque in the motor axis, instead
of electrical voltages

km
Rm

um(t) = Jmθ̈m(t) +

(
Bm +

kbkm
Rm

)
θ̇m(t) + τl(t) (2.8)

3 1 DOF DC motor model with load

Figure 3.1a shows the mechanical part of a DC motor, the gearbox and the load and Figure 3.1b its
frontal view.

Let the load be attached to the motor axis by a reduction gearbox of r ∈ (0, 1] reduction factor
and η ∈ (0, 1] efficiency. Then, the angular velocity iθ̇L(t) and the load torque τL(t) at the gearbox
output will be related respectively to θ̇m(t) and τl(t) in the motor axis (or gearbox input) by the
following equations:

θ̇L(t) = rθ̇m(t)

τL(t) =
η

r
τl(t)

(3.1a)

(3.1b)

Jm Bm

r, η
JL

mL

τm θ̇m
τl

τL

θ̇L

(a) (b)

Figure 3.1: (a) Side and (b) frontal view of the axis, gearbox and DC motor load.

The kinetic (K) and potential (V) energy of a rigid body that rotates around axis z of the inertial
reference system S0 are

K =
1

2
mvTc vc +

1

2
w̃T Icw̃ (3.2a)

V = mgrcy (3.2b)
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where m is the mass, vc the linear velocity of the center of mass, w̃ = Rzw, with w the angular
velocity of the object and Rz the rotation matrix between the S0 and Sc reference systems, rcy the
y coordinate of the center of mass position, g the earth’s gravitational constant and Ic the constant
inertia tensor around the center of mass

Ic =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (3.3)

As it is a 1 DOF mechanism, the Cartesian coordinates of the center of mass refereed to the
system S0 are,

Xc = lc

cos θL(t)sin θL(t)
0

 (3.4)

where lc is the distance between the origin of the inertial reference system S0 and the center of mass.
By deriving with respect to the time, the linear velocity of the center of mass vc is obtained.

From the derivate of the elemental rotation matrix around axis z, the angular velocity w̃ is obtained.
Therefore,

vc = Ẋc = lcθ̇L(t)

− sin θL(t)
cos θL(t)

0

 (3.5a)

w̃ = θ̇L(t)k⃗ = θ̇L(t)

00
1

 (3.5b)

rcy = lc sin θL(t) (3.5c)

w̃T Icw̃ = Izz θ̇
2
L(t) (3.5d)

vTc vc = l2c θ̇
2
L(t) (3.5e)

where Izz is the moment of inertia around axis z of the reference system fixed at the center of mass
Sc.

The dynamic equation of the load can be obtained by different ways. One of them is the Euler-
Lagrange formulation, that will be explained as follows.

The Lagrangian L is defined as L = K − V , where K is the kinetic energy and V the potential
energy of the mechanism. Therefore, it can be demonstrated that the dynamic equation of every
mechanism of a rigid body can be obtained by the Euler-Lagrange equation. For a 1 DOF mechanism:

τL(t) =
d

dt

(
∂L

∂θ̇L(t)

)
− ∂L

∂θL(t)
(3.6)

where τL(t) is named generalized force or torque, in our case the load torque.
Therefore, by taking into account the aforementioned developments,

τL(t) = JLθ̈L(t) +mglc cos θL(t) (3.7)

where JL = Izz +ml2c .
By expressing θL(t) and τL(t) in terms of θm(t) and τl(t), the equation of the object movement

given by Equation 3.7 can be rewritten as

τl(t) =
r2JL
η

θ̈m(t) +
r

η
τg(t) (3.8)

where τg(t) = mglc cos (rθm(t)) is the gravitational torque compensation.
By combining Equation 3.8 in the simplified motor equation given by Equation 2.8

km
Rm

um(t) = Jeff θ̈m(t) +Bθ̇m(t) +
r

η
τg(t) (3.9)
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where Jeff is the effective moment of inertia

Jeff = Jm +
r2JL
η

B = Bm +
kbkm
Rm

τg(t) = mglc cos (rθm(t))

(3.10a)

(3.10b)

(3.10c)

