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Resumen

El sistema eléctrico actual no ha evolucionado desde sus oŕıgenes. Esto ha hecho
que emerjan diferentes problemas los cuales son necesarios afrontar para incrementar
el rendimiento de las redes eléctricas. Uno de estos problemas es el crecimiento
de la demanda, mientras que otros, como las Tecnoloǵıas de la Información y las
Comunicaciones (TIC) o la Generación Distribuida (GD), se han desarrollado dentro
de la red eléctrica recientemente sin ser propiamente integradas dentro de ella. Esta
Tesis afronta los problemas derivados del manejo y la operación de las redes eléctricas
existentes y su evolución hacia lo que se considera la red eléctrica del futuro o Smart
Grid (SG).

El SG nace de la convergencia de cinco aspectos: i) la red eléctrica, ii) TICs,
iii) enerǵıas renovables, iv) almacenamiento eléctrico y v) Gestión de la Demanda
Eléctrica (GDE). Esta Tesis consiste en un primer paso hacia el SG uniendo e
integrando los cinco aspectos claves para su desarrollo y despliegue en el futuro
cercano. Para ello, la mejora del estado de la red eléctrica se consigue a través del
suavizado del consumo agregado. Para lograr este objetivo, se propone el uso de un
algoritmo que procese la información proveniente de las TICs para que todas las
partes de la red eléctrica se puedan beneficiar. Algunos de estos beneficios son: mejor
uso de las infraestructuras, reducción de su tamaño, mayor eficiencia, reducción de
costes e integración de GD, entre otros. El algoritmo propuesto está basado en una
aproximación distribuida en la que los usuarios son hechos part́ıcipes de sus decisiones,
siendo capaces de manejar sus flujos de potencia con este objetivo. El algoritmo
se ha implementado siguiendo una estrategia basada en la GDE combinada con el
control automático de la demanda que ayude a integrar los Recursos Energéticos
Distribuidos (RED) (enerǵıas renovables y sistemas de almacenamiento eléctrico),
que lo conducen hacia un concepto innovador denominado Gestión de la Activa de la
Demanda Eléctrica (GADE).

En esta Tesis, una aproximación basada en la Inteligencia Artificial (IA) ha
sido utilizada para implementar el algoritmo propuesto. Este algoritmo ha sido
construido utilizando Redes Neuronales Artificiales (RNAs), más concretamente
Redes Neuronales Recurrentes (RNRs). El uso de RNAs ha sido motivado por
las ventajas de trabajar con sistemas distribuidos, adaptativos y no lineales. Y la
elección de las RNRs se ha basado en sus propiedades dinámicas, las cuales encajan
perfectamente con el comportamiento dinámico no lineal de la red eléctrica. Además,
un controlador neural es utilizado para manejar cada elemento de la red eléctrica,
incrementado la eficiencia global a través del suavizado del consumo agregado y
maximizando el autoconsumo de los RED disponibles. Sin embargo, no existe ningún
tipo de comunicación entre los distintos individuos y la única información disponible
es el consumo agregado de la red eléctrica. Finalmente, la mejora de la red eléctrica se
ha conseguido de manera colectiva utilizando el algoritmo propuesto para coordinar
la respuesta del conjunto de controladores neuronales.





Abstract

The present electrical systems have not evolved since its inception. This fact has
triggered the emergence of different problems which are necessary to tackle in order
to enhance the grid performance. The demand growth is one of these problems, while
others, such as the Information and Communications Technology (ICT) or Distributed
Generation (DG), have been recently developed inside the grid without their proper
integration. This Thesis addresses the problems arising from the management and
operation of existing electrical grids and their evolution to what is considered the grid
of the future or Smart Grid (SG).

The SG is born from the convergence of five aspects: i) the grid, ii) ICTs,
iii) renewable energies, iv) Electrical Energy Storages (EESs) and v) Demand Side
Management (DSM). This Thesis consists of a first step towards the SG by linking
and integrating the five key aspects for its development and deployment in the near
future. To this end, the enhancement of the grid status is achieved by the smoothness
of the aggregated consumption. In order to fulfill this objective, an algorithm has been
proposed that processes the data gathered from the ICTs to benefit all the parts of
the grid. Some of these benefits are: better use of the infrastructure, reduction in its
size, greater operational efficiency, cost reductions and integration of the DG, among
others. The proposed algorithm is based on a decentralized approximation in which
the users are made participants in their decisions, being able to manage their power
flows into this objective. It is implemented following DSM techniques combined with
an automatic control of demand that helps to integrate Distributed Energy Resources
(DER) (renewable energies and EESs), which leads to an innovative concept called
Active Demand Side Management (ADSM).

In this Thesis, an Artificial Intelligence (AI) approach was used to implement the
proposed algorithm. This algorithm is built based on Artificial Neural Networks
(ANNs), specifically Recurrent Neural Networks (RNNs). The use of ANNs is
motivated by the advantages of working with distributed, adaptive and nonlinear
systems. And the election of RNNs is based on their dynamic behavior, which fits
perfectly with the nonlinear dynamic behavior of the grid. In addition, a neural
controller is used to operate in each element of the grid to increase the global efficiency
by smoothing the aggregated consumption and to maximize the local self-consumption
of the available DER. However, there is no communication among the users and the
available information is only the aggregated consumption of the grid. Finally, the
enhancement of the grid is achieved collectively by using the proposed algorithm to
coordinate the responses of the neural controller ensemble.
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and Prof. Estefańıa Caamaño Mart́ın for the opportunity they gave me to take
this path. Alvaro is like my science father while Estefańıa is my science mother.
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Prof. Benito Artaloytia Encinas for their support and concerns around the Thesis. I
would also like to thank them to give me the opportunity to collaborate with them
in the development of their energy subject.

I am also grateful to have been part of GEDIRCI during the realization of my
Thesis. I want to thank Dr. Daniel Masa, Dr. Jorge Solórzano, Dr. Lorenzo Olivieri
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1Introduction

“Sapere aude” — Horacio

1.1 Motivation and Problem statement

N
owadays electricity is an essential element in daily life. The growth
in electricity demand is driven by the increasing use of electrical and
electronic devices (e.g. mobile phones, computers or appliances). In
addition, the trend in electricity consumption is also positive1 (see Figure

1.1). According to the International Energy Agency (IEA), from 2012 to 2040, the
global electricity demand is projected to increase by 2.1% per year in the current
policy scenario (IEA, 2014d). This growth rate is the result of rising standards of
living, economic expansion and the continuous electrification of society.

For some applications, such as electronic appliances, electricity is the only available
option to enable them to perform their function. Furthermore, new electronic devices
traditionally dependent on fossil fuels are emerging, such as the Electric Vehicle (EV)
or new forms of electricity generation. Electricity offers a variety of services, often
in a more practical, convenient and effective way than alternative forms of energy.
In addition, electricity produces no waste or emissions at the point of use and it is
available to consumers immediately on demand.
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Figure 1.1: Trends of the demand growth in the world. Source:Exxon Mobil.

1http://corporate.exxonmobil.com/
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Figure 1.2: Daily aggregated consumption of an electrical grid. In shadow grey the

night period is represented.

However, the grid must satisfy a single and problematic rule, the electrical
consumption must be equal to the generation. This rule, in spite of being simple,
is the source of the main problems of the grid. Grid operators must guarantee the
security of supply to the users. If the generated power is bigger than the consumed
power, the voltage and the frequency of the grid are greater than the operation point
(e.g. 230V and 50Hz in Spain). On the other hand, if consumption is bigger than
generation, the voltage and the frequency of the grid decrease their values. These
variations can cause damages on both sides, generation and consumption. Therefore,
generation and consumption must always be balanced in real time. This restriction
requires a high synchronization between thousands or even millions of devices.

Aggregated consumption is defined as the sum of all loads inside the grid that
consume power. Figure 1.2 shows an example of the typical waveform of a grid
aggregated consumption. Generally, consumption is not constant throughout the day,
leading to wide variations in power generation. Low consumption periods are called
valleys and higher consumption ones are called peaks (see Figure 1.2). For example,
in Spain according to Red Eléctrica de España (REE)2, the valleys are nowadays in
the vicinity of the 22-24GW and peaks in the vicinity of the 36-38GW. The installed
generation capacity should be able to meet the peaks plus a safety margin. This
means that during periods of low consumption, a small percentage of the installed
generation is used (the average utilization of generation capacity is less than 55%).
However, an electrical grid is designed for the worst possible scenario and all its
elements should have enough capacity to supply the maximum historical peak. Thus,
the total capacity of the system is only supplied for a few hours in the year and these
resources are underutilized most of the time. This oversizing of the grid in generation,
transmission and distribution implies an inefficient structure whose investments and
costs are high.

In addition, actual grids face significant regional disparities. This problem arises
because of a centralized generation model, where electricity is generated far from
the consumption points (see Figure 1.3, old generation grids). Indeed, this model
of operation implies an electricity loss rate in transmission and distribution of
approximately 9% on average around the world, according to the IEA (IEA, 2014d).
Furthermore, grid congestion happens in areas where consumption is higher than
the available generation and it is produced because of the saturation of transmission
and distribution lines, increasing the inefficiency of the grid. Another factor to be
taken into account is that actual grids present low storage capacity, only a few
forms are integrated in the system such as pumping hydro. The main advantage
of incorporating storage systems to the grid is the possibility to defer the generation

2http://www.ree.es/es/
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Old generation grid New generation grid

Figure 1.3: Old generation grids vs. new generation grids.

surplus to supply the demand when it is needed. The lack of storage systems causes
certain risks in security and quality of electricity supply and increases the oversizing
of the infrastructure. Finding a solution to the above problems is becoming a priority
in energy policies worldwide (IEA, 2014d).

The new generation grids, known as Smart Grids (SGs) (see Figure 1.3, new
generation grids), aim to solve these problems. This type of grids appears as
a convergence between Information and Communications Technologies (ICTs) and
engineering power systems (Farhangi, 2010). SGs started in the late 90s as an
attempt to use electronic control and monitoring in the increasingly complex electric
power systems (Vu et al., 1997). SGs have included since then, other concepts
besides the reliability of the system, as for example advanced monitoring systems,
better demand management, efficiency of the electricity transmission, self-healing,
etc. Within SGs, the grid can achieve greater penetration of renewable technologies
such as Photovoltaics (PV), and new manageable electrical consumption devices, as
well as EV or automated appliances. Moreover, Distributed Generation (DG) would
change the generation paradigm inside the SG thanks to the use of the ICTs. DG
follows a different generation structure where small generators are spread over the
grid and closer to the consumption. The interest in DG has been growing for 20 years
in all participating collectives of the grid (Lopes et al., 2007). One of the main reasons
is the reduction of the transport and distribution power losses. Another important
benefit of DG is that it also reduces the purchase of external resources because the
majority of technologies are based on renewable energies.

Another interesting area inside the SG, is the field of Demand Side Management
(DSM), in which significant efforts have been made. DSM can be defined as actions
that influence the way users consume electricity in order to achieve an objective, such
as higher savings or energy efficiency. DSM achieves the following benefits: reduce the
oversizing of the infrastructure, increase the profitability of investments in the grid,
security enhancement, integration of new generation technologies and integration new
local consumption technologies (Strbac, 2008). Furthermore, DSM mechanisms can
be of different nature: changes in the regulatory environment, consumer awareness,
efficiency of electrical equipment, billing systems, etc. (Torriti et al., 2010). The
aggregated consumption presents a high variability in its waveform as shown in Figure
1.2, and it is one of the major problems of the current grid. The reason is that the
complexity of the grid operation is increased as forecasts are needed to meet the
demand. In general, DSM techniques aim at modifying the aggregated consumption
to flatten its shape and increase the efficiency of the whole system. For these purposes,
DSM techniques can be divided in four main techniques:
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Figure 1.4: Effects of DSM techniques in the aggregated consumption: (a)

consumption reduction, (b) valley consumption increase, (c) peak consumption

decrease and (d) load shifting. In red and blue are the aggregated consumption before

and after applying DSM techniques respectively and in shadow grey night periods are

represented.

i) Consumption reduction, without modifying the shape of the aggregated con-
sumption (see Figure 1.4(a)). The reduction is achieved by improving the
efficiency of equipment and processes or social awareness.

ii) Valley consumption increase, more consumption during these periods (see
Figure 1.4(b)). In this case, some new consumptions are added to the aggregated
consumption, such as pumping stations, storage systems or electric vehicles,
among others.

iii) Peak consumption decrease, reducing the consumption through interrupting
services or managing the load during these periods (see Figure 1.4(c)). In
these cases, a part of the existing load has to be removed from the peak so
this measure is more restrictive than the previous one.

iv) Load shifting, displacing part of the electric loads from peak to valley periods
(see Figure 1.4(d)). It is a combination of the ii) and iii) techniques. Specific
regulations must be proposed to promote the use of this technique, such as time
discrimination or response to market prices.

All DSM techniques look for an enhancement of the system efficiency. However,
technique i) only reduces the grid size and not the variability of the whole system.
And techniques like ii) seek consuming more in the valleys to fill them. Although
they enhance the grid efficiency, more consumption implies more generation. If the
valley consumption grows too much without reducing other parts of the aggregated
consumption, it could suppose a loss of efficiency. On the other hand, technique
iii) is certainly increasing the efficiency of the grid, but the behavior of the users
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is being restricted. Thus, for these reasons, technique iv) tries to compensate all
the disadvantages of previous techniques. Without adding more consumption to the
system, it is able to reduce the variability of the aggregated consumption, considering
the behavior of users without interrupting their supply and reducing the consumption
during certain periods of time. Therefore, this last technique is emerging as an
important incentive to include in the development of SG since it helps to improve
the system’s operation and means a better integration of the different parts of the
grid.

In this Thesis, a solution to the aforementioned problems from an Artificial
Intelligence (AI) perspective is proposed. Specifically, it is proposed the use of
Artificial Neural Networks (ANNs) to manage the flows of energy inside the future
SG. The use of ANNs is motivated by the advantages of working with distributed,
adaptive and nonlinear systems. Inside the field of ANN, Recurrent Neural Networks
(RNNs) have been selected because of their dynamic behavior, which fits perfectly
with the non linear dynamic behavior of the grid. In addition, a neural controller
is developed to operate in each element of the grid, in order to increase its global
efficiency by smoothing the aggregated consumption. Inside this grid environment, it
is also contained DG, particularly PV because it is the only renewable generation
technology liable to be widely used in consumption points. Thus, the effects of
local supply inside the grid and the penetration of PV without destabilizing the
grid behavior are studied. Finally, it is worthy to mention that the sole information
available from the grid is the aggregated consumption. The neural controllers make
decisions based on this sole information.

1.2 Thesis aim

The aim of this Thesis is the development of an adaptive algorithm to manage the
consumption of a collective of individuals with the presence of Distributed Energy
Resources (DER), which combines the DG with storage systems. The objective of
this algorithm is to enhance the efficiency of a grid by reducing the variability of
the aggregated consumption through its smoothing. The only information available
for the algorithm is the aggregated consumption coming from the grid. With this
information the algorithm must decide when it is the best time to consume aiming
to accomplish the objective of smoothing the curve. Thus, the algorithm with the
historical data of the grid has to predict and adapt the consumption of several
individuals to fill the valley and decrease the peaks. As a whole, the collective of
individuals must produce a flat aggregated consumption. Thus, the distributed self-
organized algorithm senses the global behavior of a grid and only changes the local
behavior of each individual inside the collective. Therefore, this Thesis seeks for
a distributed DSM approach combined with an automatic control of demand that
helps to integrate DER (DG and Electrical Energy Storage (EES)), which leads to
an innovative concept called Active Demand Side Management (ADSM).

In addition, the grid is a highly non linear and dynamic system, due to the large
number of elements and variables involved. For these reasons, ANNs have been chosen
to develop the algorithm. ANNs have a high ability to learn from the environment and
all information is processed in a distributed manner (Haykin, 2009). More precisely,
RNNs, a variant of ANNs, present the necessary features to model such a complex
system. The use of these algorithms allows taking advantage of the RNN properties
such as non-linearity, adaptability, dynamics, distributivity, robustness, etc. These
are enough advantages to develop an algorithm based on RNN.

From the energy efficiency point of view, the application of DSM techniques is
able to enhance the grid performance. In this way, the oversizing of the grid and
waste of the existing resources inside the grid are avoided. In addition, it is becoming
more common to find DG inside grids because of the increase of solutions and their
benefits. Hence, this Thesis seeks to take advantage of the energy resources available
locally through PV DG. However, the local availability of electricity to supply the
local demand could increase the variability of the aggregated consumption. This
fact concerns to grid operators, who think that a high penetration of PV generation
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could be detrimental to the grid stability. Therefore, this Thesis tries to solve the PV
integration problem, mitigating the stability grid issue and increasing the penetration
of this source of electricity.

In the design of the ADSM algorithm, the following features have been taken into
account:

� Adaptivity, it has to react quickly to changes in the aggregated consumption
and adapt its output to counteract them.

� System dynamics, the grid is a complex system to model, so that the algorithm
has to understand its nonlinear behavior over time by using the flows of energy,
internal feedback loops and time delays.

� Robustness, it has to tolerate perturbations that might affect its functioning or
the grid.

� Distributed system, the algorithm operates locally at the individual level, but
the result of the whole should be flattened aggregated consumption without
interactions or passing information among them.

� Scalability, it must be able to operate with any number of users inside the
grid. This implies that it has to allow the incorporation of new users without
interfering with its operation.

� Data availability, due to the privacy of the users inside the grid, the only
information available is the aggregated consumption and the local consumption
where it is operating. There is no information exchange among the individuals.
This is a restriction due to the way that the data privacy is treated inside the
actual grids.

1.3 Thesis structure

This Thesis is divided in three main parts. In Part I, the basic concepts of this Thesis
are introduced to provide the reader with the necessary context to understand the
problem stated and the proposed solution. Chapter 2 gives an introduction to the
energy concepts related with the grid. The ANN concepts and description of the
elements used to develop the ADSM algorithm are described in Chapter 3.

In Part II, the proposed ADSM algorithm is described. The development of the
algorithm has been divided in three different stages based on simplifications of the
grid environment. Chapter 4 proposed a first approximation of the problem based
on a reduced environment of two users, one controllable and one non-controllable.
The neural controller parameters are tuned in order to solve this simplification of the
problem and an analysis of its performance is developed. Then, in Chapter 5, the
problem is taken to the next step and an algorithm is developed to coordinate the
response of the neural controllers in a collective environment where the behavior of
controllable and non-controllable users is analyzed. Chapter 6 summarizes the results
of using the proposed algorithm in a simulated grid environment.

The conclusions and future works are collected in Part III with Chapter 7. Section
7.1 reviews the work done in the Thesis and discusses its main aspects. Section 7.2
suggests a list of proposals and improvements of the proposed algorithms. Finally, a
review of the author related contributions is summarized in Section 7.3.



PART I

Background





2Grid Framework

“All power corrupts, but we need the electricity” — Anonymous

E
lectricity has become an essential part of life. Like air, for most users it is a
transparent fact in their lives, of which they have no notice. It is only when
power disappears during a failure, when people realize how important
electricity is in daily life. Electricity is used to power computers, mobile

phones, cooling, cooking, washing clothes, lights, entertainment, transportation, etc.
(Brain and Roos, 2000). But, how is it possible that electricity is there when switching
on a light? How is electricity able to reach every place instantaneously? The answer
to both questions is the electrical grid or only the “grid”. A grid is a network of
electrical power systems which operates in real-time (Blume, 2007). This means that
power is generated, transported and supplied in the same instant that it is needed.
The main rule of the grid is that generation must match consumption. Electric power
systems do not inherently store energy such as water or gas systems. The reason is
in the nature of electricity which is produced by the movement of electrons. Instead,
generators produce the energy as the demand calls for it.

Thus, the grid is a vast physical and human network connecting thousands of
electricity generators to millions of consumers — a linked system of public and private
enterprises operating. However, it had only minor changes in its structure for the past
century. So, the grid will face different challenges over the next decades, while new
technologies arise as valuable opportunities to meet these challenges (MIT, 2011).
Some of them are already here such as integration of renewable energy, Distributed
Generation (DG) or smart metering. If grid operators fail to realize about these
challenges, it could result in degraded reliability, significantly increased costs, and
a failure to achieve several public policy goals (MIT, 2011). To overcome these
drawbacks, it is necessary to take the grid to the next level. The Smart Grid (SG)
is conceived to address the global challenges of energy security, climate change and
economic growth. SGs have some features that enable several low-carbon energy
technologies, including Electric Vehicles (EVs), variable renewable energy sources
and Demand Side Management (DSM) (IEA, 2011).

In this Chapter, the current status of the electric system is introduced (see
Section 2.1), the main parts in which is divided, such as generation (Section
2.1.1), transmission (Section 2.1.2), substations (Section 2.1.3), distribution (Section
2.1.4) and consumption (Section 2.1.5). Thus, the present form of the grid is
introduced together with the identified issues that operators have to tackle within
the evolution towards the next grid generation. These problems will be reported
in Section 2.2. After introducing all these concepts, explanations about what the
SG is and the changes involved in its deployment, both structural (physical) and
internal (logical), are presented. Thus, in Section 2.3, the concept of the SG is
defined and the key aspects on which it is founded are introduced: Information and
Communications Technology (ICT) (see Section 2.3.1), DG (Section 2.3.2), Electrical
Energy Storage (EES) (Section 2.3.3) and DSM (Section 2.3.4). In this Thesis, the use
of DSM techniques are emphasized in order to enhance the grid efficiency integrating
renewable generation and EES. All of them are necessary for the proper growth of a
development environment and proper operation of these new generation power grids.
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2.1 The electric power systems

The electric power system is one of the most complex man-made systems. It consists
of a set of elements that operate coordinately in a territory to satisfy the demand. The
first electric power system was introduced in 1882 by Thomas Edison. It consisted
of 59 customers connected in Direct Current (DC) at a price of about 5 $/kWh (MIT,
2011). The development of the grid has been made over the last century and a half.
Initially, the electric power systems supplied different, small and isolated consumers.
And, the grid was born of the interconnection of these systems as a result of demand
growth (Schewe, 2007). This interconnection was favored by two factors: i) the
transition from DC to Alternating Current (AC) power and ii) the use of transformers
to elevate voltage, making transportation possible with fewer losses (MIT, 2011).
AC power systems replaced DC ones because they present more advantages: easily
elevation of the voltage level and generators and motors are much simpler (Boyle,
2007). During the next decades, new elements were introduced in the grids that
improved the quality as consumption continued growing. With these achievements
together with the growth of the grid, utilities could take advantage of economies of
scale and the price of electricity decreased its value.

Before the 1990s, individual companies controlled all the parts inside the grid
from generation to delivery for a geographic area. In the 1990s, the regularization of
electricity supplies changed, using markets rather than regulators to set prices, where
electricity is treated as a commodity (Fox-Penner, 2010). Deregularization separated
the generation into an industry apart and the electricity was produced far from the
consumers. This fact introduced more complexity and interconnectivity within the
grid. The more complex the grid becomes, the more instabilities affect the grid. A
failure in one part of the grid can be propagated to the remaining parts. Along
with the aging of the infrastructure, power losses increased and maintaining them is
increasingly expensive.

Despite the inclusion of new developments within the grid structure, it has not
changed its main internal organization in about a century and a half. Electrical grids
around the world have a vertical structure, which interconnect generators, substations,
transmission networks, distribution lines and consumption. Figure 2.1 shows the basic
building blocks of the grid, in which the different elements mentioned before are shown
(Kirtley, 2010).

� Generation is the part of the grid in charge of producing electricity. There
are different types of generators that convert primary energy sources, such as
fossil fuels and renewable resources, into electricity, e.g.: nuclear power plants,
combined cycle plants, wind plants, Photovoltaics (PV) solar plants and hydro
power plants among others. The size of the generators varies from few kilowatts
of small diesel generators to thousands of megawatts of nuclear power plants.

� Substations are in charge of conditioning the electricity power between elements
of the grid. These centers are responsible for raising or lowering the voltage
(high/medium voltage and medium/low voltage) to couple different grid
sections. Hence, they contain different elements such as transformers, electrical
buses, capacitor banks, etc. In addition, substations can operate in the grid
through protective relaying, breaker controls, metering, etc.

� Transmission network transports large amounts of electricity from generators
to substations located close to the consumers. Almost every transmission line is
high-voltage, three phases and AC. Electricity is transmitted at high voltages to
reduce the energy losses over long distances. The electricity power parameters
(voltage, frequency and number of phases) are regulated by the organ in charge
of managing the grid, usually at country level.

� Distribution network transfers the electricity from the substations to its
destination. The distribution lines operate at medium/low voltage depending on
the consumers requirements. For instance, the electricity could be distributed
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Figure 2.1: Block diagram of an actual electrical grid.

in one or more phases (typically up to three phases). In addition, the electricity
lines that reach homes provide generally a single phase of 230V in Europe.

� Consumption is considered as the electrical energy used by all the elements inside
the power system. Thus, any device that transforms electric power into work is
considered as consumption of the system. Consumption is made up of different
heterogeneous elements that are grouped according to the final behavior of the
grid users or consumers, e.g.: industrial, commercial or residential. Losses due
to different elements within the grid are also considered as consumption.

These basic elements are part of different power systems. On the other hand,
the grid electrical signal mainly consists of three physical characteristics: i) current,
ii) voltage and iii) frequency (Blume, 2007). The electric current (i) is the amount
of electric charge that flows inside a conductor per unit of time. Its unit in the
International System of Units (SI) is the ampere (A). The electric potential difference
or voltage (v) is the work applied to move electric charges between two points. In other
words, it is the force that electrons need to move. Its unit of measurement in SI is the
volt (V). Frequency (f) is the number of times a signal is repeated in certain time.
Its unit of measurement is Hertz or hertz (Hz). For example, Europe has a value of
50Hz, while in North America it is used 60Hz. In the rest of the world, the frequency
takes one of these two values depending on the country. All of these parameters are
monitored by the grid operators to guarantee the stability of the electric system. The
grid must always provide the required electricity that meets the varying demand.
The reason is that electricity is consumed at the same time that it is generated. An
imbalance between supply and demand will damage the stability and quality (voltage
and frequency) of the power supply (IEC, 2011). But how are these parameters
affected by that mismatch? If demand is greater than generation, frequency and
voltage values fall while if generation is greater than demand, frequency and voltage
rise. The grid must remain safe and be capable of withstanding a large variety of
disturbances to guarantee a reliable service. For these reasons, grid operators design
different contingency plans and constant surveillance from control centers (Kundur
et al., 1994). One of the most widespread measures to achieve the right balance
between generation and consumption is making electricity demand forecasts. With
these forecasts, power plants prepare their production programs for each of the day
hours to meet that demand (Boyle, 2007).

In spite of being very dependable from the geographical area where the grids are
built, they present some features in common:

� Ageing system, since the deployment of the electric grids, there have been no
deep changes in their infrastructure. It is not enough with this feature to meet
the needs of users as well as complicate the entry of new elements within the
grid. Therefore, it is necessary that the grid evolves at the same time that users
increase their demands and technological evolution brings to the market new
generation technologies.

� Large scale. The grid must be able to supply different number of users, ranging
from just a few to millions, depending on the size of the area to cover. This fact
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raises the serious problem of avoiding potential performance degradation as the
grid size increases.

� Geographical distribution. The grid is deployed along the length of the different
countries where it is installed, covering most of the population. There may be
one or more operators responsible for supplying the demand. These operators
install the elements to guarantee the access to electricity, power lines, control
centers, substations, etc.

� Interconnected power systems. The interconnection among electric systems
allows guaranteeing the supply in a given territory when a particular system
cannot generate enough power to meet demand. This happens when extraor-
dinary and unexpected consumptions occur (e.g. a cold snap), or when one
or several generation centers are no longer operating temporarily and enough
electricity is not injected into the system. For this reason, the more electrical
systems are interconnected and the higher the capacity of energy exchanged is,
the greater the safety and quality of service they provide. For example, the
continental European electricity system is connected to the Nordic countries
and the British Isles by North and Eastern countries (see Figure 2.2).

� Heterogeneity. A grid hosts elements whose nature is very different. Within the
grid there are different generators types, different power lines, different types of
consumers, etc. There are also differences between the physical features of the
electricity supplied, different frequencies (50Hz or 60Hz) or different voltage
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(120V or 230V). The values of these parameters depend on the region in which
the grid is located.

� One-way communication. Consumers are mostly uninformed and do not have
active part in the system, they only demand electricity. The communication
goes therefore from generators to consumers through control centres of the grid
operators. However, if users get involved in the process, the efficiency of the
system would be enhanced. The reason is that their behaviour affects directly
to the grid status and the modifications of this behavior increases the grid
operation effectiveness.

� Multiple agents. Each grid may establish different security and administrative
policies under which a safe electricity market can be developed and would be
profitable for all participants. As a result, the already challenging grid security
problem is complicated even more with the inclusion of new communication
technologies.

� Resource coordination. Resources in a grid must be coordinated in order to
provide aggregated capabilities. Thus, the generation could meet the demand
at any time without any problem.

� Access to the grid must be: i) transparent, the grid should be seen as a single
system, ii) reliable, the grid must guarantee the supply to the users at any
moment under established quality of services requirements, iii) consistent, the
grid must bring together all its constituent elements to supply the demand,
and iv) universal, the grid must grant access throughout the whole operation
territory and adapt itself to a dynamic environment that changes continuously.

Nowadays, the integration of new generation technologies into the grid is becoming
complex due to its age. New technologies powered by renewable resources such as
wind and solar energy are increasingly becoming part of the generation mixture
with considerable difficulties because of the variability of these energy resources
(Boyle, 2007) and the centralized generation paradigm on which electric grids are
based. In order to include these resources, it is necessary to use sophisticated
management algorithms that can meet the demand in real-time. Thus, the algorithms
are constantly changing the supplies of energy from different sources to tackle the
variability of renewable energies. Collecting data from the different elements of the
grid could help to perform the complex calculations for grid stabilization. On the
other hand, a bad management of the collected data supposes a curse to the system.
It is in this scenario in which the SG arises. The concept of the SG will be explained
later in Section 2.3. But first, each grid component is explained in more detail.

2.1.1 Electricity generation

Generators are the part of the grid in which the electricity is generated to supply
the demand. They convert primary energy sources into electric energy. This primary
energy comes from different sources, such as fossil fuels, uranium, wastes, water, wind,
the Sun, etc. Then, to transform these primary energies into electricity, the process
differs depending on the generating unit, whose design is defined by the raw material
used (Blume, 2007).

The power generated must have the characteristics imposed on the grid inter-
connection point by the operators. In general, an AC electric generator produces
alternating power at its terminals (Kirtley, 2010). The generator possesses three
terminals, which provide AC voltage and current in each of them. Those electric
signals are 120 degrees out of phase with respect to each other, as shown in Figure
2.3(a). This set of signals is known as three-phase AC voltage. Three-phase AC
is used due to some advantages, such as requiring less conducting material in the
transmission lines or allowing a constant power flow from the generators (Schewe,
2007). Focusing on a single phase, the power generated instantaneously (P (t)) can
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Figure 2.3: AC physical signal: (a) three phase voltage and (b) power signals.

be defined as the flow of electrical energy (E) in a circuit or the work done per unit
of time, as shown in Equation 2.1.

P (t) = v(t) · i(t) (2.1)

where, v(t) and i(t) are the instantaneous values of the electric voltage and current
per phase respectively. In AC systems, both v(t) and i(t) vary periodically so the
resultant P (t) is also an oscillating signal (see Figure 2.3(b)). However, the rapid
variation does not provide a reliable measure of P (t), so that an average value is
estimated by evaluating several cycles. In fact, the parameters of special interest in
power systems are active power (P ), reactive power (Q) and apparent power (S) (see
Figure 2.3(b)):

� P , active power or real power, is the power that performs useful work. It
is measured in watts (W) and the mathematical expression is described in
Equation 2.2a. In this Equation, the vrms and irms are the Root Mean Square
(rms) values of instantaneous voltage and current respectively and Φ is the
phase difference of v and i.

� Q or reactive power is the amount of power that does no useful work and it
causes losses in the system. It is measured in volt-amperes reactive (var) and it
is calculated as in Equation 2.2b.

� S is the combination of P and Q, or simply the product of vrms and irms (see
Equation 2.2c). It is measured in volt-amperes (VA). S is always greater than
or equal to P and Q (Kirtley, 2010).

P = vrms · irms · cos(Φ) (2.2a) Q = vrms · irms · sin(Φ) (2.2b)

S =
√

P 2 +Q2 = vrms · irms (2.2c)

The cos(Φ) or power factor is of special interest and describes the ratio of P to
S. The Φ angle occurs due to the reactances of the different loads in the system, e.g.
transmission lines. Its value has a direct influence on power. If v(t) and i(t) are in
phase, they are reaching the same stages at the same time. Despite being varying,
P (t) is always positive or transmitted in the same direction and all the power is
performing work, P . Nevertheless, in case v(t) and i(t) are shifted (out of phase),
P (t) takes positive and negative values. In this case, the power is not only flowing
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in one direction (P ), there is also a back and forth movement (Q). The sign of P (t)
indicates its direction, but for P and Q, the sign indicates the phase shift of v(t)
and i(t). Because Q produces no useful work, power systems try to compensate Φ
by using specific loads to correct this behavior. Grid operators want a cos(Φ)= 1,
because it implies that all the generated power is performing useful work (von Meier,
2006).

In order to generate electricity, the most widespread method consists of trans-
forming mechanical energy in electricity through the movement of a turbine. That is
the reason why electricity is normally called a secondary energy source. A turbine is
a simple device with few parts that uses flowing fluids (liquids or gases), forcing them
to pass through blades mounted on a shaft, which causes the shaft to turn. Then,
the mechanical energy produced from the rotation of the shaft is collected by an
AC electric generator which converts the motion to electricity by means of magnetic
fields (von Meier, 2006). There are three main sources to supply a generator with
mechanical energy: i) high pressure steam, ii) falling liquid water and iii) wind. Figure
2.4 shows the principal forms of generating electricity. Except for PV generators the
rest of them include a turbine and a generator. So, different power plants can also
be classified depending on the turbine used to transform the primary energy used
(Blume, 2007):

� Steam turbine, it uses high-pressure and high-temperature steam to drive the
mechanical shaft of the AC electric generator. The steam is created in a boiler,
furnace, or heat exchanger and moved to the turbine. Depending on the fuel,
there exist different power plants. Examples of power plants that uses steam
turbine are nuclear, thermal, geothermal, solar-thermal and biomass, among
others.

� Hydro turbine, it takes advantage of the water to generate electricity. Hydroelec-
tric power plants convert the kinetic energy of falling water under the influence
of gravity.

� Combustion turbine power plants burn fuel in a jet engine and use the exhaust
gasses to spin a turbine generator. In general, it uses a mixture of a fuel (e.g.,
diesel fuel, jet fuel, or natural gas) and air. The power plants that use this type
of turbine are known as combined-cycle power plant.
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� Wind turbine uses the kinetic energy of the wind to move directly the mechanical
shaft of the AC electric generator.

Solar PV generation is the only generation technology that does not need the
combination of turbine plus AC generator to produce electricity. PV consists of
generating electricity from sunlight employing PV solar cells. These are large
area junction diodes that produce current when sunlight shines on them and splits
electron/hole pairs (Kirtley, 2010). The PV cells are grouped in series or parallel
to form modules, elevating v and i respectively. These modules are grouped in
systems that are connected to the grid. PV modules produce DC energy at their
terminal outputs. It is necessary to use an intermediate element before injecting
the generated electricity into the grid. This device is called inverter and transforms
DC into AC electricity. Solar PV plants are environmentally friendly as they do not
produce any harmful waste when generating electricity. The most efficient commercial
modules have an efficiency around 20% and the turn-key PV system costs are around
1.5–4.5 $/Wp (IEA, 2014b). PV growth has shown a positive trend, influenced by
cost reductions and electricity prices increase. Another concern about PV energy
is the efficiency, which is directly related to the space it occupies. Some critics
accuse PV generators of having low efficiency and requiring large lands to obtain
the same amount of electricity generated by other generation technologies. However,
PV efficiency is also increasing and will reach higher rates in the near future (IEA,
2014b).

In addition, grid operators established another classification from the operational
perspective of the power system. This classification divides the generating units
in three categories (see Figure 2.5): i) baseload, ii) intermediate and iii) peaking
units (Blume, 2007; Kirtley, 2010). Grid operators ensure that division depending
on the unit costs. Baseload units are used to meet the constant power demanded
in the system. They run continuously except when they need to be repaired or in
maintenance, so that the generating unit is shut down. Thus, these generation units
present two main requisites: reliability and reasonable costs. In general, nuclear and
thermal coal plants are used as basaeload units due to their low fuel costs. However,
those units present two main drawbacks: they are expensive to build and their output
power can only be changed slowly for long periods of time (slow ramp rates). Another
generation unit that can be considered baseload is the hydroelectric plant whose
channel can be considered uninterrupted.
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The intermediate units are also called cycling units. The output power of these
units is regulated depending on the time of the day and it is extended for long
periods of time. One feature that distinguishes this type of generation from baseload
generation is the ability to vary their output power faster. Combined-cycle gas turbine
plants and thermal generating units generally are used as intermediate units. Finally,
peaking units only generate when the demand is close to the maximum or peak of
the power system. They run only for a few hours per day, so they have to be able
to start and stop quickly. Combined-cycle gas turbine and hydroelectric plants with
reservoirs are generally used as peaking units. Combined-cycle gas turbines are the
least expensive to build but have high operating costs.

In general, large generating units are located far from where their power is
consumed, and the generated power has to be transported to load centers (Schewe,
2007). In order to reduce power losses during transmission, the generation voltage
is raised from tens of kV to a few hundred using a transformer. Grid operators are
constantly watching that generating units are synchronized (Kundur et al., 1994).
Apart from large generating systems inside the grid, there exist also some small
scale distributed generators, including combined heat and power units. Inside this
small generating units, small hydroelectric plants, solar PV systems or small wind
power generators are found. They operate at lower voltages and are connected at
the distribution system level (Fox-Penner, 2010). Once explained the different forms
of generation, it is necessary to transport this generated electricity to meet the user
demand.

2.1.2 The transmission system

The transmission system is the part of the grid in charge of transporting electricity
over long distances, from the place where it is generated to the distribution network.
Recently, the generation is getting closer to the places where it is demanded. However,
it is still far from the consumers. Furthermore, the transmission network ensures that
the generated power comes with the least possible losses. This network is composed
of different elements i) power lines, ii) high towers and iii) substations. The power
lines are attached to the towers, which cover great lengths to fulfill their mission.
However, insulated cables are normally used and buried underground when the power
lines have to go through a population. Substations are in charge of conditioning the
power transmitted and routing the power to its destination (see Section 2.1.3).

Different factors influence the transmission lines characteristics, such as current,
material type, section, size, etc. These features will influence the amount of power
that the line can transport inside it. The power line conductor presents a resistance
(R) to the flow of current due to the properties of the material. This R makes the
conductor to heat up, losing part of the transmitted power that circulates inside it.
The conductor R is not constant with the length and it also varies with the diameter
size of the conductor, being smaller the greater the diameter is (Blume, 2007). There
are other effects present in the line due to the current. The flow of current through
the line length produces magnetic fields which cause the appearance of an inductance
(L) in series with the terminals of the line. Furthermore, a capacitance (C) appears
in parallel to the transmission line terminals due to the appearance of electric fields
for carrying voltage. Both, L and C depend on the power line length, the higher
the length is, the higher the value of the parameters is (Kirtley, 2010). These three
parameters, among others effects, are responsible for the losses in transmission lines.
So it is very important to design properly the power lines to ensure the minimum
losses in the power transmission. Some aspects to take into account in their design
are: i) material, ii) conductor configuration, iii) section and iv) length (Molburg et al.,
2007; Blume, 2007; Kirtley, 2010).

The transmission network has to transport power over long distances, so that
High Voltage (HV) is used to reduce the losses. This transmission form reduces
the conductor cross-sectional area and requires less right-of-ways for a given power
(Blume, 2007). Transmission losses are mainly due to heat radiation by the conductors
when the current flows inside. Thus, remembering Equation 2.1, the same amount of
power could be transported if v is increased while i is decreased. In consequence, the
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Figure 2.6: Different power transmission towers.

Region LV (kV ) MV (kV ) HV (kV ) EHV (kV ) UHV (kV )

Europe
< 1

1− 132 132− 380 380− 700
> 1000

North America 1− 72.5 132− 475 500− 800

Table 2.1: Voltage category for North American and European regions.

losses decrease drastically because they depend on the i2 and also conductors need less
section. Depending on the amount of energy transported and the distance traveled,
each part of the grid carries electricity at a voltage or another. There exist different
voltage classes depending on its value, i) Low Voltage (LV), ii) Medium Voltage
(MV), iii) High Voltage (HV), iv) Extra High Voltage (EHV) and v) Ultra High
Voltage (UHV) (Blume, 2007). Each voltage category has different values depending
on the region. As an example, different voltage categories are gathered in Table 2.1
for North American and European regions. Moreover, the transmission voltages also
vary within regions or countries. For example, the typical transmission lines used
in the U.S. are 69 kV, 115 kV, 138 kV, 161 kV, 230 kV, 345 kV, 500 kV and 765 kV
(von Meier, 2006). While for Spain, which is a smaller country in comparison, the
voltages used are 60 kV, 110 kV, 132 kV, 150 kV, 220 kV and 400 kV1. The majority of
the transmission lines are three phase HVAC, however for very long distances HVDC
is being used (Schewe, 2007). Transmission in DC has some benefits, such as no
synchronization issues and no reactive impedance because f= 0. It requires only two
conductors instead of three. On the other hand, sophisticated inverter stations are
required to transform AC to DC and vice versa in the interconnection point of both
systems.

In order to cover the distances between the generation power plants and the
distribution network, the power lines can be placed above or under the ground. In
general, the widespread configuration used is above the ground attached to metal
towers. Figure 2.6 shows different metal towers whose design varies depending on line
voltage, conductor size and weight, tradition, etc. (von Meier, 2006). The power lines
go underground when it is the only option left and aboveground transmission is not
able to be installed (e.g. cities or airports).

The general topology of the transmission network is a mesh network, which
consists of multiple paths to connect two points inside it. It is opposed to the radial
network model in which points of the network are connected to a central node. One

1Source: REE

http://www.ree.es
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advantage of using a mesh topology consists of using its redundancy to guarantee
security of supply. Thus, in case that a power line breaks down or a generation unit
goes off line, the loads get the electricity they need. However, the path that the
electric power follows cannot be easily known. In general, the only fact known is
that electricity will flow from generators to loads by the lowest impedance path. Grid
operators try to control the power flow for each line by means of forecasts, which
requires a lot of computation and precise knowledge of the network. On the other
hand, the presence of multiple paths inside the network leads to undesirable flows
between them. Those paths are known as loop flows and they are produced because
the current cannot be directed to any particular branch of the network (von Meier,
2006). Moreover, the power that the lines can transport are limited by three main
factors among others, thermal, voltage stability and/or transient stability.

Finally, the continuing geographical expansion and interconnection of the trans-
mission network is being motivated by technical, social and economic reasons. The
interconnection brings the opportunity of economies of exchange, in which the sales of
electricity grow with consumers inside the network. Another reason to interconnect
them is the exploitation of economies of scale, in which the cost reductions of the
use of electricity are higher as more users join to the grid. The cost is being shared
by all the consumers, being able to expand and bring together more consumers.
In addition, the interconnection favors the load factor, which represents the ratio
of actual energy consumption over a period with the maximum power that can be
instantaneously demanded. From the grid perspective, the ideal consumer would be
demanding a constant amount of power all the time, although in reality it is not
even close. However, grid operators search with the power system interconnection,
grouping different types of consumers and larger amounts of power in order to smooth
the consumption profile and approach to the ideal one. The last advantage of larger
transmission systems is service reliability. With a greater degree of interconnection, if
a generator cannot meet the demand, electricity can be supplied by others. There are
also disadvantages of larger transmission systems size, such as energy losses or stability
due to the interdependency between areas. However, the benefits of interconnection
outweigh the drawbacks (von Meier, 2006).

2.1.3 Substations

Substations are the part of the grid that serve as interconnection point between
different levels or sections of the power system. They have the ability to switch
or reconfigure the ways in which power flows through the lines that cross them.
Substations are spread over the transmission and distribution networks to connect
power lines of the same or different voltages (von Meier, 2006). Substations are
necessary for conditioning the power from the HV of the generators to the LV of the
consumers. Thus, they exist at various scales to decrease the voltage in several steps
before reaching customers. On the largest scale, there are transmission substations
in charge of interconnecting different HV transmission power lines. Then, large
substations at the intermediate scale interconnect HV transmission power lines to
MV distribution power lines. Finally, at small scale, small substations are in charge
of conditioning the power to cover the consumers necessities, and they serve limited
localized areas. Depending on the size of the substations, the number of circuits that
they can connect varies, from just a few to dozens of them. Large substations also
posses a control room in which the proper operation of the systems is coordinated,
whereas small ones are generally unstaffed (von Meier, 2006). In addition, substations
provide protection for lines and equipment of the power system with different devices,
that can be operated remotely or locally from the inside of the control rooms.

All the necessary equipment for regular system operation is found inside the
substation (see Figure 2.7(a)) (MIT, 2011). Among this equipment, there are trans-
formers, switchgear, measurement instrumentation and communication equipment.
Transformers are used to change the voltage level at their inputs. The transformer
is composed by a metal core and different coils of wire around it (see Figure 2.7(b)).
The current flowing in the coil on one side of the transformer induces a voltage in
the coil on the other side and both coils are coupled by the magnetic field. The
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Figure 2.7: Substation elements: (a) example of a substation and (b) scheme of a

three phase transformer.

voltage between one side and the other depends proportionally of the turns’ ratio
of the coils, while the current is inversely proportional to that turn ratio. Other
important elements are the switchgear which includes circuit breakers and switches.
They disconnect parts of the network for system protection or maintenance.

Substations must also maintain the power flowing through them within a quality
range. As power lines are longer, the drop in voltage increases, but the current
also increases since the same amount of power is transmitted. This implies that
also the losses increase which it is not desirable. Thus, substations must maintain
the voltage within a specific range to ensure the quality of supply. The process
of bringing voltage back within acceptable range is known as voltage support or
Volt-Ampere Reactive (VAR) support. With voltage support, substations control
power flow, improve transient stability on power grids, and reduce system losses.
Compensating devices are used to provide voltage support: i) capacitor banks and/or
ii) static VAR compensators.

Finally, substations also include measurement, communication and control equip-
ment. Measurements are collected to monitor the status of the system. Then,
those measures are sent to control centers where the data are processed to evaluate
whether everything is working properly. If a fault occurs, the operators actuate
over the different devices inside the substation to fix that fault. Thus, measurement
instrumentation collects voltage, current, and power data for monitoring, control, and
metering purposes. And communication equipment transmits these data, allowing
switchgear to be controlled remotely. Substations do not only serve as interconnection
points, but also as monitoring, protection and security points of the grid.

2.1.4 The distribution network

The distribution network is in charge of carrying the power from the transmission
network to the consumers. The electricity is carried in wires that can be attached
to poles or, in large populations, underground. Transmission networks are separated
from distribution networks in terms of voltage level. The limit between them depends
on the utilities which decide this value. The distribution network operates at lower
voltages than the transmission network, so that it requires less clearance. Normally,
the voltage ranges in which the distribution network works are in the MV and LV.
Typically, this network is composed of lines up to 35 kV, but some lines reach higher
values, around 70 kV (von Meier, 2006). Thus, smaller conductors are part of the
distribution network because the distances to supply electricity are smaller.

As mentioned before, the transmission network is interconnected with the
distribution network at distribution substations. Distribution lines are called feeders
because they feed with electricity to the users. When distribution lines leave the
substation, they carry three phase voltage. They use smaller conductors because the
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Figure 2.8: Distribution network.

distances are shorter and carry less power than the transmission lines. However, LV
carries a greater current to transmit a given amount of power. There is also no need
of big metallic poles to attach overhead lines, so the distribution poles are smaller
and typically made of wood for the lower voltages (see Figure 2.8). The appearance
of the distribution system is different depending on the region. These differences in
design are consistent with differences in geography, population and load density, and
the historical expansion of power systems (von Meier, 2006).

Another difference between the transmission and the distribution network is the
topology. As shown in Section 2.1.2, transmission networks have a mesh network
topology, while distribution networks usually have a radial topology or star network.
In radial topologies, power flows only in one direction from the distribution substation
to the particular load that requires it. However, with the increasing growth of new
small local generators that feed electricity into the distribution power system, this
assumption is not totally right. Nevertheless, the upstream and downstream of power
flow is well separated, not as in transmission networks. The distribution lines leave
the substations and spread in all directions to reach the users. Those lines and the
components inside the network can only be energized from one direction due to its
hierarchy. In order to protect the different circuits from the interruption or isolation
of sections in the event of faults, it is necessary to take into account the direction of
the power flows. In this type of topology, the design of the security measures is less
difficult than in the mesh one. However, guaranteeing the security of supply is not
as easy as in other topologies where redundancy between paths is available. Circuit
breakers in radial systems can readily be located to isolate a fault quickly upstream
of the problem. However, this causes the service interruption to all downstream
components, without guaranteeing the supply.

In order to solve this problem, some distribution networks present a ring topology
or loop topology, in which there are two power flow paths between the distribution
substation and the load. In case of fault or maintenance of the system, the supply
to the users is not affected. In order to isolate the paths, a circuit breaker is put in
the redundant path and it is normally open. Therefore, it separates the ring into two
radial lines, each one coming from different substations and under normal operation,
the sections are not connected at that operating point. The switch can only be closed
under certain circumstances, being one of the sections energized by the other. When
this process is carried out automatically, it is often referred as “self-healing”. This
topology also allows a transformer to pick additional load in case others are overloaded
or out of service. Thus, the protection devices used in loop topologies have to be able
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to deal with power flowing in both directions through them. In highly dense urban
settings, distribution networks also may have a mesh network topology, which may
be operated as an active mesh network or a star network (MIT, 2011). Finally, the
characteristics of the electricity supplied to customers are generally mandated by
regulations. There are different requisites of the electricity supply, AC or DC supply,
nominal voltage and tolerance, f , number of phases, maximum power instantaneously,
cos(Φ), earthing system, etc. In the next Section, the consumption of the different
consumers will be detailed.

2.1.5 Electricity consumption

Finally, the last part of the electric system consists of consuming the generated
and transported electricity. Electricity is consumed by a variety of loads, including
lights, heaters, electronic equipment, appliances, pumps, etc. A load is defined in
electric circuits as any device in which the power is being dissipated or consumed.
Thus, consumption also includes the electricity consumed during its transmission and
delivery. For example, the losses due to heating conductors or transformers step up
or down voltage losses (Blume, 2007).

A load is defined by its impedance, which can be resistive, reactive or a
combination of both of them (von Meier, 2006). Reactive loads can be divided also
into inductive or capacitive loads. However, most of the loads are only purely resistive
or a combination of resistive and inductive reactance. Resistive loads mainly consist
of a conductor which is heated when the current flows through it, such as heaters
or incandescent light bulbs. Inductive loads are the most common type of loads
inside the grid. This type of load is in everything that has a coil, such as motors,
fluorescent lights or transformers to condition the voltage. Capacitive reactance are
part of electrical circuitry and they are characterized by storing energy inside them.
Hence, they do not do any mechanical or other work. The impedance of an individual
device may be fixed, as in the case of a simple light bulb, or it may vary, for example,
if an appliance has several operating settings. Loads also differ in the type of electric
power that they can use. Purely resistive loads only consume real power, they can
be used on AC or DC, are tolerant to low voltage and indifferent to the direction of
the current flow. Whereas loads with the presence of reactances typically only work
on AC at a specific frequency and voltage. Inductive loads draw reactive power while
capacitive loads supply it (von Meier, 2006).

Moreover, the relationship between these three type of loads influence system
losses, revenues and reliability. In AC power systems, the relationship between v
and i is influenced by them. For resistive loads a variation only in the amplitude
between them is produced. However, for reactance loads apart from the reduction
in amplitude, there is also another adverse effect, there is a time difference between
v and i. This time difference is known as phase angle and can be of two types, for
inductive loads i lags v and for capacitive loads i leads v. The phase difference affects
to the amount of power that can do work, so it is related with the efficiency of the
system. Thus, reducing the phase angle reduces the amount of i needed to get the
same amount of work done in the loads. To maximize the efficiency of the system,
the combination of the loads might be purely resistive to avoid the phase difference.
The total power inside the system becomes real power and its total requirements and
losses are minimum (Blume, 2007). Therefore, capacitors are connected close to large
inductive loads to cancel their reactive power (i.e. increasing the cos(Φ) of the load),
reducing the burden on the network and the generators.

Customers think about their consumption individually, which from the grid
perspective consists of numerous small and indistinct loads. However, it is very
difficult for the operation of the grid to analyze the different load behaviors inside the
power system. Thus, grid operators model the consumption aggregating loads, which
consists of the customer combined effect in terms of magnitude and timing of electric
demand (see Figure 2.9). The aggregation of loads can be done at different levels:
an entire household, a building block or all the customers within a certain region. In
addition, another difference between customers and operators is that customers think
about the electricity in terms of energy while the operators refer to the instantaneous
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Figure 2.9: Spanish grid aggregated consumption: (a) variability of the consumption

for different seasons and (b) residential, service and industry sectors. Source: Red

Eléctrica de España.

rate of demanded power at any given time. Therefore, the demand refers to a quantity
of power, not energy and is the key element on which the design and operation of the
grid are based.

The operation of the grid must guarantee that the demand is met by supply
anytime. Traditionally, the demand is considered as an independent variable in which
users freely consume the amount of power they want and grid operators are in charge
of bending over backwards if necessary to accommodate this demand. In this case,
the demand is considered a variable beyond control, but recently this traditional point
of view has changed. Nowadays, customers can vary their demand based on different
strategies such as the electricity hourly pricing, the grid stability, better performance
of the local resources, etc. This behavioral change of the users has been favored by
emerging technologies that allow sensing, controlling and acting in different loads that
compose the consumption. For example, new metering devices allow grid operators
to know in real time the consumption of each individual and act on its consumption
if the user allows them to control his demand. In addition, research and development
efforts are directed toward technological approaches to make demand more responsive,
including scenarios with remote-controlled and automated devices. Although these
changes are making the grid evolving from a service-driven to a market-driven system,
grid operators still consider the demand as a non controllable variable.

Thus, operators predict the status of the future demand in order to supply the
right amount of electricity to all consumers. They use different intervals of time to do
these forecasts, specifically they consider two periods of time, short term forecasts for
a day or a week and long term forecasts for years. The data used to elaborate them
is of different nature. The demand behavior is affected by numerous external factors,
one of the principal data taken into account in the forecasts is the past demand
behavior. The inter-daily variability (variations among different days) is very small
for working days, however the difference is bigger between them and weekends (REE,
1998). Another important variable is the atmospheric weather. An example of the
inter-seasonal variability is shown in Figure 2.9(a). In this Figure for the Spanish
grid consumption, the variability and the shape of the aggregated consumption varies
depending on the season of the year. In winter, the maximum value of the demand
is reached around midday, due to working hours and the fact that at homes where
the lunch is cooked. In addition, there is another maximum around 20 h because it is
the time when people are reaching home. During summer, the demand drop between
the two maximums disappears due to the air conditioning. The demand is greater in
winter and summer comparing to the demand of autumn and spring due to weather
conditions which affect less to the consumer behavior and they do not need any air
conditioning device. There are other random factors that affect the behavior of the
demand, such as football matches, school holidays, new technologies, etc.
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The reason behind demand forecasting and other methods implemented by grid
operators is the security of supply since the grid operates in real time. As load
increases, generation must increase to supply the consumption with the appropriate
v and f . Otherwise, v would collapse and f would drop. In addition, the losses also
increase with the consumption increase. Thereby, knowledge about future demanded
power in an electrical system is essential in order to anticipate and supply the right
amount of power at every moment (Blume, 2007).

In the utility context, two other concepts are used to describe the demand, the
coincident and noncoincident demand. Coincident demand refers to the amount
of combined power demand that could normally be expected from a given set of
customers. Whereas, the noncoincident demand is the total power that would be
demanded by the costumers if all their loads were operating at the same time.
However, these two concepts do not normally coincide. Thus, coincident demand
reflects the statistical expectation about how many loads will overlap at any time.
It is a prediction that becomes more reliable when higher number of customers are
involved. Although ordinarily the grid operator observes only the coincident demand,
it must be prepared to face noncoincident demand under certain circumstances. The
reason why noncoincident demand is undesirable is because if all the loads begin to
operate at the same time, the inrush current as they turn on is too high.

Analysts of the grid use different representations of the aggregated consumption
to understand better its behavior along a period of time. Instantaneous demand
varies inter-daily and intra-daily, which means that it varies over the course of a day.
A load profile is used to represent the demand during a day, or a statistical average
over typical days for a given month or season. It consists of representing the amount
of power consumed at each moment during a day. The load profile can represent
different levels of aggregation: individual electricity users, distribution power line or
an entire grid. In Figure 2.92, the Spanish consumption is represented for a 24 h load
profile. There exist different periods around the day that are very interesting for the
grid service providers to adjust the generation supply. In particular, there are two
troublesome periods: the periods in which the demand is maximum, which is called
peak demand, and the periods in which the demand is minimum, which is called
demand valley. In Figure 2.9(b), there are two peak periods of time, one at midday
and the other one at the evening, while there are another two valley periods, one
between the two peak periods and the other one at night, typically of a winter day
(REE, 1998). However, in summer the peak period occurs in the central hours of the
day, coinciding with the hours of the highest temperature (see Figure 2.9(a)). During
peak periods, it is more expensive to produce electricity because it is necessary to
operate plants whose production is more expensive and produce more CO2, such as
combined cycle plants. But, the power system has to be sized to meet this demand
in spite of being for a few hours or even minutes. It is also important to know when
the valleys are produced in order to reduce the generation and adapt to the demand.

From the power system perspective, it is relevant to compare periods of higher
and lower demand over the course of a year. For example, a measure to know the
difference between seasonal maximum power consists of comparing the maximum
power of each month of the year. This measure shows how the peak load evolves
during the year and also offers a comparison between seasonal and daily rhythm. In
warmer climates where air conditioning dominates electric usage, demand will tend
to be summer-peaking; conversely, heating-dominated regions will see winter-peaking
demand (von Meier, 2006).

Another useful representation of the demand, different from the load profile,
is the load duration curve (see Figure 2.10). The load duration curve still
depicts instantaneous demand over certain time periods (generally in hour intervals).
However, the time axis is not sorted temporally, it is sorted according to the demand in
each hour, from the maximum to minimum demand along the year. Thus, the highest
demand hour of the year appears at the first hour, continuing in a monotonically
decreasing fashion. The load duration curve provides a useful representation of how

2The load profile of the Spanish grid consumption is available at REE, monthly data are available

since 1995. Moreover, the European Network of Transmission System Operators (ENTSO-E) data

portal has monthly data about consumption and production for different European countries.

http://www.ree.es/es/actividades/balance-diario
https://www.entsoe.eu/data/data-portal/Pages/default.aspx
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Figure 2.10: Load duration curve plus generated power for the Spanish grid for the

8760 h of 2015. Source: Red Eléctrica de España.

the load varies and for how many hours in a year it is above a particular level. Figure
2.10 shows an example of the load duration curve, in which the 8760 h of the year are
represented. The highest demand is at the left-hand side corresponding in general
to the peak hours of the year, while the lowest demand is at the right-hand side
corresponding to the night hours mostly. In Figure 2.10, generated power is also
represented for the different sources available in the Spanish power system. It can be
observed how much electricity of each form of generation has been supplied to the
demand. This curve type of Figure 2.10 is a useful way to characterize the pattern of
demand, because it is easy to identify the maximum of the demand and its needs.

The higher the slope of the load duration curve is, the bigger is the difference
between the peak hour and the valley hour of the year. In addition, it is more
expensive to meet the needs of a spiked load duration curve than a flat one. The
reason is that the generation capacity needs to meet the peak load to guarantee the
supply, while the utilization of the generation is related to the average load. So, the
cost of providing the service is large and is highly related to peak capacity required
by the power system. A pronounced peak indicates that grid oversizing is required to
meet demand on just a few occasions. Thus, the assets required to supply the peak
do not tend to be used the remainder of the year (von Meier, 2006). For example,
in Spain the 300 h of greater consumption account for 10% of the annual generation,
around 4GW. Therefore, the system must be designed to meet that demand, and
the investment done to meet those hours is large compared to the time of use.

There is a metric used to measure quantitatively the flatness of the load duration
curve. This useful metric is called load factor (Lf ) which is defined as the ratio
between average demand and peak over a certain time period. The value of Lf
characterizes how flat the demand is. If Lf = 1, that means that the demand is
flat. However, this is an ideal value because the demand present peaks of activity.
Normally, Lf < 1 indicating how big the peak of the demand is in the time period
evaluated. The bigger the Lf value is, the higher the peak of the demand and the
slope of the curve are. For example, for the Spanish consumption in 2014, according
to Red Eléctrica de España (REE), Lf = 0.72.

The Lf ratio obviously depends on climate and the other factors, but it
also depends on the load diversity within the customers. Traditionally, the Lf
enhancement has been performed by introducing greater diversity of demand, so that
the resources are shared for meeting the peak. For example, commercial loads that
operate during the day are complemented by residential loads before and after work
hours. However, nowadays it is difficult to incorporate more diversity in the grid.
Thus, Demand Side Management (DSM) was born to minimize the need for additional
supply as the demand is reduced or controlled. DSM programs are designed to provide
assistance to consumers in order to help to reduce their energy demand and control
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their energy cost while delaying the construction of generation, transmission and
distribution facilities (Blume, 2007).

For a better understanding of the demand composition, the grid operators tend to
group the customers types inside the grid. This classification groups users by activity
sectors and consists of dividing the demand in three main groups (see Figure 2.9(b)):

i) Industrial. The industrial electric consumption is a baseload consumption and
it appears to be constant during the whole day. According to the International
Energy Agency (IEA) in 2012, the electricity consumed by industrial loads was
a 50% of the world electricity. In the industry the electricity is used as the
driving source of large electric motors and special machines of each sector. It is
also used to heat the contents of tanks, reservoirs or boilers. However, industrial
consumption has a large reactive component (Q) due to the AC motors used.
Thus, they need capacitor banks to counteract the inductive loads, improving
their cos(Φ). Depending on the size of the industrial consumer, they can be
connected to MV or LV distribution networks. The larger industry consumers
(i.e., military bases, oil refineries, mining industry, etc.) normally have their
own substations facilities for conditioning the power to their necessities. These
facilities include lines, electrical protection equipment and transformers to step
down or up the voltage to supply their electrical needs.

ii) Services. In the service sector, their load profile present peaks of demand
coinciding with the working hours of these establishments. The periods at
which they are open depends on the country. However, the rest of the time they
maintain their consumption almost constant. According to the IEA in 2012,
the electricity consumed by service loads was a 25% of the world electricity.
This sector consists of heterogeneous activities, which include mercantile and
service, office operations, warehousing and storage, education, public assembly,
lodging, health care, and food sales and services. Among the different loads
that are part of the service load profile includes larger-scale lighting, heating,
air conditioning, kitchen apparatus, and motor loads such as elevators and large
clothes handling equipment. So there exist a base consumption to feed those
devices that has to be on in spite of finishing their daily activity. Typically, the
services loads work at LV.

iii) Residential. Finally, the residential customers present peaks and valleys periods
of time. Their consumption is lower than in the other two sectors, but its
variability is bigger. According to the IEA in 2012, the electricity consumed by
the residential sector accounts for approximately 20% of the world electricity.
The larger use of electrical energy is mainly driven by the following devices
in a highly electrified home: air conditioning units, refrigerators, stoves, space
heating, electric water heaters, clothes dryers and washing machines. However,
there are other devices that also consume electricity to a lesser degree, such as
lighting and consumer electronics (TVs, radios, personal computers). The peaks
of the residential demand match with the morning, lunch and evening parts of
the day, that it is when people are normally at home. The rest of the time
the residential load profile consists of non-stoppable appliances and stand-by
devices. Typically, the residential loads work at LV.

A sector that is becoming particularly relevant in electricity consumption is the
transportation sector. According to the IEA data for 2012, the electricity consumed in
this sector supposes around 1% of the world electricity. The transportation methods
that use electricity include the tram, subway or train. Nowadays, there is a special
interest to use electricity in order to replace the fossil fuels that propulse most of
the vehicles around the world. With the use of the Electric Vehicle (EV), important
economy improvements for road transport are being developed. A growing interest in
EV is being conducted by diversifying energy sources for the transportation sector and
it is influencing vehicle technologies (IEA, 2014c). EV can be classified in different
types: electric as the only source of energy, EV, with electric and fossil fuels engines
but with no plug-in to recharge the battery, Hybrid Electric Vehicle (HEV), and
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Figure 2.11: Electricity use by sector of occupation.

plug-in vehicles driven by electricity and fossil fuels, Plug-in Hybrid Electric Vehicles
(PHEV). The development of infrastructures is as important as the development of
EV transportation technology. This market is continuing growing, but slowly. In
2013, HEVs reached 1.6% of global market share, while EVs were around 0.4% of
the global market share of vehicles (IEA, 2014c).

The electricity consumed by each sector can be observed in Figure 2.11. The main
consumer of electricity is the industry sector with a 42.5%, followed by the residential
sector with a 26% and then the services sector with a 23.5%. Those are the main
sectors of activity related with using electricity. However, other sector are growing
its part of the share such as the transportation sector which still represents a low
percentage of the total with only a 1.5%. This figure will be increased in the next
few years as the technology of EV matures. EV plays an important role inside the
future of the SG as a mobile load that can be connected in different parts of the power
system. The world electricity consumption represented a 18.1% of the total energy
consumption and the trend of consumption is positive (IEA, 2014d). However, the
resources to feed the global electricity needs are limited and the demand could not
be supplied in the future at the actual growing rate. So, new solutions for better use
of available resources should be conducted, such as the SG.

2.2 Grid needs

With the description of Section 2.1 of the different grid parts, a better understanding
of power system is achieved. However, grid operation is not trivial and embodies
different challenges. If those challenges are not handled effectively, power systems
cannot fulfill their objective to supply electricity to the demand. Thus, power systems
are operated from a certain level of centralization to guarantee the security of supply.

Grid operation is carried out at control centers that perform three main functions:
i) monitoring, ii) analysis and iii) control of grid status. Monitoring consists of
supervising the grid for proper operation, warning when any fails occurs. The raw
data, received at control centers, are analyzed to give the insight of the current
and future grid states. This suite of tools is known as energy management system.
Finally, the control centers calculate the expected hourly power of generating units
for a time period in the future, normally a day ahead based on the demand forecast.
Then, this information is passed to the different generator units. The decision of
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which units should be generating for the next day is known as unit commitment and
the specification of the output power of each generator is the economic dispatch.
Depending on the area, the unit commitment and economic dispatch values are
calculated based on external factors such as fuel costs or wholesale markets. These
estimations from control centers are continuously updated to minimize the total costs
given the load level, generator availability and transmission constraints. Control
centers also manage to match small changes in load by adjusting generator units
and meet the scheduled power exchanges with neighboring systems. This control
mechanism is called automatic generation control (MIT, 2011).

Grid operation is a complex process in which several factors have to be taken
into account. It faces countless problems which have to be solved in the less
time possible to ensure that generation meets demand. However, electric power
industry stakeholders (utilities, vendors, manufacturers, regulators, consumers and
their advocates, and governments) have identified some issues that motivate a deep
change inside the grid. These changes are encouraged by different factors such as
new emergence technologies that help to increase the grid efficiency. The current
electrical grid was designed to operate as a vertical structure consisting of generation,
transmission, and distribution and supported with controls and devices to maintain
reliability, stability, and efficiency (Momoh, 2012). This structure has barely changed
since its inception, although new advances have been incorporated to help their
operation and management. These changes are not enough to face the current
needs of the different electric power industry stakeholders. Some identified issues
must be solved in order to improve the current system and evolve to the next grid
generation. The principal problems are described below (El-hawary, 2014; Momoh,
2012; Ekanayake et al., 2012):

� Ageing infrastructure. In a lot of countries around the world, grids were deployed
more than 50 years ago when they suffered a rapid expansion to cover their
whole national territory. Part of the devices from transmission and distribution
networks are old and need replacement. The costs to introduce new equipment
are too high and grid operators cannot afford the investment necessary to replace
the old ones. However, the replacement is needed and it is a good opportunity
to improve grid design and infrastructure according to current energy needs.

� Electricity growth. Electricity is the final energy form more used at the
present. Almost all devices used daily are powered by it, such as smart
phones, computers, appliances, lights, etc. Demand will continue growing due
to different factors, such as the development of countries, coverage of new
necessities, etc. Electrical dependency is notable in developed countries and
is growing in developing countries. Electricity is set to remain as the fastest-
growing final form of energy worldwide. World electricity demand is expected
to grow by 2.1% per year on average over 2012-2040 with its share from the
rise in total energy use for all sectors and regions (IEA, 2014d). Figure 2.12(a)
shows the electricity demand by regions in 2012 which is smaller for developed
countries and higher for developing and underdeveloped regions. The growth of
electricity demand is exponential, as it can be observed in Figure 2.12(a). China
and India will consume more than twice the current electricity demand by 2040.
In contrast, the OECD countries have a lower growth due to energy saving
policies and the saturation of their electrical systems. Thus, it is necessary
that the grids are prepared to absorb this growth and supply the new demand.
However, for the current structure of the grids, it is difficult to meet this new
demand. The reason is that the grids are operating at their capacity limit
and the introduction of new demand will make the security of supply difficult.
It is a great opportunity to invest and expand the network in both size and
functionality.

� Efficiency. The grid is a huge extensive network which presents losses in all
its constituent parts despite ensuring electricity supply. However, its efficiency
is growing as a result of countless routine actions, although it is not enough
to tackle all the losses involved in the entire process. The largest losses inside
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Figure 2.12: World statistics: (a) electricity demand growth rate and (b)

transmission and distribution losses rates. Source: International Energy Agency.

the grid are due to the transportation and distribution of electricity. These
losses include those occurring in the equipment of substations (transformers,
circuit breakers, etc.), power lines, etc. Figure 2.12(b) shows the rates of
losses in the transmission and distribution of electricity in 2002 and 2012. In
2012, these losses represented the 8.8% of the world total generation. The
transmission losses depend on the distances that electricity has to cover and
how the population density of the country is. Thus, Japan counts only with
less than 5% while Russia is above 10%. The grid would be more efficient if
generation was closer to consumption. The savings will be not only achieved
in the efficiency of the grid, but also in the investments required to deploy
large transmission and distribution network. However, most of the losses occur
in the generation side. The reason is that the transformation process of raw
materials to produce electricity is inefficient and the equipment to do it is not
extracting all the potential from them. These losses represent 62.4% of the
world electricity production (see Figure 2.13). The only way to reduce them is
to improve the conversion efficiency and the equipment part of the process. In
addition, new generation methods can reduce these losses, such as renewable
energies whose raw materials are infinite. Conversion losses can also decrease
its value if demand uses more efficient equipment.There exist lots of energy
efficiency policies to enhance the use of more efficient equipment in the demand
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Figure 2.13: Energy transformation diagram from generation to consumption for

the year 2012. Source: International Energy Agency.

side. In this way, the generated electricity will be lower and the losses will be
reduced.

� Generation paradigm. The generation mix of a power system consists of the
different electricity generation forms that compose the system. It is currently
dominated by large power plants far from the places where the generated
electricity is consumed. These power plants might be excellent economically,
but the electricity is transmitted over very long distances and the energy and
environmental performance is low, as seen before. They are located in certain
places far from the consumption depending on economic, security, logistics and
environmental factors. The main generation type in the world electricity mix
is occupied by thermal power plants. The vast majority of thermal power
plants used as primary energy source fossil fuels (coal, oil and gas, see Figure
2.13). World electricity production from fossil fuels represents around 75%
and almost half of world electricity is still produced by burning coal, a major
contributor to global warming. Burning fossil fuels produce large amounts of
CO2 emissions which are harmful and promote the greenhouse effect, increasing
the temperature on Earth. Thus, public interest groups are putting pressure on
politicians to reduce CO2 emissions through the adoption of alternative energy
sources and regulations to increase energy efficiency. It is in this scenario where
Distributed Generation (DG) arrives to solve some issues around traditional
ways of generating electricity. Investments are done to support the growth of
these technologies and change the mix of power generation in which central
power plants operate in parallel with large numbers of small and decentralized
generators. Figure 2.14 shows the distribution of the different power plants in
Spain. The generation mix of Spain consists of large generators plus DG (solar
and wind power plants). The traditional generators are easily located in the
map while DG ones are agglutinated by region because extensive generators
are located throughout the entire region. One of the DG features is that it
is generally close to the demand, saving the transportation losses. Another
advantage is that they produce less CO2 emissions due to the nature of raw
materials (wind, sun, water, etc.). On the other hand, the intermittent and
fluctuating energy availability of renewable energy sources, such as wind and
solar, make their integration difficult inside the generation mix of the current
grids. Besides the current state of the grids, the lack of communication between



2.2. Grid needs 31

Murcia

263
440
31

Andalucía

3324
869
997

C. Valenciana

1193
349
50

Castilla-La Mancha

3800
923
349

Total mainland

22845
4428
2300

Aragón

1797
167

Navarra

1016
161

País Vasco

194
26

La Rioja

448
86

Castilla y León

5652
495

Cantabria

35
2

Asturias

476
1

Galicia

3362
16

TOTAL PV POWER 

per REGION

CARBON

NUCLEAR

FUEL/GAS

COMBINED CYCLE

TOTAL THERMAL POWER

per REGION

HYDRO

TOTAL WIND POWER 

per REGION

Extremadura

561
849

Madrid

67

Cataluña

1284
265
23

Figure 2.14: Map of the generation power plants of the Spanish grid. Source: Red
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DG and the grid is reaching their capacity limits. DG fluctuations must be
counter-balanced with more intelligence in the grid and storage.

� Grid operation. At the operation level, different constraints are identified
that make difficult the daily operation. One of them is provoked by thermal
constraints produced in transmission and distribution lines and the equipment
affecting their power transfer capability. Thermal constraints depend on
environmental conditions, that change through the year. Grid operators are
constantly monitoring the variables that compose the electricity signal. v and
f are required to be inside their limits to guarantee the proper functionality of
the electricity devices. Low voltage levels may cause malfunctions of customer
equipment and excess of i inside the transmission and distribution network. f
is strictly maintained between its limits, because f is affected by the balance of
generation and demand. Any imbalance is reflected as a deviation in the f . To
maintain the system stability, grid operators use response and reserve services
to bring the f back within its operating limits. As a last resource, some loads
are disconnected from the grid to prevent major faults. Nowadays, the daily
grid operation is becoming more difficult as more generation is being connected
to the distribution network (DG). If local generation is not coordinated, the
DG can cause over-voltages. Thus, maintaining the generation-demand balance
and the system f within limits become difficult. In addition, another element
that makes difficult the daily grid operation is the variability of the demand,
throughout the day and across seasons. The grid has to supply the electricity
to the corresponding demand at each instant. Hence, the electricity system
infrastructure is designed to meet the highest level of demand, so during non-
peak times the system is typically underutilised. The economic investment
to satisfy this condition is too high that would not be needed if the demand
curve was flatter. Traditionally, grid operators try to smooth the aggregated
consumption adding diversity in the demand. Nowadays, the problem resides in
the communication from the grid to the user that it is almost nonexistent and
the lack of controllable loads to shed them from the grid. Moreover, consumers
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are requiring more transparency in the consumption and new pricing models
to grid operators. This lack of information in the distribution side is not only
affecting consumers, but also to the appearance of new products, services and
markets and the accommodation of all DG and storage options, such as the
EV. It is thought that in future the electrification of domestic heating loads
and the EV charge will lead to a greater capacity of flexible loads. This would
help to maintain the network stability, reduce the requirements for reserve power
from part-loaded generators and the need for network reinforcement. Therefore,
utilities need to adopt information and communication technologies to handle
new operational scenarios and challenges while maintaining profitability and
investing in infrastructure.

� Reliability and sustainability. Electricity security is a matter of keeping
electricity available to all connected users, within acceptable standards and
the amounts desired at any given time. At present, consumers require an
increasingly reliable electricity supply as more and more critical loads are
connected. The traditional approach to improve reliability was based on
the installation of additional redundant circuits, at considerable capital cost
and environmental impact. Other measures consist of disconnecting the
faulty circuit, so no action was required to maintain supply after a fault.
However, recent system failures and blackouts have focused attention on trying
to increase system reliability. Reliability could be defined in terms of two
basic and functional aspects: adequacy and security. The system adequacy
is the capability of the power system to meet changes in aggregating power
requirements, using existing and new resources. On the other hand, the system
security consists of maintaining the supply even with unexpected surges or
sudden disruptions in demand. Accomplishing both features require efficiency,
time and investment. In spite of the system fast response to changes in
demand, it is not enough when the variability is too high. That is one reason
to interconnect the power systems of different regions, in order to guarantee
the supply. In addition, when a fault occurred and a blackout is produced,
the reactions of grid operators are fast but not enough. The demand growth
makes necessary to increase the response to changes in the demand as well
as the need for more generation to cover this increase. However, the current
flexibility of the power systems is not optimized since its capability to alter
the consumption or generation in a rapid and large imbalance is relatively
low. For a greater adequacy, numerous mechanisms can be introduced, such
as the electricity trading, storage systems or more automation in the demand.
About the security of the power systems, the ability of the grid for self-healing
(anticipating responses to system disturbances) is very low. They only respond
to prevent further damage and are focused on protecting assets following a
fault. Efficient and reliable electricity transport are fundamental to maintain
functioning economies and societies. By watching these system features and
increasing their efficiency, grid sustainability could also be incremented as CO2
emissions decrease and more renewable energies are integrated.

� Investment and costs. The global generation costs are rising their figures
as demand is also growing. Generation investments are required to meet
the demand. Traditionally the investments were done in large power plants
which can generate large amounts of electricity. However, nowadays these
investments are being transferred to smaller generators that are closer to the
consumption and use renewable energy. Different reasons support these change
of investments. One of them is the raising prices of raw primary materials,
especially fossil fuels because reserves are dwindling. But also regulatory
pressures are changing the model of investment, such as regulations in favor
of the CO2 emission reductions or the improvement of electricity savings.
Special efforts are being done by investors to afford new models to optimize
assets and operate efficiently. The investments are recovered through regulated
or competitive wholesale electricity prices and, to a lesser extent, supportive
measurements from the governments. New markets are being developed, such
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as electrification of transport, to favor a major energy trading and expand the
use of electricity. This results in a power system more complex to operate
and the necessity to adequate it to these new products and services. Thus, high
investments have been done in the infrastructure (transmission and distribution
networks) to expand the grid, meeting higher demand and stability. Success in
financing all the needed investments depends largely on governmental policies
and regulatory frameworks. But governments should reduce the political and
regulatory uncertainties in order to generate a market attractive for investors.
Combined with the increasing demand, higher prices are set to drive up
electricity bills. The price that a consumer pays for electricity has several
components, some of them are: wholesale price to cover generation cost plus
a margin, cost of transmitting and distributing the electricity, retail costs and
taxes.There are high differences in electricity prices depending on the region.
Therefore, regulators are pushing for more competitive and lower energy prices.
Also, improvements in energy efficiency could substantially moderate the impact
of rising prices on electricity bills.

It is necessary that the grid improves its behavior to continue supplying electricity
to consumers in terms of quality and security. In addition, if those needs are
not tackled in the near future, the power system will continue ageing without
being able to incorporate new opportunities as they arise into the market scene.
Improving the reliability, availability, and efficiency of the grid would benefit all
members of the grid, reduce the costs and investments in the system and give
the grid more responsiveness and flexibility. Apart from the economic and policy
motivations, a proper grid development would also contribute to the advance in
emerging technologies, such as communications, computing power, energy storage,
and renewable generation. These new advances would facilitate new services and
improve monitoring, control, communication and self-healing technologies. Moreover,
making consumers participant in the grid structure will optimize the operation of the
system and provide them with information and choice of supply. The promise of a
smarter grid is done in which all the actual concerns are solved and the quality of the
system is improved to advance towards the future.

2.3 Grids evolution: towards the Smart Grid

As explained in Section 2.2, the grid has recently faced important challenges to secure
electricity supply in a more efficient way according to more restrictive regulations.
The advance of new technologies has helped to alleviate some problems in the past.
However, there is a pressing need to accelerate the grid development that addresses
the global challenges of energy security, climate change and economic growth with
advanced low-carbon energy technologies. It is in this scenario where a new concept
of grid arises known as Smart Grid (SG). The SG also receives different names, smart
electrical/power grid, intelligent grid, intelligrid, futuregrid, intergrid, or intragrid,
but they all consist of enhancing the 20th century power system (Fang et al., 2012).
The “smartening” of the grid is an evolutionary process that involves adding new
elements at the same time that the communication infrastructure is improved to
manage each part of the grid. This evolution is shown in Figure 2.15, in which
differences between the past, present and expected future of the grid are appreciated.
It is fundamental not only a higher integration of every system part, but also to
facilitate the entry of new agents and technologies inside the grid. As shown in Figure
2.15, over the years the grid has been responsible for expanding the communication
network between its parts. However, it remains to cover the last few kilometers related
to the users. Although many regions have already begun to “smarten” their electricity
systems, all regions will require significant additional investment and planning to
achieve a smarter grid (IEA, 2011).

There is not a specific definition of what a SG must be. The reason for not
adopting only one concept is due to the diversity of power systems around the world,
in spite of sharing some features in common. There are differences mainly due to the
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Figure 2.15: Evolution of the grid structure. Source: IEA

location and construction adopted by each government of the countries where they are
located. Those governments are encouraging SG initiatives as a cost-effective way to
modernise their power system infrastructure. The idea of the SG was conceived as an
Advanced Metering Infrastructure (AMI) to improve the demand response and energy
efficiency with self-healing mechanisms inside the grid to avoid sabotages and natural
disasters (Rahimi and Ipakchi, 2010). However, this definition is also evolving with
time as new requirements drove from the different grid members. There are different
definitions made from a variety of organizations to understand what a SG is. All the
definitions have some concepts in common that combine new technologies, end-user
solutions and address different policies and regulations. For example, the European
Technology Platform defines the SG as (European Commission, 2006):

“A SmartGrid is an electricity network that can intelligently integrate the
actions of all users connected to it – generators, consumers and those that
do both – in order to efficiently deliver sustainable, economic and secure
electricity supplies.”

On the other hand, SG is defined in the U.S. Department of Energy (2009) as:

“A smart grid uses digital technology to improve reliability, security, and
efficiency (both economic and energy) of the electric system from large
generation, through the delivery systems to electricity consumers and a
growing number of distributed-generation and storage resources.”

While in the UK Department of Energy & Climate Change (2009), the SG is
identified as:

“A smart grid uses sensing, embedded processing and digital communica-
tions to enable the electricity grid to be observable (able to be measured and
visualised), controllable (able to manipulated and optimised), automated
(able to adapt and self-heal), fully integrated (fully interoperable with
existing systems and with the capacity to incorporate a diverse set of energy
sources).”

In Momoh (2012), it is suggested that the SG must be:

“The smart grid is an advanced digital two-way power flow power system
capable of self-healing, and adaptive, resilient, and sustainable, with
foresight for prediction under different uncertainties. It is equipped for
interoperability with present and future standards of components, devices,
and systems that are cyber-secured against malicious attack.”

Last but no least, the Canadian Electricity Association has defined it as (Canadian
Electricity Association, 2010):



2.3. Grids evolution: towards the Smart Grid 35

“The smart grid is a suite of information-based applications made possible
by increased automation of the electricity grid, as well as the underlying
automation itself; this suite of technologies integrates the behaviour and ac-
tions of all connected supplies and loads through dispersed communication
capabilities to deliver sustainable, economic and secure power supplies.”

There are other definitions besides those already mentioned here. They present
the SG as an opportunity to evolve the actual status of the grid and improve its
operation. Some people believe that SGs are nothing more than a step forward to
modernize a “dumb network”. However, this assessment is totally wrong because the
“smartening” of the grid consists of interconnecting all the parts to have control of
each one in real time for better utilization of resources. In this Thesis, a broader
view of the term and what the SG involves are addressed because the term SG means
different things to different people and its meanings are continuously evolving.

So far, the global vision of the SG gathers together the different parts of the current
grid and adds different communication technologies with computational capabilities
to provide favorable attributes that enhance its operation (Gharavi and Ghafurian,
2011). A grid to become smart must include the following attributes among others
(Fang et al., 2012; El-hawary, 2014; IEA, 2011):

� Optimised and efficient. The SG incorporates the latest technologies to optimise
the use of its assets, in order to meet the increasing demand without adding
extra infrastructure. Dynamic ratings are used to optimise the capacity of
the system, allowing greater demand by continuously monitoring and rating
their capacities. Real-time monitoring and system control allow increasing the
equipment efficiency through condition-based maintenance, signalling the right
instant in which equipment maintenance is needed. Moreover, this platform will
allow a smarter operation of the delivery system, rerouting power and working
autonomously, pursuing efficient asset management. Monitoring and controlling
the assets of the power systems allow reducing losses and eliminate congestion,
including utilising them depending on what is needed and when it is needed to
increase the efficiency of the system. In addition, operating efficiency increases
when selecting the least-cost energy-delivery system available through these
types of system-control devices. Giving real-time consumption measures to users
will provide them with the information needed to modify their consumption
profile based on individual preferences (pricing, efficiency, etc.) to enhance the
operation of the power system.

� Integration. One of the virtues of the SG is the capability to integrate inside
the power system any generation technology without wasting electricity. It
accommodates not only large centralised power plants, but also the growing
array of customer-sited distributed energy resources. This integration covers
different technologies including renewable, small-scale combined heat and power,
and energy storage, which will increase rapidly all along the value chain, from
suppliers to marketers to customers. Thus, the SG will provide simplified
interconnection similar to “plug-and-play”.

� Participation. Enabling two way communication through different parts of
the power system would help to decrease the peak-valley difference in the
daily demand. The reason is that consumers help to balance supply and
demand, ensuring reliability by modifying the way they use and purchase
electricity. These modifications come as a result of consumers having choices
that motivate different purchasing patterns and behaviors. These choices involve
new technologies, new information about their electricity use, and new forms of
electricity pricing and incentives.