4 Introduccing an external force to the 1 DOF DC motor model with
load

If an external force fe and a moment of forces ne, is applied to the end (Pe) of 1 DOF robot, then
the torque that appears at the joint is

τe(t) = JT (θL(t))Fe(t) (4.1)

where J represents the Jacobian of the robot and Fe the external forces torsor,

J(θL(t)) =



−l sin (θL(t) + αc)
l cos (θL(t) + αc)

0
0
0
1

 (4.2a)

Fe(t) =



fex(t)
fey(t)
fez(t)
nex(t)
ney(t)
nez(t)

 (4.2b)

where l is the distance between the origin of the inertial reference system S0 and the point where
the force is applied, and αc is a constant angle between the Pe and rc vectors.

The demonstration of Equation 4.1 is obtained by the virtual works of D’Alembert. This demon-
stration is not going to be done in this manuscript.

In any case,

τe(t) = l (−fex(t) sin (θL(t) + αc) + fey(t) cos (θL(t) + αc)) + nez(t) (4.3)

The force fe(t) can be decomposed in a tangential force and a normal force to the robot’s
movement. The normal force does not perform any work, so the external force will only influence
the tangential force.

If feT (t) is the module of the tangential force, then the effective force will be

fex(t) = ±feT (t) sin (θL(t) + αc) (4.4a)

fey(t) = ∓feT (t) cos (θL(t) + αc) (4.4b)

then

τe(t) = ∓lfeT (t) + nez(t) (4.5)

By introducing Equation 4.5 in the simplified equation of the DC motor with load given by
Equation 3.9

km
Rm

um(t) = Jeff θ̈m(t) +Bθ̇m(t) +
r

η
τg(t)−

r

η

(
lf ′

eT (t)− nez(t)
)

(4.6)

where f ′
eT (t) = ±feT (t).

In what follows feT (t) will be used instead of f ′
eT (t) to indicate the module of the tangential

force with sign, understanding that the sign will be positive when the tangential force is applied in
counter-clock wise in the xy plane of the inertial reference system S0.
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5 Direct torque control

The direct torque control technique consists of defining a structure with two feedback loops as shown
in Figure 5.1. The internal loop function is to linearize the system and the external one to control
the linear system to satisfy some design specifications. Although in this Section a 1 DOF system is
studied, it is easy to generalize it to a multivariable control system for a n DOFs robot.

The dynamic equation of the motor with load obtained in Section 3 can be rewritten as

u(t) = Jeff θ̈m(t) +Bθ̇m(t) +
r

η
τg(θm(t)) (5.1)

where u(t) =
km
Rm

um(t) and um(t) is the voltage applied to the DC motor.

The direct torque control technique consists of applying the following non-linear feedback control
loop,

u(t) = Jeffv(t) +Bθ̇m(t) +
r

η
τg(θm(t)) (5.2)

where v(t) represents an input signal that must be designed.
By substituting Equation 5.2 in Equation 5.1,

v(t) = θ̈m(t) (5.3)

where it was taken into account that Jeff ̸= 0.
This means that the system will behave as a double integrator, so v(t) can be designed by linear

control design techniques. However, for this to happen, a perfect cancellation of the inertial terms,
viscous and gravitational friction, must occur. Unfortunately, in the real world, errors and uncertainty
in the modelling are typical, so the general form of the cancelation can be expressed as

v(t) = θ̈m(t)− σ(t) (5.4)

where σ(t) is a time-invariant linear function and, in general, dependent of θm(t) and θ̇m(t).
There are several control techniques that take into account that σ(t) ̸= 0, as the robust and

adaptive control techniques. An easy technique that allows to apply linear control techniques is
to consider σ(t) as a perturbation and to design controllers that solve the problem of suppressing
perturbations. In this document none of these techniques are explained, but it must be understood
that any function that is not taken into account in the model, as the static friction, can be treated
as a perturbation.

+
−

KP +
−

Jeff +
+

Rm

km

Motor + Load

∫

KD ũ(t) = Bθ̇m(t) +
r

η
τg(θm(t))

θmd v(t) u(t) um(t) θ̇m(t) θm(t)

ũ(t)

Figure 5.1: Block diagram of a direct torque control of position.