� New horizons. The SG creates new opportunities and markets for its
different participants. The efficient operation of the markets gives users the
opportunity to choose among competing services. SG opens access to markets
through increased transmission paths, aggregated supply and demand response



36 2. Grid Framework

initiatives, and ancillary service provisions, which are those services that
facilitate and support the continuous flow of electricity. In order to achieve
the incorporation of these new markets, power system operators must manage
some different variables such as energy, capacity, location, time, rate of change
and quality. Regulators, owners/operators and consumers need the flexibility
to modify the business rules in order to suit operating and market conditions.

� Power quality. The SG is able to supply varying power grades and prices to all
the different consumers that are inside the power system. It is able to supply
the power quality necessary that meets the different needs of consumers, free of
sags, spikes, disturbances and interruptions to power the different loads of the
digital economy. Not all commercial enterprises, and certainly not all residential
customers, need the same quality of power. The cost of premium power-quality
features can be included in the electrical service contract. Advanced control
methods monitor essential components, enabling rapid diagnosis and solutions
to events that impact power quality, such as lightning, switching surges, line
faults and harmonic sources.

� Resilient. The SG assures and improves the reliability and security of supply as
it becomes more decentralized and reinforced with security protocols. Resilience
of the SG refers to the ability of a system to react to unexpected events
(disturbances, attacks, natural disasters, etc.) by isolating problematic elements
while the rest of the system is restored to normal operation. Some protective
measures are predictive maintenance, self-healing and strengthening the security
of supply through enhanced transfer capabilities. These self-healing actions
result in reduced service interruptions to consumers and help service providers
to better manage the delivery infrastructure.

� Sustainable. The advance of global climate change is slowed down thanks to
a high integration of low carbon technologies inside the SG. The reduction of
fossil fuels, through new ways of generation and the use of EV, is favoring
a path towards significant environmental improvements. In addition, the
reduction in demand variability will improve the operation of the system
and a better operation that affects positively the environment. Using local
renewable generators will decrease the environmental impact in reducing both
CO2 emissions and relevant visual effects of large power plants.

Thus, a possible definition of the SG that includes all these concepts is suggested:

A SG is an electricity network that uses communication technologies to co-
ordinate the needs and capabilities of all generators, grid operators, end-
users and electricity market stakeholders to operate all parts of the system
as efficiently as possible, minimising overall costs and environmental
impacts while maximising system reliability, resilience and stability.

In spite of the benefits of the upgraded grid, there are also some impediments
and drawbacks that make difficult its adoption. These concerns are related with the
different parts that shaped the SG and its deployment. Various barriers have been
identified and are described below (El-hawary, 2014; Luthra et al., 2014):

� Complexity. In the process of “smartening” the grid, it is necessary to deploy
some technologies in order to assure the communication among all the grid
members and to make the SG possible. However, in the process to increase the
degree of communication, the grid operation is complicated as more elements are
incorporated in its infrastructure. The main reason of this grade of complexity
is the huge amount of data that grid operators manage for a precise functioning
of the system. In addition, the integration of new agents such as renewable
energies, distributed generation or storage systems, further complicates the
power system structure and requires their coordination and efficiently linking
with the grid.
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� Technology awareness. Additional infrastructure will be required for the
development and operation of SG technologies. The automated control and
sensing systems will require a modern communication infrastructure to perform
its daily operation. Other elements are also required such as sensors, intelligent
electronic devices, distributed energy resources, cyber security devices, advanced
metering systems and other end-use devices which need to be added in the
present electricity system. Experts have identified the bi-directional flow of
communication as the back bone of the SG. However, there are some concerns
about adding all these elements. One of them is the additional costs that
suppose providing to grid with these elements, since the industry wants to work
with traditional methods for safe and guaranteed return on investment. Industry
is also worried with the concern that users do not require all the services that the
SG technologies offer to them. So, the industry attitude towards the innovation
is not enthusiastic and they have fear of adopting newer technologies. Another
concern is the maturity of the technologies to be deployed. New technologies
are still emerging and they are not yet validated which is slowing down the
development of the SG. Another concern with SG technologies inside is the
lack of clear standards to support system interoperability. Many proprietary
standards are in use today, which are making difficult the development of these
technologies. Thus, it is necessary to replace them with open standards to
encourage, complete, stabilize and normalize them.

� Economic. The deployment of the SG will require huge amounts of investments
related to transfer the necessary technology, adequate the infrastructure and
communication systems, hire skilled professionals, R&D work and integration
of new sources of generation. In spite of the SG benefits, investors are not
interested to invest in its deployment until universal standards are adopted
and the return on investments are guaranteed. In addition, there are not
specific policies and regulations for free markets tariffs and it is a strong
political commitment required and global cooperation to organize the dynamics
of energy market. Thus, private investment is discouraged frequently due to
the lack of revenue uncertainty and sufficient market base. One method to
activate the private investment is that governments provide some incentives
and subsidies to support the cost burden. This cost burden should be shared
among investors, governments and/or potential beneficiaries to alleviate some
of these difficulties. Nowadays many developed and developing nations affected
by the global recession are struggling to pay for renewal of their entire major
infrastructure and are facing financial challenges.

� Security. The deployment of ICTs introduces vulnerabilities to the system based
on potential cyber attacks. ICTs may be vulnerable to worms, viruses, denial-of-
service attacks, malware, phishing and user errors that compromise integrity and
availability. Moreover, some aspects of the grid regulations may make difficult
to ensure the cyber security of SG systems. Meanwhile, utilities are focusing
on regulatory compliance instead of comprehensive security and consumers are
not being adequately informed about these risks. It is necessary the adoption
of models that work to develop solutions for cyber security, while allowing the
use of the data collected. Analyzing and implementing SG security may be a
challenging task, considering the scale of the potential damages that could be
caused by cyber attacks.

� Data privacy. The use of ICTs allows collecting and access data of different
kind, such as electricity consumption, usage, production, etc. There are some
concerns about the risks related to how that data is used, shared, stored and
accessed. These concerns need to be addressed appropriately to gain consumer
acceptance and trust. Organizations must establish internal privacy policies and
supporting procedures to protect the data coming from the different parts and
especially the data from users. The privacy policies must assure some special
topics, such as how the information should be retained, distributed internally,
shared with third parties, secured against breach, etc. In addition, SG services
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and products should provide a privacy notification that describes how the data
is collected and how that information will be processed. The data access has to
be restricted and controlled in order to ensure that only specific individuals can
gain access to confidential information. Some technologies can also be useful
to enhance the data privacy such as encryption, steganography or aggregation
methodologies to remove personally identifiable information from collections of
energy usage data.

� Public awareness. At early stages of the SG implementation, the educational
aspects are vital to the adoption of the SG by the different actors. General
public needs to be educated through proper managed awareness programs
about the benefits of SG and technicalities of its usage, in order to make them
participant through the use of advanced metering and two-way communication
available. If this situation is not handled appropriately, it can be detrimental
to the development of a market which helps the return of investment of private
initiatives. Nowadays, customers are not massively adopting new technologies
to manage their electricity consumption due to the lack of understanding and
proper incentives. Thus, advocates need to be able to explain and clearly
identify the benefits of each SG component to the customers that are the
potential key to service success.

� Policies and regulatory framework. The traditional regulatory system needs
to evolve and be modified, in order to encourage the utilities’ investment
towards the SG. Current regulations were created long ago and they were
appropriate for those times, but now they are obsolete. Traditional regulatory
systems are not harmonized and tend to discourage investment in innovative
technologies. The key for good policies and regulations is to find the right
balance in sharing costs, benefits and risks. The responsibility for achieving
this balance lies with regulators and, in some cases, legislators, but must include
input from all stakeholders. That is why a collaboration among stakeholders
is necessary to impulse the development of a regulatory framework appropriate
to the development of the SG. Moreover, specific policies in the consumer side
are required to guarantee that they are protected and assure their benefits.
The reason is that consumers are typically not provided with either the service
options or pricing information needed to manage their consumption. Thus, it is
required that the SG customer policies fall into consumer feedback, protection
and pricing.

These are the main barriers that are hindering the development of the SG. In order
to get the SG deployment and benefit from it, it is necessary to tackle all of them.
Consumer awareness, creation of a regulatory framework and economic investments
are the keys in the development of the SG, since technologies involved are mature
enough. Demonstrators are being developed all around the world to prove the benefits
of the SG and validate its possible deployment at large scale, while searching for a
cost-effective way to make it feasible. Governments are accelerating the installation
of SG pilots with some investment initiatives as an opportunity to renew their grids
and as an important commercial opportunity to offer new services. In order to have
a better understanding of the current state of pilots around the world, some national
initiatives are described as follows:

� China. The Chinese government stated in the 12th Five-Year Plan (2011–2015)
that the SG development is a national priority for the energy sector (Xu et al.,
2014). The drivers for the developing of the SG are the rapid economic growth,
the uneven geographical distribution of electricity generation and consumption
and the impressive increase of total energy use, which is still dominated by
fossil-fuel-based thermal power generation (Ekanayake et al., 2012). China’s
State Grid Corporation outlined plans in 2010 for a pilot SG programme that
maps out deployment to 2030. It has developed a long-term stimulus plan
investment in SG which will reach at least 96USD billion by 2020 (IEA, 2011).
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� India. The Indian government is driving some SG initiatives as part of an
emerging energy policy of central and state governmental entities. These initia-
tives include the increased grid capacity to meet the growing electricity demand,
rural electrification, and optimizing electrical usage through load management
and improving operational efficiencies. The Indian SG is emphasizing the need
of private investment in energy production/supply and unbundling the power
sector from total government control as well as a new regulatory framework to
develop all the agents involved in the SG. The priorities to modernize the Indian
grid consist of reducing aggregate technical and commercial losses, automation
to monitor and control the flow of power to/from the loads on an almost
real-time basis, improvement of system reliability, and intelligently managed
loads, congestion, and power shortfall. The Smart grid Forum contributes
to the Indian SG vision on advisory basis, coordinating with the Smart Grid
Task Force. The work groups, in which the two organizations are divided,
are: advanced transmission, advanced distribution, communications, metering,
consumption and load control, policy and regulation, and architecture and
design (Samantaray, 2014).

� USA. In the USA, the initiatives of the SG began with a public law published
on December 2007 (United States, 2007). In this law, the government supports
the modernisation of the electricity transmission and distribution networks to
maintain a reliable and secure electricity infrastructure. The USA government is
currently emphasizing the need of performing studies to identify characteristics
of the current grid, identifying key technologies that are needed, and proposing
a plan for technology deployment in both the short and long term, considering
technological, societal, economical, and legislative aspects. The investment
planned by the government consists of 4.5USD billion to grid modernisation,
3.48USD billion for quick integration of proven technologies into existing electric
grids, 435USD million for regional SG demonstrations and 185USD million for
energy storage and demonstrations (IEA, 2011).

� European Union (EU). Meanwhile, the EU through the SmartGrids Technology
Platform published its vision of the SG strategy for Europe’s electricity networks
in 2006 (European Commission, 2006). The vision of the European SG consists
of integrating all low carbon generation technologies to encourage demand side
to play an active part in the supply chain. The key challenges identified
by the SmartGrids Technology Platform that impact on the delivery of the
EU-mandated targets for the utilisation of renewable energy, efficiency and
carbon reductions by 2020 and 2050, are: strengthening the grid, decentralised
architectures for system control, delivering communications infrastructure, en-
abling an active demand side management, integrating intermittent generation,
enabling DG and storage systems, and preparing for the EV (Ekanayake et al.,
2012). Thus, the different countries inside the EU are developing different
parts of the SmartGrids Technology Platform key challenges. For example,
in Germany, the E-Energy funding programme has several projects focusing
on ICTs for the energy system. In France, the distribution operator ERDF
is deploying 300000 smart meters in a pilot project based on an advanced
communication protocol named Linky. In Spain, the government mandated
distribution companies to replace existing meters with new smart meters in
2008; this must be done at no additional cost to the customers. The replacement
of these smart meters has to be done before 2018 for all the Spanish territory.
In Italy, the Ministry of Economic Development has also granted over 200EUR
million for SG demonstrators and network modernisation in Southern Italian
regions. And also the success of the Telegestore project has awarded eight
tariff-based funded projects on active medium voltage distribution systems, to
prove advanced network management and automation solutions necessary to
integrate DG (IEA, 2011).

� UK. The UK Department of Energy and Climate change in the UK Department
of Energy & Climate Change (2009) identifies key aspects to the SG development
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in the UK. Rapid expansion of intermittent renewable and less flexible nuclear
generation in conjunction with the retirement of flexible coal generation,
electrification of heating and transport, penetration of distributed energy
resources which include DG, DSM and storage and increasing penetration of
EV (Ekanayake et al., 2012). In addition, the energy regulator OFGEM has an
initiative called the Registered Power Zone that will encourage distributors to
develop and implement innovative solutions to connect distributed generators to
the network. OFGEM has set up a Low Carbon Networks fund that will allow
up to 500GBP millions support to projects that test new technology, operating
and commercial arrangements (IEA, 2011).

� Japan. The Japanese government declared in 2009 that the CO2 emissions will
be reduced a 75% by 2020. In order to achieve this target, the Ministry of
Economy, Trade and Industry set three committees to look into the SG. These
committees centered their efforts in studying low-carbon power system, next-
generation transmission and distribution networks and how can be deployed
the SG in the Japanese context (Ekanayake et al., 2012). The Federation
of Electric Power Companies of Japan is developing a SG that incorporates
solar power generation by 2020 with government investment of over 100USD
million (IEA, 2011). The project is called “The Field Test Project on Optimal
Control Technologies for the Next-Generation Transmission and Distribution
System” and was conducted by 26 electric utilities, manufacturing companies
and research laboratories in Japan in order to develop the technologies to solve
these problems. The Japanese government has announced a national smart
metering initiative and large utilities have announced SG programmes (IEA,
2011).

� Rest of the world. The Australian government announced the 100AUD million
“Smart Grid, Smart City” initiative in 2009 to deliver a commercial-scale SG
demonstration project. Additional efforts in the area of renewable energy
deployments are resulting in further study on SGs. In Brazil, a utility
association called APTEL has been working with the Brazilian government on
narrowband power line carrier trials with a social and educational focus. Some
utility operators are developing some strategies to deploy the SG pilots: Ampla
is deploying smart meters, AES Eletropaulo has developed a smart grid business
plan using the existing fiber optic backbone and CEMIG has started a SG
project based on system architecture developed by the IntelliGrid Consortium.
In South Korea, the government has invested in a pilot programme on Jeju
Island of 65USD million, which consists of a fully integrated SG system for 6000
households, wind farms and four distribution lines. South Korea has announced
plans to implement SG nationwide by 2030 (IEA, 2011).

To sum up, the SG is a new field of development for old power systems to evolve
in a new stage where all the agents can be part of a beneficial environment. SG is still
at an early stage to be deployed and a lot of research has to be done before it arises
at its final stage. Although there is no clear definition of what should be a SG, there
are five key aspects in which all the different definitions converge, Figure 2.16 shows
them. The SG is based in the actual grid that integrates renewable energies, storage
systems and demand side management thanks to the information and communication
technologies. It is in the convergence of these five aspects that the innovation arises
and their confluence makes the members of the entire system to benefit from it,
as well as the environment. However, it also faces a lot of barriers, although the
most worrying problem is the lack of investment to carry out the development of
these technologies. Currently, initiatives by organizations and government parties
are supporting young drivers and improvements in existing power grid as part of its
renovation to approach to the SG.

For a better understanding, each key aspect of the SG is described. The grid
was actually defined in Section 2.1, the communication technologies are presented in
Section 2.3.1, then in Section 2.3.2 the DG technologies are explained, after that the
use of storage systems is presented in Section 2.3.3 and finally in Section 2.3.4, the
user importance in the demand curve is described.
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Figure 2.16: Key aspects of the SG

2.3.1 Information and Communication Technologies

Currently, the communication infrastructure of a power system typically consists of a
Supervisory Control And Data Acquisition (SCADA) with dedicated communication
channels among system control centres and substations, and a Wide Area Network
(WAN) for the rest of communications. The SCADA system is dedicated to connect
the system operation facilities, such as central generation stations, transmission and
distribution substations to control centres. An example of the data that can be sent is
the status information from different devices of large facilities to a workstation. While
the WAN is used for sending market information and doing business operations. Any
operation of the power system relies on effective communications and involves a large
amount of connections among the devices and control centres (Ekanayake et al., 2012;
Panajotovic et al., 2011).

With the arrival of the SG, the Information and Communications Technology
(ICT) is outlined as the technology in which current power systems will be based to
evolve its existing communication platforms. The role of the ICT sector in SG has
been summarised in a report issued in European Commission (2009). The ICT is a set
of technologies that will store, retrieve, manipulate, transmit or receive information
electronically in a digital form. ICT will play a major role in the future SG to
manage and control the power grid. They will be part of the future infrastructure to
provide the grid with a two way communication, in which the flow of information
is managed and gathered from each part of the grid to those places where it is
required taking actions to enhance the operation of the power system. This will
provide the distribution network with a communication infrastructure to manage the
data from different users, allowing the ones that produce electricity locally to become
“prosumers” (consumer and producer of electricity).

The deployment of ICT will consist of unifying the current infrastructure of
communications of the grid (SCADA and WAN) and extend it to the rest of its
entities. Thus, the SG ICT platform can be divided in three parts depending on the
area that they cover: i) WAN, covers a wide area and interconnects substations and
control centres, ii) Neighborhood Area Network (NAN), in charge of covering the areas
served by the distribution network and iii) Home Access Network (HAN), covers the
last part of the system and the communication with the user. The interface between
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Sub-network Communication technologies

HAN Ethernet, Wireless Ethernet, Power Line Carrier (PLC),

Broadband over Power Line (BPL), ZigBee

NAN PLC, BPL, Metro Ethernet, DSL, EDGE, HSPA, UMTS,

LTE, WiMax, Frame Relay

WAN Multi Protocol Label Switching, WiMax, LTE, Frame Relay

Table 2.2: Technologies used in different communication sub-networks.

NAN and HAN will be done through smart metering (Ekanayake et al., 2012). The
ICT platform can be also divided in two parts (Fang et al., 2012):

� Logical, includes the data itself and its called the information infrastructure.
From the information perspective, the ICT will provide support for sensing
and monitoring the different grid entities and manage those informations to
model, analyse, integrate and optimize the system. The information has
also to guarantee a Quality-of-Service (QoS), related with reliability, latency
and network throughput, remote maintenance and configuration, and security
requirements. Information will be gathered through sensors such as smart
meters to obtain the information from the end users. Smart meters will
allow automatically collecting diagnostic, consumption and status data and
transferring that data to a central database for billing, troubleshooting, and
analyzing them. Thus, all the information is available in real-time and on
demand, enabling any system operation or giving users enough information to
modify their consumption, prioritizing it based on a target such as electricity
prices or grid efficiency. The information collected from the different sensors
spread all over the power system will help to asses the real-time mechanical
and electrical conditions of the system, obtaining a complete physical picture,
diagnose faults, and determine appropriate control measures that could be
automatically taken and/or suggested to the system operators (Fang et al.,
2012).

However, huge amounts of data will be generated with the installation
and expansion of a massive communication platform. These data contain
information from the different entities on the grid, but the data themselves
are useless. It is required information management to make data models,
information analysis, integration, and optimization of the system from collected
data. Using algorithms will help to extract useful information from data and
create models to the interoperability of the system (Ribeiro et al., 2014). In
addition, increasing the computing capacity of the SG will facilitate the data
analysis to actuate based on the data provided from the sensors.

� Physical, consists of the connectivity and how the data are transmitted, it is
also called communication infrastructure. The implementation of this two-
way communication infrastructure is not yet developed. There are several
technologies that can be used to develop this communication infrastructure. The
lack of system standardization is favoring that each part of the communication
infrastructure could adopt freely any technology available. An example of the
different technologies that each sub-network implements are listed in Table 2.2.
The communication infrastructure uses different wired and wireless technologies
(Ekanayake et al., 2012).

Among the wired technologies, PLC and BPL are communications in which the
data is transmitted simultaneously with the electricity inside the conductors.
PLC is conceived for LV and communication with users while BPL is used in
LV and MV to connect different devices of the distribution network. Another
important wired technology used is fiber optic, which is being considered a
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suitable option thanks to its deployment as communication network for the
internet. Among the wireless options are worthy to distinguish the standards
IEEE 802 series, which are a family of standards to support Local Area
Networks (LAN) (Wireless LAN - IEEE 802.11, bluetooth - IEEE 802.15,
WiMAX - IEEE 802.16). In addition, another communication network already
deployed that can be used by power systems is the cellular communication
systems, consisting of different generations EDGE, HSPA, UMTS, LTE, etc.
Other wireless communication technologies are the cognitive radios, microwave
communications and satellite communications. There exist lots of standards on
communications that could be part of the communication infrastructure of the
future power system. This is causing serious concerns about the interoperability
of this variety of systems inside the communication platform and how to assure
the integrity of the data (Fang et al., 2012).

Coming back to the architectural design of the communication system, it must
be able to interconnect the different sub-networks: enterprise bus (connects
control centers, markets and generators), WAN (covers the transmission
network), NAN (covers the distribution network) and HAN (covers the users).
The communication channel, which is the path where data travels as a signal,
has to connect the different entities of the communication system. The
communications normally are point-to-point but the channel between the source
and destination could be dedicated or shared medium depending on the sub-
network and the technology used. Communication channels are characterised
by their maximum data transfer speed, error rate, delay and communication
technology used. Thus, the communications infrastructure, used by power
system, could consist of private utility communication networks (radio networks,
meter mesh networks) or public carriers and networks (Internet, cellular, cable
or telephone) (Panajotovic et al., 2011).

In conclusion, the ICTs are key to stablish the communication necessary to deploy
the SG. It is required that the ICTs give coverage to all the members of the system,
that is one of the reasons to use private and public communication channels. However,
the security and privacy of the channel must be assured, ensuring the protection of
the data and not suffering any cyber-attack to cause failures or users could be in
danger. Not using a common set of standardized communication is making complex
the system structure, that is why the interoperability must be guaranteed inside
the ICT infrastructure. Finally, the ICT infrastructure needs to guarantee the QoS
because of the existence of critical data (e.g. the grid status information) that must
be delivered promptly.

2.3.2 Renewable Energies: the Distributed Generation paradigm

Once that the bidirectionally of the information is assured by ICT infrastructures,
it is possible to take advantage of new generation technologies spread out all over
the grid. With this new communication system, a door is opened to integrate all
the generation technologies inside the SG. So far, only huge isolated power plants
were used as the main power source of electricity. However, with the rise of different
renewable energy technologies in power systems, this paradigm is rapidly changing
due to the possibilities that they offer. Renewable energies are understood as the set
of energies that come continuously from resources which are naturally replenished on a
human timescale and are derived from the sun, directly (thermal, photo-chemical, and
photo-electric) or indirectly (wind, hydro and biomass), or from natural movements
and environmental mechanisms (geothermal heat and tidal). Renewable energies do
not include energy resources derived from fossil and nuclear fuels (Ellabban et al.,
2014).

According to the European Renewable Energy Council, the renewable energies
are theoretically able to provide about 3000 times the total current world energy
consumption (Zervos et al., 2010). Figure 2.17 shows how these flows of energy are
shared by different possible sources. The solar resource represents more than 90%
of the total. The use of renewable energies has been extended in the last decades to
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Figure 2.17: Renewable energy resources in the world in terms of the available

resource.

replace the traditional uses of fossil fuels mainly in the power generation sector, but
most recently also in the heat production and transport. One of the reasons of its
increasing use is that the natural resource is almost infinite. This favours consuming
less fossil fuels, avoiding energy-related CO2 emissions. Moreover, being cleaner and
safer for the environment are the other two key factors of its increasing use (IEA,
2014d).

Among the different technologies that take advantage of these resources, the
one long used is the hydro power, which uses hydroelectric turbines to convert the
downhill movement of water into rotation of an electric generator. Tidal power is
similar to hydro power but with the difference that the turbine are submerged in a
tidal basin instead of a river. Then, there are some renewable technologies that use
steam turbines to produce electricity like solar thermal (uses the sun to heat a fluid),
biomass (uses organic material that burns) and geothermal power (where steam or hot
water is extracted directly from the ground). On the other hand, there exist another
electrical generation technologies that differ from the traditional ways of generation:
wind turbines, Photovoltaics (PV), microturbines and fuel cells. They also differ
from the previous one in the electrical properties of the generator component, the
availability of the resource, the customizable scale and the range of suitable locations
for their deployment. Wind power uses the wind to move turbines, which are based
on induction generators. The rotor varies its velocity depending on the wind speed,
it also uses a condition power stage to control the speed and the electrical parameters
of the electricity produced. Microturbines are powered by natural gas coming from
organic sources (wastewater, landfill or manure digester gas) and are similar to steam
turbines but smaller. They are usually used as a cogeneration system in which the
heat and the power are exploited. Finally, PV and fuel cells produce electricity in
a totally different way than the previous ones. They have no rotating parts and
produce DC rather than AC electricity, so they use an inverter to connect them to
the grid. PV uses a treated semiconductor to produce an electric potential when it
is exposed to the light. Whereas, a fuel cell converts the chemical energy from a
fuel into electricity through a chemical reaction of positively charged hydrogen ions
with oxygen or another oxidizing agent. The output voltage of a PV and/or a fuel
cell depends on the characteristics of the material, but normally it is on the order
of 1V. Therefore, various cells are usually grouped together to achieve a reasonable
operating voltage (von Meier, 2006).

New renewable energies allow configuring different sizes of generators due to the
modularity of its components (PV or fuel cells) or its miniaturization (smaller wind
and hydro turbines). This fact is making possible the rise of new generation forms
different from classical large power plants far from consumption places. Users are
investing to install some small generators in their houses and businesses to supply
their own electricity. Thus, the generation paradigm is evolving to smaller generators
in scale, geographically distributed across the grid and closer to the places where it
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is consumed (Pepermans et al., 2005). These new forms of generation are what is
known as Distributed Generation (DG).

The decentralization of the generation have great benefits for the grid. The system
support benefits are as follows (Pepermans et al., 2005; Barker and de Mello, 2000;
von Meier, 2006):

0 7 14 21 24
t(h)

Figure 2.18: Example of PV generation with aggregated consumption of a power

system. In blue the aggregated consumption of the power system, in yellow the DG

and in shadow grey the night hours are represented.

� Loss reduction. By generating electricity closer to the places where it is
consumed, the electricity does not need to be transported large distances, so
the thermal losses of the power lines decrease.

� Reliability and power quality. Generating electricity in more than one place
adds redundancy in the system that helps to enhance its security. For example,
it helps to overcome easily sustained interruptions (voltage drops to zero) or
sabotages along the power system. Related with power quality3, DG can
increase it by providing voltage support to rise the insufficient voltage of an
area or providing reactive power support to compensate it. So, if DG can
provide voltage support reliably, installation or upgrades of new hardware can
be avoided.

� Avoiding upgrades in the transmission and distribution network. The installa-
tion of DG reduces the constraints of the transmission and distribution networks,
alleviating the power system size. The equipment inside the network has to
accommodate the peak load, but offsetting a demand amount with DG can
provide relief in the infrastructure (e.g. for a PV DG can be observed in Figure
2.18). Thus, it is not necessary to invest in order to upgrade the infrastructure
while maintaining reliability.

� Grid support. DG could also contribute to provide auxiliary services to maintain
a stable grid operation, such as generation on demand by operators, stabilising
the frequency, etc.

3Power quality is referred to the waveform of i and v compared to an ideal sinusoidal one and the

balance between them.
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� Economic savings. These new technologies offer some economic reductions. The
investment in grid infrastructure can be reduced, as well as reducing oversizing
related to system demand or investment in new equipment to ensure system
reliability. Also, users can benefit from using DG locally by reducing the
purchase of external resources. In addition, DG can be used depending on
the electricity pricing, following an economic saving strategy. The costs are also
shared by the different grid stakeholders, resulting in a collective benefit for all
of them.

� Environmental friendly. Apart from being increasingly cost-effective technolo-
gies, they also have some environmental benefits. In general, DG consists
of renewable energies which are low emissions power supplies. Thus, the
dependency from environmentally damaging fuels is reduced. Consequently, the
levels of greenhouse gas, toxic chemical emissions and other damaging emissions
are also reduced. For example, cogeneration technologies use waste materials
so the need of landfill sites are reduced.

On the other hand, DG faces important challenges for its fully adoption. The first
one is the high investment costs of some technologies. The problem is that for some
technologies there are no economies of scale, which makes difficult their deployment.
Moreover, there is not a clear financial credit to support the installation of DG in spite
of being considered as key technologies to decrease the harmful effects of electricity
generation to the environment. Another issue is the need of extra protection and
coordination of the generation resources. The reason is that the flow of electricity is
now bidirectional, consequently the system is no longer a centralized, radial and flat
system. At the distribution level there is not only consumption, but also generation
is injected at this level. Thus, the equipments inside the distribution network can
experiment a flow of energy in the other direction for which they are not built. It is
necessary to introduce extra security elements such as switches or even change the
equipment to support the bidirectionally flows of energy. The coordination issue is
related with control and availability of resources. The problem of some renewable
energies is that they do not produce regularly the same amount of electricity and
depend on the weather and other variables which are difficult to predict. This fact
makes difficult the generation scheduling and increases the operation complexity of
the grid (Pepermans et al., 2005; von Meier, 2006). Finally, there are also some
environmental concerns related to certain renewable energies. For example, some
organic fuels of biomass are crops destined to produce energy and some markets are
changing the way of cultivating some areas. Other concerns are related to the visual
impact of the technologies in the environment, such as large wind turbines or huge
PV solar fields (Ellabban et al., 2014).

In spite of these deterrents, all these problems are minor drawbacks overcome by
the benefits that the DG possesses. The problem of the generation scheduling is not
crucial since it can be tackled in various ways, using predictive algorithms for proper
system integration or trying to design a system to meet the demand without any
surplus. About environmental, financial costs and protection issues, regulations and
policies are the elements responsible for changing the actual situation and favor the
deployment of DG.

The election of a renewable technology in DG is decided based on how near
it is to the loads, however, it must also be environmentally compatible. Among
all the renewable energies available, the PV is the more suitable to almost any
application. PV is easy to deploy because it involves the least possible inconvenience:
zero emissions, no noise, reduced aesthetic impact, different options can be used to
integrate it in buildings or other structures (for example, sunshade for windows or
shading for parking lots), easy configuration of the generator adding or eliminating
PV panels and low maintenance of facilities (von Meier, 2006). Other technologies
such as fuel cells require more supervision, or wind power requires better conditions
for resource availability.

To sum up, the DG of renewable energy is presented as one of the alternatives
to our present centralized and hierarchical power system. Many questions remain
to be solved regarding their availability and their development to achieve greater
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efficiencies, as well as better policies that support its use. The use of these technologies
have societal implications beyond the electric power as they are related to resource
scarcity, environment, and the politics of ownership (von Meier, 2006). In order to
address some challenges related to the control of these technologies, it is necessary to
combine them with the use of storage systems, to alleviate the availability problem,
which is the subject of the next Section.

Type Technology

Mechanical Pumped hydro, compressed air and flywheel

Electrochemical Secondary batteries (Lead acid, NiCd, NiMh, Li and NaS)

and flow batteries (redox flow and hybrid flow)

Chemical Hydrogen: electrolyser, fuel cell and SNG

Electrical Double-layer capacitors and superconducting magnetic coil

Thermal Sensible heat storage

Table 2.3: Classification of EES systems according to the energy form of storage.

2.3.3 Storage Systems

Electrical Energy Storage (EES) is expected to play different and important roles in
the future SG. In the current power systems, the electricity is consumed at the same
time that it is generated. However, adding EES will relax the operation constraints,
being not necessary that generation meets consumption in real time. The use of
storage system is a great asset to integrate inside the grid, because it can be deployed
in any part of the power system, helping with the integration of DG and guaranteeing
the supply during peak demand periods or when resources are unavailable, working as
a backup system. An EES can store energy in a wide power range, supply it in a wide
range and tolerate repeated discharges, depending on the technology. Despite this,
the use of storage in grid-connected applications is not very common (IEA, 2014a).

The EES presents interesting features for power systems, such as modularity,
controllability and responsiveness. Storage systems of different sizes can be built
adding more or fewer elements easily depending on the technology. It is also easy to
retrieve the energy stored in the system to supply a load within a very short time
(IEA, 2014a). Due to these properties, EES can be integrated in any part of the
grid easily. However, depending on the application, some EES technologies are more
suitable than others for the task development. There exist multiple technologies to
implement an EES system. A possible classification of the different technologies is
shown in Table 2.3 (IEC, 2011). This classification is done attending to how the
system stores electricity. Since storing directly electricity is a difficult process, it can
be easily done in other forms and converted back to electricity when needed.

� Mechanical storage systems consist of using the potential or kinetic energy
of a body to store electricity. Pumped hydro and compressed air use the
potential energy of the water or air, respectively, to move a turbine and produced
electricity. These systems are largely used and represent the 99% of all deployed
electricity storage (IEA, 2014a), which is around the 3% of the global generation
capacity (IEC, 2011). Compressed air systems are similar to pumped hydro
systems, but they pressurize air in a reservoir during off peak hours and release it
when needed. On the other hand, a flywheel stores energy through accelerating
a rotor and maintaining it as inertial energy. The energy is maintained by
keeping the rotating body at a constant speed and it is released reversing the
process and using the motor as a generator (Mohd et al., 2008). Mechanical
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storage systems can store electricity up to the order of MW, but they are large
systems and require considerable maintenance.

� Electrochemical type of EES are also known as batteries and they are along
with pumped hydro systems the oldest forms of EES. The electricity is
stored chemically inside the battery. Secondary batteries consist of a liquid,
paste, or solid electrolyte together with a positive electrode (anode) and a
negative electrode (cathode) (Mohd et al., 2008). During the discharge process,
electrochemical reactions occur in the two electrodes and a current is generated
between them. Reversing the process will charge the battery. There are different
chemicals used to build the battery: lead acid are the oldest and most widely
used, nickel cadium (NiCd) is also quite widespread, sodium sulphur (NaS) and
lithium ion (Li-ion) (Chen et al., 2009). Li-ion are becoming an alternative to
the oldest batteries due to its efficiency (around the 100%), the increase life
cycle of the battery and its reduced shape for some applications (Chen et al.,
2009). Flow batteries are also rechargeable batteries, but the energy is stored in
one or more electroactive components, which are dissolved in liquid electrolytes.
The electrolytes are stored in tanks and pumped through the electrochemical cell
that converts chemical energy directly to electricity and vice versa (IEC, 2011).
There are two main types of flow batteries: redox and hybrid flow batteries.

Mechanical and electrochemical storage systems are the oldest types of EES and
are already mature enough to be installed. However, new types of EES are in
development, such as the hydrogen systems. These storage systems consist of storing
the hydrogen generated in an electrolysis process. Once the hydrogen is produced,
different alternatives are available for its use as an energy carrier: transport, heating,
chemical industry, etc. The problem is that the efficiency is low (around 40%)
compared to other technologies, but it can store large amounts of energy (IEC, 2011).
Other EES systems are thermal ones, in which the electricity is used to heat or cold
a fluid and later used in different applications, such as space heating or cooling, hot
water production or electricity generation (Mohd et al., 2008). The last type of EES
stores electricity directly: super capacitors and superconducting magnetic coils. The
first one has the features of batteries and capacitors and electricity is stored in the
form of an electric field between two electrodes (Mohd et al., 2008). They are very
durable (8–10 years) with high efficiency (∼95%). However, they present a high self-
discharge so energy has to be used quickly (Mohd et al., 2008). On the other hand,
the superconducting magnetic energy storage consists of storing energy in a magnetic
field created by the current flowing through a superconducting coil (IEC, 2011). They
possess a fast response, but they require high operating costs, deep discharges and
constant activities (Mohd et al., 2008).

Some features to consider the election of a storage system are its maturity, life
cycle, costs, efficiency, environmental implications and density. Depending on the
technology some of these features are better than others. For example, pumped
hydro, fuel batteries or fuel cells are suitable for energy management application,
whereas flywheels, batteries and supercapacitors are more suitable for power quality
and Uninterruptible Power Supply (UPS) applications. EES provides the grid with
some advantages, such as (Mohd et al., 2008; IEC, 2011; Chen et al., 2009; Wade
et al., 2010):

� Voltage control. Maintaining voltages within acceptable range implies that it
provides load factor correction, reduce the need to constrain generation, mitigate
flicker, sags and swells, etc.

� Frequency support. Reducing the imbalances between generation and consump-
tion favors keeping the grid frequency within its limits for periods up to 30
minutes.

� Transient stability. Oscillations are reduced in the power signal by injecting or
absorbing real power.
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Figure 2.19: EV charging for load levelling during valley hours. In blue the

aggregated consumption of the power system, in red the valley filling technique using

the EV and in shadow grey the night hours are represented.

� Power quality and reliability. Power quality is related with changes in magnitude
and shape of the voltage and current. Storage systems can help with harmonics,
power factor, transients, flicker, etc, providing reliable electricity to consumers.
EES could supply the consumption during interruption or blackouts, but also
it could help to restore the network after faults.

� Load levelling. A storage system is charged with excess power during low-
demand periods and it is discharged when the power demand is on peak levels.

� Spinning reserve. The power of an EES system is reserved to supply the load
immediately when a fault occurs.

� Power flow management. Redirecting power flows increases operation efficiency
and cost reductions in fuel. This property also contributes to the delay network
reinforcement, reduction of reverse power flows and minimization of losses.

In addition, EES could help in the energy market by arbitraging and balancing
it. It could also help to reduce the variability of the DG, increase its yield from non-
firm connections, compliance with energy security standards and support network
management (assist islanded networks, support black starts, etc.) (Wade et al.,
2010). The main reasons of storage absence in the grid are typically its costs and
the generation control possibilities of present power systems. It makes unprofitable
the deployment of new storage systems on a large scale. However, high investments
in EES can be affordable when these costs are offset by higher revenues, such as
purchasing inexpensive electricity during low demand periods and later selling it
to a higher price. Moreover, it could reduce financial losses associated with power
quality anomalies and outages, increase the revenue from renewable energy sources,
reduce the variability of the generation, increase revenue for ancillary services, and
avoid installing extra generation (Mohd et al., 2008). There are also some concerns
about the maturity of the technologies, its energy density, power capacity, life cycle,
efficiency, discharge capability and environmental issues. Only two technologies
are currently mature enough, pumped hydro and lead-acid batteries, the rest are
currently under development, although some technologies are almost mature such as
Li-ion batteries (Chen et al., 2009). With respect to the efficiency, EES have high
efficiencies depending on the technology, batteries, pumped hydro, compressed air and
supercapacitors present an efficiency above 60% (Chen et al., 2009). Although the
development of EES is advancing, the life cycle and the discharging capacity are still
not enough for its integration in some parts of the grid (IEA, 2014a). EES presents
some negative effects on the environment, fossil combustion, strong magnetic field,
landscape damage and toxic remains (Chen et al., 2009). For example, the remains of
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the batteries are toxic and must be treated in order not to damage the environment.
But it is still necessary a deeper analysis of the environmental implications of installing
the storage system, taking into account the installation and use of the system. Despite
all drawbacks found, EES is needed in the grid due to the flexibility that provides
to the power systems. That is the reason why the storage level is expected to grow
to 10–15% from the current 3% in USA and European countries, and even higher in
Japan in the near future (Chen et al., 2009).

Among EES systems, secondary batteries are gaining special importance because
of two factors: integration with DG powered by renewable energies and the Electric
Vehicle (EV). The use of batteries with DG will improve the usability of renewable
energy, since it will help to reduce the variability of the resource, charging the battery
with the electrical surplus and making it available when it is needed. On the other
hand, the EV market is growing and it is expected to continue this trend in the next
decades (IEA, 2013). The reasons behind this growth are mainly due to lower battery
costs, reduction of CO2 emissions and reduction of the dependency from fossil fuels
(IEC, 2011; IEA, 2013). The electrification of the transportation sector is associated
with a massive deployment of EV in the coming years. This electrification supposes
a paradigm shift in energy systems because the grid must be able to absorb a major
and new electric consumption. The penetration of the EV will have a great impact on
the distribution networks. And if it is not handled with care, it can lead to negative
effects (II et al., 2011). The EV charge could become a serious problem due to the
increase of power from the distribution level and could affect transmission network or
even to the generation capacity of the grid causing an overall increase of the required
infrastructure. However, the EV charge offers a flexible load that the grid could use
to enhance its functionality. Thus, these problems can be addressed from EV charge
coordination (Deilami et al., 2011; Mets et al., 2010). For example, in Figure 2.19,
the charge of the EV is used to reduce the variability of the consumption, charging it
at off-peak periods. Managing the charge of EV could support the grid and improve
its operation through the reduction of power losses levelling the load (Deilami et al.,
2011).

Finally, the integration of EES and in particular the EVs in the grid is increasingly
feasible thanks to its participation in the SG. Due to the ICT platform, the charge
of the EV can be easily done by the grid. With Vehicle-to-Grid (V2G), EVs will be
not only mere consumers but they will be used to provide power for specific electric
markets. The EV charging management can be framed in the general concept of the
DSM, which is discussed in Section 2.3.4.

2.3.4 Demand side management and electricity management strate-

gies

So far, new elements have been presented for their integration within power systems
to enhance them. However, the potential of these elements alone could benefit or
harm the grid operation, depending on how they are managed. Thus, it is necessary
to provide grid operators with a number of tools to coordinate the new power flows
that appear from the integration of DG renewable energies and EES together with
ICTs to reach them. It is in this framework in which users will play an important
role in the SG, by helping to manage their demand towards energy efficiency.

Therefore, an increasing number of programs and policies are motivating users
to collaborate with the grid operators for its enhancement. All these programs are
included within the concept of Demand Side Management (DSM). This concept is
not new, it appears in the 80s and was defined as “planning, implementation, and
monitoring of those utility activities designed to influence customer use of electricity
in ways that will produce desired changes in the utility’s load shape, i.e., changes in
the time pattern and magnitude of a utility’s load” by Gellings (1985). Currently,
DSM is defined as actions that influence the way that consumers use electricity in
order to achieve savings or higher efficiency in energy use. DSM is a global term that
includes a variety of activities, such load management, energy efficiency, etc. in a
long-term perspective. Whereas the short-term perspectives are tackled by Demand
Response (DR) programs, which are actions that result in short-term reductions in
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energy demand (Albadi and El-Saadany, 2007). DR can also be defined as incentive
payment programs to motivate users to respond to changes in price or availability
of electricity by changing its consumption (Gelazanskas and Gamage, 2014). The
different DSM techniques are focused on the modification of the load shape. In
general, these techniques seek the grid enhancement through an increase of the energy
efficiency. Six different load shaping categories can be distinguished (Gellings, 1985;
Gelazanskas and Gamage, 2014) (see Figure 2.20):
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Figure 2.20: Load shaping techniques of the DSM.

� Peak clipping. The consumption peak is one of the major problems in the design
of the grid capacity and one of the reasons of the oversizing problem. This
peak can be reduced through DSM by using direct load control. The supply
interruption of some consumers by grid operators and the load automation are
the main techniques to implement this effect in the aggregated consumption.

� Valley filling. This technique considers the increase of the consumption during
the off-peak periods or valleys to reduce the variability of the aggregated
consumption (see Figure 2.20). Increasing the consumption in the valley
can be accomplished with the connection of pumping stations, EES or EVs
during the low consumption periods, among other measures. Valley filling
implies an improvement on the grid profitability because of a greater use of
its infrastructure.

� Load shifting. This consists of displacing part of the electric loads from peak to
valley periods. It may be implemented through EESs, user load shift or through
a variable pricing strategy depending on the aggregated consumption shape or
the electric load automation. The load shifting combines the benefits of the
valley consumption increase and the peak consumption decrease.

� Strategic conservation. It consists of the consumption reduction without
modifying the shape of the aggregated consumption. This effect can be produced
through the efficiency improvement of the consumption appliances or increasing
the society energy awareness. The consumption reduction leads to a reduction
of the grid size but does not enhance its efficiency.

� Load growth. In this case, the consumption is increased motivated by the
electricity market or other incentives by the utility. Load growth is motivated
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by the electrification and absorption of new loads that previously did not use
electricity, such as EV. It is related with the development of some sectors
(transportation or industrial) to reduce the use of fossil fuels and raw materials
resulting in improved overall productivity.

� Flexible loads. It is related to planning the shape of the load to respond to a
particular objective. Users can make flexible their loads through DSM if they
are presented with options, such as pricing or variations of QoS, in exchange for
various incentives. Load control will offer individual customers the possibility
to make their load flexible enough to guarantee incentives.

From the DSM perspective, it is interesting to divide the consumption in terms
of its controllability. Thus, the consumption is divided in: i) fixed, ii) deferrable and
iii) elastic (Castillo-Cagigal et al., 2011b). Fixed or non-deferrable loads represent
the consumption that is uncontrollable. They are consumptions that respond
instantaneously to user requirements and their use is immediate (e.g. television,
computers, lighting, etc.). Deferrable loads are consumptions that can be displaced in
time but the amount of energy that they consume is fixed during a certain time period
(e.g. dishwashers, washing machines or dryers) (Ramchurn et al., 2011). Elastic
consumption represents loads whose instantaneous power can be controlled directly
(e.g. air conditioning or EV) (Ramchurn et al., 2011).

The increase of load automation is required to apply DSM techniques and obtain
higher benefits, enhancing the grid operation (IEA, 2011). Some benefits that can be
achieved through the use of DSM techniques, are as follows (Strbac, 2008; Palensky
and Dietrich, 2011; IEA, 2014d):

� Reduce infrastructure oversizing. The capacity of the grid is directly propor-
tional to the maximum demand of the consumers. By reducing the consumption
during peak periods, the generation and transmission and distribution lines
may reduce their oversized capacity. DSM provides a virtual storage system
with fewer costs and the right incentives. Economically, the installation and
maintenance costs are reduced by using them.

� Improve grid investment profitability. Shifting the consumption from peak
periods to off-peak ones, reduces the variability of the consumption, enhancing
its operation and favoring for a greater use of the electricity infrastructure. It
implies a faster return of investment if it is translated into economic terms.

� Security and ancillary services enhancement. The deployment of DSM tech-
niques leads to the development of ancillary services, such as increase monitoring
platform, control capability of the grid, distributed spinning reserves, load as
virtual storage power plants, communication protocols, etc. The increase of the
control capacity allows carrying out new emergency actions and services in the
grid.

� Integration of new generation technologies. The emergence of new technologies,
such as DG or EV, inside the grid, brings new management challenges that can
be tackled with the help of DSM techniques. The variability of some renewable
energies makes difficult their integration in the daily grid operation. Thus, it
is necessary to search for new solutions, such as adapting the demand to the
generation through DSM techniques (Castillo-Cagigal et al., 2011b).

� Integration of new local infrastructure. The classical structure of the grids
consists of a hierarchical structure where energy is produced in large power
plants far from consumers. The evolution of this structure to a decentralised
one is becoming real with the appearance of the Distributed Energy Resources
(DER). DER consist of a wide range of local generators and storage systems
which are geographically dispersed, generally close to the consumption, and
locally managed with DSM techniques (Castillo-Cagigal et al., 2011a). It is
in this framework in which users become “prosumers” who not only consume
electricity from the grid but also generate it.
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DSM techniques present lots of benefits. Although some real experiments have
already been developed (Castillo-Cagigal et al., 2011a; Palensky and Dietrich, 2011),
there exist some barriers that difficult and slow their development. The barriers faced
by DSM are of different nature. One of these barriers is the lack of knowledge and
potential of DSM by users (Strbac, 2008). The hierarchical structure of the grid has
lead to a complete ignorance of the system operation from the consumer side and
has resulted in a lack of incentives and policies about DSM. There is also a lack of
knowledge about the costs and benefits of DSM because of a lack of methodologies to
evaluate it. In Torriti et al. (2010) the authors analyze DSM experiences in Europe
and conclude that, while it is clear what DSM initiatives can achieve in terms of
demand shifting from peak periods, limited knowledge has been developed about
its overall energy saving capacities. Because of the lack of measures to analyze
DSM effects, it is also difficult to understand the saving impacts on overall financial
consumer expenditures. However, DSM programs should cause a high reduction in
the energy bill to be attractive to the consumers since the price of the electricity is
growing.

Another barrier is the lack of infrastructure. There is no information coming
from the grid to the users, only the bill of the electricity consumed in a time
period. This fact makes difficult the decision of the users in order to actuate
over their consumption. In order to perform DSM, the consumers require having
available energy cost information in real-time or other information related to the
grid status. Thus, this is one of the reasons to deploy an ICT infrastructure with
advanced metering and control methods within the grid. The slow penetration of these
technologies in the electricity system and the lack of international and widespread
communication standards have slowed the diffusion of DSM. In fact, this has been
one of the central barriers to DSM, particularly in the residential sector, where costs
tend to be high relative to savings, as compared to commercial customers (Kim and
Shcherbakova, 2011).

Another issue related with the DSM is the investment recovery uncertainty. The
investment is crucial to the development of DSM. Some investments done by users
consist of electronic devices that communicate with the ICT infrastructure and the
monitoring network to apply the DSM techniques. However, it is uncertain that the
information coming from the grid is available to the users. The recovery of these
investments is slow because of the currently relative low electricity prices. Regarding
private investments, there are greater uncertainties about the costs and benefits as
well as the lack of consumer interest. So, in liberalized energy markets, the lack of
revenues is making the private investment lower despite the technological benefits
of all the agents (Kim and Shcherbakova, 2011). Therefore, DSM programs must
take into account the whole energy industry by increasing their complexity in their
development.

The last important barrier in the development of the DSM is the necessity of
policies and incentives that motivate its use. The DSM concepts and techniques
involve the different grid agents and the necessary development of them implies all
the participants of the grid, from big energy producers to small consumers. Thus,
it is difficult to develop programs and policies that encompass the entire grid. In
addition, the conservative position of the majority of the agents of the electric power
sector is slowing down the DSM implementation. But, this situation is changing as
governments are taking part in enhancing the grid operation (European Commission,
2006; U.S. Department of Energy, 2009; UK Department of Energy & Climate Change,
2009; Canadian Electricity Association, 2010). And new energy policies are emerging
motivated by improving the grid efficiency and fighting climate change (Edenhofer
et al., 2011).

The interest of developing these techniques consists of enhancing the grid
operation and helping with the integration of new technologies. Figure 2.21 represents
the ultimate strategy to achieve with DSM. The grid improvement is done through
load shifting and obtaining a flatter consumption, in which all the benefits of DSM can
be achieved. Moreover, this smoothed consumption also facilitates the grid operation
by knowing exactly at each time the consumption shape and adjusting generation to
consumption. This is the objective to achieve at the end of this Thesis through DSM
and coordinating the consumption of the different users inside it.
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Figure 2.21: DSM to improve the operation of the grid through smoothing the

aggregated consumption with load shifting.

At the present, some DSM mechanisms are beginning their implementation,
answering users necessities and being carried out with different targets. The objective
of DSM mechanisms varies in nature. Some of these mechanisms consists of changing
the regulatory framework, encouraging consumer awareness, pursuing a reduction in
the electrical appliances consumption, making possible the active participation of
consumers in electricity markets, etc. DSM can be classified in the following classes
depending on the interaction degree between the consumer and the electric power
system (Palensky and Dietrich, 2011):

� Electricity saving and efficiency programs. These programs seek to increase
energy efficiency of consumption through different DSM strategies. These
initiatives provoke an indirect reduction on the long-term demand in terms
of power consumption, regardless of the consumption time. Some examples are:
incentive campaigns for the use of energy-saving lamps, variable speed drives
in electric machines (Mecrow and Jack, 2008), energy policies (Abdelaziz et al.,
2011), etc.

� Indirect control of electric loads through pricing. In this case, DSM programs
seek to lighten the consumption from peak periods through the use of the
electricity price signal. The price variations reside in the costs involved for
the electrical grid to meet the demand, so peak periods are more expensive
than valley ones. And users are encouraged to consume during off-peak periods
(Newsham and Bowker, 2010). There exist different time-base rates to incentive
the DSM through pricing (Albadi and El-Saadany, 2007): i) Time of Use (TOU)
tariffs, the day is divided in different blocks and the price of consuming in each
block depends on the historical average costs of electricity during the period
covered by the block (e.g. two blocks, one for peak periods and one for off-peak
periods), ii) Critical Peak Pricing (CPP) consists of higher prices pre-specified
for electricity superimposed on normal rates to periods in which production
costs are very high, due to the difficulties of matching supply and demand, iii)
Real Time Pricing (RTP) consists of charging customers hourly with fluctuating
prices reflecting the real cost of electricity in the whole sale market, and iv) Peak
Time Rebates (PTR), these programs consist of discounts on electricity bills for
not using power during the peak hours.

� Direct load control. These measures consist of directly disconnecting some
electrical loads of the users by system operators. Although a few experiences
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have been reported with residential consumers, the direct control of loads is
usually applied in the industry, controlling large consumers such as foundries
(Torriti et al., 2010).

� Smart metering and appliances control. These programs make users participants
to control their consumption through market programs or structures that offer
load reductions by adapting the demand to the grid status. To do this, it is
necessary that customers have enough information of the grid status and also
access to their consumption to modify it. So, some sophisticated customers
can already tie the electricity pricing into their energy management system.
Moreover, these initiatives can achieve greater benefits and greater load shifts
if the price differences between peak and off-peak periods are higher. These
techniques require to be accompanied by the application of intelligent appliances
that facilitate the implementation of DSM (Strbac, 2008).

Continuing with these last incentive programs, new concepts emerge within DSM
framework. Hence, the combination of DSM with an automatic control of demand
and local generation leads to a new concept called Active Demand Side Management
(ADSM) (Castillo-Cagigal et al., 2011a; Matallanas et al., 2012; Masa-Bote et al.,
2014). The use of ADSM strategies could benefit firstly to consumers, provided that
the technologies that implement them automate the operation of devices without
compromising the users’ comfort needs and preferences. In the residential sector,
there exist lots of possibilities to implement ADSM, since it can be combined with
additional comfort and security functions, improving the demand response, reducing
the environmental impacts (Papagiannis et al., 2008) and offering the user information
about its electrical consumption. But the residential sector is not the only sector
in which DSM strategies can be applied, for example in the service sector, the
control of the air conditioning is being explored in order to implement ADSM.
Although ADSM does not directly reduce the amount of energy, the feedback of the
consumption information to the users could reduce the amount of electricity demanded
by them (Wood and Newborough, 2003). At present, ADSM strategies are still under
development because it is necessary enough information of local resources (PV or
EESs) and the ability to control remotely the different electrical devices to modify
the consumption pattern. In addition, some information coming from the grid such
as its status or the pricing signal are becoming available through the deployment of
the smart metering.

In conclusion, the benefits of DSM represent a major step towards controlling the
different loads of the grid and a considerable improvement in efficiency since it can
adapt dynamically the consumption to the generation favoring an enhancement of the
operation of the grid. Thus, the benefits are not only translated in the electricity bills
of the user, but also in the environment through the reduction of emissions and other
harmful wastes. In addition, the DSM adds value to the operation of the network
since the development of many SG technologies have been deployed and DSM can help
control power flows without necessarily increase the complexity of the grid operation.
In this Thesis, the use of the ADSM helps to integrate the DG and the use of local
storage systems to manage the power flows inside facilities and at the same time to
enhance the grid status reducing the variability of the aggregated consumption.
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3Neural Networks

“Computers deserve to be called intelligent if they could deceive

humans into believing that they were human” — Alan Turing

T
hese days, there exists a growing concern about the use of the data
obtained from different services present in daily live. This is due to the
tendency of a society increasingly connected through networks: internet,
social (facebook, twitter, etc.), electrical, etc. (Hilbert and López, 2011).

In this context, new concepts arise to extend even more the connectivity to all the
devices and elements that surround us, such as the Internet of Things (IoT) or the
Smart Grid (SG). All these applications produce a vast amount of data which by
themselves have no value, but treated properly they can make a difference in the
development of society. The information that resides within these data can be made of
many kinds: electricity consumption, personal information, interests, mobility along
the day, location, etc. Thus, if the information is not treated adequately, it can be a
burden for the concrete service or application, causing a loss in quality that can lead
to a total collapse in the worst case scenario.

Nevertheless, the access to the information that resides within the data is a major
asset to benefit all groups, because it can mean greater operational efficiency, cost
reductions or reduced risks. Establishing smart relationships between data and users
could enhance the service and offer added value to it, making life more bearable. These
new correlations could be the fault preventions in electrical grids, stock prediction in
markets, combat crime and so on. Therefore, companies are currently developing tools
that facilitate the acquisition, processing and decision-making of data automatically,
through what is known as Big Data Analytics (BDA) (Morabito, 2015). Some
traditional data processing algorithms are inadequate to use with these large data
sets due to its complexity and length. BDA has to deal with a few challenges to be
developed, such as analysis, capture, share, storage or visualization of the data to
understand the different relationships among them. Thus, new algorithms are being
developed to analyze these data such as Machine Learning (ML) ones. These type of
algorithms are oriented to learn from the data and build predictions based on them
(Kohavi and Provost, 1998). Normally these algorithms consist of building a model
from example data sets and try to generalize them in order to make data-driven
predictions or decisions, rather than following programmed steps externally (Bishop,
2006). There are many approaches of ML, some algorithms used are: decision tree
learning, Radial Basis Function (RBF), Support Vector Machine (SVM), Principal
Components Analysis (PCA), least-squares optimization, Artificial Neural Network
(ANN) and Genetic Algorithm (GA), among others (Marsland, 2009). Most of the
algorithms come from the Artificial Intelligence (AI) field, so that ML is considered
as a branch of AI in charge of handling huge amount of data and extracting features
from them (Blum and Langley, 1997).

But how can these AI algorithms help grids around the world? And why are these
algorithms particularly interesting to the electrical sector? As described in Chapter 2,
the evolution of the electrical grids towards a SG is becoming real. The installation of
an Information and Communications Technology (ICT) infrastructure is generating
lots of data which are necessary to be processed by grid operators, in order to complete
their tasks in a more efficient way. Data processing must be fast enough to make
instant decisions and effectively use them to take advantage of all the benefits that
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report the SG (see Section 2.3). However, the grid is currently a centralized system
that makes difficult to process the vast amount of data generated per minute from
smart metering. Thus, it will be smart to use some of these techniques, alleviating the
data load from the central node. In addition, the inclusion of these algorithms makes
feasible the decentralization of the system, leaving the decision-making to different
nodes (e.g. substations) within the grid. If decentralization was taken to the end of
the electricity system (i.e. users who manage their data, process it and take decisions
in order to achieve a common objective), all the parties within the grid would benefit
from it, being able to overcome all actual problems. In this scenario, nodes could
enhance the system operation, being able to manage their power flows inside the grid.

This Thesis defines a decentralized algorithm to enhance the grid status through
the management of the power flows inside the users facilities. The use of one
of the classic and more famous AI algorithms is proposed, the ANN, in order to
fulfill the objective of enhancing the grid operation by providing decisions to its
members. Nowadays, ANNs are enjoying a growing popularity in applications because
of their features, among which stand out its computing power, decentralized nature
and generalization. In addition, through the development of ML techniques and
improving computer hardware, neural structures are increasingly moving towards a
greater resemblance to the brain (Eliasmith et al., 2012) or their use in deep learning
(Bengio, 2009). In recent years, also biological neural networks have experienced
intense development within the field of the neuroscience (Kandel et al., 2013) and the
development of the technology has made possible to carry out deeper studies.

But why are these algorithms chosen? And why are they suitable to be applied
in the management of a grid? In order to answer these questions, it is necessary to
think in the resemblance between biological neural networks and the electrical ones.
Both are large networks that are made up by a lattice of a huge amount of nodes
interconnected. Electricity is present in both networks as the mean to stimulate the
nodes, one to produce a reaction in the neuron and the other one to supply the
demand and produce work. The use of ANNs within the grid is very suitable because
of its distributed properties, adaptability, generalization, redundancy, etc. Properties
which are quite similar to the ones that the future SG will provide to conventional
power systems. ANNs also offers the possibility to establish different hierarchies and
subdivisions to group the nodes, making easy to divide the problem into smaller
subtasks. The modularity of the ANNs offer great possibilities to grid operators, by
dividing it into portions that are easier to manage by adding more security to the
system. Moreover, in a scenario in which users become “prosumers” (consumers plus
generators), the use of ANNs is essential. ANNs provide users with tools to control
their power flows in order to coordinate with the rest of users like the neurons in the
brain, and to obtain collective benefits for the best grid operation.

The reminder of this Chapter is as follows. A brief historical review is presented
in Section 3.1. Then, what are ANNs and their benefits are explained in Section 3.1.1.
The actual tendencies are described in Section 3.1.2. After that, some architecture
and types of ANN are introduced in Section 3.2. The type of ANN selected for
its application in this Thesis is explained in Section 3.3. Section 3.4 introduces
different applications in which ANNs are typically used. Section 3.4.1 will cover
the different implementations of ANN in electrical applications. Finally, Section 3.5
explains different forms to train ANNs for the application they were designed for.

3.1 Historical Review

Throughout history, the study of the brain and the nervous system, as well as how
humans can learn and perform tasks, has been the subject of many studies and
scholars. In ancient Greek, the first studies on the ideas and the thought were
developed by the philosophers Plato (428–348 B.C.) and Aristotle (384–322 B.C.).
They together with other ancient Greek philosophers speculated about the causes of
behavior and the relation of the mind to the brain. On the other hand, there was
no physical interpretation of how the brain and the nervous system were, until the
physician Galen in the 2nd century elaborated his theory. In Galen’s theory, the
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nervous system consisted of a lattice of tissue interconnected from the brain to the
nerves in the periphery of the body that conveyed fluid secreted by the brain and
the spinal cord (Kandel et al., 2013). However, it was not until the 19th century
that the actual knowledge of the brain structure was discovered by Ramón y Cajal.
He discovered that the nervous system consists of a network of discrete cells, which
would be called neurons, rather than a continuous web of elements (Ramón y Cajal,
1909). During his research, Ramón y Cajal developed a great part of the concepts and
evidences for the neuron doctrine, which consists of the principle that the building
blocks of the brain are the neurons and they are also the signaling elements of the
nervous system (Kandel et al., 2013).

At the same time, the belief about artificial beings was also developed since
antiquity through the mechanical or “formal” reasoning by philosophers and mathe-
maticians. The development of the field of logic led to inventions in this area such as
the programmable digital electronic computer. This development was based on the
ideas of different mathematicians. One of these mathematicians was Alan Turing, who
in 1936 developed a machine called the Turing’s machine that was able to manipulate
symbols and simulate any conceivable act of mathematical deduction (Berlinski,
2000). This fact, together with the development of other areas such as information
theory, neurology and cybernetics allowed the development of a convergence study
of the previous areas known as Artificial Intelligence (AI). This inspired different
researchers to consider the possibility of building an artificial brain and the race of
Artificial Neural Networks (ANNs) began.

The concept of developing an artificial brain began its first steps with the creation
of the neurocomputation in 1943 by Warren S. McCulloch and Walter Pitts. The first
one was a neuroanatomist and psychiatrist, while the second one was a mathematician.
They described that any neural network could compute any arithmetic or logic
function, joining the fields of neurophysiology and mathematical logic (McCulloch
and Pitts, 1943). They proved that a neural network, consisting of a number of
simple processing units with proper connections set among them, would perform any
of those functions. This landmark means the beginning of the ANN and the birth
of AI through neural computation. The influence of McCulloch and Pitts (1943) was
such that it inspired von Neumann and Wiener research in von Neumann (1951) and
Wiener (1948), respectively.

Next milestone in the development of ANN is the publication of the book of
Donald Hebb, entitled The Organization of Behavior (Hebb, 1949). In his book, Hebb
explained the learning process from a psychological perspective and the psychological
conditioning which is ubiquitous as a property of neurons. The novelty of his work
consisted of the formulation of a learning rule that modifies the synapses of neurons.
He proposed that the connections of the brain are changing continuously as different
tasks are learned and neural assemblies are created in those changes. The famous
Hebb’s rule was introduced in this book and stated that the variance of a synapse
between two neurons is increased by the activation of one or by the other across its
union (Hebb, 1949). This rule will influence many researchers from that time until
today to elaborate learning synaptic algorithms of ANNs.

During the 50s some interesting events happened that continue the development
of the ANN such as the construction of the first neurocomputer by Marvin Minsky in
1951 called Stochastic Neural Analog Reinforcement Computer (SNARC) (Zurada,
1992). SNARC was technically a success, but it did not do any information processing
function. In addition, different studies during this decade contribute to posterior
achievements: adaptive behavior, nonlinear adaptive filters or works on associative
memories (Haykin, 2009). Also, an important event took part in this decade, the
Dartmouth Conference of 1956.The conference consisted of trying to apply learning
aspects to machines and simulate it. This event gave birth to the AI field as it is
known today.

By the end of the 50s, particularly in 1958, the first successful neurocomputer was
developed by Rossenblatt. The perceptron was born and consisted of a supervised
learning method to the pattern recognition problem (Rosenblatt, 1958). His work
was also known as the perceptron convergence theorem and it was himself the first
one to prove its validity. The perceptron was the first ANN able to generalize, i.e.
after learning a set of patterns, it could recognize similar ones that were never used
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during the learning phase. Then, Widrow and Hoff developed a new algorithm called
Least Mean Squares (LMS), which was the pillar to build the ADAptative LINear
Elements (ADALINE) (Widrow and Hoff, 1960). Nowadays, this algorithm is still in
use, unlike the perceptron learning law. The ADALINE was applied in a real problem
as adaptive filter to eliminate the echoes in telephonic lines. It also inspired the use of
other more complex structures, such as the Multiple ADALINE, and other stochastic
learning algorithms to be applied to ANNs.

With these events, it seemed in the 60s that ANNs were the solution to all the
problems, prove of that is the wide research done in the field and the number of
applications in which ANNs were employed. However, this glorious era came to
an end with Minsky and Papert (1969). Perceptron limitations were highlighted in
this book. They proved that single layer perceptrons cannot compute non linear
functions and doubted that multilayer perceptrons or any other structure could solve
this problem. They left the impression that the research in this field was a dead end.
In addition, another reason that favored the abandon of many researchers was the
lack of technological devices to carry out experiments.

During the 70s, the research of ANNs seemed to be dead, but some psychologists
and neuroscientists continued the research in the field, focused on adaptive signal
processing, pattern recognition and biological modeling. In (Amari, 1972), the
learning in ANNs with thresholds was studied and he developed a stochastic gradient
method. Stephen Grossberg developed different ANN structures and theories about
adaptive resonance networks (Grossberg, 1974). These theories consisted of a new
principle of self-organization with a recognition layer and a generative layer. At the
same time, the inception of what later became one of the widespread algorithms,
the backpropagation algorithm, was developed by Werbos (1974). In his thesis, Paul
Werbos applied successfully an efficient reverse-mode gradient computation that was
applied to general networks. Associative memory research was also developed in this
decade and the studies in self-organization continued in Kohonen (1977). Kunihiko
Fukushima developed another neural structure known as neocognitron (Fukushima,
1980). This structure consisted of a model that emulates the retinal image of the
neurons trying to solve problems of visual pattern recognition. These researchers and
many others in this decade were the people who prepared the ANNs to their next
step and help to develop the base of the new achievements found in the next years.

Then in the 80s a renaissance era began for the study of ANN. Hopfield (1982)
supposed a turning point in between the dormancy of the 70s and the beginning
of a renewed enthusiasm on ANN. The work of Hopfield consisted in the study of
recurrent structures with symmetric connections using the idea of an energy function
to understand the way in which this structure computes the information. Hopfield
(1982) encouraged hundreds of scientists, mathematicians, and technologists to rejoin
the emerging field of neural networks. Another milestone that influenced this era was
the publication of Rumelhart and McClelland (1986), which used the backpropagation
algorithm to train multilayer perceptrons. Formally, the backpropagation algorithm
was formulated at mid 80s, but it was first described in the work of Werbos
(1974). These two publications led to the resurgence of the ANN field to explore
neurocomputation. In the following years, the ANN increased significantly its
expansion with the foundation of the International Neural Network Society, a journal
to publish the research work in this field, IEEE Transactions on Neural Networks and
different conferences such as the IEEE International Conference on Neural Networks.

This era will support the ANN expansion in the upcoming years of the 90s. The
research on structures, learning algorithms and self-organizing methods will continue
to develop, such as the Radial Basis Function (RBF) that consisted of a feedforward
network alternative to perceptrons, or the Support Vector Machine (SVM) consisting
on a supervised learning network to solve pattern recognition and regression problems.
However, there was also an expansion to use these algorithms in other fields such as
control, prediction and finance, taking advantage of the many qualities that such
structures have. Also, during this time a concern about the dynamics of ANNs rose
among researchers. Freeman (1995) tried to explain the existence of chaotic behaviors
in neural structures and the emergence of self-organized patterns in populations of
neurons. Furthermore, the advance of the technology in this decade allowed building
specific hardware to compute the operation of an ANN. Thus, the operation of the



3.1. Historical Review 61

ANNs is done faster in the dedicated hardware providing margins to reduce system
costs. An introduction of hardware neural networks is described in Goser (1996).
Nowadays, the expansion of ANNs continues in old and new areas of applications
because of several reasons that are introduced in next Section.

3.1.1 Why using Artificial Neural Networks in electrical systems

The use of ANNs is recently becoming more popular due to several reasons. But, why
is it interesting to apply them in electrical systems to manage power flows? Before
explaining why are so useful, it is necessary to understand what an ANN is and which
is the operation that it performs. ANNs are algorithms biologically inspired in the
brain, which are able to process the information in a distributed and parallel way.
According to Haykin (2009), a neural network is an adaptive machine in the following
way:

“A neural network is a massively parallel distributed processor made up
of simple processing units, which has a natural propensity for storing
experiential knowledge and making it available for use. It resembles the
brain in two respects:

� Knowledge is acquired by the network from its environment through
a learning process.

� Interneuron connection strengths, known as synaptic weights, are
used to store the acquired knowledge.”

So, each node of the ANN receives the information from other nodes, processes it
and elaborates its response. However, it is necessary to establish the right connections
among the different nodes of which the ANN is composed. In general, a training period
for the ANN is required in order to learn the function that it will perform. During this
period the learning algorithm is in charge of modifying the different connections of
the neurons and establishing the right relationships among them. There are different
algorithms used in this training process and they will be introduced in Section 3.5.

The inspiration to create ANNs resides in the power of the brain to process
information and extract relationships from the output world to the internal nervous
system, taking a decision and carrying it out. However, it is important to note that
ANNs are only inspired by the biological nervous system, and their operation is far
from the actual behavior of the biological neurons (which are nowadays not completely
understood). The nervous system consisted of discrete individual cells called neurons
(Ramón y Cajal, 1909), which are able to process external stimulus and generate a
response from them. The nervous system is divided in three main parts, receptors,
the brain and effectors (Arbib, 2003). Receptors are the part of the system responsible
for transforming the external stimuli captured by the nerve endings of the body into
electrical impulses that the brain can interpret. The brain is the central part of
the nervous system, and it is continuously receiving information from other parts of
the nervous system. It is in charge of processing the information from receptors, and
generates a response that it is transmitted to the ends of the nervous system. Effectors
are responsible to transform the electrical signals from the brain into a response to
the external world. However, the electrical stimuli flows in the nervous system not
only in one direction (from receptors to the brain and from the brain to effectors),
there is also a feedback from effectors to receptors that helps the brain to process the
information from the outside and elaborate more complex responses.

The brain is the central processor of the nervous system and it is composed of
neurons. The operation that a neuron can perform is carried out in the range of the
milliseconds, meanwhile silicon chips can perform operations in nanoseconds. But,
with the massive amount of neurons that the brain contains and the connections
among them, the operation rate is reduced by processing information in parallel. The
brain of an adult can contain approximately 120 thousand million of neurons which
suppose around a 100 trillion of connections among them (Herculano-Houzel, 2009).
There are different kinds of neurons inside the nervous system, which accomplish
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different tasks such as motor, connect muscles to the nervous system, sensory, receive
signals from sensor organs, interneuron, to connect different neurons, etc. (Kandel
et al., 2013). Apart from doing complex tasks, another important brain feature is how
efficient its structure is. The energy consumption per operation in the brain is billions
times higher in comparison to a computer processor (Haykin, 2009). These are some
reasons that inspired the implementation of artificial structures. They try to imitate
the brain structure in order to solve some complex tasks that the brain solves easily,
such as pattern recognition, knowledge representation, task decomposition, etc.

Biological neurons can have different forms depending on the function they
perform, but in general they all have three main parts. Figure 3.1(a) shows the
three parts in which the neuron is divided. In general, the neuron has dendrites,
which serve as communication channels for the input signals. A little processing
information can be carried out in the dendritic inputs, but the main processing
is done in the body of the neuron called soma, (see Figure 3.1(a)). It can also
receive directly the information from the outside without coming from the dendrites.
Finally, the response is transmitted using the axon. Communication among neurons
is done through a structure called synapse, which passes a chemical or electrical
signal to another neuron. The most general type of synapse is the chemical one
and consists of passing neurotransmitters from the previous or presynaptic neuron to
the next or postsynaptic neuron. Neurotransmitters initiate an electrical response in
the postsynaptic neuron that may excite or inhibit it. The other possible synapse
is electrical and connects a neuron directly to the other through a channel called
gap junction, in which an electric current is passed, causing voltage changes. Then,
inside the postsynaptic neuron, the electric potential generated (it could be positive,
excitatory, or negative, inhibitory) is accumulated. When the potential generated
surpasses a threshold, an action potential or spike is produced and it is propagated
through the axon releasing neurotransmitters or an electric current at the end of the
neuron.

Now, that the function of a biological neuron has been presented, it is easy
to explain how the artificial model is inspired on them. The artificial neuron is
represented in Figure 3.1(b). This model represents a generic artificial neuron and
the following elements are identified (Haykin, 2009):

� Inputs (xj). They represent the set of outputs of the presynaptic neurons. Both
inputs and outputs may be binaries or continuous depending on the application
and the model used.

� Synaptic weight (wij). They symbolize the synaptic connections among neurons
and their values represent the interaction between the presynaptic jth neuron
and the postsynaptic ith neuron.

� Propagation rule (f(wij ,xj)). This operation consists of grouping the inputs
making use of the relationship between the previous jth neuron and the ith
neuron through the synaptic weights wij and obtaining what is called the
postsynaptic potential (νi). The most common propagation rule used is a linear
operation and consists of a weighted sum of xj and wij , see Equation 3.1.

νi =
∑
j

wij · xj (3.1)

The inhibition or excitation of the neuron is the result of this operation. Thus,
in the case of positive inputs and negative weights, the neuron will tend to be
inhibited, while if the result is positive, it will tend to excite it. There are other
propagation rules such as the euclidean distance (see Equation 3.2).

νi =

√∑
j

(xj − wij)
2 (3.2)

In this case, when the difference of inputs and weights is small, the neuron will
be inhibited. While if the difference is higher, the neuron will be excited.
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Figure 3.1: Neuron representation: (a) biological and (b) artificial.

� Activation function (σi(·)). It provides the actual value of the neuron activation.
Biologically this value depends on the previous activation value and the actual νi
because the neuron fires a spike when the action potential surpasses a threshold.
However, classical artificial neurons provide a limited output and in general
only depend on the actual activation value and not previous ones. In order to
represent the threshold of the neuron, there is another parameter, called bias
(θi). If νi≥ θi, the neuron fires, otherwise there is not activation of the neuron.
Thus, the effect of the θi increases or decreases the activation function result
depending on its positive or negative value. Equation 3.3 shows the general
form of the activation function.

φi = σ(νi + θi) (3.3)

σi(·) can be of different forms as shown in Table 3.1, but normally the activation
function is a deterministic function, monotonically increasing and continuous.
Moreover, neuron stochastic models use a probabilistic activation function. The
election of the activation function is normally given by the application. θi is
normally added together with the inputs in the propagation rule.



64 3. Neural Networks

Name Function Range
Graphic

Representation

Identity σ(x) = x (−∞,+∞)
x

σ(x)

Step
σ(x) = sign(x)

σ(x) = H(x)

[−1, 1]
[0, 1]

x

σ(x)

Piecewise σ(x) =


1 if x < −l,
x if − l ≥ x ≤ +l,

1 if x > +l.

[−1, 1]
x

σ(x)

Sigmoid
σ(x) = 1

1+e−x

σ(x) = tanh(x)

[0, 1]

[−1, 1]
x

σ(x)

Sinusoidal σ(x) = A · sin(ω · x+ ϕ) [−1,+1]
x

σ(x)

Gaussian σ(x) = A · e−
(x−b)2

2·c2 [0, 1]

x

σ(x)

Table 3.1: Example of different σi(·).

� Output function (g(φi)). This function provides the output of the neuron and
its value depends on the activation. g(φi) tries to emulate the propagation of
electrical signals along the axon. Usually the identity function is used, so that
the output of the artificial neuron is the value of the activation.

To sum up, the ANN operation is a composition of different functions, that tries
to emulate the behavior of the biological neuron with several inputs and an output.
The complete operation is described as follows:

yi = g(σ(f(wij , xj) + θi)) (3.4)

In this Thesis, the neuron model used is the one of Figure 3.2. The propagation
rule consists of the weighted sum of inputs and synaptic weights plus the bias. Then,
the activation function used is of sigmoid type and the output function is the identity.
The mathematical expression is described in Equation 3.5.
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Figure 3.2: Artificial neuron model used.

yi = σ

∑
j

xj · wij + θi

 = σ(x ·wi + θi) =
1

1 + e−(x·wi+θi)
(3.5)

These neurons are gathered together to form different architectures conforming
an ANN, designed in order to solve different problems. The ANN potential resides
in its distributed architecture and ability to modify it through a training process to
solve a task. These properties make easy to find a solution to complex problems that
will required high efforts to solve it. Moreover, ANNs can process information never
presented before even in their training phase thanks to their generalization ability.
However, ANNs present other features such as the ones described as follows (Haykin,
2009; Jain et al., 1996):

� Distributivity. The architecture of an ANN consists of a group of neurons with
connections among them. Therefore, the information is shared among all the
units of the structure and the weights that connect them. This property allows
the ANN to process the information in parallel and obtain a solution to the
problem for which it was designed.

� Redundancy. The structure of the network possesses more than one way from the
input to the output in order to reach it. The idea to establish redundant paths
is to extract more easily features from the data and increment the robustness
of the structure.

� Learning. ANNs learn from a training process in which the network modifies its
weights based on some learning rule from the input data. Sometimes the network
will learn from some outputs associated with the input (supervised learning),
other times it will extract common features of the data and established different
categories (non-supervised learning), and finally, there are times in which the
weights are modified based on the environment and the actions that the network
performs (reinforcement learning).

� Adaptivity. Neural networks possess a property to modify their synaptic weights
due to changes in the environment that surround them. An ANN trained to
solve a specific problem can modify their targets and learn from a new source
of data to solve a new situation that is changing. Thus, their behavior responds
to external stimuli modifying its response through changes in their structure.
Moreover, when an ANN is operating in a non-stationary environment, the ANN
itself is able to modify their synaptic weights in real time, thanks to learning
algorithms such as the Hebb rule. In general, the more adaptive is a system,
the more robust its performance will be, while stability is ensured.
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� Generalization. Once the network is trained with a dataset, the network is
normally executed with more data that was not presented in first place to the
network during the training. If the ANN was able to extract the main features
of the dataset, it will be able to generalize and obtain a right answer for other
datasets. Otherwise, the ANN would not be able to generalize and obtain the
information from the new data.

� Non linear operation. A neuron could be linear or nonlinear depending on the
σi(·) selected. In turn, the ANN, built with these neurons, may inherit the
same nature of the neurons which form part of it. In addition, the nonlinearity
is distributed through the whole network. The importance of this feature is
that an ANN can be used to solve nonlinear problems, such as the prediction
of electricity generation and demand, or simulate the dynamics of a complex
system like the grid.

� Input-output mapping. Some ANNs are able to learn through the environment
in a training stage that consists of modifying the synaptic weights. This
modification varies the weights in order to obtain the right output that it is
also provided as part of the training. Each example is composed of the tuple
of inputs and outputs, arranged randomly. So, the ANN is able to extract a
relationship between the outputs and inputs presented during the training. In
this way, when the network is presented with a new input never trained, it has
to be able to solve the problem with a right answer.

� Multi objective output. The response of an ANN can be of different nature,
being able to obtain different information at the same time from one input. For
example, in a pattern recognition application, an ANN can be designed to select
a pattern and at the same time the confidence in the made selection. So, an
ANN can be built with the outputs needed to develop different tasks.

� Contextual information. The knowledge of the ANN is represented by different
elements that form its structure and their activation. Each neuron within the
ANN is affected by the overall activity of the other neurons.

� Fault tolerance. This is another built-in property of the ANN because of the
structure distributivity. The knowledge is stored through the whole structure.
If a connection fails, the information is rerouted to other parts of the network
and it can continue giving a response. In spite of loosing a part of the structure,
the network structure is robust.

� Task decomposition. Thanks to the information distributivity inside the
network, it is easy to build small structures that solve parts of the problem.
Then, the result of each part of the problem is integrated into a more complex
response to solve the task to which it was built in first place. This property
makes possible the simplification of the problem and also simplifies the structure
of the network.

� Analysis and design uniformity. In spite of the different applications and
structures of the ANNs, there exist some conventions in their design. For
example, the notation is the same for different applications. All ANNs are
formed by neurons, so that different theories and learning algorithms can be
shared for different applications.

� Low energy consumption. Because of its massive parallelism computing capacity,
ANNs are very efficient and the electricity consumed in each operation by unit is
really small compared to other computation structures. This property facilitates
their integration in those applications in which energy is a problem, but a high
processing capacity is required.

ANNs present lots of benefits that make them useful for almost any application.
However, they also present some difficulties related to its structure. One of the
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(a) (b)

Figure 3.3: Physical appearance of the connections inside: (a) the human brain and

(b) the grid.

problems is related with the training. In order to correctly train an ANN, it is
necessary to have a diversity of data that covers all the possible situations. Moreover,
it also needed to adjust the different parameters of the training process properly
to optimize the whole process. As more neurons are added, it is more complicated
to train the network and the time that it takes is larger (curse of dimensionality
(Bellman, 1957)). Processing and storage resources also grow with larger network
structures, affecting their effectiveness and performance.

Nowadays, ANNs have recovered some popularity based on some factors, such as
the technology advance and the need of processing huge amount of data as quickly as
possible. In this Thesis, the use of ANNs to manage the power flows is not so obvious.
However, there exist some characteristics in common between a neural network and
the grid. For example, Figure 3.3 shows the physical appearance of the connections
in both structures. Both structures possess lots of different and numerous nodes
connected among them and a hierarchy is established to manage all of them. However,
the grid is mainly a centralized entity with high robustness that it is not as efficient
and robust as the brain. With the arrival of the SG, a greater distributed structure
of the grid will be deployed and distributed approaches such as ANNs would help
the management and integration of the different systems that will compose it. In
an ANN, the information can be bidirectional, another desirable property in the SG.
Thus, ANNs are used to enhance the grid operation through the reduction of the
demand variability and integrating Distributed Energy Resources (DER) by using its
built-in properties.

3.1.2 Tendencies in Neural Networks

As mentioned before, ANNs are becoming fashionable at present due to some factors
related with the advance of technologies, tools and programming of different areas.
New applications in which massive amount of data are available make necessary fast
algorithms to extract the information required. At the same time, the data ubiquity
and the places to take actions make very interesting the application of techniques
such as the ANNs. There are three main fields in which ANNs are having a great
push for its development: neuroscience, electronics and algorithmics.

� Neuroscience. The ANN is bioinspired in the brain. Neuroscientists use ANN
as a tool for simulating neurobiological phenomena in computers. In this way, a
part of neuroscience, called computational neuroscience, is actively developing
the study of the nervous system from information processing structures that
make it up. Computational neuroscience uses computer simulations and
theoretical models based on the neuron records to study the functionality of
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each part of the nervous system (Dayan and Abbott, 2001). There exist different
models that represent different aspects of the neural systems and the degree of
abstraction is different for each of them depending on the brain area studied.
In general, the neuron model used in computational neuroscience is a spiking
neuron. The spiking model consists of a more realistic biological model of a
neuron. In this case, the time is added to the other components of previous
models, activation state and synaptic weights. This model considers the electric
current that circulates inside the neuron and the potential that it creates,
modeled as a differential equation. Thus, a spiking neuron only fires when
its activation potential reaches a specific value, and then a relaxation period of
the activation is necessary for the neuron to fire again. The neuron, which has
fired a spike, generates a signal to the rest of neurons that are connected to
it, increasing or decreasing their potential depending on the signal (Dayan and
Abbott, 2001).
The spikes train of a population of neurons is then encoded so that the
information is easier to interpret. And with this information the model is
built to simulate the concrete part of the brain that the neuroscientists want
to analyze. Therefore, the idea of these models is to convert the information
of the external world of the brain to the neural space through the encoding of
the spikes train generated by the stimuli of a neuron population. Then, a series
of transformations are done with the encoded spikes and finally translated out
of the neural space by another population of neurons to understand from the
outside of the neural model the actions that have been taken place inside.
One tool that is gaining prominence within the neural simulation scene is the
Neural Engineering Framework (NEF). Its novelty resides in the characteriza-
tion of population-temporal coding that combines population vectors with linear
decoding of neural spikes. This framework is based on signal processing and
statistical inference, providing a robust strategy and evaluating the function
of a wide variety of specific neural circuits. NEF is currently being applied
to sensory processing, motor control and cognitive function (Eliasmith and
Anderson, 2003). This framework consists of three principles:

i) Representation. The representation principle consists of how the informa-
tion is coded and decoded inside the neural space for the neuron population.
The encoding of the input information is nonlinear while the decoding used
in the output neuron population is linear.

ii) Transformation. Transformation of neural representations are functions
of variables represented by the different populations of neurons. This
transformation is applied by a weighted linear decoding into the output
population.

iii) Dynamics. And finally, the last principle consists of applying control
theory to simulate neural representation dynamics for the different neuron
populations.