The design of the control signal v(t) depends on the application to be implemented.
If a position control, where the desired position θmd is known, wants to be implemented by

assuming that the cancellation is perfect, that means σ(t) = 0, a type P-D controller can be
designed as the one shown in Figure 5.1. In this example, v(t) is

v(t) = KP (θmd − θm(t))−KDθ̇m(t) (5.5)

where KP are KD design constants.
In Figure 5.1 the linearized system is shown in red. It ideally satisfies Equation 5.3, v(t) = θ̈m(t).
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6 Gravity torque compensation

This section focuses on designing a controller to compensate the gravity torque. The design will be
based on the direct torque control technique shown in Section 5. However, instead of controlling the
position it will be focused on controlling the velocity.

Let the initial conditions of angular position and velocity of a motor be θm(t−0 ) and θ̇m(t−0 )
respectively. An external force Fe(t) is applied to the end of the robot during a time interval [t0, tf ],
and no force is applied when t > t−f .

During the interval at which the external force Fe(t) is applied, the load moves to θm(t−f ) and its

velocity is θ̇m(t−f ). The objective of the gravity torque control is to design a controller that satisfies
the condition that the robot is stopped at any position when there is no external force. Therefore,
the condition to be met is that the velocity must be zero when there is no external force:

θ̇md = 0, t > t−f (6.1)

where θ̇md represents the desired angular velocity.
Let us consider the dynamic equation of the DC motor with load and an external force applied

to its end studied in Section 4 given by Equation 4.6 applied to the t ∈ [t0, tf ] interval, and the
dynamic equation of the motor with load when there is not external force applied, that is, when
feT = nez = 0, then

u(t) =


Jeff θ̈m(t) +Bθ̇m(t) +

r

η
τg(θm(t))− r

η
(lfeT (t)− nez(t)) t ∈ [t0, tf ]

Jeff θ̈m(t) +Bθ̇m(t) +
r

η
τg(θm(t)) t > t−f

(6.2a)

(6.2b)

where u(t) =
km
Rm

um(t), um(t) is the input voltage of the motor and τg(θm(t)) = mglc cos (rθm(t))

represents the gravity torque.
The direct torque control law studied in Section 5 can be expressed as

u(t) = Jeffv(t) +Bθ̇m(t) +
r

η
τg(θm(t)) (6.3)

where v(t) represents an input signal that must be designed.
As shown in Section 5, by substituting Equation 6.3 in Equation 6.2b, the system will behave as

a double integrator, that is, a linearization will be produced and will satisfy the dynamic equation
v(t) = θ̈m(t).

With the objective of using the viscous damping as a break, which makes velocity close to zero
and therefore the Bθ̇m(t) term almost negligible, the control law can be modified as:

u(t) = Jeffv(t) +
r

η
τg(θm(t)) (6.4)

Therefore, by assuming a perfect cancellation of the gravity torque τg(θm(t)), the system will be
linearized for t > t−f , with the following equation

v(t) = θ̈m(t) +
B

Jeff
θ̇m(t) (6.5)

With the objective of stopping the robot as fast as possible, a linear velocity controller can be
designed, for example, a derivative feedback controller in the parallel loop,

v(t) = − KD

Jeff
θ̇m(t) (6.6)

where KD is a design constant.
In summary, the control law u(t) will be

u(t) = −KDθ̇m(t) +
r

η
τg(θm(t)) (6.7)
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External force
generation

Jeff +
+

Rm

km

Motor + Load

∫

−

KD

Jeff

ũ(t) =
r

η
τg(θm(t))

v(t) u(t) um(t) θ̇m(t) θm(t)

ũ(t)

Figure 6.1: Block diagram of the gravity torque compensation based on the direct torque control
technique.