NEF provides an easy way to encode and decode populations of neurons,
control theory as a way to simulate their dynamics, a general way to generate
neural systems with analytical synaptic weights for the functionality desired and
promotes the formulation of specific hypotheses about circuit functions and key
design constraints (Eliasmith and Anderson, 2003).
With NEF, the first working computational simulation of the brain has
been implemented in Eliasmith et al. (2012), and is known as Semantic
Pointer Architecture Unified Network (SPAUN). SPAUN is able to carry
out about 8 cognitive and non-cognitive tasks that can be integrated in a
single large-scale spiking neuron model. It is able to develop the following
tasks: recognition, drawing, reinforcement learning, counting, working memory,
answering questions, create variables and reasoning. SPAUN is able to switch
between the different tasks automatically without any manual change in the
routines of the programs. Thus, it is a fixed model that integrates perception,
cognition, and action across several tasks.
In the race to the brain simulation, there are other projects that try to emulate
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the brain functioning by simulating each of the different neurons of the brain
and putting them together, so that they can do the same tasks as a human
brain1. Another interesting project is the Human Connectome Project, which
aims at studying the connections among neurons in the brain trying to elaborate
an atlas of the different parts of the brain2. Both projects contribute to have a
better understanding of how the brain works, but they are not implementing a
functional model that completes tasks from an AI point of view such as SPAUN.
As mentioned before, NEF applies control theory to understand the dynamics
of the neural models. However, there is another aspect inside neuroscience
that tries to directly study the neurons and the association between them as
dynamical systems (Izhikevich, 2007). In this case the idea is to explain neural
models through the dynamics of spiking neurons and observe the behavior that
comes from their interactions to explain how a neural ensemble works. In
Izhikevich (2007), the nonlinear dynamics systems of the brain are explained,
beginning from a low dimensional neural space to a higher one.

� Electronics. The next field in which ANNs are having important advances is
in hardware for their implementation and neuromorphic computers. This idea
is gaining more followers because technology is mature enough to implement
directly the ANN behavior at an affordable cost. In addition, the costs decrease
as volume production increases, so it could be interesting to adopt a specific
hardware in case the application volume is higher. Another advantage of
hardware implementation is the increase of speed since the neural operation
is dedicated. There are many classes of hardware used to implement ANNs
(Misra and Saha, 2010):

– Digital chips consist of specific hardware dedicated to emulate neurons, in
general they use CMOS technology and store the weights in RAM, which
allow a flexible design.

– An analog neuron is emulated in hardware through resistors, charge-
coupled devices, capacitors, etc. Thus, the hardware itself implements
the neuron structure, being the design more rigid than digital one.

– Field Programmable Gate Arrays (FPGAs) provide an effective way to
program different neural structures through their reconfigurable structure
in a very short time and with low costs. It provides software flexibility and
online reconfiguration capabilities (Misra and Saha, 2010).

– Fast Graphics Processing Unit (GPU)-based implementations of ANNs are
also being used to emulate large structures because as FPGAs, they allow
reconfiguring rapidly the structure and the computation capacity is higher
than CPU implementations.

– The chips that are currently having greater development are the neuro-
morphic ones. Neuromorphic refers to circuits that emulate closely the
biological neural design. Almost all the processing is analog, but their
outputs can be digital. An example of neuromorphic chip is the Neurogrid
developed in Benjamin et al. (2014). The board is composed of 16
custom-designed chips, referred to as NeuroCores. NeuroCore analog part
consisted of the emulation of 65536 neurons trying to maximize the energy
efficiency. The emulated neurons are connected using digital circuitry
designed to maximize spiking throughput.

� Algorithmcs. As technologies and models advance, they allow spreading the
fields of application in which ANNs can actuate. This is reason why the ANN
structure can be further complicated by adding more neurons and using more
complex hierarchies with more elements. At present, ANNs are being used in
Machine Learning (ML) algorithms as one of the principal techniques due to the
nonlinearity operation and the possibility to establish easy relationships among

1Blue Brain Project official website: http://bluebrain.epfl.ch/
2Human Connectome official website: http://humanconnectome.org/

http://bluebrain.epfl.ch/
http://humanconnectome.org/


70 3. Neural Networks

Neuron Layer Network System

Σ σ(·)

x1

x2

x3

x4

x5

yi

N1

y1

x1

N2

y2

x2

N3

y3

x3

N4

y4

N1

x1

N2

x2

N3

x3

N4

N5

y5

N6

y6

Processing
Algorithm

Neural
Network

Inputs
x

Σ

+

−

ei

di

y
i

Processing
Algorithm

Neural
Network

Σ

Figure 3.4: Different association of neurons to form different structures.

massive quantities of data. Another interesting ability for ML is elaborating
general purpose predictions based on the data available, in which ANN stands
out (Blum and Langley, 1997). In addition, the ANN feature extraction has
been improved due to the increasing complexity of the network structure, being
able to process not only lager datasets, but also fast enough to consider it as a
promising algorithm to take into account.
As mentioned before, neuroscientist looks into ANNs as a research tool to
implement neurobiological models. However, engineers also seek in neurobiology
for new ideas to solve more complex problems. That is how Deep Learning
(DL) arises in the actual scene of ANNs. This allows implementing network
architectures that can be used for example in the vision recognition problems.
In this case, the structure of DL-ANN consists of more neurons in the
network, more connections among them and a deeper hierarchy with a greater
resemblance to the human brain. One application in which these complex
architectures are used is in computer vision in which convolutional ANNs are
used (Krizhevsky et al., 2012). The idea of this structure is building different
layers of neurons in which the feature extraction is done. A convolutional
network is a type of ANN in which neurons are tiled in such a way that they
respond to overlapping regions in the visual field. Google has also developed
his own version of them, GoogLeNet (Szegedy et al., 2015). Furthermore, in
Le et al. (2012), the authors uses a DL architecture that learned to recognize
higher-level concepts only from watching unlabeled images. Other structure for
feature extraction is the autoencoder, which tries to compress the information
from a higher dimensional space to a smaller one that contains the main features
from the previous one. Therefore, the complexity of new applications is evolving
the concepts around ANNs and developing new models with major proximity
to the theoretic goals of AI.

3.2 Architectures and Types

So far the principles, history and future of the ANNs have been introduced. In
this Section, different types, architectures and structures are introduced. The basic
building block of ANNs is the neuron and it is used as a small processing unit. A
set of neurons is usually grouped forming layers which have its own functionality.
Then, the different layers are also grouped together to form a global system, known
as neural network. In addition, various neural networks can be associated to form a
neural system, which is able to complete a specific task (see Figure 3.4). Both concepts
could be applied in biological and artificial contexts. In an ANN, the different modules
in which the system is divided do not have to be neural. Thus, an artificial system in
which an ANN is taking part consists of inputs that go to the corresponding modules
where the information is processed and then the system output is obtained to solve
the task for which was built.
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Figure 3.5: Different ANN structures attending to the number of layers: (a) single-

layer neural network with an input and output layer and (b) multilayer neural network

with an input, hidden and output layer.

Different models and architectures exist depending on the application and use of
the ANN. The structure of an ANN is the physical layout of the network and the
relationships of the different units that comprise the neural network are defined by
different factors. One of these factors is the use of an algorithm to train the network
with different data and establish the strength between neurons in order to fulfill the
task for which is built. In this way, another factor that will determine the structure of
the ANN is the application, because it will determine the size, relationship between
nodes, flow of information, etc. Thus, one way to start a taxonomy of the different
network structures consists of considering the number of layers that the architecture
possesses (Haykin, 2009):

� Single-layer. In this type of networks, the neurons are organized in a single
layer, although an input layer is located before this. The principal function
of the input layer is to send the information to the neurons in the next layer
which is also the output of the network (see Figure 3.5(a)). In the neuron layer
the information of the previous layer is processed and the output is generated.
However, the operations that the network can perform are restricted, and only
linear operations can be represented with this type of network (Minsky and
Papert, 1969). The number of neurons depend on the task that the ANN is
going to fulfill.

� Multi-layer. This type of architecture is a generalization of the previous one and
possesses one or more processing layers between the input and the output layer
(see Figure 3.5(b)). The neurons in the intermediate layers are known as hidden
neurons and their corresponding layers are denominated hidden layers. Its name
is because the hidden layer is not accessible directly from the outside. In this
architecture the output of the previous layers serves as inputs to the next ones.
The information is processed in the hidden and output layers. The addition
of hidden layers provides the network with the ability of obtaining statistics of
higher order. This hidden layer also provides more connections that increase
the dimensionality representation of the network. Thus, they are very useful
when the number of inputs is large and it is required to extract useful features
from the data. According to Cybenko (1989), a multilayer structure with
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Figure 3.6: Feedback neural network structure.

sigmoid activation function is a universal approximator of continuous functions.
Therefore, multilayer networks are frequently used due to these properties.

Another important characteristic related with the morphology of ANNs is the
direction of the information flow inside the network. This feature is highly related
with the synaptic connections between neurons and between layers. For example,
in the networks of Figure 3.5, the information goes always from the previous layer
to the next one, i.e. feedforward networks. The connections between different units
do not make any cycle or loop, so that the information goes from the back to the
front with no recurrence. However, there are another type of architectures in which
the information does not only go from the back to front, but also there are some
connections that allow the information going backwards, i.e. feedback networks. These
type of networks are generally known as Recurrent Neural Network (RNN). Figure
3.6 shows the architecture of a RNN. There are loops between the different neurons
of the network and the flow of information goes backwards through some feedback
loops, composed by unit-delay elements (z−1). These feedback loops could be between
neurons of different layers, the same layer or themselves. RNNs result in a nonlinear
dynamical behavior because of the feedbacks and make them particularly suitable for
studying the dynamics of nonlinear systems.

So far, an ANN taxonomy was established based on the morphology and the aspect
of the connections between neurons. However, they can be also classified according to
the type of learning algorithm used. A learning algorithm consists of a set of rules that
modify the relationships between neurons. These modifications consist of changes in
the values of the free parameters of the network (wij and θi). The modifications are
done so that the neural network is able to perform the task for which it was designed.
In all learning schemes the ANN is fed with data from the environment which is the
surrounding field of the application. There are different types of learning algorithms,
the main ones are described as follows (Haykin, 2009):

� Supervised. This type of algorithm consists of teaching an input-output
relationship to the ANN so that it can extract the connection between them
through the modification of the free parameters (wij and θi) of the network.
The ANN tries to learn from the environment a relationship through a teacher
that provides the network with the input pattern (x̄) and the desired output
(d̄). After the network is executed, its output (ȳ) is compared to d̄ and the error
between them is used to modify the free parameters of the network. The network
tries to minimize the error difference through a function called cost function
which will give the modifications of the network parameters. This process is
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Figure 3.7: Learning schemes for ANN: (a) supervised learning, (b) unsupervised

learning and (c) reinforcement learning.

repeated iteratively step-by-step with the aim of eventually making the neural
network emulate the teacher; the emulation is presumed to be optimum in
some statistical sense. Figure 3.7(a) represents a block diagram of this type
of learning, it constitutes a closed-loop feedback system, but the unknown
environment is outside the loop. Thus, the ANN, which has no knowledge
of the environment a priori, is able to acquire this knowledge from the teacher
and to store it in the synaptic weight as a long-term memory. Once the network
has converged to the solution, the next phase is for the network to deal with
the environment directly and to try to generalize its behavior with inputs not
presented previously during the training. With the adequate set of input-output
examples, the right minimization of the cost function and enough time to do the
training, an ANN can approximate reasonably well the unknown input–output
mapping through supervised learning.

� Unsupervised. In this case there is no teacher to learn from, as can be observed
in Figure 3.7(b) and this is also one of the characteristics by which it is known
as self-organized learning. The data coming from the external environment is
unlabeled and there is not error or reward signal to evaluate the performance
of the network. Hence, the input data is presented directly to the ANN and it
will be able to extract some features from the data due to a task-independent
measure. This measure is able to judge the quality of the network data
representation related to what features the network has to learn. Then based
on this measurement, the free parameters of the network are optimized in the
way of this rule. Once the network is tuned for the statistical regularities of the
input data, it develops the ability to form its own representations for encoding
features of the input and to create new classes automatically. For example, a
common rule used in unsupervised learning is a competitive strategy in which
the neuron with higher output will be the output of the system (winner-takes-
all). Unsupervised learning seeks to summarize and explain key features of the
data which is related to data mining methods. This type of learning is closely
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related to the feature extraction from the data, trying to group them such as in
clustering or in Blind Source Separation (BSS). One of the common rules is the
methods of moments, which consists of estimating the free parameters of the
network based on the moments of one or more random variables. Thus, these
unknown parameters can be estimated given the moments.

� Reinforcement. This type of learning is more similar to the unsupervised
learning, but the input-output mapping is done through the continuous
interaction of the ANN with the environment. In this case, there is not an
error signal and the desired output is not specified, but the network receives
a performance index to minimize. This index only indicates to the network
how well or badly its performance is with respect to the reinforcement signal
from the environment. Figure 3.7(c) presents an example of reinforcement
learning system, where a closed-loop feedback system is formed by an objective
observer which receives two signals from the environment: the input (x̄) and
the reinforcement (r̄) signals. Then, the objective observer elaborates a reward
signal that indicates how well was the performance of the network to the last
input and will be used to feed the network with the actual x̄. The network
output will serve as influencing actions in the environment that will change
it. In this process, the reinforcement signal arrives to the ANN one step
after (delayed reinforcement), which eventually results in the generation of
the heuristic reinforcement signal. The objective of this type of learning is to
minimize a cost-to-go function, defined as a cumulative cost of actions over a set
of steps rather than the immediate cost. Therefore, the network can find good
solutions in the overall system behavior in order to discover these actions and
feed them back to the environment. However, the delayed reinforcement learning
presents two difficulties, i) the absence of desired outputs and ii) the delay on
the reward signal makes the ANN to solve a temporal credit assignment problem.
In spite of these difficulties, reinforcement learning is appealing because it gives
some mechanisms to learn a task interacting with the environment.

� Hybrid. This type of learning consists of merging the previous types of learning
in the same ANN. Thus, this type of learning could be applied in different
layers of the same network or in different parts of a neural system with more
than one neural network. The idea of this type of learning is combining the
benefits of all of them and try to learn more complex tasks to solve faster the
problem. However, it is difficult to apply because of the different variables to
minimize their cost and the various optimization functions that modify the free
parameters of the network. Yet, it is a powerful tool to learn multiple tasks in
a given environment.

In Table 3.2, there is a classification of some of the most famous ANN models and
learning algorithms. The classification has been done attending to the morphology of
the models and the way of training the free parameters. The more important models
included in Table 3.2 are described as follows:

� Simple perceptron. This architecture represents a binary classifier that can
decide if a determined input corresponds to one class or another. It is a type of
linear classifier that makes its classifications based on the linear prediction of
a function combining wij with the feature vector. Rosenblatt (1958) describes
the perceptron as a neuron theory and also as a neural network.

� Multilayer perceptron. This is a variant of the simple perceptron to which
hidden layers have been added, so that it is able to solve problems that are not
linearly separable. It was enunciated in Rosenblatt (1961), however there was
not a learning algorithm able to train this type of networks until the arrival of
the backpropagation algorithm.

� ADAptative LINear Elements (ADALINE). It is a similar model of
neuron as the perceptron and it has a linear response whose inputs are normally
continuous. The network uses memistors, which are resistors with memory able
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ANN models & learning algorithms

Supervised Unsupervised

Feedforward Feedback Feedforward Feedback

Perceptron BSB LAM/OLAM ART

Adaline/Madeline Fuzzy Cog. Map Self-organizing map Hopfield

Multilayer Perceptron DTRNN/CTRNN Neocognitron BAM

Back Propagation BP through time PCA Network Elman

Time-delay NN Echo state Net

Cascade Correlation

Boltzman Machine

Support Vector Machine

LVQ

GRNN

CMAC

Reinforcement Hybrid

Q-Learning Radial basis function

Temporal difference methods Convolutional Networks

Table 3.2: Models of Artificial Neural Network and learning algorithms.

to perform logic operations and store information. It consists of a weight, a bias
and a summation function, but the main difference with the perceptron is that
in the learning phase the weights are adjusted according to the weighted sum
of the inputs (Widrow and Hoff, 1960). There is also a version with multiple
ADALINEs called MADALINE.

� Hopfield. It is a type of RNN developed in Hopfield (1982), which serves as a
content-addressable memory with binary threshold nodes. Inside the network,
the input data is compared against each node of the network, then one of the
neurons will fire and it will be the output of the network for that input. During
the training this type of network guarantees the convergence to a local minimum,
but this minimum can correspond to another pattern different from the one that
the network has to learn. In addition, Hopfield proposed a way to understand
the human memory (Hopfield, 1982).

� Boltzman machine. The Boltzman machine is another RNN with symmetric
connections whose neurons make stochastic decisions about whether to be on or
off (Hinton and Sejnowski, 1983). This type of network tries to extract features
that represent complex regularities in the training data. The learning algorithm
used is very simple but it is too slow when networks are too dense. They are
generally used as feature detectors in classification problems. In this type of
problems they represent a cost function in which the neuron with the highest
activation would be the output of the network. It can be used also to reproduce
a set of input vectors with high probability in learning problems (Hinton and
Sejnowski, 1983).

� Self-Organizing Map (SOM). It is also known as Kohonen network and it
is a type of unsupervised learning neural network. The neurons are distributed
regularly in the form of a grid, in general of two dimensions, whose purpose is to
find the structure of the data inserted in the network. So, it makes a dimensional
projection from the set of data given to the neural space. During the training,
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the data vectors are the input to each neuron and they are compared with the
characteristic weight vector of each neuron. Then, the neuron with the lowest
difference between its weight vector and the data vector is the winner and
this neuron together with the surrounding neurons modify their weight vector.
Thus, the neurons which are together in the SOM are more similar than the
ones that are further away. SOMs also possess spatial information encoded in
their structure forming an ordered mapping. They were applied in visualization
applications, and applications related with associative memory such as pattern
classification (Kohonen, 1977).

� Adaptive Resonance Theory (ART). It is a model of ANN whose operation
is based on the way in which the human brain processes information. The model
consists basically of two layers, one of inputs to sense the environment and one
of outputs, in which neurons compete with each other so that one is the response
which inhibits the rest. There is a feedback between the output layer and the
input one, so when an input is presented to the network if one of the output
resonates with it, then it is associated with the neuron. The center of the
cluster will be moved to this class for a better adaptation to the next input
with the feedback between layers. In case that any neuron output is activated,
the network could be saturated or a new class could be added to resonate with
it. This type of network was invented to solve the problem of stability and
plasticity during the learning phase (Grossberg, 1987). There are also different
versions of the network.

� Radial Basis Function (RBF). This type of networks consists normally of
three layers: one input layer, a hidden layer with RBF and an output layer.
A RBF is a function whose value depends on the distance from a point c,
called center (Buhman, 2003). For example, one function normally used is
the Gaussian function that perfectly meets this property. Hence, the idea of the
RBF network is to use the RBF layer as a separation layer in which the different
neurons behave as kernels, classifying the data and indicating to which neuron
is closer. In addition, as RBFs are used to classify complex patterns, the hidden
layer possesses more neurons than the input layer because a complex pattern
recognition problem is more likely to be linearly separable in a high-dimensional
nonlinear space.

� Support Vector Machine (SVM). This is not really a type of network but
rather a type of algorithm used for training them. It is used along RBFs or
multilayer perceptrons with a single hidden layer. This type of algorithms are
used to build networks to analyze data and solve problems related with the
recognition of patterns, classification and regression analysis. SVM is used
to build a hyperplane that serves as decision surface that will be maximized
following the separation margin between examples. Therefore, the SVM can
map new examples using the same space and predicted to which category they
belong, depending on the side of the gap they fall on. As RBFs, SVMs use
high-dimensional nonlinear space to separate the data through a non-linear
classification (Cortes and Vapnik, 1995).

These are some of the most important architectures, also listed in Section 3.1.
There exist many types of ANNs because there is not a unique established criterion
to follow in order to build them. The idea is that a variety of ANNs can be built
depending on various factors: number of neurons, number of layers, connections
among them (neurons and layers), etc. Also, the function that develops the neurons
can be configured using different activation functions or propagation rules. In
addition, a more complex system can be built trying to gather together the operation
of different ANNs. Thus, the idea is that each ANN solves part of a complex
problem by dividing it in simpler different subtasks. Apart from reducing the model
complexity, this modular approach will give other benefits such as simpler neural
models, scalability, robustness and computational efficiency among others (Buhman,
1998).
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There is nothing preset and any architecture can be built from the fundamental
unit, the neuron, to the connections between them (neurons, layers or networks)
and the form in which is trained. However, the application has to be present in the
design of the architecture because there are some types of configurations that are more
suitable for an application than others. Based on the application, a RNN architecture
has been chosen in this Thesis because of its intrinsic properties and the ability to
simulate a dynamical behavior. Section 3.3 will explain in further detail the RNN
architecture used in this Thesis and the properties for which these architectures are
so interesting.

3.3 Recurrent Neural Network

This type of ANN deserves special attention due to the properties that are provided
by the feedback loops inside the network. The feedback in the network could be
local, to the neuron itself or its surroundings, or global, to other layers or even other
neural networks giving more connectivity options. Thus, the presence of loops makes
possible that the information about the activation status of the neurons flows inside
the network adding the property of short time memory to them. This representation
is closer to biological neural networks in which recurrence is present in all parts of
the nervous system. Adding short term memory to neural models makes a RNN
able to do temporal processing and learn sequences, such as performing sequence
recognition/reproduction or temporal association/prediction. On the other hand,
it will increase the complexity of the network and there exist some theoretical and
practical difficulties to implement in some applications so far.

The time variable is essential in the development of some tasks, such as vision,
speech, signal processing, etc. Time representation could be done in a continuous
or discrete way depending on the application. Including time in the performance of
an ANN makes possible to follow statistical variations in non stationary processes,
such as speech signal, the market stock or the electric demand of a country. So, the
addition of this new variable makes possible to emulate the dynamics of a system.
There are two forms of adding the temporal information to the neural architectures:
i) implicitly, the network structure presents delays between synaptic connections, or
ii) explicitly, the external information is sampled and different samples are passed
to the network so the temporal information is in the input (Haykin, 2009). This
last type was commonly used with static feedforward ANNs before the feasibility
of implementing dynamic RNNs. Hence, the input has delayed samples of itself to
introduce temporal information which will be stored in the synaptic connections of
the neural network.

Thus, it is necessary that memory would be added for an ANN to be dynamic.
Long term memory is built in the network through the learning process after which
the synaptic weights store all the data information used during the training. On
the other hand, short term memory is required in case the problem to solve has a
temporal dimension. One way of building this is the inclusion of feedback loops inside
the structure of the network, through time delays in the synaptic connections. The
inclusion of time delays is motivated by the biological functioning of the brain and is
related on how the information is processed in the brain (Braitenberg, 1986).

The dynamics of RNNs has been widely studied since the 70s (Wilson and
Cowan, 1972). A dynamical environment which is constantly changing surrounds
everything in daily life, so it is necessary to include dynamical properties in the
artificial neural models to adapt them to the environment. RNNs can exhibit three
different dynamical behaviors: i) convergent, ii) oscillatory and iii) chaotic, depending
on the number of neurons and connections between them (Pasemann et al., 2003).
However, these behaviors are not unique of RNNs, for example feedforward networks
present convergence dynamics because of the characteristics of the applications in
which they are used, such as content addressable memories or pattern recognition.
On the other hand, oscillatory and chaotic dynamics only appear on RNNs, because
of their neurons feedback (Dauce et al., 1998).
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The interest in the oscillatory and chaotic behavior has been the subject of many
studies in chemical, physical and biological systems (Tu, 2006; Goldbeter, 1997; Chay,
1981). The appeal of RNNs is centered in their dynamic characteristics. Although
having the same characteristics that feedforward networks, RNNs are more complex
and there is not a clear way to train them in spite of several learning algorithms.
However, a RNN has the ability not only to be mathematically a dynamic system by
itself, but also to approximate arbitrary dynamic systems with an arbitrary precision
(Pearlmutter, 1995). To do that, it is necessary to train adequately the network
in order to react and behave as such function according to the appropriate external
stimuli. The most widely used learning algorithms to train RNNs are gradient descent
algorithms, which correspond to the type of supervised learning (see Section 3.5).
Furthermore, it is also possible for a RNN to learn the trajectory that describes
the dynamic behavior of a system such as in Pearlmutter (1989). In this case, the
network does not have any input and the connections are modified in order to follow
the different states of the dynamic system.

Nevertheless, it is necessary to be careful with the addition of feedback to an ANN,
because when applied improperly, they can produce harmful effects. The problem
is that the application of feedback can cause a system a priori stable to become
unstable. Therefore, it is also important to study the RNN stability to guarantee that
the network is going to perform the task properly (see Section 3.3.1). The stability
of a nonlinear dynamic system affects the whole system and implies some form of
coordination between the individual parts of a system (Haykin, 2009). The stability
study of a dynamical system makes possible to find solutions that avoid regions of
instability and converge to a solution to the problem at hand.

Besides the approximation of arbitrary functions, RNNs are able to perform other
tasks, such as content addressable memory, autoassociation, dynamic reconstruction
of a chaotic process, etc. They are also able to map input sequences to output
sequences, with or without a teacher. One of the reasons to use them is that
RNNs are computationally more powerful and biologically more plausible than other
adaptive approaches such as Hidden Markov Models (no continuous internal states),
feedforward networks and SVMs (no internal states at all). The global feedback
is a facilitator of the computational intelligence (Haykin, 2009). Thus, the network
increases its capabilities to adapt to changes during the development of the application
for which it was built in the first place. Typically, RNNs were applied to many areas
such as control theory, robotics, pattern recognition, etc. But one area in which
they are being used extensively is the time series forecasting due to its nonlinear
dynamics. In addition, RNNs are preferably used rather than time series analysis
because they make accurate predictions, are computationally faster, make iterative
forecasts and deal with nonlinearity and non stationary input processes. Specifically,
RNNs have found their place in predicting time series as Nonlinear Autoregressive
Moving Average with eXogenous inputs (NARMAX) prediction models (Mandic and
Chambers, 2001).

There exist different architectures also for RNNs depending on the loops of
the network. Hopfield networks have been described in Section 3.2, other famous
architectures are:

� Fully recurrent network. All the neurons are connected with each other, there
exist connections from each neuron to the rest and itself. So there is not a
structure defined as such, only a few neurons serve as inputs and outputs and
the rest will be hidden neurons. This structure has a high configuration capacity,
however it is also a problem to train the network when there is a large amount
of neurons. The reason is that the number of parameters to train increases
drastically with the addition of more neurons. Such networks fit well when the
application is not enough defined or it is necessary to use brute force to solve
the problem (Williams and Zipser, 1989).

� Recurrent multilayer perceptron. This type of networks consists of more than
one layer which has feedback loops in the neurons of the same layer but there
is not any recurrence with previous or posterior layers. Hence, the network has
an input layer, one or more hidden layers and an output layer. The connection
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between them is done in a feedforward way. This type of network possesses the
properties of the multilayer perceptrons plus the ability to incorporate temporal
behavior through the feedback loops (Haykin, 2009).

� Long Short Term Memory (LSTM) network. This type of network was
developed in Hochreiter and Schmidhuber (1997) to solve the problem found in
the training of the layered networks. The network consists of an ANN to which
some LSTM blocks have been added. A LSTM block consists of a processing
unit that can remember a value for an arbitrary length of time, deciding when
the input has to be remembered, when it should continue remembering it or
forget the value, and when it should output the value. The property of storing
an arbitrary value makes possible to work with long delays, and handle signals
with a mix of low and high frequency components. This network outperforms
in tasks related with classification, processing and predicting time series with
lags of data of unknown size.

� Echo State Network (ESN). In this case the ESN is a specific type of RNNs that
possesses a particular form, it has an input and output layers and between them
a large reservoir of hidden units sparsely connected (typically 1% connectivity).
The connection and number of neurons in the hidden reservoir are assigned
randomly and the only weights that need to be trained are the ones in the
output layer. Thus, this neural network is appropriate at reproducing specific
temporal patterns because of its nonlinearity properties (Jaeger, 2001).

� Elman and Jordan networks. This type of network follows a similar concept
than the Hopfield networks. The idea consists of three layers (input, hidden
and output) plus a context layer that stored the state of the hidden layer from
the previous time step. The context units are connected only to the hidden
layer, maintaining a copy of the previous values of the hidden units before
the learning rule is applied. Thus, the network maintains a state, being able to
perform tasks related with prediction better than feedforward networks (Elman,
1990). Jordan networks are similar to Elman ones, but with the peculiarity that
the context units take their input from the output layer rather than the hidden
layer (Jordan, 1986).

Some special architectures have been introduced above and only referred to some
peculiarities related with their structure. However, there exist other architectures
based on differential equations in order to model the neural behavior to external
stimuli. These types of RNNs try to use the dynamical system theory to model
biological neural networks that include the time as reference and feedback loops as
part of the network structure, such as in the brain. There exist two different types
of networks depending on the time basis used: i) discrete or ii) continuous. Discrete
Time RNN (DTRNN) uses a difference equation to describe the neural model. The
idea is that each time step the neuron activation evolves to a new value depending on
the previous one (Pasemann, 1993). The mathematical representation of the DTRNN
is shown in Equation 3.6.

yi[k + 1] = fi(xi[k], y1[k], . . . , yn[k]) = σ

 n∑
j=1

wij · yj [k] + xi[k] + θi

 (3.6)

where, yi is the output of the ith neuron, σ(·) is the activation function, wij is the
neural weight that connects the ith neuron with jth neuron, xi is the input value of
the ith neuron and θi is its bias value.

Equation 3.6 may be represented as an alternative vector form as:

y[k + 1] = fα(x[k],y[k]) = φ (W · y[k] + x[k] + θ) (3.7)

where, y is the output vector of the neurons, W is the matrix of the synaptic weights,
x is the input vector and θ is the bias vector.
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However, the discrete time representation of DTRNN in many applications is not
enough because it is necessary to compute the differential equation of the system.
Thus, the Continuous Time RNN (CTRNN) arises to solve the issues related with
the discrete time. CTRNN uses a system of ordinary differential equations to model
biologically the effects of a spike train into a neuron (Beer, 1995). The operation
performed by a CTRNN is shown in Equation 3.8.

ẏi(t) = fi(xi(t), y1(t), . . . , yn(t)) =

1
τi
·

−yi(t) + n∑
j=1

wij · σ (yj(t) + θj) + xi(t)

 (3.8)

where, ẏi is the rate of activation change of postsynaptic neuron, yi is the activation
of postsynaptic neuron, yj is the activation of the presynaptic neuron, τi is the time
constant of postsynaptic neuron, wij is the synaptic weight from pre to postsynaptic
neuron, σ(·) is the activation function, θj is the bias of the presynaptic neuron and xi
is the input to a neuron (if any). Equation 3.8 may be represented in vector notation
as:

ẏ(t) = fα(x(t),y(t)) =
1

τ
· (−y(t) +W · σ (y(t) + θ) + x(t)) ; (3.9)

where, fα(·) : D ⊂ R2 −→ C2 is a function dependent of the variables of the system
(the synaptic weight matrix W and the bias vector of the neurons θ).

CTRNNs have been applied in different fields including evolutionary robotics, in
which they have tackled different problems such as vision, co-operation and minimally
cognitive behavior (Beer, 1997). The decision to use discrete or continuous time
neural models depends on the application, but continuous time has advantages over
its discrete version. One advantage of using continuous time neural models versus
discrete ones is that the state derivative is clearly well defined through explicitly
with the use of calculus and also facilitates its representation without using time
indexes. The problem is that a continuous system could not be simulated directly
in a computer due to digital reasons. Thus, the continuous model is transformed in
a discrete one where the differential equations are converted to equivalent difference
equations which are formally identical representations. However, more sophisticated
and faster techniques can be used to solve them rather than difference equations.
Another advantage of using continuous time is the possibility of changing the length
of the time step to compute the derivative in order to suit changing circumstances
without retraining the network. Moreover, continuous neurons tend to retain
information better through time in applications temporally continuous (Beer, 1997).
An interesting property of the continuous model is the capacity to retain its state
through time which is convenient also for non temporal tasks. On the other hand,
for discrete neurons, there is no reason that their state at one point in time have a
relationship to their state at the next point in time. Maintaining the internal state of
the neurons with a slow decay during time, makes possible to speed up the learning
process (Pearlmutter, 1990).

CTRNNs have more beneficial features than DTRNNs. Therefore, a CTRNN
has been selected among all the ANN structures and architectures for the purposes
of this Thesis in order to solve the problem at hand. The reasons to use this type
of architecture are based on their dynamical properties, the intensive use of these
structures in different fields of application, the continuous temporal representation,
the fast adaptation property to the external changes and the minimum knowledge
needed from the environment. All these features are desirable to build a system that
helps to manage an electrical grid in real time from the demand side through little
knowledge of the rest of the nodes that integrate the system. Before continuing, it is
necessary to clarify one important issue present in all dynamic systems which is the
stability of the RNN which will be addressed in Section 3.3.1.
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3.3.1 Stability

Stability is a property of dynamic systems to study the solutions of the differential
equations and their trajectories, remaining inside or in the neighborhood of a set
of points called orbit. There are different stability criteria to address this property
for a system. For example, the Bounded Input Bounded Output (BIBO) stability
criterion is normally used to refer to the stability of the input and output of a
system. According to this criterion, the stability of a system depends on the growth
of the output, which is bounded due to bounded input, initial condition or unwanted
disturbance. In general, RNNs are systems that meet the BIBO stability criterion.
This criterion is within the structure of the RNNs as they are built with activation
functions that present saturation nonlinearities and limit the growth of the output.
Thus, this stability criterion does not provide any relevant information to the stability
of a RNN. Normally, the stability criterion of nonlinear dynamic systems is related
with the Lyapunov stability theory (Lyapunov, 1992).

Before describing the Lyapunov theory, it is necessary to understand some
concepts. A dynamic system is a system whose state varies with time and different
models can be used to do it. Usually, dynamic systems are represented by a state-
space models which consist of a set of state variables whose values possess enough
information to predict the temporal evolution of the system (Haykin, 2009). The
mathematical expression of this model is described in Equation 3.10.

d

dt
x(t) = F (x(t)) (3.10)

where, x(t) = [x1(t), x2(t), . . . , xN (t)]T is the state vector containing the N different
states in which the system is divided and F (·) is the nonlinear function evaluated for
each state of the system. N is the system order. The function F (·) could depend
explicitly on time, autonomous, or not, non autonomous.

Equation 3.10 could be adapted to represent the RNN activations so the dynamic
system theory can be applied to them. The state space representation is useful because
it provides a visual and conceptual tool to analyze the dynamics of a system rather
than numeric solutions of the system. So, the system has been divided in N states
that evolve during time. These changes in time can be represented as a curve in the
state space, and it is called trajectory or orbit of the system. Equation 3.10 describes
the motion of a point in an N -dimensional space, whose solutions are represented in
trajectories and the tangent vector of each point represents the velocity at the initial
condition. For each possible state, there will be a tangent vector and the assembly of
the tangent vectors is described as a vector field. Then, the vector function F (x(t))
can be seen as a velocity vector field, or a vector field. The trajectories for different
initial conditions can be grouped in the system state portrait, which includes all the
system points in which the system is defined and possesses information about the flow
of the dynamic system (Guckenheimer and Holmes, 1983).

The solution uniqueness have to be also guaranteed for the state space equation
only under certain conditions, which restricts the form of F (x(t)). A solution to
the system exists if F (x(t)) is continuous in all its arguments but it is necessary to
meet the Lipschitz condition for uniqueness (Haykin, 2009). Once the solutions to
Equation 3.10 are found, the stability of those solutions can be analyzed based on
the equilibrium of the states. To begin with the stability study of the states, it is
necessary to define when a state is at equilibrium.

Let x∗ ∈ D be an equilibrium state of the system, such that F (x∗) = 0. Normally,
the equilibrium state is also named singular point because the trajectory can be
transformed into a point itself. At the equilibrium state, dx(t)/dt → 0 and therefore
a possible solution to the system is the constant function x(t) = x∗. Because of
the uniqueness of solution, no other curve will pass through x∗. Thus, to study
the stability of a system such as Equation 3.10, it is necessary to analyze the
behavior of the orbits near to an equilibrium state (Kuznetsov, 1998). The nonlinear
function F (x(t)) is considered to be smooth enough in order to be linearized in the
neighborhood of x∗. If the vector function F (·) is a C1 vector field (the first derivative
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of each component of the field are continuous), then it can be approximated by its
first order Taylor expansion:

F (x) = F (x∗) +DF (x∗) · (x− x∗) + r(x− x∗) =

= x∗ +DF (x∗) · (x− x∗) + r(x− x∗)
(3.11)

where, the rest of terms r(x− x∗) satisfy

lim
∥x−x∗∥→0

∥r(x− x∗)∥
∥x− x∗∥

= 0 (3.12)

It is expected that the behavior of the solutions of Eq. 3.10 near x∗ is qualitatively
similar to the solutions of the linearized system.

x(t) = x∗ +DF (x∗) · (x(t)− x∗) (3.13)

where, the Jacobian matrix DF (x∗) is calculated as follows,

DF (x∗) =
∂F (x)

∂x

∣∣∣∣
x=x∗

(3.14)

Then, Equation 3.10 at the equilibrium state could be rewritten using Equations
3.11 and 3.13, obtaining

d

dt
(x(t)− x∗) = DF (x∗) · (x(t)− x∗) (3.15)

and as the Jacobian matrix DF (x∗) is nonsingular, i.e. the inverse matrix

(DF (x∗))−1 exists, then the dynamic system approximation of Equation 3.15 is
enough to study the local behavior in the neighborhood of the equilibrium state
x∗. Thus, the system study is reduced to analyze the Jacobian matrix DF (x∗),
specifically it consists of analyzing the eigenvalues of DF (x∗). Then, the behavior of
the system will be classified depending on the nature of those eigenvalues, which are
calculated as shown in Equation 3.16.

DF (x∗) · v = λ · v; (DF (x∗)− λI) · v = 0 (3.16)

where, I is the identity matrix, v is an eigenvector and λ is the eigenvalue. v is the
direction in which the linear transformation DF (x∗) is applied, its magnitude only
changes by the value of λ. λ characterizes different behavior classes of the system, e.g.
for a second order system the eigenvalues and their behavior are described in Table
3.3. In order to stabilize the system, it is necessary that the λ module is smaller than
the unit circle (|λ| < 1) (Kuznetsov, 1998).

Now, this tool allows identifying the local stability of an equilibrium state. Hence,
if trajectories tend to be near x∗ in a relative amount of time, x∗ is stable. On the
other hand, if trajectories are repelled over time, x∗ is unstable. The method of
calculating the eigenvalues is well defined when the dimensionality of the problem is
low. However, RNNs are not dynamic systems with low dimensionality, since a RNN
could be made by dozens of neurons. Thus, it is necessary to define the stability
concepts to understand and apply them to a dynamic system. These definitions are
as follows (Strogatz, 1994):

� Uniform stability. x∗ is uniformly stable if ∀ϵ > 0∃δ > 0 | ||x(0)− x∗|| < δ ⇒
||x(t)− x∗|| < ϵ; ∀t > 0. The definition means that a trajectory of the system
can stay within a neighborhood of x∗ if the initial state x(0) is close to the
equilibrium state, otherwise it would be unstable.

� Convergence. x∗ is convergent if ∃δ > 0 | ||x(0)−x∗|| < δ ⇒ limt→∞ x(t) = x∗.
Thus, if the initial state x(0) of a trajectory is close to the equilibrium state
x∗, then the trajectory x(t) will reach x∗ when time approaches infinity.
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Form λ Phase Portrait Name Stability

λ1, λ2 ∈ R−
Re

Im

Node Stable

λ1, λ2 ∈ C
Re{λ1, λ2} < 0

λ1 = λ2

Re

Im

Focus Stable

λ1, λ2 ∈ R+
Re

Im

Node Unstable

λ1, λ2 ∈ C
Re{λ1, λ2} > 0

λ1 = λ2

Re

Im

Node Unstable

λ1 ∈ R+

λ2 ∈ R− Re

Im

Saddle Unstable

λ1, λ2 ∈ C
Re{λ1, λ2} = 0

λ1 = λ2

Re

Im

Center Stable

Table 3.3: Equilibrium states of a second order system.

� Asymptotic stability. x∗ is asymptotically stable if the equilibrium state is stable
and convergent at the same time.

� Global asymptotic stability. x∗ is globally asymptotically stable if it is stable
and all the trajectories of the system converge to the equilibrium state x∗ as
time tends to infinity. This definition implies that there is no other equilibrium
state since all the trajectories are stable and converge to x∗. Therefore, the
system is always bounded and remains in a steady state for any choice of initial
conditions.

These general definitions are difficult to apply in a broad sense to any general
dynamic system. In addition, when the dimensions are larger it is not so easy to see
if a system has converged to its equilibrium state. So, finding all the solutions to
the dynamic system in this way is nearly impossible, that is why a more powerful
tool is needed. The solution to find the system stability is found in modern stability
theory, in particular in Lyapunov (1992). Normally, the direct method of Lyapunov is
applied to find the system stability and consists of using a continuous scalar function
of the state which is called Lyapunov function (V (x)). According to Lyapunov, its
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function V (x) has to be a positive-definite function. Such function must meet that
in a neighborhood M of the equilibrium state x∗, ∀x ∈M :

� V (x) has continuous partial derivatives with respect to the components of x.

� V (x∗) = 0.

� V (x) > 0 ∀x ̸= x∗.

Then, Lyapunov used V (x) to define Theorem 1 and 2 based on the stability and
asymptotically stability for a system of the form of Equation 3.10.

Theorem 1. The equilibrium state x∗ is stable if in a small neighborhood L of x∗

there exists a positive definite function V (x) whose derivative with respect to time is
negative semidefinite in L, i.e. mathematically that

d

dt
V (x) ≤ 0 ∀x ∈ L− x∗

Theorem 2. The equilibrium state x∗ is asymptotic stable if in a small neighborhood
L of x∗ there exists a positive definite function V (x) whose derivative with respect to
time is negative definite in L, i.e. mathematically that

d

dt
V (x) < 0 ∀x ∈ L− x∗

Based on Theorems 1 and 2, the global asymptotic stability is defined using the
V (x) as in Corollary 1.

Corollary 1. The equilibrium state x∗ is global asymptotic stable if in a small
neighborhood L of x∗ there exists a positive definite function V (x) such that it tends
to 0 when time tends to infinity, i.e. mathematically that

lim
t→∞

V (x) = 0

These theorems can be applied without solving the state-space equation of the
system, which makes the task easier when the system has a large dimensionality.
However, there is not a procedure to find the Lyapunov function V (x), but the idea
is to try with some positive defined functions and see if the system is stable. In some
cases, the energy function of the system serves as V (x), otherwise it is a matter of
trial and error to find one. Not finding a valid function does not prove the instability
of the system. The existence of V (x) is a sufficient, but not necessary, condition for
stability.

The Lyapunov stability theory establishes a general way to study the stability of
dynamic systems. However, this theory is wider for the purposes of analyzing the
RNN stability, specifically CTRNN, which is the RNN type selected for the purposes
of this Thesis. Thus, in Cohen and Grossberg (1983), a general principle is showed to
asses the stability of specific type of ANN. The ANN of Cohen and Grossberg (1983)
consists of a nonlinear differential equation of the form described in Equation 3.17.

d

dt
uj = aj(uj)

[
bj(uj)−

N∑
i=1

cjiφi(ui)

]
, j = 1, . . . , N (3.17)

And it admits a Lyapunov function of the form,

E =
1

2

N∑
i=1

N∑
j=1

cjiφi(ui)φj(uj)−
N∑
j=1

∫ uj

0
bj(λ)

dφj(λ)

dλ
dλ (3.18)

For Equation 3.18 to be a valid definition of Lyapunov function, it is necessary
that the following ANN conditions are met:
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� The synaptic weights are symmetric, cij = cji.

� The function aj(uj) is nonnegative, i.e. aj(uj) ≥ 0.

� The nonlinear activation function φj(uj) satisfies the monotonicity condition,

i.e. φj(uj) =
dφj(uj)

duj
≥ 0.

Finally, the Cohen-Grossberg theorem could be stated as follows:

Theorem 3. Provided the system of nonlinear differential equations of Equation 3.17
which satisfies the condition of symmetry, nonegativity and monotonicity, admits the
definition of a Lyapunov function E of the form of Equation 3.18 that satisfies the
condition

dE

dt
≤ 0

then the neural system of Equation 3.17 is Lyapunov stable in the sense of Theorem
1.

Consequently, this theorem provides a powerful tool to build RNNs guaranteeing
that they are stable structures. And it is not necessary to solve the entire system
of differential equations, or search for a Lyapunov function that meets the stability
conditions. In this Thesis, the Cohen-Grossberg theorem is used to build the neural
models of CTRNN, following its condition and assuring that the network is Lyapunov
stable.

3.4 Artificial Neural Network in action: Applications

In the first part of this Chapter, the basics of ANNs and different structures commonly
used have been explained. The ANN application is present in all parts of its design
both its structure and its training. ANNs can be applied almost to any application,
but with some considerations such as enough data to train the network or a feasible
structure to be trained in enough time. In addition, ANNs cannot be used in
applications with not enough data because they do not have enough information
to extract features from it.

In spite of not being good for arithmetics and precise calculations, ANNs can
extract patterns if there are enough data even with noise. They can always give an
answer to the input data even when the input is not complete and are well fitted
in applications in which they can infer a function or relationship from observations.
ANNs are particularly useful in applications where the function they infer from the
data is too complex and there are nonlinear relationships among them. But with all
these advantages comes a great disadvantage when the complexity of the problem
requires a large neural structure because any interpretation can be drawn from the
data. The main problem for large structures is the number of free parameters, such
as hidden nodes, synaptic weights, learning rates, etc.

At the same time, implementing an application with an ANN has the advantages
already described in Section 3.1.1. Thus, when applying ANNs, it is necessary to
consider the pros and cons. Recently, an intensive use of ANNs has been done due to
the immense data available at any application and the increase power of computation.
ANNs are beginning to expand into a variety of fields different from the classic AI
ones, such as financial, marketing, industrial or energy, among other fields of interest.
In the application of ANNs, there are differences between candidate, developing and
already demonstrated applications. In other words, it is necessary to clarify the status
of development, implementation and validation of the ANN in each application. A
candidate application is an application that it could be solved potentially by an ANN
but for the moment there has not been a successful implementation. Developing
applications are those in which the problem has been deeply studied and there exists
an ANN prototype that has been trained with a simplified version of the problem.
Finally, demonstrated applications are the ones in which an ANN structure has
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already been used to solve a real problem. With respect to the use of ANNs over time,
different categories of applications have been discovered, in which ANNs develop an
excellent job and are efficient solving problems in these areas. Those areas are as
follows (Jain et al., 1996; Basheer and Hajmeer, 2000; Haykin, 2009):

� Classification. This is a classic AI problem consisting of identifying which preset
categories belong to a new incoming data. The classification is done based on
the previous data observations whose categories or classes are known. ANNs
are used in this type of tasks due to their input-output mapping abilities.
The classification is done normally through a supervised learning algorithm
in which an input, represented by a feature vector, is shown to the network
and at the same time the class corresponding to the input is used to adjust
the free parameters of the network, obtaining the desired result. In addition,
there is an unsupervised version of classification known as clustering, consisting
of grouping data without any knowledge based on an internal metric and the
similarities or dissimilarities between the input patterns. In any case, the ANN
in charge of solving the task extracts the features from the data and obtains
an internal representation from them to be assigned to one of the classes. The
data could be of different nature, e.g. continuous or discrete inputs, inputs
from different sources such as different sensors, and the classification could
be done in different ways: categories, ordinal, integer-valued or real-valued.
Inside this field, there also exist problems related with pattern recognition,
decision making or detection, since they consist of mapping inputs into the
corresponding outputs. Among the different applications, in which ANNs
have been successfully applied in real classification problems, such as character
recognition, speech recognition, EEG waveform classification, fault diagnosis,
image classification, cancer detection, etc.

� Data processing. Many applications can be found within this field, but all
of them are related. All of these applications use a starting set of inputs
which are manipulated to obtain meaningful information. ANNs are used to
infer a relationship between the input and the output, extracting only the
valid information and processing it to solve the task assigned. Therefore, the
application itself is the one that considers which information is meaningful
and which can be discarded. This scope also covers all applications involving
signal processing which consists of treating or transferring the information
contained within different physical, abstract or symbolic forms denominated
signals. Thus, ANNs models manipulate the information of the signal to obtain
different goals, taking advantage of the learning and adaptivity abilities of
them. For example, ANNs have been used in filtering tasks which consist
of modifying the characteristics of the signal itself to obtain a new signal of
the characteristics required by the system. Inside filtering tasks, ANN has
been used for tasks involving adaptive filtering such as noise reduction or echo
cancellation. In addition, ANNs have been used in: validation (ensuring that
the data are correct and useful), compression (consisting of dimensionality
reduction), analysis (involved in the collection, organization, interpretation and
presentation of data), multiplexing information, image processing, encoding
information to send it through a canal, speech processing, etc.

� Function approximation. It is also known as model building and consists of
finding the relationships that exist between the different data available, if
any. Suppose that a set of labeled observations of input-output data have
been generated by an unknown function. Then, an ANN is used to estimate
the unknown function underlying rules relating the inputs to the outputs.
Multilayer ANNs are considered universal approximators that can approximate
any arbitrary function to any degree of accuracy (Cybenko, 1989). ANNs are
also used to compute regression in the data, which is a special case of function
approximation. Function approximation with ANNs is applied typically to
two different problems: i) no explicit mathematical expression is available, i.e.
the data are obtained from experiments or observations, and ii) substituting
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theoretical models too complex to analyze where the data from the model are
used directly. Related with this task, ANN structures are used to predict
time series. A time series is a sequence of successive points over a time
interval. ANNs are used in time series forecasting to analyze the data in
order to extract meaningful statistics and other characteristics and then predict
a future value based on the information extracted plus previously observed
values. Forecasting is an important application very useful in decision-making
in business, science and engineering. For example, typical applications of time
series forecasting with ANNs are: stock market prediction, weather forecasting,
electricity demand forecasting, etc.

� Optimization. This field of application is related with finding solutions to
problems in the most efficient way with the less resources possible. Specifically,
optimization consists of finding a solution that maximizes or minimizes an
objective function that satisfies a set of constraints. A wide variety of problems
in mathematics, statistics, engineering, science, medicine and economics can be
interpreted as optimization problems. For example, well known optimization
problems are the travel salesman problem or the NP-complete problem. ANNs
are used in optimization because they are efficient solving complex and nonlinear
optimization problems. ANNs have also been used in fitness approximation
which is a method consisting of reducing the evaluations of a fitness function to
reach a target solution.

� Association. This type of applications establishes a set of relationships between
the data, which allow identifying some patterns and reproduce them to a given
input. Content-addressable memory is a type of association application which
consists of a quick search for a given input to obtain the right output previously
stored. An advantage of this type of applications is that the content is accessed
directly, so that the output will be retrieved correctly even though the input
presents some degree of corruption or it is affected by noise. An ANN for
association tasks is trained on noise-free data and then used to classify noise
corrupted data as in novelty detection. The network will also be used to correct
or reconstruct the corrupted data or completely missing data. For example,
Hopfield networks and multilayer perceptrons are used in this type of tasks.
In addition, association problems are also related with establishing similarities
between states that are close in time or space. Inspired in the characteristic of
the brain to organize information, the SOMs are other ANN structures that solve
tasks related with association. SOMs are spatial maps of the input patterns, in
which the information contained in the input patterns are distributed spatially
in the lattice that forms the neurons and the activation of each of them is
indicative of intrinsic statistical features of the inputs.

� Control. It is a discipline which applies control theory to make a system
behave in a wanted or desired way. For example, a dynamic model defined
by {u(t), y(t)}, where u(t) is the control input and y(t) is the resulting output
of the system at time t. The goal is to generate a control input u(t) such that the
system follows a desired trajectory determined by a reference model. Examples
of these implementations are the speed control of a motor or fix the motor to
a determined position. Thus, the idea is to design an ANN with the sensory
input of the system and elaborate an output that the system will follow based
on system feedback. A neural controller is not an easy task to train but with
the adequate inputs and the right system design, a nonlinear controller could be
used to fulfill the task that otherwise would be too complex. A field related with
control is robotics, in which robots are built using control, sensory feedback and
information processing. ANNs are used to establish some nonlinear relationships
between the sensory inputs of the robot and the desired response of the robot,
e.g. manipulators, speech recognition, gestures and artificial emotions. Another
control field in which ANNs are being applied is in the prosthesis, which consists
of replacing a missing body part with an artificial device. ANNs are used to
process the information coming from the muscle around the missing body part
and elaborate a response to move the prosthetic in the right way.
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In all these applications, the idea of processing information with ANN is
present. They also take advantage of their characteristics: i) input-output mapping,
ii) nonlinearity and iii) feature extraction. All the applications, involving these
characteristics can be solved by an ANN approximation. However, some neural
architectures are best suited to solve a certain type of problems, such as SOMs which
implement content-addressable memory applications or RNNs which are best for
prediction, time-series representation, adaptive filtering, control dynamics, etc. due
to the presence of feedback. In this Section, some applications were shown in which
ANNs can be applied, but they can also be applied to: security (face identification,
biometrics), data mining (or knowledge discovery in databases), medical diagnosis
(cancer detection, processing medical images), financial applications (automated
trading systems) or system identification (e-mail spam filtering).

There are many fields in which ANNs have been successfully applied but their
expansion continues. A promising field of application for ANNs is the electricity
field because with the arrival of the Smart Grid (SG) is increasing the need for
fast information processing and using their features for prediction and time series
representation would help with the management of the grid. As part of this Thesis,
the electricity field is strongly presented so Section 3.4.1 reviewed how ANNs have
been used in power systems.

3.4.1 Artificial Neural Network in Electrical Applications

With the advent of SG, algorithms are becoming increasingly necessary to help to
automate the continuous operation of the grid as its complexity is also increasing.
Signal processing is becoming an essential tool to understand, plan, design and operate
the complex processes of the grid. Many electrical applications involve the use of signal
processing as a tool to analyze them and the need of these techniques is becoming a
real fact. The reasons are the vast amount of data available for correlation, diagnosis
and analysis inside power systems nowadays (Ribeiro et al., 2014).

There exist several reasons why applying ANNs to power systems, such as their
learning ability from the environment, fault tolerance, distributed system, real time
application, etc. They are also self-organized structures, which create their own
data representation during the learning process in real-time operation, since the
computation can be done in parallel and the redundancy of the structure prevents
the degradation performance of the network in any fault case (Momoh, 2012). In
addition, ANNs need fewer constraints than other algorithms when using them in
power system applications. The data used are straight forwardly handled without
a significant reduction or manipulation of the variables. Another advantage of such
algorithms is that they add value to the investments made in infrastructure within the
SG. The reason is that once trained for the task they are undertaking, ANNs can be
integrated into new ICT systems without assuming higher costs. Hence, such methods
of system performance evaluation are very much cost-effective and will not hinder the
consumer welfare by an unnecessary increase in electricity price (Sen et al., 2015).
ANNs have been successfully applied in different applications related with power
systems: i) security assessment, ii) fault detection and diagnosis, iii) load forecasting,
iv) transient stability, v) control analysis, vi) economic dispatch and vii) system
protection and design (Haque and Kashtiban, 2007). Some of the most important
applications are explained as follows:

� Load forecasting. One of the main applications in which ANNs have been
applied is load forecasting. The grid operation involves planning the different
generators to accomplish the real-time matching of the demand. In addition,
load forecasting does not only serve for the system daily operation, but to
prevent future failures or system congestion, ensuring that users always receive
their electricity. Thus, load forecasting is related to financial, development,
expansion and planning, and it is important to make accurate predictions for
system enhancement. There exist three different forms to predict the grid
demand based on the forecast time length: short-term, mid-term and long-term
load forecast.
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– Short-term load forecasting consists of elaborating a forecast using a
temporal interval from an hour to a week which is important for dif-
ferent applications such as real time control, economic dispatch, unit
commitment, etc. (Haque and Kashtiban, 2007). For example, Park
et al. (1991) used a perceptron to make load forecasts in intervals of
hours and days by using the weather and load information. They showed
better performance of load forecasting with ANNs than using conventional
techniques. In Germond et al. (1993), a SOM was used to short-term
forecasting of peak electrical loads by using the load data of a real system.
In Hippert et al. (2001), there is a description of different ANN models
used for short load forecasting. Different ANN structures have been used,
such as multilayer perceptrons, SOM, RNN, RBF, etc., using different
input data, like weather conditions, holidays, weekends and special sport
matches days inside the forecasting model. But typically, the data used
for short term load forecasting are time factors and weather data. In
these models different prediction horizons have been used such as 1 hour,
24 hour (a day), 168 hour (a week) for predicting the entire demand curve
or peak hours. ANNs in short-term load forecasting are known to solve the
limitations of other traditional models. They have overcome the difficulties
to find relationships between all variable attributes and instantaneous load
demand in order to adapt rapidly to the nonlinear system-load changes.

– Mid-term load forecasting covers a prediction horizon time from weeks to
a couple of years. The data normally used to elaborate the predictions
are different from the ones used to short-term load forecasting. Mid-term
forecasting is sensitive to growth factors, which are factors that influence
demand such as seasonal variations, addition of new loads, maintenance
requirements of large consumers, etc. However, mid-term forecasting is not
as accurate as short-term forecasting on power system operations. In Feilat
and Bouzguenda (2011), a multilayer perceptron is used to forecast the
monthly peak load based on the historical monthly load data, temperature,
humidity and wind speed. Normally, the data used to elaborate the
forecasts consist of historical load, weather, economics and demographic
data (Feilat and Bouzguenda, 2011). With this information, it is possible
to plan the maintenance of a certain plant during a time period, major tests
in the system, commissioning events, determine outage times of plants, etc.
Tsekouras et al. (2006) use an adaptive ANN, which properly transforms
the input variables to differences or relative differences, in order to predict
energy values not included in the training set. Another example of yearly
mid-term load forecasting is described in Bunnoon (2011). An ANN is
used to forecast a year ahead the grid demand based on different factors,
such as temperature, humidity, wind speed, rainfall, industrial index and
consumer price index. It is used for a unit commitment and a fuel reserve
planning in the power system.

– Long-term load forecasting has the larger prediction horizon and covers a
time span from a couple of years to decades. In this type of forecasting,
quick changes in the demand are not as significant as in other horizon
prediction. Grid operators need accurate forecasts that allow the power
system to implement new strategies and continue its expansion. Long-
term forecasting as mid-term forecasting uses growth factors to elaborate
predictions and take into account long historical data of the power system
and other macro economic variables related with power systems, such as
demographic growing, time factors, facilities investment or sales, regional
development, energy supply price, etc. They are normally used to supply
the electric utility companies with information to make investments and
take decisions regarding planning (equipment purchases), maintenance
(staff hiring) and expansion. An example of a long-term load forecasting is
described in (Daneshi et al., 2008). An ANN together with fuzzy logic
elaborate their prediction in a volatile electricity market based on the
forecast growth of population, monthly temperature of the previous year
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and previous monthly peak load. Another predictor is described in Achanta
(2012), which consists of using a multilayer perceptron and SVM to predict
the demand. They use historical load data to do the predictions, but
preprocessed to obtain a better result. A last example of long-term load
forecasting using RNNs is presented in Hayashi and Iwamoto (1994).

� System security. Another application of power system in which ANNs have
been used is in security. For example, Chawla et al. (2005) used different
feedforward ANN structures to help with the protection of different grid parts.
Another security concern is security assessment, which consists of monitoring
the power system status guaranteeing that its functions are carried out normally.
In the case of power systems, security of supply has to be guaranteed for all
the users without exceeding acceptable voltage and/or frequency limits. Thus,
security assessment is defined as a function that predicts the vulnerability of
the system to possible events on a real-time basis. There are two types of
security assessments: static, corresponding to those states where the transients
following a disturbance have finished, or dynamic, which corresponds to search
for disturbances that may lead to transient instabilities. However, both are
responsible for differencing between 3 states: secure state, in which there is no
problem inside the system; alert state, in which the power system is reaching is
limit capacity; and emergency state, the system is off-limits and the operation
is insecure (Swarup and Corthis, 2006). In the literature, many examples of
using ANNs for security assessment are found because ANNs fit perfectly to
some requisites such as the prediction of failures, real time operation and low
economic investment. In Sobajic and Pao (1989), a pattern recognition task
implemented with ANNs is done for dynamic security assessment. Whereas in
Swarup and Corthis (2006), a SOM is used for the static security assessment of
a power system. Another implementation of RBF ANNs is presented in Srilatha
et al. (2014).

� Transient stability. The grid is a large system prone to different faults,
which can be predictable or unpredictable, due to internal (e.g. random load)
or external disturbances (e.g. lightning). One of these problems is transient
stability, which is related with the loss of synchrony on part of the system due
to a large disturbance that can cause in the worst case scenario instability to the
whole system. This stability problem is related with oscillations present in the
machinery inside power systems, specifically with generators. Electromechanical
oscillations are caused by the instantaneous imbalance between generation and
consumption and are represented by the exchange of energy among the generator
rotors with the interconnected network (Karami, 2011). The transient stability
problem is a dynamic nonlinear problem in which ANNs fit perfectly due to
their parallel processing abilities and the nonlinear featuring characteristic of
their modular structure. For example, in Ostojic and Heydt (1991), an ANN
structure is used to achieve transient stability through a pattern recognition
methodology in the frequency domain. Another example is the one described
in Karami (2011), that uses a multilayer perceptron to estimate the normalized
power system transient stability margin through its mapping with the conditions
of the power system. In Haidar et al. (2011), a general regression neural network
is used for predicting the status of the power system and making a classification
for transient stability evaluation in power systems.

� Fault diagnosis. One of the major problems for system outages is the failure
of equipment, but reliability and security can be improved with the use of
proper systems for detection and diagnosis. Therefore, the first step consists
of identifying the fault, its nature and location, because when a fault occurs,
the system operators have to minimize the impact of the failure and restore
completely the system as soon as possible. However, the number of alarms
that triggers when a fault occurs makes impossible to detect the source of
the failure necessary to restore the system to a secure state. Despite having
defined a hierarchy for failure identification, the elapsed time between the start
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of the problem and its detection is often paramount and it is necessary to act
effectively, finding the fault as soon as possible. ANNs have been successfully
applied to classify the different failures in apparatus of the power systems such as
transformers or switches (Haque and Kashtiban, 2007). The advantages of using
ANNs are that the diagnosis is carried out without interrupting the service, their
flexibility with noisy data and their classification ability to distinguish between
failures. In the literature, many examples of ANN structures are applied to
different detection problems. In Ebron et al. (1990), a multilayer perceptron
was applied to detect incipient faults in distribution power lines, specifically in
the detection of high-impedance faults. It used preprocessed data of the current
that goes inside the lines and simulation results showed agreement in most of
the cases. Another example is the one described in El-Fergany et al. (2001),
which consists of a hybrid system of ANN and expert system for off-line fault
diagnosis in power systems. This system uses the information of the operated
relays and tripped circuit breakers after they reached their final status. The
system proposed is able to indicate in which section the fault has occurred.
Finally, in Wang (2011), different approaches using ANNs to real time fault
detection and diagnosis are explained. In this case, ANNs are used as pattern
recognition for classifying different faults in the power system.

� Economic dispatch. The last major application of ANNs in power systems
is economic dispatch. This application consists of minimizing the operating
costs by optimally meeting the electricity generation to the system load subject
to transmission and operational constraints. To achieve the minimum total
cost, the generators with the lowest marginal costs must be used, then the next
ones until the load is met. In practice, the whole units operating range is not
always available for load allocation due to physical operation limitations (Park
et al., 1993). In this case, the ANN is used to optimize the resources available
and minimize the costs. Traditionally, this problem was solved approximating
the cost of each generator as a quadratic function or more accurately as a
segmented piecewise quadratic function for plants with more than one type of
fuel. There exist different ANN approximations to solve this problem. For
example, in Park et al. (1993), a Hopfield network is used to solve this problem
by using different segmented piecewise quadratic function to represent the costs
of the generation. Other works, such as the one in Yalcinoz and Short (1998),
used also a Hopfield network with a mapping quadratic technique to solve
economic dispatch with transmission capacity constraints. Another example,
using multilayer perceptrons to solve these problems is the one described in Imen
et al. (2013). ANNs, specially the Hopfield model, have a well-demonstrated
capability of solving combinatorial optimization problems. Because of their
capabilities to take into account different power system limitations such as
transmission line loss, penalty factor, control pollution of the units, etc., it
has experienced an increasing use in this field.

ANNs have been extensively used in power systems, and the variety of applications
make difficult to decide which ANN is the best for each task. Only the most important
applications are shown in which ANNs have been used, but there exist other uses of
ANNs in power systems such as real time monitoring, operation state estimation,
modeling power systems, voltage control, reactive power dispatch, etc. (Haque and
Kashtiban, 2007). In addition, more applications of ANNs related with the energy
field can be found, specifically with the renewable energy applications. A complete
review for different applications related with the renewable energy and other energy
systems are described in Thiaw et al. (2014). Some of these applications are: modeling
a solar steam generator, prediction of solar resource, wind speed prediction, peak
power tracking for Photovoltaics (PV) system, load forecasting, tariff forecasting,
etc. Thiaw et al. (2014) described the use of ANNs related with two applications of
renewable energy: the first one is related with PV systems and consists of tracking
the maximum power point of PV generators to extract the maximum power available;
and the other application is related with the assessment of a wind energy resource.
Both cases used a multilayer perceptron and the electrical parameters of the generator
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were used as input to the neural model. In the case of the wind assessment, the neural
model is used to calculate the wind speed distribution law based on the wind speed.

ANNs are nowadays of great value in different grid applications. Moreover, they
are going to represent a great asset in the future development of the SG in which they
can be crucial to solve some problems of its implementation. ANNs could be used to
cover the following tasks inside the SG:

� Forecasting. They could help in the forecasting of renewable sources, integrating
them in the power system minimizing energy losses, storage forecasting, favoring
the electricity management, or in demand forecasting.

� Pricing. Establishing an electricity tariff in real time is very difficult because it
depends on many external factors, such as the cost of energy, the time of the
day, etc. Therefore, the nonlinear dynamic abilities of ANNs can be used to
forecast and adjust a real time tariff of electricity.

� Demand Side Management (DSM). The grid enhancement requires that demand
technologies will react dynamically to the status of the grid, not only to control
or price signals. The SG requires DSM approaches that are able to adapt to
variable situations and learn from the environment in order to make a more
efficient use of the supply. ANN controllers could help to control the demand
and be dynamic responsive to a changing environment.

� Data processing. With the arrival of the smart meters, the grid operators can
have information in real time from each part of the grid, such as real-time prices,
peak loads, network status, etc. Hence, ANNs can be used to manage this vast
amount of information usefully, inferring some relationships and conclusions
from them to support the decision making process.

� Intelligent diagnosis. ANNs are a great option to fault diagnosis because they
are able to make nonlinear relationships between the data coming from the grid
being able to make better diagnosis. They are also fault tolerant, that can
handle corrupt data because they are ready to interpolate data and learn from
them to elaborate a more accurate response. And finally, their mapping abilities
make them appropriate to extract relationships between input and output in
fault detection and diagnosis applications.

� Protection. Some of the above examples show that they are suitable for fault
detection and they could be perfect for detecting problems in microgrids, being
able to isolate them from the grid in case of fault.

� Security. There are many concerns about the security in the SG, because of
the vulnerability of the communications. It can be exposed to cyber attacks
that can interfere with the structure of the system. However, ANNs are robust
enough to withstand these attacks and in spite of part of the network going
down, the rest could do the task at hands. They can also serve to encode the
information, sending it securely avoiding eavesdropping.

ANN can play different and important roles inside many application fields of power
systems. They are well fitted to develop almost any task inside the grid, when there
is enough data and time to train them to handle the task. But how can an ANN be
trained to do a task? Section 3.5 describes different methods to train ANNs.

3.5 How to train your ANN: Learning vs. Tuning

ANNs need to be trained in order to obtain the adequate response for the environment
stimulus and solve the task at hands. The first way that someone can come up with
the weight training of an ANN would be their manual adjust. However, this method
is not effective for large ANNs of more than two or three neurons because there are
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too many parameters to be adjusted. Thus, two different forms to train an ANN are
introduced in this Section. The first one is based on traditional learning algorithms
in which the ANNs learn from their environment and presumably is most closely
to the biology interpretation of the training. Meanwhile, the second one is based
on optimization techniques, specifically Genetic Algorithm (GA) which consists of
adjusting the free parameters of the network based on a cost function to minimize its
error.

3.5.1 Learning

A precise general definition of learning is difficult to enunciate. However, a learning
process in ANN sense can be defined as the problem to update the network
architecture (wij and θi). Thus, it can perform the task for which it was built,
producing a desired output for a given input (Haykin, 2009). The basic idea behind
a learning system is that it changes itself to adapt dynamically to external conditions
such as the environment surrounding it. Once the network is trained, it can be used
to perform the task and it can respond even for situations in which it has never been
trained due to its generalization property. An ANN acquires its knowledge from the
environment through the available training samples or patterns.

But how is an ANN able to learn or be trained with external data? First of
all, it is necessary to think which part or parts of the network are available to be
modified in order to learn a task. Remembering Section 3.1.1, an ANN possesses
synaptic weights, bias, propagation rules, activation functions and output functions
to be configured. Thus, an ANN could learn from various modifications of its parts,
such as i) developing new connections, ii) deleting existing ones, iii) altering the value
of the synaptic weights among neurons, iv) changing the neuron bias, v) varying
the internal elements of the neural functions (propagation, activation and/or output
functions), vi) adding new neurons and vii) removing neurons. These are all the
possibilities available to affect the behavior of the network, some of them are more
plausible than others.

Some possible modifications described are not usually done due to its complexity
and interpretation. For example, modifications of the functions and their parameters
are rarely used, because in the development of a learning procedure is difficult to
create relationships between the data and their modifications. Moreover, it is not
biologically plausible and is not intuitive how changes affect the realization of the
task at hands. Therefore, the creation (neurogenesis) or destruction (apoptosis) of
neurons is also a not common learning modification, although it can provide well
adjusted weights during the training and also an optimized network topology. These
modifications are also biologically plausible and are growing interest but they are
usually implemented with other techniques, not with learning algorithms. The reason
is that learning algorithms traditionally are focused on acquiring the knowledge from
the environment for a given structure.

Therefore, the more common rule used to learn from the available data is the
modification of the synaptic weights and bias. Changes in the value of wij are related
with the biological plasticity of the nervous system and the existing connections of
the neurons. When a connection ceases to exist, the value of the wij = 0 and when
a connection is created, wij has a value different from 0. Modifications of θi are
related with the neural stimulation and its activation, so that for negative values
the neuron is inhibitory and for positive ones is excitatory. In order to simplify the
implementation of the learning algorithms, θi is treated as a wij . Thus, this is how
the ANN learns from the environment and stores all the knowledge in its structure
through its modification from a learning process. The acquired knowledge is then
used by the ANN to interpret, predict and respond appropriately to the environment
(Haykin, 2009).

These modifications are carried out based on the external information coming
from the environment and a set of rules used to build the algorithms. Then
the performance of the network is improved by iteratively updating the matrix of
connections (W , containing also θi). And finally, the ANN learns input-output
relationships from the given collection of representative examples. These examples
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Figure 3.8: Flow diagram of a general purpose learning algorithm.

must possess significant information, so that the ANN can extract the appropriate
relationships. The information coming from these data examples could be related
with the environment, such as its state, facts about what is, or observations, which
consist of measurements from the environment through sensors. In order to design
a learning process, the environment in which the ANN operates must be known, i.e.
what information is available to the network.

Figure 3.8 shows the corresponding flow diagram of a learning algorithm. It can
be observed the different parts in which a learning process is divided, been relatively
easy to be implemented by means of a programming language. The example of Figure
3.8 about a general purpose learning algorithm is as follows:

� The first step consists of initializing the ANN parameters, functions, wij and
θi and all the elements needed by the learning algorithm to perform its task,
environment information, learning rule, etc.

� Then, the next step consists of selecting one of the input patterns (xk) available
in the training dataset consisting of a set of inputs from the information available
in the environment.

� After this, the network is executed with its actual structure without being
modified and its actual output or performance (yk) is obtained.

� In the next measurement, the performance of the network is evaluated to
obtain an objective of how well or bad the network is performing its assigned
task. Depending on the learning paradigm, an external signal coming from the
environment (sk) is used to elaborate this measure. In some cases, sk could
be the desired output, in others could be only the information about how well
or bad the network is doing the task and there are cases in which this signal
sk = 0. sk is integrated inside the training dataset, for each step of the training.

� Then, a stopping criterion is contrasted with the performance of the network.
This criterion could be based in reaching a determined value of the objective
measurement selected, such as an error, or a historical value of this measure,
reach the number of cycles to train the networks, etc:
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– If the network exceeds this criterion, then the learning process ends.
Otherwise, the learning process continues and it is necessary that the
network assimilates the result of the objective measurement into its
structure.

– In case that the stopping criteria is not satisfied, it is necessary to calculate
the modification of the free parameters of the network, ∆W k, taking into
account the measurements done previously.

� Finally, the structure of the network is modified by following ∆W k and a new
step of the training begins by taking the next example inside the training data
set.

Those are the common steps in a general purpose learning algorithm and the name
of a complete cycle is called “epoch”. There are different existing learning algorithms,
but all of them follow a structure similar to the one of Figure 3.8. However, not
all of them apply these steps in the same order, or the information coming from
the environment is different or simply use a different variable to update and change
the behavior of the network. Thus, there exists a vast amount of different learning
algorithms. In any case, the versatility provided by learning algorithms makes possible
that ANNs perform almost any task whenever there are enough training data and
enough time to train them. In Sections 3.5.1.1 and 3.5.1.2, different types of training
and some concerns to consider when training an ANN are presented.

3.5.1.1 Types and rules

This Section introduces different types of learning algorithms and the rules they
use to modify the different free parameters. In Section 3.2, when classifying the
different neural architectures, three different paradigms of learning were introduced:
supervised, unsupervised and reinforcement. The difference between them is how the
algorithm interacts with the environment and how much information is obtained from
it. Therefore, from Section 3.2, the definition of each learning paradigm is (Jain et al.,
1996; Haykin, 2009):

� Supervised. It is also called learning from a teacher. In this type of learning,
the ANN is provided with information about the desired output of the system
for each input. The modification of the weights is based on the deviation of the
ANN output from the desired output for the given input.

� Unsupervised. There is no environmental signal sk coming from the outside, the
only information available is the set of inputs. This learning algorithm explores
the structure in the data to detect similarities among them, doing correlations
between patterns in the data, and organizing them into categories from these
correlations.

� Reinforcement. As in supervised learning, there is information coming from
the environment about the performance of the network. But rather than using
the desired output, the network is provided with only an observation on the
correctness of ANN outputs or possibly, how right or wrong the ANN output
was. Thus, there is not an exact measure of the error, only information about
the performance of the network.

Each of these algorithms can be used alone or combinations of them using hybrid
learning algorithms, in which different learning strategies can be used to train different
parts of the ANN. The more biologically plausible of all these learning paradigms is
the unsupervised learning, because only the input is given to the network and it is the
ANN which establishes the relationships among the data. However, this paradigm is
not suitable for all the problems. In contrast, reinforcement and supervised learning
have information from the environment, consisting of how well the ANN is doing its
task, but in reinforcement it is less precise than in supervised learning. Supervised
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learning algorithms are the most extended ones because it is easy to establish different
relationships between the data when both input and output information are available.
With this type of learning paradigm, it is perfectly characterized how the ANN has
to behave, but in some tasks the information might not be available, requiring the
use of other learning paradigms.

Another classification can be made based on the update rate of the W k. This
classification is related with the learning cycle length or epoch and it is divided in
offline and online learning. Thus, offline learning is referred to learning algorithms
which consist of modifying the ANN parameters after several input dataset entered
at once, and then, the cumulative objective measurement is used to make the update
of these parameters. While online learning consists of updating the ANN each step
after every input pattern is executed. Offline learning is also called batch learning,
because the epochs are organized in data batches. The benefits of using offline or
online depend on the problem to solve with them. Online learning algorithms are
more suitable for changing and continuous data from the environment since each
step they are evaluating the ANN performance. On the other hand, offline is more
suitable to steady environments in which the data are not changing so quickly and
more complex calculations could be done to extract the ANN performance. Online is
simpler than offline due to the fact that it only processes one data at a time. Offline
needs that the data are shuffled, so that in each input batch the information of every
input type is represented. Thus, online learning is a more general framework than
offline (Basheer and Hajmeer, 2000).

Finally, the learning algorithms can also be classified by the rules that they use
to update the free ANN parameters. There exist four types of learning rules, which
are (Jain et al., 1996; Basheer and Hajmeer, 2000; Wilamowski, 2009):

� Error-correction rules. These rules are used in supervised learning paradigms.
The ANN performance is evaluated during the training with the arithmetic
difference (error, ek) between the actual output (yk) and the desired output
(dk) given to the actual epoch. Thus, ek = dk − yk is used to modify the
parameters of the network by minimizing the error function overall training
samples. Some of the most frequent error correction rules are as follows:

– Perceptron learning rule. Developed by Rosenblatt to train a simple
perceptron during a classification task, this rule established a boundary to
separate the data in different types. Rossenblatt proved in the perceptron
convergence theorem that when training patterns are drawn from two
linearly separable classes, the perceptron learning procedure converges
after a finite number of iterations (Rosenblatt, 1958). Equation 3.19 shows
how the update of the ANN parameters is computed.

∆W k = η · (dk − yk) · xk (3.19)

where, η is the learning rate at which W k is modified.

– Correlation learning rule. This learning rule is similar to the Hebbian
learning rule but in supervised learning algorithms. The idea is that the
connections between neurons that fire simultaneously have to be positive
while the ones between neurons with opposite reactions should be negative.
This means that the weights should be proportional to the product of the
learning rates. Mathematically, this learning rule is as follows:

∆W k = η · dk · xk (3.20)

Usually, W k is initialized to zero to start from an equilibrium state.

– Outstar learning rule. This rule is applied in networks where the inputs
and W k are normalized and it was developed in Grossberg (1969). Thus,
the connections between nodes should be equal to the desired output di of
that neuron.

∆W k = η · (Dk −W k) (3.21)
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where, Dk is the matrix of the desired outputs for each neuron of the
network and η is a constant learning rate of small value that decreases
during the training when the algorithm converges to the solution.

– Widrow-Hoff LMS learning rule. Widrow and Hoff (1960) developed a
supervised learning algorithm that consists of minimizing the error of the
output of each node (yj) with respect to the desired output (dj) during a
batch training of P input patterns:

ej =

P∑
p=1

(djp − yjp)
2

with yj =

N∑
i=1

wij · xi

(3.22)

where, ej is the error for the jth neuron, yij is the output of the jth neuron
for the ith pattern and dij is the desired output of the jth neuron for the
ith pattern. Then, the update of W k is based on minimizing Equation
3.22 by calculating the gradient of the error with respect to the weights:

∆wij = −
1

2
· η · ∂ej

∂wij

with
∂ej
∂wij

= −2 · xi
P∑

p=1

(djp − yjp)

(3.23)

This rule is also known as LMS rule and the weights are updated following
the gradient descent of the error. The weights are corrected after a number
of input patterns presented to the network so it is a cumulative rule. This
rule usually leads to a faster solution, but it is sensitive to the order in
which patterns are applied.

– Linear regression. This rule is similar to the LMS, but it only works with
linear neurons and the operation of each neuron is equal to the desired
output, i.e. xW = d. Thus, solving this matrix equation, the weight
values needed to obtain the desired output are found.

– Delta learning rule. This algorithm is the generalization of the LMS rule
also developed in Widrow and Hoff (1960), and the difference is in the
neuron used, which is not linear. Hence, the error of Equation 3.22 has
the same form but in this case, it is equal to

yj = σj

(
N∑
i=1

wij · xi

)
= σj (ν)

Then, the gradient is computed again and the result is in Equation 3.24.

∂ej
∂wij

= −2·
P∑

p=1

(djp−yjp)·
∂σjp(ν)

∂ν
·xi = 2·xi ·

P∑
p=1

σ′
jp(ν)·(djp−yjp) (3.24)

Finally, the modification of the weights is calculated as,

∆wij = −
1

2
· η · ∂ej

∂wij
= η · xi ·

P∑
p=1

δpj (3.25)
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The weight change is proportional to the input signal xi, to the difference
between desired and actual outputs (djp − yjp), and to the derivative of
the activation function (σ′

jp(ν)). The weights can be updated by using
incremental and cumulative methods depending on the number of training
patterns used until the new update. This is a useful training rule for only
a single layer network, problems arise when there are more than one or
when there is no desired output for all the neurons of the network.

– Backpropagation This is the most famous learning algorithm for supervised
learning algorithms (Rumelhart and McClelland, 1986). It has been
applied to multiple applications and is extended because it allows training
a network in less time than other algorithms and with not too much
computation. The idea of the backpropagation consists of applying the
delta rule to each of the different neurons but in a particular way. It can
be divided in two phases: propagation and weight update. Propagation
consists of executing the network forward with a training pattern to
produce the output of the network. Once the outputs of each neuron
are obtained, it is necessary to calculate the delta rule of each one or the
error gradient. For the output layer, the delta rule of Equation 3.24 will
be applied directly because there is a desired output. However, for hidden
or input neurons, it is necessary to calculate it with respect to the global
error. The value of the gradient for a hidden neuron is calculated as:

δk = −∂ej
∂νk

= −σ′
k(νk)

∑
j

δj · wjk (3.26)

where, σ′
k(νk) is the derivate of the activation function with respect to

the propagation rule, δj is the local gradient or the delta rule of the next
layer and wjk are the connections between the hidden neurons and the
neurons of the next layer. Thus, the algorithm consists of obtaining all the
information necessary to calculate the local gradient of each neuron and
then, it applies Equation 3.27 in order to update each weight.

∆wij = η · xi ·
N∑

n=1

δn (3.27)

So neurons in the output layer are only modified by their own performance,
but for neurons in previous layers, the connection to each neuron of the
following layer will be influenced to change its value. Thus, this is one of
the problems of this learning rule because when the number of layers is too
large, the error value transmitted from the output layer to the input one
decreases as it passes through more layers.

� Boltzman learning. This type of learning is a stochastic learning rule inspired
by information-theoretic and thermodynamic principles. It is used in Boltzman
machines which are RNNs with binary neurons. These neurons are stochastic
units that generate a state according to the Boltzmann distribution of statistical
mechanics and are divided in two subsets, one visible and one hidden. It operates
in two modes: clamped, in which only visible neurons operate, and free-running,
in which all the neurons can operate freely. So, the objective of the Boltzman
learning is to adjust the weights in order that the performance of the visible
neurons of the network satisfies a particular desired probability distribution.
The Boltzman learning rule consists of

∆wij = η · (ρ̄ij − ρij) (3.28)

where, η is the learning rate, and ρ̄ij and ρij are the correlations between the
states of the neurons i and j when the network operates in each mode. Boltzman
learning is a special case of error-correction learning but rather than using an
error measure, it uses the difference of the correlation between the outputs in
each mode of operation.
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� Hebbian rule. This is the first learning rule used to train an ANN and it was
used by Hebb (1949) from the observation of neurobiological experiments. This
rule is based on the assumption that if the synapse of two neurons that are
activated synchronously and repeatedly, this synapse should increase its value.
While for neurons that operate in the opposite phase, the value of the weight
should be decreased. Equation 3.29 includes these assumptions.

∆wij = η · xi · yj (3.29)

where, xi and yj are the output values of neurons i and j, which are connected
with the corresponding synaptic weight. In this case there is not any information
about the desired output of the neurons, so that it is an unsupervised learning
algorithm. The changes in the weights are only affected by local changes and the
trained neurons exhibit an orientation selectivity. As the learning proceeds, the
weight vector moves progressively closer to the direction of maximal variance
in the data.

� Competitive learning rule. In this type of learning, all the neurons
are forced to compete among themselves such that only one neuron will be
activated and this neuron is the only one that will adjust all its weights.
This phenomenon is known as winner-take-all. Competitive learning has its
inspiration in the biological nervous system and often consists of clustering
or categorizing the input data based on data correlations. Similar patterns
are stored and represented by one single neuron. Competitive networks use
inhibitory connections so that the winner output inhibits the other neurons to
fire, and a simple competitive learning rule can be stated as

∆wij =

{
η · (xj − wij) i = i∗,

0 i ̸= i∗.
(3.30)

where, i∗ is the winner neuron. Note that only the weights of the winner unit
get updated. The effect behind of this learning rule is to store the pattern
in the winner neuron through the weights that tend to be closer to the input
pattern. As in other learning rules, this rule will never stop learning unless
the learning rate is η = 0. This problem is related also with the stability of
the system, and one way to achieve it is to force η to decrease gradually with
the time of the learning. However, this solution causes another problem related
with the plasticity of the network and its ability to adapt to new data. One
of the most well-known examples of competitive learning is vector quantization
for data compression (Jain et al., 1996).

The most used learning rules are the error-correction ones, specifically the ones
related with gradient descent error learning, such as backpropagation because with
enough time the algorithm converges to the solution if it exists. Moreover, for the
majority of applications, the information about the desired output is available. Thus,
it is known how the ANN has to behave and a supervised learning algorithm can be
used. But to make learning successful, it is necessary to consider some aspects of the
algorithms and the data used.

3.5.1.2 Concerns

There are some concerns related to the application of the learning algorithms and
how to apply them successfully into the problem at hands. First of all, three practical
issues have to be addressed, which are associated with the learning theory, specifically
learning from samples: capacity, sample complexity and computational complexity
(Jain et al., 1996). The first one is related with the ANN structure chosen to solve the
problem. Thus, the capacity is related with the number of patterns that can be stored
in the network, the function that the network will perform and the decision boundaries
among the neurons. It is necessary to choose wisely the learning algorithm together
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with the structure and the application because it can happen that the problem does
not have a solution for the combination. For example, underfitting problems typically
occurred when the error of the network performance is too high, and they could be
caused by using a too simple ANN architecture.

The next issue to take into account is the data used during the ANN training
phase. Normally, the available data for the development of the ANN have to be
divided in three datasets: training, test and validation. The training dataset is used
during the weight update phase of the network. So, it is necessary that the samples
of the training dataset are complex enough to guarantee that all the possibilities
are presented to the network during this phase. A well-composed training dataset
guarantees a valid generalization. The test dataset is used during the training of the
weights to check the network response for untrained data and if the ANN needs more
training. It has different examples from the ones of the training dataset but with
the same characteristics. The validation dataset contains the rest of the data and is
composed of data different from the other two datasets. It is used when the learning
process has finished testing the abilities of the network with data that were never
used during the learning process.

There is not a rule to follow in order to divide the dataset. It is a trial an error
process. However, a large test dataset may help to obtain a better generalization
capability, but the remaining datasets may not have enough data. Particularly, an
appropriate division should be 40–50% for the training dataset, 30–40% for the test
dataset and a 10–20% for the validation dataset. With an appropriate division of the
dataset, problems related with the underfitting of the network and also the overfitting
problem could be avoided. This last problem is related with having a low training
error but a high test error of the ANN performance, highlighting that there is not
enough data for training it or that the structure is too complex.