Figure 6.1 shows the block diagram of the control system. To show the similarity with the direct
torque control technique studied in Section 5, the linearized part that satisfies Equation 6.5 is shown
in red.
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7 Introduction to haptic feedback

Human operator
H

JT (q(t))

Haptic
Device
M

Forward
Kinematics

JT (q(t))

ZOH S/H

Graphic
Screen

Virtual environment
V

Fe(t)

τe(t)
[

q(t)
q̇(t)

]

[

X(t)

Ẋ(t)

]

[

X(kT )

Ẋ(kT )

]

[

Ẋ(t)
]

FV(kT )

FV(t)

τV(t)

Figure 7.1: Block diagram of a haptic feedback.

Figure 7.1 shows a simplified block diagram of a system with haptic feedback. There is a master
robot M that is actuated at its end by a human operator H. The human operator exerts an external
force Fe(t) to the end of the robot. On the other hand, there is a real or virtual environment that
opposes the movement of the master. In this section a virtual environment V is assumed. In this
environment there are objects that have some mechanical characteristics, as rigidity, elasticity, mass,
texture, viscous friction, etc.

The haptic feedback consists of allowing the human operator to perceive tactile sensations
related to the mechanical characteristics of the virtual environment. In this case the master robot
is named haptic device. In Figure 7.1, JT (q(t)) represents the transpose of the robot Jacobian,
which depends on the generalized coordinates q(t) and ZOH represents a necessary Zero Order Hold
device because the haptic device is a continuous system while the virtual environment is discrete.
Figure 7.2 shows an example of input and output signals of a ZOH dependent of time.

10



t

x̂(t) x(kT )

T 2T 3T 4T 5T

Figure 7.2: ZOH device: x(kT ) is the input (blue) and x̂(t) is the output (red).

In Figure 7.1, a visual feedback has been included, although, in general, it could be any other
perceptive signal or no signal at all.

There will be haptic sensations when there is a relationship between the exerted force over an
object and the movement of the object, that is, between the force and velocity. The simple contact
with an object is not considered haptic sensation, although in some cases this is an ideal limit of
haptic sensation. An example is the case of pushing or pressing a rigid wall, because in this case a
static reaction force is produced, that is, there is no movement. In reality, walls are very rigid, but
when pushing with the hand, they produce a movement because of the hand elasticity. If the robot
that pushes the wall is rigid, an elastic wall could be emulated. In this case, a movement related to
the force applied to the virtual wall will be produced, therefore it should be considered as a haptic
sensation as there is a movement involved.

Probably the simplest example is the case in which the human operator of the haptic device
pushes a virtual object in a rough surface of a virtual environment. If the object is a rigid mass,
when a force fV is applied , it produces a movement given by

fV(t) = mVẌ(t) +BVẊ(t) (7.1)

where X(t) represents the displacement, BV the viscous damping constant of the surface and mV
the object mass.

The haptic sensation allows the human operator that is displacing a virtual object to perceive a
reaction force of the moving object, −fV(t).

To study the movement of the virtual object, it is necessary to establish a relationship between
the Cartesian coordinates of the end of the haptic device and the coordinates of the virtual object.
Therefore, there must exist a relationship between the inertial reference system of the haptic device
SM and the inertial reference system of the virtual environment SV . The simplest solution to this
problem is to consider that a specific position Q0 of the end of the haptic device, in coordinates of
the system SM, corresponds to the origin of coordinates of the virtual reference system SV , and that
the relationship between SM and SV consists of a constant rigid movement, that is, that it could be
expressed as a constant translation and rotation.

In this case, let dn0
0 be the point Q0 expressed in coordinates relative to SM, that is,

−−→
OQ0 = dn0

0 ,
and Rn0

0 to the rotational matrix of SV with respect to SM.
Therefore, the point Q of the end of the haptic device, whose coordinates in the SM system

are dn0 , is transformed in the coordinates related to the SV system as dn0 = Rn0
0 dnn0

+ dn0
0 where

dnn0
=

−−→
Q0Q is expressed in coordinates of the SV system. Therefore, in the SV system,

dnn0
= (Rn0

0 )T (dn0 − dn0
0 ) (7.2)

The point Q of the end of the haptic device can be in contact with a virtual object in a specific
point by exerting a force over it. This force could displace the object according to Equation 7.1.
The X(t) displacement should be expressed in coordinates of the SV system. If the virtual object is
initially at X0, then X(t) = Xn0(t) −X0, where Xn0(t) = dnn0

(t) and X0 = dnn0
(t0), being t0 the

time instant at which the end of the haptic device contacts the first time the virtual object.
Therefore, it is obvious that the collision detection problem should be solved prior to the

displacement problem. In any case, the collision problem should be solved during all the interval
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in which the object is pushed. If at any time the end of the haptic device stops being in touch with
the object, the applied force should be zero.

The relationship between the end of the haptic device and the virtual object can be very different.
For example, a translational displacement of point Q of the haptic device could correspond to
a rotation displacement of the virtual object. Or a translational displacement of point Q could
correspond to roll a disc in the virtual environment, interpreting that the force applied by the haptic
device is a torque applied to the disc, as if the haptic device will be pressing the gas pedal of a car.
This means that, although virtual objects have their analogy in the real world, their movements do
not need to be identical to the haptic device. Nevertheless, the haptic feedback must be such that
the human operator of the haptic device perceives the virtual world with the maximum fidelity. This
requirement is called haptic transparency problem. Nonetheless, it is very difficult to completely
eliminate the haptic distortion that exists between the perception and what it should be perceived
because of the no linearities of actuators and sensors resolution.

The kinematic relationship given by Equation 7.2 is only valid to the aforementioned conditions.
It could be useful when the forward kinematics problem of the haptic device must be solved to obtain
the virtual environment coordinates. But in general, the relationship between SM and SV could be
any other.

In any case, there will always be errors related to the exact position and velocity of the end of the
haptic device and virtual environment because of numerical errors of solving the forward kinematic
problem and the movement discretization. In fact, the example of pushing a mass with viscous
friction, which dynamic equation is given by Equation 7.1, is continuous, while the one simulated in
the virtual environment is discrete. All these issues pose a problem related to the haptic feedback
named haptic stability problem. The haptic instability is typical of a low sampling rate, and can
be perceived as oscillations in the end of the haptic device. It is important to note that the haptic
perception requires a frequency of 1 kHz.

8 Virtual model of a torsion spring with viscous damping

In this Section, the objects programed in the virtual environment, V, will establish a relationship
between the virtual torque τV(kT ) and the virtual angular displacement θV(kT ) by means of a
difference equation obtained as a discretization of a real object. At the end of the Section, a
relationship between the virtual angular displacement θV(kT ) and the real angular displacement
θm(kT ) of the haptic device is shown.

The virtual object will consist of an ideal torsion spring with viscous damping. In this case, the
analogous real object will satisfy

τV(t) = kVθV(t) +BV θ̇V(t) (8.1)

with the initial condition θV(t
−
0 ) and t0 the initial time, kV is the torsion or elasticity constant and

BV the viscous damping constant. Function τV(t) represents the torque that must be applied to the
real object to be at time t in the angular position θV(t) with angular velocity θ̇V(t).

Because the virtual spring is part of the haptic system, it will be supposed that the initial time
t0 corresponds to the time instant in which the collision is produced. It will also be assumed that
τV(t) = 0 for t ≤ t−0 , that is θ̇V(t

−
0 ) = 0 and θV(t

−
0 ) = 0. However, it should be allowed that the

applied torque in the instant of the collision could not be zero, that is, τV(t
+
0 ) ̸= 0.

The mathematical model of the virtual object can be obtained by discretizing the differential
equation given by Equation 8.1. Any discretization will always be an approximation of the continuous
version.

The solution of the differential equation given by Equation 8.1 is,

θV(t) = θV(t
−
0 )e

−
kV
BV

(t− t0)
+

1

BV
e
−
kV
BV

t

∫
t

t0

e

kV
BV

ν
τV(ν)dν (8.2)

The solution given by Equation 8.2 is met for every t, so it will also be true for t = kT and
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t = (k + 1)T ,

θV(k) = θV(t
−
0 )e

−
kV
BV

(kT − t0)
+

1

BV
e
−
kV
BV

kT

∫
kT

t0

e

kV
BV

ν
τV(ν)dν (8.3a)