It is also very important that the data have the proper form and is adequate to
solve the problem during the training that is why they are normally preprocessed
to accelerate convergence. For example, some techniques used are: noise removal,
reducing input dimensionality, data transformation, data inspection and deletion of
outliers. Other important issue related with data is that they have to be balanced to
avoid the over-representation of one class. Moreover, it has to contain a large amount
of data to train successfully the network. Sometimes the database of the network is
expanded by adding noise to the available data in order to obtain new examples when
new ones cannot be obtained.

Another concern related with ANNs is the weight initialization because it can
affect to the algorithm convergence. For example, in Figure 3.9(a), it can be observed
two different initializations of the weights W 1 and W 2. In gradient descent learning
algorithms, such as the backpropagation, the first situation leads to a suboptimal
solution because the algorithm is trapped in a local minimum. Whereas in the
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second situation, it achieves the optimal solution because it reaches a global minimum.
Thus, it is very important to select the right initialization for the convergence of the
algorithm since the appropriate solution can be found and the speed of convergence
to the solution is accelerated.

In order to achieve a good network performance, it is necessary to take into account
some elements of the training configuration. One of the factors to take into account
is the learning rate (η), which is related with the speed of the learning algorithm. If
η is high, it will accelerate the training because the changes in weights are high but
it can cause the search to oscillate on the error surface and never converge. On the
contrary, a small value will make the search steadily in the direction of the minimum
error, but slowly. Normally, this value is constant and its value is η ∈ (0, 1.0].

Another important parameter of the learning is the convergence criteria used to
stop the training. Normally, three criteria are used: training error (e ≤ ε), gradient
of error (∇e ≤ δ), and cross-validation (a combination of the two previous). In all
the cases, the network will not stop until the performance is reduced to a minimum.
However, some problems are found such as in Figure 3.9(b) in which the test error is
growing while the training error continues decreasing its value (overfitting). In this
case, it is better to stop the learning because the optimum network performance was
found when both error were minimum. This could also be included in the convergence
stopping criteria.

Another parameter that affects a learning algorithm is the number of epochs
used to train the network. This number has to be large enough to guarantee that the
minimum error is reached during the training and the ANN has reached a steady state
in which it cannot improve more its performance. All these parameters are related
with the computational complexity of the algorithm, which refers to the time required
for a learning algorithm to estimate a solution from training patterns. Therefore, a
learning algorithm has to be well configured in order to obtain the right training for
the network in time.

3.5.2 Tuning: Genetic Algorithm

In this Section, another way to train ANNs is introduced and it is based on Genetic
Algorithms (GAs). GAs are probabilistic search or optimization algorithms based on
genetic mechanisms of natural selection and inspired in Darwinian principles. From a
theoretical point of view, these are global optimization algorithms, such as simulated
annealing (Kirkpatrick, 1982) and tabu search (Glover and Laguna, 1999).

A GA consists of transforming iteratively a set of mathematical objects called
population, each one with a cost value or fitness value associated, in a new population
of descendants using biological genetic operators such as selection, crossover or
mutation (Golberg, 2006). The fitness function corresponds to the optimization
function and it is the one that assigns the cost to each one of the individuals. The
higher the fitness value of an individual is, the better solution to the problem is.

The main interest on this type of algorithms, like other metaheuristics, is based
on the small number of constraints on the function to be optimized. Particularly, this
has not to be differentiable, unlike gradient based methods of learning algorithms.
In addition, GAs are global search methods, so that the problem of some learning
algorithms of getting stuck in local minima disappears. A GA can search for the
optimum solution in the entire space of solutions to find it. Thus, GAs make efficient
searches in complex spaces and they are also computationally simple but at the same
time powerful because they are not limited by restrictive conditions of the search
space (continuity, differentiability, etc.) (Golberg, 2006).

The GAs have been used in applications related with optimization or Machine
Learning (ML). In this Thesis, GAs are used to adjust the free parameters of an
ANN structure based on a fitness function. In this way, the GA is used to optimize
the structure of the ANN. In the GA context, optimization is understood as an
improvement process that will always get to improve the previous situation. GAs are
characterized by (Golberg, 2006):

� Working with a set of encoded parameters in a string of finite length over a
finite alphabet (chromosome).
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Figure 3.10: Hierarchy of the elements that composed the population of a GA.

� Using a population of individuals, in this way it offers a view of the whole rather
than a single point. Therefore, search is performed in parallel.

� Using only a fitness function or cost information associated with each individual,
without using any other knowledge and focusing on finding better individuals.

� Using probabilistic rules for transitions between generations. The transition
rules are stochastic operators.

The bioinspiration of this algorithm is obvious, it can be appreciated in the analogy
of the nomenclature used to describe the different strings that compose the individuals
which are called chromosome. The set of chromosomes is referred as the genotype
and the phenotype is the genotype together with its environment. A chromosome
is composed by a string of values, each one called gene and represented by bits,
the value is called alleles and the position that it occupies in the chromosome is
the locus. The GA is responsible for transforming this population of individuals in
another population of descendants by using some genetic operators. Thus, for a better
understanding, the operation principles of the GA are described in Section 3.5.2.1 and
some genetic operators are described in Section 3.5.2.2.

3.5.2.1 Operation principle

In this Section, it is explained how a general GA works. As mentioned before, a GA
works on an initially random population of individuals and each of them represents a
solution of the problem in which is applied. Each solution is represented by a genotype
(a set of chromosomes) and interpreted on the form of a phenotype, which consists
of the visible behavior of the individual. Finally, it is necessary to define an adaptive
or cost function, known as fitness function, that evaluates the performance of each
individual in the population. The more efficient are chosen to solve the problem. The
individuals with higher fitness values will have a bigger chance to let their offspring
genotype.

Each solution parameter corresponding to the chromosome of an individual is
assimilated in a gene. A chromosome is a string of genes which can consist of similar
parameters from the same chromosome. In addition, each gene is reachable by its
position or locus on the chromosome. Each individual is represented by a chromosome
or set of chromosomes and a population is a group of individuals. Figure 3.10
represents the different elements of a population and the hierarchy between them.
There exist different forms to encode the genes of the chromosome. For example,
genes can be encoded by using a binary codification, in which each gene is formed
with a value of 0 or 1. On the other hand, the genes could have a real value to form
the chromosome so a real codification is used. A special codification is the use of the
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Figure 3.11: Flow diagram of the behavior of a general GA.

Gray codification, in this case the Hamming distance is used to measure the similitude
between two elements of the population, so that between two neighboring elements
in the search space, one bit differs.

Figure 3.11 shows an overview of the implementation of a GA in general.
Executing a GA consists of the following parts:

� The algorithm is initialized setting up all the parameters of the environment
such as the number of individuals per generation, genetic operators parameters,
the fitness function, the number of generations to reach a solution, etc.

� Then, a new population is created, firstly using random values for the
chromosomes of the individuals.

� Once the population is created, each individual is executed for the problem
conditions in which the algorithm is applied.

� Then, the performance of each individual is evaluated, a cost is assigned through
the fitness function and the individuals will be ordered by cost from the best
individual to the worst.

� After that, it will be evaluated if the stopping criteria is reached. If it is reached,
then the algorithm will finish and the best chromosome is found to solve the
problem. Otherwise, the algorithm will continue preparing a new generation
until it reaches the stopping criteria.

� Then, the algorithm selects the best individuals who will serve to form the next
generation and their chromosomes prevail for further improvement.

� Some genetic operators are applied to the best individuals to generate its
offspring that will be part of the next generation and the rest of the individuals
are discarded.

� Finally, a new generation is created and the cycle is repeated until the stopping
criterion is matched.
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There are some considerations that have to be taken into account when using GAs.
The core piece of the GA is the fitness function. When using a GA, it is necessary
that this function is well defined with respect to the problem, otherwise the GA will
not be able to solve it or will have difficulty converging at all. The design of a fitness
function is a complex process, so that it is normally used in applications where the
problem is well identified. Moreover, the fitness function evaluation is related with the
time that the algorithm requires solving the problem. Thus, for complex problems,
the fitness evaluation is large and it is limiting the algorithm. In addition, GAs with a
fitness function with abrupt changes between two states, such as in decision problems,
are not able to converge to the solution because of the oscillation in the solutions.

The stopping criterion is another issue of GA. Normally, the GA will be working
generation after generation until it finds the best possible solution of the problem and
obtains the highest value of the fitness. However, a stopping criterion is usually used
based on the stuck value of the fitness during a number of generations in combination
with a maximum number of generations. Finally, selection and other operators of the
GA are presented in Section 3.5.2.2.

3.5.2.2 Genetic operators

Three main genetic operators are: selection, crossover and mutation. They are applied
between generations to form the next one. First the individuals are selected according
to their fitness value, then the crossover is applied between chromosomes and finally,
the mutation is in charge of altering some genes.

The selection operator is responsible for defining which individuals of the current
population will be used in the new population of the next generation, which will
serve as parents during the crossover operation. This operator can be considered the
most important because it allows individuals in a population to survive, reproduce
or die. In general, the probability of survival of an individual is directly related to
their relative effectiveness within the population, i.e. its fitness value. Four types of
selection methods are introduced (Golberg, 2006).

� Roulette-wheel selection. This method is the most used. With this selection
method, each individual has a chance of being selected proportional to its
performance. Thus, the fittest individuals are the ones that have higher
probabilities to be selected to breed the next generation. Imagine a roulette or
wheel, each individual is associated with a sector whose size is proportional to
its fitness value. This selection has some drawbacks because of the variance that
presents when selecting the individuals that compose the wheel. For example,
in n selections, the same individual can be selected to be a parent of the new
generation and no alteration of the fitness value for the new individual will be
reached, leading to a loss of diversity. Moreover, it could also fall in individuals
with low fitness in spite of the low probability. Therefore, this selection is
normally combined with other types, to avoid these problems.

� Elitism. This method consists of selecting the best n individuals, which
have the higher values of fitness, to be part of the new population. It is
usually combined with the previous selection method to avoid some of the
aforementioned problems.

� Tournament selection. In this method, two individuals are chosen among the
base population, making them fight. The individual with the highest fitness
has a probability p to win the fight defined between 0.5 and 1. This process is
repeated until all the individuals of the new generation are selected. Again the
variance of this method is high, and the fact that the probability p increases or
decreases its value, allows increasing or decreasing the selection pressure.

� Stochastic universal sampling. It is a technique designed to map the original
fitness value of an individual with its expected fitness value, so that the GA is
less susceptible to premature convergence. This selection consists of distributing
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the population in a segment based on the fitness values of its individuals, and
then selecting them based on a set of equidistant points.

The next genetic operator used after the selection is the crossover. This operator
consists of creating a new offspring from the individuals of the selections that are used
to breed the new individuals of the next generation. Hence, the new individuals after
the crossover inherit partially the characteristics of their parents. This operator is
applied to a couple of individuals and it is made in two steps. The first one consists
of selecting the individuals and associate them randomly in couples (discarding the
elite). And then the crossover occurs in one, two or more points defined on the
chromosomes randomly, so each one is separated in different segments. After this,
each segment is swapped with the corresponding segment of the other parent with a
chance of crossing defined. Thus, it can be noted that the number of crossing points
and the probability of crossing, provides more or less diversity in the GA. An example
of the crossover operator is as follows, imagine that there are two parents x1 and x2
with a chromosome length of five genes.

x1 = 10|011
x2 = 01|110

where the crossing point is k = 2 and the new individuals for the next generation are:

x′1 = 10110

x′2 = 01011

This is the simplest crossover operator but other crossover operators more
advanced are (Golberg, 2006):

� Partially matched crossover (PMX). This type of crossover consists of selecting
two random points inside the chromosome to establish the crossing area of
both chromosomes. After that, with the parts of the chromosome that are not
involved in the crossover a permutation of the genes is established. For example,
suppose that,

x1 = 9 8 4 | 5 6 7 | 1 3 2 10

x2 = 8 7 1 | 2 3 10 | 9 5 4 6.

Then, the central block is swapped and in the other two blocks per chromosome,
the genes are permuted, obtaining

x′1 = 9 8 4 | 2 3 10 | 1 6 5 7

x′2 = 8 10 1 | 5 6 7 | 9 2 4 3.

� Order crossover (OX). This operator establishes and area for swapping the genes
and then it changes them. Unlike the previous operator, in the areas that are
not exchanged instead of being permuted, the chromosome rearranges itself.
For example suppose that,

x1 = 9 8 4 | 5 6 7 | 1 3 2 10

x2 = 8 7 1 | 2 3 10 | 9 5 4 6

when x2 makes the exchange of the values, these values are empty and there is
not any value to fill them.

x2 = 8 − 1 | 2 3 10 | 9 − 4 −
and now the chromosome is reordered, putting together the empty spots in the
swapping area,

x2 = 2 3 10 | − − − | 9 4 8 1

finally, it is obtained that,

x′1 = 5 6 7 | 2 3 10 | 1 9 8 4

x′2 = 2 3 10 | 5 6 7 | 9 4 8 1.
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� Cycle crossover (CX). This type of crossover is different to the two previous ones
since a swap area is not established. In this case, a point of the chromosome is
chosen from which there will be no changes at all. Then, the value of the first
gene of the second chromosome is sought. If the value of each gene for the two
chromosomes does not match, it has ended and it would change all the genes of
both chromosomes. Otherwise, it would set the first chromosome gene whose
value is equal to the first gene of the second and would repeat the operation.
An example of this operator is as follows,

x1 = 9 8 1 7 4 5

x2 = 1 2 4 5 9 7

first, it is taken the first gene of x1

x′1 = 9 − − − − −

the value of the first gene of x2 is 1 which is also in x′1, so that it will be fixed
in the chromosome,

x′1 = 9 − 1 − − −

the value in x2 corresponding to the position that it has been fixed in x′1 is 4,
so it will also be fixed,

x′1 = 9 − 1 − 4 −
finally, the value of the gene in x2 is 9 that is already fixed so the cycle is finished
and now the exchange of genes can start,

x′1 = 9 2 1 5 4 7

x′2 = 1 8 4 7 9 5

The crossover operator favors the exploration of the search space. Considering
two genes A and B that can be improved by mutation, it is unlikely that the A′

and B′ genes altered by the mutation appear in the same individual. But if one
parent has the gene A′ and the other B′, the crossover operator will combine the two
genes, and thus create a new individual by taking this combination. With this new
combination it is possible that the new individual is more adapted than their parents.
The crossover operator allows the mixture of genetic material and accumulation of
favorable mutations. But it is possible that the joint action of selection and crossing
forbids the convergence to the optimal solution of the problem. Thus, considering a
population of individuals having a chromosome with a single gene with binary values,
if none of the individuals in the initial population has the value 1 for this gene,
selection and crossover will not allow the appearance of the other values.

It is in this scenario where the mutation operator arises. This operator consists
of changing the value of a gene randomly with a very low probability to do it. In the
case of binary codification of the chromosome, the mutation only inverts the value of
the gene in a random location of the chromosome. Thus, mutation modifies randomly
the characteristics of the solution and it allows introducing diversity in the solution
population. Mutation can be interpreted as a noise that interferes with the solution by
adding new points in the search space. This operator has three main advantages. The
first one is that this operator avoids the phenomenon of genetic drift, when some genes
favored by fortune are used to the detriment of others, and are thus present in the
same place in all chromosomes. It also avoids the risk of the premature convergence
of the algorithm in which all the individuals are exactly the same and imitates local
optima solutions because of the diversity that the operator introduces. And the last
one is that it guarantees the ergodicity property in which each point of the solution
space can be reached. Random mutations in all positions of the gene mathematically
guarantee that all the solutions are collected in infinite time, so that it is guaranteed
to find the global optimum.
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Therefore, a simple GA typically consists of a selection, a crossover and a
mutation operator to be able to explore the entire solution space. Other complex
operators can be added to GA. For example, diploidy consists of having one or more
couples of chromosomes, each one of them has information of the same function
and will be used to be crossed. The dominance is another operator that is used to
eliminate redundancies between two equal chromosomes so that preference is given
to a particular value against other values that the gene can take. Inversion consists
of choosing two points inside the chromosome which is cut at such points and the
positions of the ends of the cut section are exchanged. In segregation, during the
crossover, only one of the parents is chosen to be part of the next generation. And
translocation which is a crossover inside the chromosome, in which the genes location
is changed.

To sum up, different GA operators have been described in order to explain how
the creation of the next generation is carried out. There are some operators more
complex than others, but all of them are applied to obtain the best individual that
solves the problem in the fitness function way. In general, not all the operators are
used for the same GA. As mentioned above, the most common GAs are composed by
the three main operators, selection, crossover and mutation. In this Thesis, a GA is
going to be used to optimize the structure of the ANN selected and to that extent, the
genetic operators used are the basic ones in order to simplify the problem of training
the ANN.

3.6 Conclusion

In this Chapter, a deep literature review of the Artificial Neural Networks (ANNs) has
been done in order to understand better the advantages and disadvantages of using
this type of AI algorithms in the management of a grid. In first place, a historical
review was done to understand the evolution of the ANNs and the different milestones
involved in their development. Nowadays, the ANNs are commonly used due to
their appealing properties of distributivity, robustness, generalization, redundancy,
adaptivity, etc. One of the main reasons of their intensive use is the capacity of
extracting features for large amount of data, which is a worrying problem in the
actual society as more data is gathered from the individuals. ANNs fit perfectly for
Big Data Analytics (BDA) and Machine Learning (ML).

The different features of the ANNs were presented together with some important
architectures and types. Of particular interest are the Recurrent Neural Networks
(RNNs) since they present some dynamics characteristics that help in the construction
of an algorithm that manages the power flows of the grid. Therefore, a part of
the Chapter was dedicated to understand these type of networks and the stability
properties that inherit their structure. The reasons for using them are the presence of
a short memory in the feedback loops of the connection structure and the possibility
to model the dynamic behavior of any system.

After describing the most famous architectures and the ones used in this Thesis, it
was necessary to introduce the different fields of applications. ANNs are used mainly
in classification, data processing, function approximation, optimization, association
and control. However, ANNs can be applied almost to any problem that it is well
defined. Moreover, there are different applications in which ANNs are applied, such
as power systems. Some of these applications are: load forecasting, system security,
transient stability, fault diagnosis and economic dispatch.

Finally, it was necessary to explain how ANNs are trained in order to fulfill the task
in which they are applied. Two methods have been explained, learning and tuning.
Traditionally, learning algorithms have been used to train ANNs by changing the free
parameters of the network. Depending on the application and the available data, there
exist different approximations to use during the training: supervised, unsupervised
and reinforcement learning. In addition, other classifications were introduced to
understand different aspects on how the ANNs learn from the environment. However,
these algorithms present some concerns such as the initialization of the structure
or finding suboptimal solutions to the problem. On the other hand, the Genetic
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Algorithms (GAs) are used to optimize the ANN structure based on the minimization
of a fitness function defined by the user. In general, three operators are used to obtain
the new individuals of the next generation: selection, crossover and mutation.

In this Part of the Thesis, the general concepts of the electrical grid were
introduced such as the forms of generation, the transport and distribution of
electricity, the different consumptions inside the grid, etc. In addition, some problems
with the actual status of the grid were introduced in order to tackle them with the
upcoming arrival of the Smart Grid (SG). However, there exist barriers to the SG
deployment, one of them is related with the absence of algorithms to manage the
grid. The needs of the grid will be attended by SG, but it is necessary to develop
algorithms that manage not only the power flows but also the information coming
from the different participants of the grid. Thus, a possible algorithm, the ANNs, was
detailed for its use in this Thesis with the objective of managing the grid power flow
from the demand side making possible a SG scenario. Part II develops the solution
found to control the power flows from a DSM approximation using the concepts
introduced in this first Part of the Thesis.
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towards Smart Grid





4Individual Controller

“Everything should be made as simple as possible, but not

simpler.” — Albert Einstein

W
orking with Artificial Neural Networks (ANNs) in power systems has
been long used. However, their application field is centered in tasks
related with their pattern recognition and forecasting abilities, in
order to handle problems that arise in the grid. In this Part of

the Thesis, the use of ANNs is proposed to manage the local demand of different
grid elements to smooth their aggregated consumption. However, it is done from
a particular point of view focusing on Low Voltage (LV) users instead of using the
capabilities of cutting large grid consumptions. In this way, the security of supply is
guaranteed for all users and the operation enhancement of the entire grid.

As mentioned in Section 2.3.4, there exist different Demand Side Management
(DSM) techniques to address this issue. They are implemented in the form of different
incentives such as energy savings due to the temporal displacement of loads or grid
status regulation through the direct load control. The DSM algorithm proposed in
the Thesis is based on the load automation of the local electric behavior of LV users.
The followed DSM strategy is applied locally, but its effects impact globally in the
system. Thus, the different users within the grid are self-organized to contribute to
smooth their aggregated consumption. The implementation of this distributed DSM
strategy is the leitmotiv of this Part of the Thesis. A neural approach is used to
implement it which consists of controlling the local electric behaviour by taking into
account the aggregated consumption of the electrical grid, local energy resources and
user requirements.

The use of ANNs allows applying their abilities of signal processing and forecasting
to vary the behavior of the grid aggregated consumption. Moreover, their adaptive
and distributed properties make it perfect to implement a possible solution to this
electric paradigm. Specifically, Recurrent Neural Networks (RNNs) are used to
tackle this problem, due to its dynamic properties and its short-term memory ability
inherited in its structure. Both are desirable properties to design a DSM controller
that has to adapt to changes in the environment. However, working with RNNs can
be difficult and computationally slow, especially for large structures. Therefore, a
small RNN structure is sought in order to be implemented in each user, by building a
modular system of neural blocks that can be executed no matter the technology. The
neural controller designed is going to extract some features from its inputs by using
temporal series analysis and adaptive filtering theory.

The interest of developing a DSM algorithm is motivated to find solutions to
some problems of the current electrical grids and as a possible solution to improve
the integration of the next generation of grids or Smart Grid (SG). Thus, the idea
is to use the data coming from the current monitoring platform, which is increasing
their capabilities thanks to the deployment of smart meters, and the local information
available from the user. There is no possibility to share information between users
because the grid does not allow it and guarantees the anonymity of its users.
Therefore, a solution to the problem is elaborated with the minimum information
possible. It must be guaranteed the integrity of the data coming form the users and
the grid operation enhancement. Herein, lies one of the problems that will be tackled
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Figure 4.1: Formulation of the environment in which ANNs act: (a) graphical

representation of the different elements that compose the environment and (b)

its translation to a block diagram. The houses with a blue cloud represent the

controllable users and the rest are non-controllable.

during the development of the neural controller on this Thesis, since ANNs work
better the more information they possess from the environment.

However, the problem cannot be addressed directly since the complexity of the
grid environment. Firstly, the environment and the different elements inside it are
introduced in Section 4.1. In order to develop a first approximation of the solution,
the environment was simplified (see Section 4.2). The different parameters involved
in the training of the neural controller and how is carried are explained in Section 4.3.
Then, the results achieved during the training are presented in Section 4.4. In Section
4.5, a post-evaluation is carried out to test the neural controller achieved at the end
of the training. Finally, the conclusions of the Chapter are gathered in Section 4.6.

4.1 Environment

In first place, to solve a problem with ANNs, it is necessary to know and understand
the environment in which they will be deployed. Thus, the environment of the problem
consists of LV users, specifically users from the residential sector, whose consumption
is typical for a high electrified user (see Section 4.1.1). The electricity required by
those users will be supplied by the grid. The grid is composed by two types of users:
i) non-controllable users, whose consumption cannot be controlled because it is not
deferrable or they do not have any DSM system, and ii) controllable users, who can
control their demand in real time through the use of a controller. Figure 4.1(a) shows
a representation of the grid with the two user types in which the grid is divided.

The aim of the neural DSM controller is to flatten the aggregated consumption of a
grid composed by this two type of users. Mathematically, if P (t) is the formulation of
the aggregated consumption, then the objective of the neural DSM controller consists
of P (t)→ C, where C is a constant. Moreover, P (t) can be divided in the sum of the
two users of the environment, such that:

P (t) = Pnc(t) + P c(t) (4.1)

where, Pnc(t) is the non-controllable consumption and P c(t) is the consumption
available for the algorithm to be controlled.
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Figure 4.2: Graphical representation of P (t) signal as a sum of Pnc(t) and P c(t)

signals, where: (a) represents the current electric grid where P c(t) is not adapted

to Pnc(t) and (b) represents the proposed algorithm goal where P c(t) is adapted to

Pnc(t) in order to smooth P (t).

Figure 4.1(b) shows a block diagram of the whole system in which the grid has been
divided. These two blocks correspond to the non-controllable and the controllable
demand, which at the same time are subdivided in m and n parts respectively. Thus,
each part of the demand, Pnc(t) and P c(t), is represented by the sum of the power
consumed by each type of user (see Equations 4.2a and 4.2b).

Pnc(t) =
m∑
i=1

pnci (t) (4.2a) P c(t) =
n∑

i=1

pci (t) (4.2b)

where, pnci (t) is the demand of the ith non-controllable user and pci (t) is the
consumption of the ith controllable user.

The electrical behavior of the users and their aggregated consumption is described
in Figure 4.2. In the general case, neither of the users can control their demand so that
each one of them can consume any power at any time as in Figure 4.2(a). In this case,
there is no algorithm to control the demand of P c(t) and the aggregated consumption
possesses a high variability. Thus, it is necessary for the proposed algorithm to
reshape the amount of P c(t) in order to adapt to Pnc(t), achieving a flattened P (t)
consumption as in Figure 4.2(b). The main challenge, in the design of this type of
algorithms consists of how to adapt P c(t) to Pnc(t) to produce a flattened response.
However, the current information coming from the grid and available by users is non-
existent, making difficult the elaboration of a control strategy in order to achieve
any goal. Hence, it is necessary to use some techniques already developed in other
fields such as Artificial Intelligence (AI) or signal processing to extract some useful
information from the small amount of information provided by the grid.

Information coming from the grid differs from one country to another. Normally,
the transmission system operators possess all the information about the demand. For
example, in Europe the information about the aggregated consumption of different
countries can be found in European Network of Transmission System Operators
(ENTSO-E)1, which represent 41 electricity transmission system operators from 34
countries across Europe. In a grid in which users do not control their consumption,
the aggregated consumption behaves periodically as shown in Figure 4.3. The data to
elaborate Figure 4.3 was obtained from the aggregated consumption of Spain during
20152. The aggregated consumption of other countries may differ in the form or in
the power consumed, but the periodicity of valleys and peaks is very similar among
them because consumption habits among users are very similar. Furthermore, it can

1https://www.entsoe.eu
2Source: Red Eléctrica de España (REE), the transmission system operator of Spain.

https://www.entsoe.eu/Pages/default.aspx
http://www.ree.es/es/actividades/operacion-del-sistema/medidas-electricas
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Figure 4.3: Aggregated consumption of the Spanish grid during 2015: (a) temporal

representation of two weeks for different seasons of the year and (b) annual spectrum.

be observed that the grid aggregated consumption of the same region is similar over
the years, but with very small variations.

Focusing on the grid example of Figure 4.3, it shows a periodicity both in time
(see Figure 4.3(a)) and in frequency (see Figure 4.3(b)). Figure 4.3(a) shows the
aggregated consumption of two weeks in different seasons of the year. The behavior
of weekdays is that they are very similar to each other and to other weekdays from
other weeks during the same weather season. The same behavior can be observed
for weekends. There are also similarities between winter and summer days and the
same for spring and autumn days. This is also corroborated with the annual grid
consumption spectrum of Figure 4.3(b), in which the most significant components
are shown. It can also be observed that the strongest component (apart from the
continuous one of period 0, corresponding to the average consumption) is the one
located at a period of 24 hour or one day. The next stronger components are located
at 12 hour period (half day) and 168 hour period (one week), respectively. Thus, it is
necessary to reduce these components to smooth the aggregated consumption.

One possibility to eliminate these undesirable frequencies consists of displacing
the consumption from those components to the 0 component. This approach was
developed in Castillo-Cagigal (2014), in which by applying signal processing tools,
such as the Fourier transform and Swarm Intelligence (SI) techniques, was able to
synchronize a collective of controllable users with non-controllable ones through DSM
in facilities with local Photovoltaics (PV) generation. The algorithm used in Castillo-
Cagigal (2014) achieved the objective of enhancing the grid through the smoothing
of the demand curve from the frequency domain.
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But, is it possible to design an algorithm following a time domain strategy to adapt
P c(t) to Pnc(t) in real time? This question is going to be solved along this Part of the
Thesis, using the properties of ANNs. Nevertheless, before describing the algorithm
strategy followed, it is described what is inside of each user of the environment to
know its consumption profile. Section 4.1.1 describes the facilities that are inside the
artificial grid developed for this Thesis.

4.1.1 Facility

An electrical grid is composed by a large variety of consumptions to improve their
performance through maximizing the utilization of the installed capacity. Therefore,
different consumption profiles are found inside them, such as industrial factories,
commercial users or residential ones. The grid is managed by operators in charge of
the different parts that comprise it. However, the load consumption is part from the
local electric power system of the user. In order to simplify how these power systems
are addressed, they will be referred as facilities along this Thesis. A facility is owned
by a particular consumer whose management depends on him instead of the electric
utility. A facility is characterized by different attributes, for example its size varies
depending on the needs of the user, from a single family house to large factories or
even a microgrid composed by a neighboring community.

In this Thesis, the facilities consider the possibility to actuate in their consumption
and they are divided in two groups: controllable and non-controllable users (see
Figure 4.1). The second one represents all those consumptions within the grid for
which there is no information about their consumption except the one coming from
the aggregated consumption of all of them. Thus, there is no possibility to know
any individual information of their load profile. On the other hand, the controllable
facilities are perfectly known and their individual consumption is completely specified
knowing the instant power they are consuming. This information would be available
in the near future thanks to the smart meters that are being deployed. The meter is
used as the common interface between users and the grid, being the communication
link between both of them and is located in the entrance of the facility at the end
of the distribution network. Figure 4.4 shows the representation of the controllable
facilities used in this Thesis.

Traditionally, facilities were considered as mere consumers. However, this concept
has been modified in last decades with the inclusion of new technologies which are
crucial in the deployment of SG. As shown in Figure 4.4 the facility is connected to
the grid through an electric meter which serves as the exchange point between the
grid and the user to measure the electricity consumed by the loads. Inside the facility,
there are three main parts that compose it and they are: i) generation, ii) storage and
iii) consumption. These concepts have been already introduced in Chapter 2. The
technology used to implement the local generator of the facilities in this Thesis is the
PV. This technology has been chosen due to several reasons, such as its renewable
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nature, its modular size of the generator, its ease integration in different housing
types, etc. The size of the PV generator depends on the number of modules that
comprises it.

However, a PV generator can only produce electricity during day hours, producing
a bell shape electricity curve related with the radiation of the Sun. Therefore, the
facility also incorporates an energy storage system for a better use of the energy
generated locally. The incorporation of a storage system gives the facility a way to
store the surplus of PV generated for a posteriori use. In spite of being expensive, a
small storage system designed for only half a day of autonomy will increase drastically
the local energy used to supply the loads (Castillo-Cagigal et al., 2011a). The storage
system is used to complete the local energy source replacing the one coming from the
grid. Thus, the grid is used as a mere back up source when the local energy is not
available or not sufficient.

Finally, the facility consumption is the one of a highly electrified home which
is composed by home electronics (TV, personal computers, media player, Hi-
Fi equipment, etc.), lighting, appliances (washing machine, dryer, fridge, oven,
dishwasher, etc.), air conditioning, etc. Among these loads, there are those which can
be controlled and those which cannot. Hence, the consumption inside a controllable
facility can be divided also into two groups depending on the controllable capacity
of the load. And for each controllable facility the algorithm will dispose an amount
of energy that can be controlled. The rest of the energy will depend on the user
preferences.

But, how are the different elements of the facility related? Figure 4.5 shows a
topology representation of all the elements that integrate the facilities used in this
Thesis. The different parts of the facility are interconnected through a topology
known as Alternating Current (AC) bus in which all the systems exchange energy
in AC. So, the elements that use Direct Current (DC) such as the PV system and
the battery needed an inverter to connect to the bus. This form of interconnection
presents a lower performance of the generation system because it will be required
to transform the energy generated from the PV system, i.e. from DC to AC and
then AC to DC in order to charge the battery. In spite of the lower performance,
the presence of inverters gives some other benefits, such as regulation of power factor,
grid stabilization, reduction of the harmonic voltage distortion, etc. Furthermore, the
losses that incorporate the AC bus are considered negligible. On the other hand, this
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topology allows that the loads always have a source to be used in order to supply them.
Thus, many possible exchanges are present among them. The electrical behavior of
the facility responds to Equation 4.3:

PPV (t) + PB(t) + PG(t) = PL(t) (4.3)

where, PL(t) is the instantaneous power consumed by loads, the PPV (t) is the
instantaneous PV power generated, PB(t) is the instantaneous power exchanged with
the local storage system and PG(t) is the instantaneous power exchanged with the
grid. The sign of each variable depends on the power flow, for example PL(t) and
PPV (t) are always positive. While PB(t) is positive when the local storage system
supplies power to the loads and negative when it is storing energy. And PG(t) is
positive when the grid supplies power to the loads and negative when the facility
exports power to the grid. In this Thesis, it is considered that the only source to
charge the battery is the surplus of generated energy and the only exported energy to
the grid is the surplus of generated electricity when the battery is fully charged and
the local demand is lower than the generated electricity.

In conclusion, the environment designed in this Thesis is composed by different
facilities as it is shown in Figure 4.6. These facilities are divided in two types
controllable and non-controllable. About the non-controllable ones, there is not
enough information about them, the only known information is its consumption
through the aggregated consumption of all the individuals. On the other hand,
the controllable facilities are known and part of their consumption is controllable,
making possible to alter their load profile by modifying the way some loads consume.
However, there is no communication between the facilities. Thus, all of them receive
the same information from the grid, the aggregated consumption. And with this
information, the controllable facilities have to modify their consumption to adapt to
the non-controllable ones. Section 4.2 describes the keys to begin the development of
the algorithm that will manage the power flows of the grid to enhance its performance.
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4.2 Derivative algorithm

In order to enhance the grid, the proposed algorithm in this Thesis has to be able
to adapt the power of the controllable facilities to the non-controllable ones without
any information apart from the one of the aggregated consumption and the power
they are consuming. Thus, there is no communication between the facilities of the
grid. The objective of the algorithm consists of being able to meet the condition of
Equation 4.4.

P (t) =

m∑
i=1

pnci (t) +

n∑
i=1

pci (t) = C (4.4)

Then from Equation 4.4, it can be deduced that the result of applying the
algorithm should be that,

dP (t)

dt
= 0 (4.5)

Equation 4.5 also implies that P (t) is constant, but the different parts, that
integrate it, are not necessarily constant. Therefore, the algorithm would modify
the response of each of the pci (t) to adapt in real time to the pnci (t). In addition,
it is known that the P (t), with no active control of the facilities, presents strong
periodicity components corresponding to the 12 h, 24 h and 1week. Thus, a first
possible approach would be to remove the power from those nonzero periods since
the 0 period is equivalent to the average of the signal which has a constant form. On
the other hand, there is another possibility consisting of neutralising Pnc(t) through
the construction of an interference signal (P c(t)) that opposes to it, resulting in a
flattened P (t). As mentioned in Section 4.1, Castillo-Cagigal (2014) developed a
solution based on the first approach which consisted of building a distributed band-
stop filter through the synchronization of the different users. The second approach is
inspired in Active Noise Control (ANC) which is a method for reducing an unwanted
sound by the addition of a second one specifically designed to cancel it. An example of
this principle is described in Figure 4.7. The noise source is counteracted by another
signal with the same amplitude, that will either phase shift or invert the polarity of
the original signal. Then, both signals are combined into a new one. This process is
called interference, and effectively cancels each other out (also known as destructive
interference). In this Thesis, this approach is used to propose an adaptive algorithm
in order to solve the problem in the time domain.
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For a better explanation of this concept, imagine that there are only two facilities
inside the grid: one non-controllable and one controllable. Both of them only consume
power and there is no local generation. In order to simplify the environment and
understand these concepts, imagine that both of them present a continuous and
periodic consumption profile such as the one of the members of a real grid. Then, P (t)
as the sum of the two facilities would be periodic, being similar to the response of the
aggregated consumption of a grid. The chosen signal to represent the consumption
of the facilities is of sinusoidal nature being easy to use and describe its properties.
Thus, Pnc(t) and P c(t) have a sinusoidal waveform and they can be expressed as in
Equation 4.6.

Pnc(t) = Anc · cos(ωt+ ϕnc) + µnc (4.6a) P c(t) = Ac · cos(ωt+ ϕc) + µc (4.6b)

where, A is the amplitude of the sinusoidal wave, ω is the frequency at which the
sinusoidal wave is repeated, ϕ is the phase difference and µ is the mean value of
the consumption since it is always greater or equal to zero. There exist two periodic
consumptions greater than zero with the same periodicity and each period corresponds
to a day. Varying the parameters of the sinusoid, different waveforms can be obtained
which represent the consumption of each facility. An example of the waveform of
Pnc(t) and P c(t) is shown in Figure 4.8(a). The result of the aggregated consumption
can be also observed in Figure 4.8(a). The form of P (t) is also sinusoidal since it is the
sum of two sinusoids of the same period and its expression is calculated in Equation
4.7.

P (t) = Pnc(t) + P c(t) = Ac · cos(ωt+ ϕnc)µ
nc +Anc · cos(ωt+ ϕc) + µc = A · cos(ωt+ ϕ) + µ

where, A =
√

(Anc · cos(ϕnc) +Ac · cos(ϕc))2 + (Anc · sin(ϕnc) +Ac · sin(ϕc))2

ϕ = arctan

(
Anc · sin(ϕnc) +Ac · sin(ϕc)

Anc · cos(ϕnc) +Ac · cos(ϕc)

)

µ = µnc + µc

(4.7)
The resulting P (t) is expressed in terms of Pnc(t) and P c(t) and it also corresponds

to a sinusoidal waveform depending on the parameters of the Pnc(t) and P c(t). The
three signals P (t), Pnc(t) and P c(t) are formed by a continuous part (µ) and an
alternating part (sinusoid). Then, the algorithm seeks to cancel the alternating part
of P (t). In order to cancel it, the parameters of the controllable consumption are
modified to adapt to the non-controllable part and the conditions are gathered in
Equation 4.8.

P (t) =
: 0

A · cos(ωt+ ϕ) + µ⇒

{
P (t) = µ = µnc + µc;

Anc · cos(ωt+ ϕnc) +Ac · cos(ωt+ ϕc) = 0;

Ac · cos(ωt+ ϕc) = −Anc · cos(ωt+ ϕnc);⇒

{
Ac = −Anc

ϕc = ϕnc

(4.8)
The algorithm will reconfigure the controllable signal to create a destructive

interference with those conditions and the aggregated consumption obtained is
smoothed. Figure 4.8(b) shows the result of modifying P c(t) in order to cancel the
alternating part of the Pnc(t) getting a constant P (t). In this case, it can be observed
that one signal is opposite to the other one and they are in antiphase or opposite
phase with the same amplitude. When one signal grows, the other one decreases to
compensate the growth. This effect causes P (t) being at equilibrium and constant
over time.
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In this case, the non-controllable demand has an analytical expression and it
behaves the same over time. Thus, the construction of the controllable demand signal
can be easily adjusted to interfere with the rest of the demand and be opposite to it.
However, in general, there is no information about the analytical expression of P (t)
and how it evolves over time. So, the algorithm must ensure that the condition of
Equation 4.4 is satisfied regardless the waveform of Pnc(t). The algorithm will seek
for a P c(t) that satisfies,

P c(t) = C − Pnc(t) (4.9)

Nevertheless, it is difficult to calculate the exact value of P c(t) needed to
counteract Pnc(t). The reason is that the information of P (t) is not available at
the moment the algorithm has to calculate and take a decision of what power the
controllable facility has to consume. This measure is only available after all the
components of the grid have consumed power and the grid response evolves depending
on how much power was consumed. So, the algorithm has to apply a different strategy
that is not based on the instant value of P (t) but based on historical values enclosing
information about it. A first approach should consist of using the tendency of P (t).
Thus, the condition, extracted from Equation 4.4 and expressed in Equation 4.5,
is based on the trend of P (t) and how it changes through time. If Equation 4.5 is
expressed in terms of the components of the grid, the following relationship is achieved

dP (t)

dt
= 0; =⇒ dP c(t)

dt
= −dPnc(t)

dt
(4.10)

P c(t) in order to neutralise the variability of Pnc(t) should grow when Pnc(t)
decays and vice versa. So the tendency of P c(t) should oppose to Pnc(t) and it has
to grow or decay at the same rate as Pnc(t). However, there is no information about
the form of the non-controllable demand. The only information available is P (t)
and the local power consumed by the facility pci (t). From the point of view of one
controllable user, the rest of the demand is non-controllable. So suppose that for
the jth controllable facility, the aggregated consumption from its point of view is as
follows

pcj(t) = P (t)− Pnc(t)−
n−j∑
i=1

pci (t) = P (t)− P̂nc(t) (4.11)

where, P̂nc(t) group together the rest of the grid consumption except the one coming
from the local facility. Then, the local consumption of one facility is negligible
compared to the sum of the rest of consumptions. Normally, a grid is composed
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by a huge number of facilities so it is normal that P̂nc(t)≈P (t). Thus, a controllable
facility seeks to modify its consumption opposing to the rest of the components of
the grid. If Equation 4.10 is developed for one individual, it can be obtained that

dpcj(t)

dt
= −dP̂nc(t)

dt
≈ −dP (t)

dt
(4.12)

In order to reduce the variability of the consumption, one controllable facility has
a trend which is approximately the opposite to the aggregated consumption. Hence,
P̂nc(t)≈P (t) when the number of individuals of the grid is high. Following the trend
of P (t) is the first step to counteract its variability. However, a problem arises when
the n controllable facilities consume more than the m non-controllable facilities since
P (t) goes out of the constant equilibrium and a new disturbance has been created.
Thus, it is necessary to predict the value of P (t) and adapt to it in order to coordinate
the different controllable facilities. That is why the use of ANN is appropriate and
fits perfectly in the development of the proposed algorithm in this Thesis.

As explained in Chapter 3, ANNs have great capacities to act in distributed
environments. They also stand out in the prediction of temporal series and their
application to signal processing problems. In this Thesis, ANNs are used as the
algorithm to manage the different consumptions inside a grid of the characteristics
presented. Therefore, each facility will use a neural controller that has acquired the
dynamic behavior of the grid and how to counteract the effects of the rest of the users
based on the derivate of the aggregated consumption. ANN will know how to oppose
to the derivate of P (t) with the only information of the grid signal, P (t), and the
local behavior of the facility, pci (t). Once the ANN is trained, it will predict the next
instant value of P (t) and actuate to flatten it.

However, the communication in the environment is restricted and the information
available is little. Another challenge to face is how the controllable facilities are
coordinated to smooth the curve. The main reason why they have to act in a
coordinated way is because otherwise once the equilibrium is reached, the system could
be destabilized and P (t) will not be flatten. So, the different neural controllers will
self-organize to oppose to the non-controllable demand and stay at the equilibrium.
For the rest of the Chapter, it is explained how to build an ANN able to compute the
derivative of signal and oppose to an external stimulus. In this case, a restricted
environment is used and it is comprised by only one controllable and one non-
controllable facility to solve the first part of the problem. Whereas the collective
part of the algorithm, it will be explained in Chapter 5.