θV(k + 1) = θV(t
−
0 )e

−
kV
BV

((k + 1)T − t0)
+

1

BV
e
−
kV
BV

(k + 1)T

∫
(k+1)T

t0

e

kV
BV

ν
τV(ν)dν (8.3b)

where, for simplicity on the notation, θV(kT ) = θV(k) and θV((k + 1)T ) = θV(k + 1).
The temporal index k does not take values k = 0, 1, 2, · · · because what is interesting is to take

into account the collision related to the real time t, that is, to impose that the initial time t0 ̸= 0. To
easy the study it will be assumed that t0 = k0T , that is, that the collision is produced at a multiple
integer of the sampling period T . Therefore,

k ∈ {k0, k0 + 1, k0 + 1, · · · } (8.4)

Multiplying Equation 8.3a by e
−
kVT

BV , subtracting Equation 8.3b and taking into account that∫ (k+1)T

t0

=

∫ kT

t0

+

∫ (k+1)T

kT
, the following difference equation is obtained:

θV(k + 1) = e
−
kVT

BV θV(k) +
1

BV
e
−
kV
BV

(k + 1)T

∫
(k+1)T

kT

e

kV
BV

ν
τV(ν)dν (8.5)

This difference equation is an exact discretization of the continuous solution. If τV(t) is constant
during the time interval [kT, (k + 1)T ) with value τV(kT ), Equation 8.5 can be rewritten as:

θV(k + 1) = e
−
kVT

BV θV(k) +
1

BV
e
−
kV
BV

(k + 1)T
τV(k)

∫
(k+1)T

kT

e

kV
BV

ν
dν (8.6)

where, because of commodity on the notation, τV(kT ) = τV(k).
Solving the integral,

θV(k + 1) = e
−
kVT

BV θV(k) +
1

kV
e
−
kV
BV

(k + 1)T
τV(k)

e

kV
BV

(k + 1)T
− e

kV
BV

kT

 (8.7)

Simplifying,

θV(k + 1) = e
−
kVT

BV θV(k) +
1

kV

1− e
−
kV
BV

T

 τV(k) (8.8)

Therefore, the discretization of the torsion spring model with damping viscous can be rewritten
as:

a1(T )θV(k + 1) + a2(T )θV(k) = τV(k) (8.9)

where the sampling period dependent constants, a1(T ) and a2(T ) are

a1(T ) =
kV

1− e
−
kV
BV

T

(8.10a)

a2(T ) = − kVe
−
kV
BV

T

1− e
−
kV
BV

T

(8.10b)
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Equation 8.9 represents a real system, and therefore a causal system, where the input is τV(k)
and the output θV(k). However, the virtual objects must be built in such a way that the input is
θV(k) and the output is τV(k), or more concretely the reaction force of the virtual object, that is,
−τV(k). This means that they cannot be completely analogous to real systems. In fact, to obtain
τV(k) it is necessary to know θV(k + 1), that is, a future value, and therefore unknown at t = kT .

A solution to this problem of no causality of the virtual objects is to provide a delay of one
sampling period in the signalτV(k). This can be acceptable if T is low enough. In this case, the
spring model could be

τV(k) = a1(T )θV(k) + a2(T )θV(k − 1) (8.11)

with k = k0+1, k0+2, · · · , the initial condition θV(k0) = 0 and where the sampling period dependent
constants, a1(T ) y a2(T ), are given by

a1(T ) =
kVe

kV
BV

T

e

kV
BV

T
− 1

a2(T ) = − kV

e

kV
BV

T
− 1

(8.12a)

(8.12b)

It is important to notice that θV(k) is related with the real displacement of the end of the haptic
device. If the haptic device is a robot of 1 DOF, it is mandatory to measure θm(t), that is, the angular
position of the motor axis. If θV(t) = θm(t), the no causality problem is also present, although it
could be avoided with an angular speed sensor, that is, by measuring θ̇m(t). If this is the case, the
virtual model could be obtained from Equation 8.1 as

τV(k) = kVθV(k) +BV θ̇V(k) (8.13)

where θV(k) = θm(k) and θ̇V(k) = θ̇m(k).
Typically there are not velocity sensors (tachometers) installed in the haptic devices, and a discrete

overdue approximation of the derivative is used. The most simple approximation is the one of Euler:

θ̇m(t) ≈ θm(k)− θm(k − 1)

T
(8.14)

By substituting this approximation in Equation 8.1, assuming θV(t) = θm(t) and grouping terms:

τV(k) = b1(T )θV(k) + b2(T )θV(k − 1) (8.15)

with the initial condition, where

b1(T ) = kV +
BV
T

b2(T ) = −BV
T

(8.16a)

(8.16b)

For this model of the spring, the virtual models of Equation 8.11 and Equation 8.15 are exclusively
different on the constants. We can check that constants bi(T ) are an approximation of the exact
ones ai(T ) for low sampling periods. It can be seen by taking into account the definition of the
exponential, by substituting the first order linear approximation in ai(T ) as

e

kV
BV

T
= 1 +

kV
BV

T +
1

2

(
kV
BV

T

)2

+
1

6

(
kV
BV

T

)3

+ · · · ≈ 1 +
kV
BV

T (8.17)

Finally, it is important to mention that the relationships θV(t) = θm(t) and θ̇V(t) = θ̇m(t) do
not need to be met. These relationships depend on the problem to be solved, and therefore it is a
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problem of designing the virtual environment. In the case of a 1 DOF haptic system with a motor
and a reduction gearbox in the joint, it seems convenient to assume that θV(t) meets the angular
position at the gearbox output, and that the stable position of the spring is not zero, but a constant
value θL0. Therefore, the relationship between θV(t) and θm(t), and between θ̇V(t) and θ̇m(t) are
represented as

θV(t) = rθm(t)− θL0

θ̇V(t) = rθ̇m(t)

(8.18a)

(8.18b)

where r ∈ [0, 1] is the reduction ration and θL0 = rθm(t0).
By including the relationship between the virtual object and the real world given by Equation 8.18

in the virtual object Equation 8.11, a difference equation that defines the virtual object programmed
in the virtual environment is obtained,

τV(k) = ra(T )θm(k) + r(kV − a(T ))θm(k − 1)− ra(T )θm0 (8.19)

where θm0 = θm(k0), a(T ) = a1(T ) and it was taken into account that a1(T ) + a2(T ) = kV .
On the other hand, exact discrete solutions of a specific real model are not approximations

obtained from the Euler approximation of the derivate. In any case, the important objective are not
the mathematics developed in this Section, but to solve the transparency problem, in the sense
that the haptic perception of the human operator matches with the virtual model implemented.

9 Haptic system with a 1 DOF haptic device and a virtual torsion
spring with viscous damping

Human
Operator

H

r

η

[

l 1
]

Ẋ(t) = rlθ̇m(t)

[

− sin rθm(t)
cos rθm(t)

]

−

+
+

+ Rm

km

Haptic
Device
M

∫

−

+
KD

ũ(t) =
r

η
τg(θm(t))

X(t) = l

[

cos rθm(t)
sin rθm(t)

]

Ẋ(t) = rlθ̇m(t)

[

− sin rθm(t)
cos rθm(t)

]

Virtual
Environment

V

u(t) um(t) θ̇m(t) θm(t)

ũ(t)

Fe(t) =

[

feT (t)
−nez(t)

]

τe(t)

Ẋ(t)

{X(t), Ẋ(t)}

τV(t)

Figure 9.1: 1 DOF Haptic system with gravity compensation

In Section 6 a gravity compensation controller was designed. However, when there is a haptic
feedback, the external force applied by the human operator depends on the linear velocity of the end
of the haptic device, as shown in Figure 7.1.
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Figure 9.1 shows the block diagram of a haptic system including the controller studied in Section 6
for a haptic device of 1 DOF. This Figure assumes that the virtual environment implements objects
that depend on the Cartesian coordinates {X(t), Ẋ(t)}, and that a sampler is located at is input
and a ZOH at its output.

When a haptic feedback is included, the external torque τe(t), that appears at the joint of the
haptic device when the human operator applies force Fe(t), depends on the joint coordinates, that is

τe(t) = τe(θm(t), θ̇m(t)) (9.1)

because τe = JTFe, where J represents the robot’s Jacobian, which depends on the angular position.
Fe depends on the linear velocity of the end of the haptic device that depends on the angular position
and the angular velocity of the motor axis.

The equation which represents the haptic system is the same that the one obtained in Section 4,
Equation 4.6, of the motor with load when an external force is applied, with the sole difference that
τe(t) depends on the position and angular velocity.

u(t) = Jeff θ̈m(t) +Bθ̇m(t) +
r

η
τg(θm(t))− r

η
τe(t) (9.2)

where u(t) =
km
Rm

um(t), being um(t) the input voltage to the motor.

Human
Operator

H

r

η

[

l 1
]

Ẋ(t) = rlθ̇m(t)

[

− sin rθm(t)
cos rθm(t)

]

−

+
+

+ Rm

km

Haptic
Device
M

∫

−

+
KD

ũ(t) =
r

η
τg(θm(t))

ZOH Sampler

Virtual
Environment

V

u(t) um(t) θ̇m(t) θm(t)

ũ(t)

Fe(t) =

[

feT (t)
−nez(t)

]

τe(t)

Ẋ(t)

θm(kT )

τV(kT )

τV(t)

Figure 9.2: 1 DOF Haptic system with gravity compensation

In what follows, it will be studied how to incorporate the virtual environment on the dynamics
of the haptic system. Figure 9.2 shows the block diagram of a 1 DOF haptic device where the need
for solving the forward kinematics problem has been eliminated, because the virtual object to study
will be represented in joint coordinates.

If the virtual environment consists of a torsion spring with friction, as the one studied in Section 8,
Equation 8.11 or Equation 8.15 can be studied with a ZOH device as

τV(k) = a1(T )θV(k) + a2(T )θV(k − 1) (9.3)
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being t ∈ [kT, (k+1)T ) with k ∈ {k0+1, k0+2, · · · } and t0 = k0T the time instant of the collision.
If the relationship between θV(t) and θm(t) are such that the virtual object follows Equation 8.19,

when the ZOH is included, the virtual object equation in t ∈ [kT, (k + 1)T ) with k ∈ {k0 + 1, k0 +
2, · · · }, can be rewritten as:

τV(k) = aVθm(k) + bVθm(k − 1)− aVθm0 (9.4)

where aV = ra(T ) and bV = r(kV − a(T )). It is also met that aV + bV = rkV .
To include this discrete virtual model in the continuous equation of the haptic system given by

Equation 9.2 is problematic. There are different techniques for the study of hybrid systems. One of
them is to assume that the discrete part consist of an exact discretization of the continuous model,
such that it is assumed that the discrete part will not conduct to important errors. This assumes
that the virtual object is continuous. In our case, it means to use the model of Equation 8.1 that
together with Equation 8.18 conduct to

τV(t) = rkVθm(t) + rBV θ̇m(t)− rkVθm0 (9.5)

If the control law given by Equation 6.7 is considered,

u(t) = −KDθ̇m(t) +
r

η
τg(θm(t))− τV(t) (9.6)

By substituting the control law given by Equation 9.6 in the dynamic equation of the haptic
system given by Equation 9.2, the differential equation that represents the haptic system is given by

Jeff θ̈m(t) + (B +KD + rBV)θ̇m(t) + rkVθm(t)− r

η
τe(θm(t), θ̇m(t)) = rkVθm0 (9.7)

The solution to this differential equation depends on the knowledge of the effect of the human
operator at the output of the gearbox, that is, τe(θm(t), θ̇m(t)).

17



References

[1] R. M. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to Robotic Manipulation. CRC
Press, Inc., 1994.

18


	Contents
	List of Figures
	Introduction
	DC Motor
	1 DOF DC motor model with load
	Introduccing an external force to the 1 DOF DC motor model with load
	Direct torque control
	Gravity torque compensation
	Introduction to haptic feedback
	Virtual model of a torsion spring with viscous damping
	Haptic system with a 1 DOF haptic device and a virtual torsion spring with viscous damping
	References