4.3 Neural controller

In this Thesis, the use of ANNs is proposed to build a controller in order to modify the
local consumption of part of the grid components will produce a smoothed aggregated
consumption. The only information available is the history of the local consumption,
pci (t), and the history of the aggregated consumption, P (t). To produce a flattened
P (t), the idea consists of nullifying its derivative by opposing the amplitude to the
non-controllable consumption. Hence, it is necessary to extract from the data the
important information and elaborate a response to achieve a constant P (t).

Because of the periodic nature of P (t), an ANN could be applied to do a temporal
series analysis and extract the tendency of P (t) to predict its future values and
adapt the response of the facility to achieve a flattened signal. There exist numerous
architectures of ANNs as it is explained in Chapter 3. However, not all of them are
fitted to solve the problem proposed in this Thesis. Thus, it is necessary a versatile
ANN structure that is able to respond quickly to changes in the environment and
adapt to them. There exist a number of structures that possesses these characteristics,
being able to model the dynamics of the environment. RNNs fit perfectly for the
application.

RNNs are commonly used in digital processing applications, but in this case
the reasons to use them are: i) feature extraction in temporal series, ii) forecast
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capabilities and iii) adaptive behavior in fast changing environments. In this way, the
proposed RNN structure would be able to extract the periodic information to design
a strategy in order to invert the polarity of the input the signal, with the peculiarity
of not knowing the amplitude of the input signal at the moment of cancelling it.
Therefore, the designed network is able to anticipate the values of the periodic input
signal by extracting features of past input values. Then with that information, the
RNN generates a response that it is in antiphase to the input at the same time step.

There are also different types of RNNs. In this Thesis, managing the consumption
of a facility is done in real time, so it is necessary in some way that the RNN has
any information about the time inside its structure. So, there are two possibilities
to implement the neural controller: i) Discrete Time RNN (DTRNN) and ii)
Continuous Time RNN (CTRNN). Both contain time information within their
structure. However, the first one uses the discrete time to model a difference equation.
While the second one, it uses continuous time to model a differential equation. As
the application to the electrical grid is in continuous time, CTRNN are used as the
structure to develop our neural controller. In addition, as described in Section 4.2, the
ANN will be trained to follow the opposite of the input signal derivative. Thus, the
network will have to compute internally that operation and respond to the input signal
by modifying the environment, making necessary that the dynamic of the network
also computes a differential equation.

In addition, the complexity of the problem makes difficult to design a CTRNN
structure that solves the problem in only one step. Also, the grid is a very complex
environment with many elements to take into account. Thus, a simplification of the
grid has been done by dividing it into different parts to solve each one easily. The
strategy of dividing and conquering will help to develop the neural controller that it
is the fundamental block of the controllable facilities. Hence, different simplifications
of the environment are made in this Part of the Thesis and the difficulty over its
development will be increased.

To begin with, the reduced environment consists of only two facilities, one non-
controllable and one controllable. Figure 4.9 shows the simplified environment with
the two facilities. The grid has been divided in Facility A, which is the non-controllable
part of the demand, and Facility B, which is the controllable one. Both facilities only
consume power, there is no PV generation and no energy storage system. So, the only
controllable element is the demand of the Facility B to be in antiphase to Facility A
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demand. The different signals of the environment are renamed in order to facilitate
its nomenclature. Pnc(t) becomes z(t), P c(t) is x(t) and P (t) is renamed as s(t).
Then the environment equation is as follows,

s(t) = z(t) + x(t) (4.13)

In Figure 4.9, it can be observed the information that the neural controller used
to elaborate a response in antiphase to z(t). Therefore, the controller has to extract
the information from the history of the signals and build a destructive interference to
obtain a flattened aggregated consumption. The inputs available are the derivatives
of: the facility local behavior, ẋ(t), and the environment aggregated consumption,
ṡ(t), both of them with respect to time. In this case the output of the neural controller
is of the form,

x(t) = f(ṡ(t), ẋ(t)) = s(t)− z(t) (4.14)

and the first step consists of building a dynamic model that emulates the antiphase
behavior to the grid signal.

4.3.1 Neural structure

So far the grid has been simplified in two facilities in order to design the fundamental
block of each controllable facility. The idea is to build a fundamental neural block that
can be used by all the controllable facilities. However, there is not an exact formula to
build the specific structure of an ANN for a general application. Normally, the trial
an error method is used to discover the best structure suited for the application. In
spite of this inconvenient, some tips have been followed, developed by the experience
of working with ANNs. These tips are as follows:

� Type. The election of a type of ANN is closely related with the application
itself. As explained in Section 4.3, it is required that the ANN has the ability
to model a dynamic system in continuous time. Thus, the ANN is able to adapt
to a fluctuating signal over the time and generate an output in antiphase to the
environment signal. For this reason, CTRNN has been selected over the rest of
types. CTRNN consists of a system of differential equations that models the
dynamics of biological neural networks. Thus, CTRNN perfectly fits for the
task at hand.

� Layers. The number of layers depend on the processing requirements of the
network. If the problem needs that more features are extracted from the data,
the number of layers will be higher. In addition, the dimensionality of the
problem is also related with the number of layers, since more layers will provide
the network with greater nonlinear capabilities. Thus, normally the architecture
will have an input layer, where the data is processed and encoded to the neural
space, and an output layer, where the network response is returned to the
environment in which it is used. Moreover, one or more hidden layers can be
used to increase the processing capacities and divide the problem into more
neural dimensions. In this Thesis, the neural structure selected is composed by
one input layer, one or two hidden layers, that will be explained later, and an
output layer. The number of neurons is as follows.

– Input. This layer is composed by only two neurons because there are only
two inputs, ṡ(t) and ẋ(t). The idea is that both neurons receive both
inputs multiplied by a gain. Thus, those neurons will process the inputs
and extract some features from it.

– Hidden. There is no clear reason for choosing the number of hidden layers.
In this Thesis, the number of hidden layers is selected between one or
two layers since more hidden layers will complex too much the problem
and the processing speed will decrease as more neurons are added. The
number of neurons in each layer is also not clear, they are varied from 2 to
4 neurons depending on speed, complexity and processing capacities of the
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layer. Hence, the best size and number of hidden layers are determined for
the proposed problem.

– Output. There are only one output, so the number of neurons in the output
layer is one. In this case the output of the network is directly x(t) which is
the signal in antiphase to cancel the fluctuations of the environment signal.

� Neuron function. The function that a neural network computes is extremely
related to the application in which is used. In this case, our application consists
of canceling the derivative of s(t) with respect to time, so it is necessary
a network that incorporates a dynamic behavior plus a differential equation
formulation. Those are the main reasons to use CTRNN. The operation of a
CTRNN neuron is a differential equation that models the behavior of a biological
neuron. Recalling Chapter 3, the function that a CTRNN neuron computes is
described in Equation 4.15.

ẏi(t) = fi(Ii(t), y1(t), . . . , yn(t)) =
1
τi
·

−yi(t) + Npre∑
j=1

wij · σi (yj(t) + θj) +

nin∑
m=1

gm · Im(t)


with σi(u) =

1

1 + e−u

(4.15)
where, yi is the activation of the ith neuron, ẏi is the rate of change of the ith
activation neuron, τi is the time constant, wij is the connection weight of the
jth to the ith neuron, σi(·) is the activation function, θi is the bias of the neuron
and Im is the external input of the neuron (if any), which is multiplied by a
gain, gm. In Equation 4.15 there are some changes compared to Equation 3.8
because neurons of the input layer have more than one input and are multiplied
by a gain. This gain is used to prepare the inputs to enter in the network. The
network is composed by homogeneous neurons, so all of them compute the same
function. The output of each neuron of the network is equal to σi (yi(t) + θi).
Thus, the controllable demand would be equal to the output of the last neuron,
i.e. x(t) = σn (yn(t) + θn).

� Flow of information. The information inside the network can go forwards and/or
backwards, depending on the connection among the neurons. It is important to
establish a hierarchy in case that more than one layer is used and if a dynamic
behavior is to be achieved, feedback loops are also required to be inside the
structure. Thus, different connections are established between layers to form
a hierarchical structure in which the processed information goes forward from
one layer to the other one. The information goes from the input layer to all the
neurons of the hidden layer. In the hidden layer the information is processed
in all the neurons and goes to next layers. Finally, it reaches the output layer.
Moreover, the information also goes backwards due to the presence of feedback
loops. Each neuron of the input layer has a feedback loop from its output to its
input. In the hidden layer the feedback loop is more complex, the output of the
neurons are connected from the output to the input of the rest of the neurons
and itself. The structure of the hidden layer resembles to the one of the Elman
networks (Elman, 1990) in which the state of the network is stored in a group of
neurons connected to the hidden layer. Finally, in the output layer, the neurons
are connected as in the input layer.

Based on these tips, a first approximation of the neural controller structure is
elaborated. Figure 4.10 shows this structure and the different synaptic connections
between the neurons. There are as many input neurons as input signals available, i.e.
two units, and there are as many output neurons as outputs required, i.e. one unit.
However, there is not a specific way to determine the number of processing units in
the hidden layers and how they are connected (1 or more hidden layers). Section 4.3.2
consists of explaining the training performed to obtain the structure of Figure 4.10
that solves the problem at hand.
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Figure 4.10: Structure of the neural controller for the controllable facilities. The ?

block corresponds to the structure of the hidden layer that is not decided yet.

4.3.2 Neural Parameters

A first neural approximation was defined for the controller that is inside the
controllable facility. However, there are some aspects not clear in its definition, which
are the hidden structure of the controller and how to train the network in order to
fulfill the task of canceling the environment signal. In order to decide the final neural
architecture, different simulations have been prepared in which the performance of
various ANN architectures are compared to obtain the best one. The only way to
evaluate their performance consists of comparing if the different neural architectures
can solve the problem of neutralising the fluctuations of the demand. Thus, the
training algorithm and the election of the different variables to adjust it, are also
important in order to get the objective previously mentioned.

A Genetic Algorithm (GA) has been used to adjust the free parameters of
the neural structure. The reasons are that everything necessary is known: i) the
behavior that the network has to adopt and ii) the function that it may compute to
achieve a flattened environment signal (see Section 4.2). The definition of a fitness
function could be based in Equation 4.12, evaluating the result of applying the neural
controller. However, it is also necessary to decide the different parameters of the
CTRNN and select the best configuration of the GA to evolve successfully the network.
With the tuning, a neural structure is achieved in order to predict the next value of
the input signal coming from the environment by being able to compute the opposed
derivative of s(t). It is also required that once the network is tuned, its output could
adapt to changes in the waveform of s(t) because its response affects the environment.
Ensuring a proper generalization of the CTRNN controller makes possible to use it
in different provided environments. These environments have different s(t) of similar
nature (continuous, periodic and of class C1) to the one used during the evolution.

The main objective of the GA consists of evolving the neural structure of the
CTRNN in order to minimize the fitness function define to this problem. However,
the structure of the CTRNN is not completely decided, so there is more than one
structure to tune. Thus, all the possible neural parameters are divided into two
groups:

� Structures. 12 structures are going to be evaluated to select the best
combination of neurons that obtain the best performance in the generation
of an antiphase signal. These 12 structures use different number of neurons
distributed in one or two layers depending on the structure. A higher number
of layers would make the network too complex, being slower to train. Also,
the increased processing capabilities of more layers would not improve the
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Figure 4.11: CTRNN structure of the hidden layer: (a) one hidden layer and (b)

two hidden layers. The synaptic weights of each neuron of the layer is represented in

the first neuron of it. The minimum size of the hidden layer is two neuron (drawn

with solid lines), whereas the maximum number of neurons is four (drawn with dashed

lines).

performance of the network since the available environment information has only
one component. In Figure 4.11, it is condensed the different configurations of the
hidden layer. Figure 4.11(a) represents the architectures with one hidden layer.
Whereas Figure 4.11(b) shows the architectures with two hidden layers. In each
layer of the structure hidden part, the number of neurons varies from 2 (solid
units) to 4 neurons (dashed units). Making a total of 3 different architectures
with only one hidden layer and 9 architectures with all the possible combinations
of neurons in both layers. 2 neurons were chosen as the minimum number of
neurons because at least the network will need the same units as the input layer.
On the contrary, 4 neurons were chosen as the maximum number of neurons
because it is the double of the units in the input layer and it will be enough to
process the incoming information of the previous layers.

� Free parameters to adjust. From Equation 4.15, the free parameters of the
network are: τi, wij , θi and gm. gm and wij can be grouped together because
they represent the connections of different parts of the network. The value of τi
is going to be fixed to 1 because it is not necessary to variate the reaction speed
of the neurons at the moment. So the parameters of the network used during
the evolution are wij and θi. However, it is unknown the numerical range in
which these parameters are optimum and solve the problem. Thus, 6 different
intervals are used in order to know in which range of parameters the network
performs better and achieves the best results. These 6 intervals are divided
in two types: [0, a] and [−a, a] with a = 1, 5, 10. Thus, there are 3 intervals
with only positive values and 3 with positive and negative values. The reason
is that it is necessary to test if the problem can be solved with only excitatory
connections (positive values) or inhibitory weights (negative values) must be
added. The 3 different values of the interval extremes are decided in order to
know how large might be the parameters to refine the search and obtain the best
combination of parameters. A small interval (a = 1), a medium interval (a = 5)
and a large interval (a = 10) are used. Both the synaptic connections, wij and
gm, and the bias, θi, take their values from the same interval. In each simulation
scenario, only one parameter interval is used generating 72 experiments for each
structure and interval.

In addition, for the simulations and training of the network a computer was used.
In order to implement the CTRNN inside a computer program, it was necessary to
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discretize the differential Equation 4.15. Recalling the definition of the derivative of
a function f(t) with respect to t,

df(t)

dt
= lim

∆t→0

f(t+∆t)− f(t)

∆t
(4.16)

However, in a discrete machine this ∆t can be as small as wanted but not 0, so it
is going to be approximated by the division of finite intervals. If this approximation
is used with the differential term of Equation 4.15, it will be obtained that

dyi(t)

dt
≈ yi(t+∆t)− yi(t)

∆t
(4.17)

Then, by substituting the result of Equation 4.17 into Equation 4.15 and using the
discrete time nomenclature consisting of changing t by k, Equation 4.18 represents
the operation of the CTRNN.

yi[k +∆k] = yi[k] +
∆k
τi
·∆yi[k] =

= yi[k] +
∆k
τi
·

−yi[k] + Npre∑
j=1

wij · σi (yj [k] + θj) +

nin∑
m=1

gm · Im[k]

 =

= 1
τi
·

(τi −∆k) · yi[k] + ∆k

Npre∑
j=1

wij · σi (yj [k] + θj) + ∆k

nin∑
m=1

gm · Im[k]


(4.18)

Finally, another free parameter appears, the time interval of the derivative. In
this case, only one sample (∆k = 1) is used so the response of the next step will
depend only on the previous response of the network.

4.3.3 Genetic Algorithm configuration

In this Thesis, a basic GA is used to evolve the CTRNN structure. This GA is
composed by the three basic operations, selection, crossover and mutation, over a
population of individuals whose performance will be evaluated based on a FF (·). So
far the different parameters to be evolved were introduced for the different neural
structures. However, it is necessary to configure the different parameters of the GA
in order to reach a solution and evolve correctly. The different parameters of the GA
and its values are as follows:

Population

A population is composed by a number of individuals, which each one contains a
solution to the problem. Then, the performance of each of them is evaluated by the
FF (·) to find the best solution to the problem. Each individual of the population
contains a chromosome with the set of parameters to evolve. The chromosome
contains the different parameters to adjust from the neural controller and its values
are between 0 and 1. Then, depending on the interval selected for each parameter,
each value of the chromosome is adjusted to evaluate the performance of the solution.
Each generation, a new population is created until it reaches the limit of generations
or a plateau value. The new population is formed based on the best individuals of
previous generations. Thus, it is necessary to configure different parameters related
with the population to reach the best solution. These parameters are as follows:

� Chromosome. It contains the different values to adjust, so that the length
of the chromosome depends directly from the architecture of the CTRNN. A
relationship can be established between the chromosome and the parameters of
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the neural network. Thus, the chromosome is composed by the different wij
and θi, which is expressed mathematically in Equation 4.19.

lch =

input︷ ︸︸ ︷
Nin · (nin + 1)+

hidden︷ ︸︸ ︷
L∑
l=1

Nh,l · (Npl,l +Nh,l)+

output︷ ︸︸ ︷
No · (Npl + 1)+

bias︷︸︸︷
NT (4.19)

where, lch is the length of the chromosome, Nin is the number of neurons in the
input layer, nin is the number of inputs associated with the gm terms, Nh,l is
the number of neurons of the lth hidden layer, Npl,l is the number of neurons
of the previous layer, No is the number of neurons in the output layer and NT
is the total number of neurons. Over each term of Equation 4.19 is the name
of the part of the neural structure to which corresponds. The minimum length
of the chromosome corresponds to the neural architecture with only 1 hidden
layer and 2 neurons in it, and it has a value of 22 genes. Whereas the maximum
length corresponds to the structure with 2 hidden layers and 4 neurons in each
of them, that is 78 genes. The length of the rest of structures is between 22 and
78 genes, so it is also necessary to adjust correctly the parameters of the GA to
find the best solution in each case.

� Size. The population size affects the speed to find the solution. The higher the
size of the population is, the greater the number of solutions are tried. So, there
are more possibilities to find the best solution for big populations. During the
tuning process, different population sizes are tested to find the optimum number
of individuals per generation. The size of the populations varies between 20
to 100 individuals with intervals of 10 individuals of difference between them.
Thus, 9 different populations sizes are tested.

� Generations. It is also required that evolution is limited in order to finish
running the GA. In first place, the number of generations should be high enough
so that the algorithm can reach the solution within it. On the other hand, this
number guarantees that the simulation stops in a hard limit. In case that it is
a large number, it would take a long time for simulating it when any optimal
solution is not reached. For these simulations, this number was fixed to 1000
generations because it is enough to prove the validity of the CTRNN under the
parameters found.

Selection

This is one of the genetic operators that builds the next generation of individuals.
It is based on the mechanism described in Section 3.5.2.2. The one selected is the
roulette-wheel method. This operator consists of reordering the individuals based on
their fitness value. The bigger the fitness value is, the bigger chances the individual
has to be selected. Then, a number of individuals are selected randomly based on
their probability. The number of selections is based on the population size. However,
based only on the randomness of the process, diversity and the best fitted solution
of the problem can be lost. To solve this problem, a combination of the roulette-
wheel method with the elitism is selected. Thus, a number of individuals of the next
generation is reserved to copy directly which consists of the best individuals of the
previous generation. In this case, the number of elites is fixed to 6, being enough to
breed the next generation.

Crossover

The crossover operator is applied over the individuals obtained from the previous
selection. This operator consists of creating a new offspring from the selected
individuals of the previous generation that would breed new individuals in the next
generation. The idea of the operator is to choose two individuals, select randomly a
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point in their chromosomes and then swap the parts of the chromosomes. Therefore,
two individuals are created for the new generation with part of their predecessors. The
crossover favors the exploration of the search scenario. There are different crossover
operators, but the simplest one was used to make the GA quick and to prove that
the network can be trained with the simplest algorithm. The crossover operator only
selects 1 point to cross the chromosome. This point is randomly chosen among the
different genes of the chromosome.

Mutation

This is the last genetic operator implemented. It consists of changing the value of
a gene inside the chromosome randomly with a very low probability. In this case the
value of the gene is altered following a Normal Gaussian distribution with a variance
of σ = 0.2, whose value will be added to the gene in order to modify its value. This
operator is used due to the introduction of diversity inside the population. It also
helps to avoid favoring one individual against others in the genetic drift, to avoid
the premature convergence of the algorithm and to guarantee that the algorithm will
found the global solution with enough time. Different mutation rates are used in
order to find the best one for the problem. These rates are between 0.01 and 0.1 in
steps of 0.01. So, there are 10 different mutation rates to select the best choice for
our algorithm.

Fitness function

The last element of the GA configuration is the evaluation of the individuals.
FF (·) is in charge of evaluating the performance of the different chromosomes once
they have been used for its purpose inside the simulation as the parameters of the
CTRNN. The form of this function is defined by the user, but it should contain the
elements needed to minimize the objective of the neural structure selected. In this
case, a function is built to be capable of evaluating the capacity of the corresponding
CTRNN structure to be in antiphase to the C1 input signal. In Section 4.2, it was
concluded that a controllable user has to behave as Equation 4.12 to get an antiphase
signal. Hence, based on Equation 4.12, a first approximation of the FF (·) is as follows
(see Figure 4.12(a)).

FFi (ṡ(t)) =

{
1; if ṡ(t) = 0

0; otherwise
(4.20)

where FFi (ṡ(t)) is the fitness value of an individual. However, a GA does not behave
well with discontinuous fitness functions like the one formulated in Equation 4.20.
The reason is that it seems like only the individuals that reach the condition have a
fitness value, the rest are equal to 0. So, imagine that neither of the individuals get
a value different from 0, the GA could not evolve because none of the solutions has
a fitness value. That is to say, a GA with such a FF (·) would not converge to an
appropriate solution to the problem.

Thus, it is necessary to change the abrupt formulation of Equation 4.20 in order
to make the algorithm converge to the solution. To do that, the condition of the
FFi (ṡ(t)) is relaxed and a gradual transition is made between the two states (see
Figure 4.12(b)). With the relaxation of the condition, more individuals can score
and evolve to better solutions in order to reach the maximum fitness. Equation 4.21
shows a gradual fitness function formulation of Equation 4.20.

FFi (ṡ(t)) =


1; if |ṡ(t)| < ε

−|ṡ(t)| − δ

δ − ε
; if ε ≤ |ṡ(t)| ≤ δ

0; if |ṡ(t)| > δ

(4.21)

where, ε is the inferior limit and δ is the superior limit. Being ε << δ. In Equation
4.21, the direction of the derivative is not taken into account because the algorithm
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Figure 4.12: Fitness function representation to evaluate the derivative of the

environment signal: (a) only when the derivative is 0 the individual scores and (b)

gradual change from maximum to minimum.

seeks for the reduction of its slope. Figure 4.12(b) shows a graphical representation
of this FF (·), in which the maximum and minimum value are linked by a ramp.
Thus, more individuals can score and the GA can decide between multiple options to
evolve the result. ε and δ have been chosen carefully. If ε is too low, the solution is
nearer to ṡ(t) = 0 and the GA will take much more time to reach it. If ε ≈ δ, the
fitness function have a discontinuity of two states, being difficult to evolve. If δ is
too high, then almost all the individuals were able to score and the GA would not
be able to evolve. Based on these concepts, these limits are fixed to ε = 10−5 and
δ = 10−2.During the simulation results, this assumption will be checked.

In addition, as it is explained for the CTRNN discretization, the GA is going to
be used inside a computer to train the network. Then, it is necessary to discretize
the ṡ(t) used in the fitness function. Thus, a first approximation of ṡ(t) is based on
the definition of the derivative.

ṡ(t) = lim
x→0

s(t+∆t)− s(t)

∆t
≈ s[k +∆k]− s[k]

∆k
=

∆k=1
s[k + 1]− s[k] = ∆s[k] (4.22)

However, from the difference of one sample, it might be possible that the CTRNN
could not extract the tendency behavior of the signal. Thus, a second definition is
proposed consisting of the mean of an interval of samples of the environment signal.
Equation 4.23 reflects this behavior.

∆s[k] =
1

Ns

k−1∑
l=k−Ns

s[l + 1]− s[l] (4.23)

where, Ns is the number of samples over with the mean is elaborated and with k ≥ Ns.
In this case, a value of Ns = 10 samples is used to verify that this approximation is
correct and the better results than the instantaneous difference are obtained.

So, the same FFi(∆s[k]) function has been defined but with 2 approximations of
the derivative of the environment signal. Equation 4.21 shows the value of fitness for
only one instant of time, so for the whole time length the value of individual fitness
is in Equation 4.24.

FFi (s) =
1

Ks

Ks−1∑
k=0

FFi (∆s[k]) (4.24)

where, Ks is the total number of samples of s[k]. The fitness values of the different
time instants have been integrated and then make the mean of all of them to obtain
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the value of an individual. Consequently, the average fitness value of the population
is computed in order to know how well the performance of the generation was during
that realization (see Equation 4.25).

FF (s) =
1

Npop

Npop∑
i=1

FFi (s) =
1

Npop ·Ks

Npop∑
i=1

Ks−1∑
k=0

FFi (∆s[k]) (4.25)

where, Npop is the number of individuals of the generation. Finally, each generation is
evaluated over and over again until the last generation or a plateau value is reached.

To sum up, 2 fitness functions are evaluated based on how the derivative of the
s(t) is done (see Equations 4.22 and 4.23). And then, it will be decided which one is
the best form to extract the derivative behavior of the signal.

Seeds

The last parameter of the algorithm is based on the starting point of the search
to find the best solution of the problem. Normally, the field of search is initialized in
different random points to avoid the problems of convergence in a finite time and to
find a faster solution of the problem. In addition, beginning in different points of the
search space will allow the GA to be independent of the initial conditions. For each
experiment, 30 different seeds have been used to randomized the initialization of the
algorithm. Thus, each experiment is repeated 30 times in different parts of the search
space. With this number of seeds, it is enough to discover the dependency with the
initial conditions and if the best solutions are reached for these configurations of the
GA.

4.3.4 Stability

It is necessary to analyze the stability of these algorithms to determine if they
converge. The stability of the CTRNN and the GA used to train it must be
guaranteed. Thus, some tools are used to assure that they are stable.

In first place, the stability of the RNN was already contemplated in Section 3.3.1.
In general, the stability analysis of RNN is complex, because each neuron represents a
difference or differential equation in an N -dimensional space. However, there are some
theorems based on the Lyapunov stability theory (Lyapunov, 1992) that establish a
way to study the dynamic of the system represented by the CTRNN. Based on this
theory, Cohen and Grossberg (Cohen and Grossberg, 1983) develop the Theorem
3 that will assure that a RNN is stable in the Lyapunov sense provided that W
is symmetric, the yi of the neuron is nonnegative and the σi(·) is monotonically
increasing. If these three conditions are met, then the proposed CTRNN will satisfy
the theorem and will be stable. By construction, the CTRNN has a σi(·) that is
monotonically increasing since it is a sigmoid function. In addition, the function that
each neuron computes is nonnegative since its output is directly the activation and the
range of the sigmoid is between 0 and 1. Thus, two of the three imposed conditions
are fulfilled. However, the final form of the matrix W is unknown and its information
is encoded inside the chromosome of the GA. So, this condition will try to be satisfied
in the process of finding the best solution to the problem.

The stability of solutions of the GA was already demonstrated in Holland (1975)
and encouraged by Golberg (2006). They invented the Schema Theorem to prove the
convergence and stability of the GA. The GA is composed by different schemas. A
schema represents a group of individuals in the solution space, and corresponds to
attributes of those individuals. The Schema Theorem reveals how a fitted schema will
survive and multiply along the evolution, whereas the number of unfit individuals will
decrease.

This theorem explains how new individuals are obtained and the growth ratio
depends on the characteristics of the chromosome and the number of fixed strings
inside it. So the algorithm will continuously search for better fitted individuals with
a growth ratio depending on the population average fitness and the probability of
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ANN Parameters min max

W and gm 17 67

θi 5 11

τi – 1

# hidden layers 1 2

# hidden neurons 2 4

Total # of neurons 5 11

Total # structures 12

Total # intervals 6

Table 4.1: Configuration of the ANN for

the different simulations.

GA Parameters min max

chromosome length 22 78

Population size 20 100

# generations – 1000

# elites – 6

# crossovers – 1

Mutation rate 0.01 0.1

# FF (·) – 2

# seeds – 30

Table 4.2: Configuration of the GA for

the different simulations.

surviving the operations. To sum up, both of the algorithms used (CTRNN and GA)
are built following both theorems (Cohen-Grossberg Theorem and Schema Theorem)
so that they provided the necessary conditions to assure the stability of the algorithms.

4.4 Simulation Results

At the end of the training for all the different simulation configurations, the best
CTRNN architecture and the best parameters of the GA will be obtained. From
Sections 4.3.2 and 4.3.3, the different parameters of the simulations are reduced to
Tables 4.1 and 4.2. Thus, there are 12 different CTRNN structures which use 6
different intervals for their free parameters and they are trained with a GA that
has 9 different sizes of populations evolved in 1000 generations with the 3 basic
genetic operators: selection with 6 elites, 1 crossover and 10 different mutations
rates, evaluated for 2 fitness functions. And each experiment is repeated 30 times
to randomize the initial conditions of the algorithm. So the number of simulations to
be done is 388800 in total.

All the simulations under the set of parameters of Tables 4.1 and 4.2 are conducted
by NeuralSim simulator. NeuralSim is an open source simulator under GPLv3.0
license developed in C++. It was build as a general purpose simulator to prove
different neural structures with different methods to train them, learning algorithms
and GAs. The simulator is built following a modular structure so anyone can configure
different neural structures with different neural functions. The different parameters
of the neural network and the algorithm used to train it, are configured through
different XML files. All the simulations were run in a computing cluster of 60 unit
processors of AMD Opteron(tm) Processor 4180 with 40GB of RAM memory, under
a distribution Rocks 6.1.1 (Sand Boa) of 64 bits architecture.

Before presenting the simulation results, it is needed to talked about the input
signal of the neural controller. Its aim is to smooth the aggregated consumption of a
grid, but a more general input signal is used for this preliminary study to determine
the best configuration of the CTRNN and the GA. Thus, a continuous periodic signal
of class C1 is required to evaluate the neural structure and check if the derivative
intuition to smooth a curve is correct. In this case, a sinusoidal function is used
which possesses all characteristics and similar properties of the one to smooth. In
addition, it is also necessary a representative waveform of the varying consumption
with its peaks and valleys. Therefore, a sinusoid is used with a day period to simulate
a peak and a valley. However, a high resolution sinusoid is not used with 1440 samples
per period as it length in minutes of a day. The idea is to use a sampled sinusoidal
of 72 samples per period so that it is the same as sampling the daily aggregated
consumption every 20minutes. Moreover, the input signal is formed of 3 periods of
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Figure 4.13: Input signal used for the training, consisting of a 3 periods sinusoidal

function of 72 samples per period.

72 samples in order to isolate the initial state of the CTRNN and reach a stable state
to evaluate the performance of the neural controller. The representation of the input
signal is shown in Figure 4.13. As observed in Figure 4.13, the sinusoid presents
enough information required by the CTRNN to compute the inverse derivative.

All the elements involved in the training are already presented as well as the tools
used. Now, it is necessary to analyze the different results obtained after the 388800
simulations. The analysis consists of evaluating the performance of the different
structures with the different configuration parameters. Thus, the analysis consists of
going from the general, evaluating the overall assessment of each structure, to the
specific, how this performance is affected by the different parameters simulated.

Neural structures and their parameters performance

Firstly, Figure 4.14 shows the overall performance per structure for all possible
combination of parameters. The nomenclature followed for referring to each structure
is of the form #ML#N , where #M ∈ {1, 2} is the number of hidden layers of
the structure, and #N ∈ {2, 3, 4} is the number of neurons of the hidden layer,
#N ∈ {2, 3, 4}. At a first glance, the performance of each structure is very similar. All
boxplots are composed by 32400 points corresponding to the individual with the best
fitness value reached during the 1000 generations for all the different configurations
of the CTRNN and GA parameters.

For the 12 structures, the value of the higher whisker is located closely to 1.0 which
is the maximum value that the FF (·) can take. This assures that in all the structures,
there is a combination of parameters that ensures that ṡ[k] < 10−5, where 10−5 is the
higher limit of the fitness function. On the other hand, the minimum fitness value
for all the 12 structures is also near the vicinity of a 0.2 fitness value. Thus, in those
cases, the environment signal variations are in between 10−2 and 10−5 (the limits of
the fitness function) since the average fitness value is different from 0. Both whiskers
are situated to 1.5 the value of the InterQuartile Range (IQR), or 1.5 · |Q3−Q1|. The
IQR is a measure of the data deviation, so in this case a great deviation is observed
in the data of the simulations. Again for all the structures the Q1 is located above
0.2 but closes to it and the 25% of the simulations reached this maximum fitness.
Close to the Q1 is the median which represents the 50% of the data. The median for
all structures is close to a fitness value of 0.25, however structures with 4 neurons in
the last hidden layer have a little lower median value.
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Figure 4.14: Overall fitness performance per structure for all the possible

configurations of the simulations. The nomenclature of the structure is #ML#N

with #M , the number of hidden layers, and #N , the number of hidden neurons.

Each box comprises observations ranging from the first to the third quartile. The

median is indicated by a horizontal bar, dividing the box into the upper and lower

part. The whiskers extend to the farthest data points that are within 1.5 times the

interquartile range. Outliers are shown as dots.

Finally, the Q3 for all the simulations is above a 0.8 fitness value, so that the
25% of the simulations are above this value. Thus, for these 25% of simulations, it is
closer to the higher limit of the fitness function and the amplitude of the variations
of s[k] are almost reduced. In addition, it can be observed, some differences between
the values of Q3 depending on the structure. The best value of the Q3 corresponds
to the structure 1L4 (1 hidden layer with 4 neurons), but in general the performance
of the architectures with only one hidden layer are only 1% above the two layers
architectures. This figure seems relatively too low to state which structure is the
best. However, it can be concluded that the complexity introduced by the two hidden
layers do not achieve better results than the ones with a hidden layer. The tuning
is reduced since fewer parameters are used and the processing capabilities are more
fitted to requirements of the problem.

Nevertheless, the information of Figure 4.14 is not enough to reach any conclusion.
So, the data corresponding to each structure are split in the different ranges of the
tuple {W ,Θ}. Figure 4.15 shows all the results for the different ranges of values
that the parameters of the CTRNN can take. In order to reduce the volume of
data, the seeds of the different configurations have been grouped to analyze the mean
performance of each evolution since all the structures behave similarly. A first division
has been made based on the form of the value ranges. The two ranges selected are: i)
[0, a], only positive values, and ii) [−a, a], symmetric range of values. The first range
indicates that there is no inhibition inside the neurons, so the connections and bias
will excite the next response coming from the previous neurons. On the contrary,
the range of values of the form [−a, a] allow neurons to have excitatory or inhibitory
connections which increase the adaptivity and the regulation of the neural activation.
These assumptions are also corroborated by the results shown in Figure 4.15(a).

For all the structures, when {W ,Θ} ∈ [0, a] there is no difference in the fitness
value for each one. In all these cases, the structure is far from reaching the maximum
value of the fitness, so hardly these structures are evolved. This behavior occurs
due to the absence of inhibitory synapses. The neurons are saturated due to the
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Figure 4.15: Performance of the 12 structures divided by the range of values that

{W ,Θ} can take: (a) the range of values are grouped in two intervals [0, a] and

[−a, a]. (b) three range of values of the form [−a, a] with a ∈ 1, 5, 10.

monotonically growing of the activation function together with the positive synapsis,
making impossible to evolve the structure to reach its maximum. In addition, the
deviation of the data is too small for all the structures and it is less than IQR < 0.02
(see Figure 4.15(a)). Thus, it can be assumed that for this type of ranges, the neural
structure does not evolve properly and this type of configuration can be discarded.

On the other hand, for structures in which {W ,Θ} ∈ [−a, a], the maximum
fitness is almost reached. The maximum whisker for all of them is between 0.9 and
1.0 fitness value. It can be observed that the median is slightly higher for structures
with only one layer rather than the ones with two layers. Moreover, the data deviation
presented in one layer structures is less than half the deviation of the two hidden layer
structures. Structures with two hidden layers have very similar performances and they
are not so different to each other. On the other hand, the increase of neurons in one
hidden layer structures, reduces the variance of the result.



136 4. Individual Controller

Structure Min Q1 Median Q3 Max IQR Mean SD

1L2 81.92 87.16 90.28 91.41 92.95 4.25 88.51 4.46

1L3 82.63 88.05 90.98 91.85 93.08 3.80 89.29 4.17

1L4 85.34 89.08 90.99 91.89 93.16 2.81 89.84 3.36

2L22 71.51 83.88 88.88 92.12 94.12 8.24 86.93 6.82

2L23 70.16 83.23 89.78 92.49 94.14 9.26 87.04 7.00

2L24 74.29 84.80 90.43 92.48 94.68 7.69 87.54 6.98

2L32 72.67 84.47 89.17 92.42 93.73 7.95 87.33 6.40

2L33 72.02 84.31 89.87 92.55 94.26 8.24 87.47 6.83

2L34 76.75 85.72 90.18 92.67 94.18 6.95 88.35 5.65

2L42 72.32 83.96 89.51 92.36 94.25 8.40 87.22 6.57

2L43 75.56 84.67 90.81 92.71 94.68 8.04 88.09 6.46

2L44 79.53 87.28 91.45 92.73 94.76 5.45 89.07 5.62

Table 4.3: Statistical data of the simulation performance for all the structures where

a = 5. The fitness value is expressed in %.

Figure 4.15(b) shows the performance for each value of a ∈ 1, 5, 10 for the range
of values of the form [−a, a]. For all the structures, the best performance is achieved
for the range of values in which a = 5. The worst performance is for the one in which
a = 10, it presents lower median values than the other two intervals. The reason is the
length of the interval, now there are more parameters to choose and it makes difficult
the GA to find a better solution. In spite of having more dispersion than the rest of
values ranges, a = 1 have a higher performance than a = 10 since the median for all
the structures is higher. However, it is still lower than the performance of a = 5 for
all the structures.

Therefore, the best performance is the one in which {W ,Θ} ∈ [−5, 5]. Statisti-
cally all of them are very similar since all of them are nearly close to the same values,
but one layer structures present an IQR lower than the two layer structures. In order
to help with the decision of which structure presents a better performance in this
interval, the numerical information has been gathered in Table 4.3. All the structures
present very similar values, however neural structures with only one hidden layer
has higher minimum values than the two layers structures. In addition, the medians
are close to the maximum of the boxplot, but the deviation of the data is lower in
one layer structures. So, the complexity introduced by adding a second hidden layer
provides slight performance improvements. In contrast, it increases the computation
of the network, which in this case is oversized for the problem at hand. Thus, simpler
structures are chosen for this problem and a structure with one hidden layer is selected.

Among single hidden layer structures, the performance of the one with four
neurons in the hidden layer is clearly the winner of the three of them. There are
not significant difference among them according to Table 4.3, but in the overall
performance of the three value ranges, 1L4 is clearly the best of the three. Finally,
the best fitted structure for the problem is 1L4 with {W ,Θ} ∈ [−5, 5]. Thus, the
selected structure is not too complex but enough to reach higher values of fitness in
this interval and relative easily due to the data dispersion is narrow.

Before analysing the influence of the parameters of the GA in the performance of
the selected structure, it is interesting to show the trends in evolution. Figure 4.16
shows the best, the average best, the average, the worst and the average worst fitness
values of the 32400 simulations for this structure. It shows that for the [0, a] interval,
the structure did not evolve along the time since the average values are almost the
same and the best one is very close to the general average. This behavior for [0, a]
confirms the performance observed from the different structures in Figure 4.15(a), in
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Figure 4.16: Fitness function representation to evaluate the derivative of the

environment signal.

which there is almost non existing evolution. For the value ranges of the form [−a, a],
the best fitness almost reaches the best value in all of them. However, for a = 1 this
evolution is slower than the rest since it reaches a plateau value almost at the end of
generations and the best value is slightly below the rest of intervals. In addition, the
minimum generation value of fitness for a = 1 is greater than the other two, but it
decreases as the number of generations and the optimal solution has been found since
more individuals perform near the best value achieved. For the other two values of a,
the best fitness value grows logarithmically. For a = 5, the growth is more pronounced
than a = 10 and rapidly reaches a plateau value close to the maximum fitness value.
In average the best value for a = 5 behaves as the maximum best fitness, reaching
also the highest values. In contrast, the best fitness value growth for a = 10 is more
pronounced than a = 1, but in average this best fitness value is still growing because
1000 generations were not enough to reach a plateau value in the 5400 simulations
under these conditions.

Thus, the best choice of parameters for our neural controller are in the interval
{W ,Θ} ∈ [−5, 5], at least under the conditions imposed for the training. Figure 4.16
shows that this range of values reaches a stable plateau value rapidly and gets the
closer value to the maximum fitness. However, it is still unknown how the evolution
for the structure and parameters selected changes with respect to the GA parameters.

Influence of GA configuration

The neural structure selected consists of a single hidden layer with 4 neurons
inside it. The range of values that the free parameters can take are inside the interval
[−5, 5]. Now, the different GA parameters have to be selected in order to understand
their influence in the training of the CTRNN selected. The election of the parameters
resides in the performance of the neural structure based on the different configurations
that the 3 free parameters of the GA (population, mutation and fitness function) can
take.

Firstly, the performance of networks is compared based on the size of the
population and the mutation rate. Figure 4.17 shows the effects in the performance
of the structure because of these 2 parameters. It has been represented the
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Figure 4.17: Fitness performance for the selected structure with different population

sizes and mutation rates. Above each panel the size of the population has been

indicated and each boxplot inside the panel represent a different mutation rate. The

black line represents the mean performance of each population. Some outliers are not

represented in order to zoom in the boxplot representation.

population sizes versus the mutation rates grouping together the fitness values for
the 2 parameters. Each panel of Figure 4.17 represents a population size. For each
of them, 10 boxplots (each per mutation rate) of 60 points are represented.

The differences among the results are very short, all of them seem to have a good
performance and they are pretty similar. However, the smaller differences will give
some clues on how to select the best parameters of the GA. The worst results are
obtained for the lowest population size and the lowest mutation rate. In general,
the data dispersion is low for all the boxplots. It can be observed a growing fitness
trend as the mutation rate grows. This effect occurs due to the increase of random
changes in the neural parameters, so that the GA explores faster the search space
and can reach the solution in less time. However, for too high mutation rates, the
algorithm may have trouble finding the solution because of the random parameter
changes. That is the reason why in general for higher mutations, the data dispersion
found is higher than for lower ones for the different population sizes (except to a
population size of 20 individuals).

Moreover, the fitness value grows as the size of the population grows. The
difference of performance for lower population sizes and higher ones is less than 10%,
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Figure 4.18: Results of the fitness performance for the three different parameters

of the GA with the structure and interval selected. Panel A shows the results of

the fitness function whose ∆s[k] = s[k + 1] − s[k]. While panel B shows the results

of the fitness function for ∆s[k] =
(∑k+1

l=k−10 s[l + 1] − s[l]
)
/10. In black, it is the mean

performance per block of configuration values. Some outliers are not represented in

order to zoom in the boxplot representation.

so that the influence of the population size is related with the number of possibles
solutions that the GA can evaluate in one generation. The probabilities of finding
the optimum are increased when more individuals are part of the generation, and the
diversity introduced for the genetic operations is also increased. That is the reason
to use higher values of population sizes, but also larger populations will increase the
operations done during a generation and the speed of the simulation will decrease.

Comparing both parameters at the same time, it can be stated that the larger the
population size and the mutation rate are, the higher the fitness value is. In addition,
in low populations of individuals, higher mutation rates achieve same performance
levels as large populations of individuals with low mutation rates. So, both parameters
are directly related and depending on the problem to solve, their values can be adapted
without necessarily lose the performance level. In this case, it can be used high
population sizes (Np =100 individuals) and large mutation rates (pm = 0.1) to obtain
the best fitness values.

The last parameter to be selected is the way in which the fitness function is
calculated in order to evolve the neural controller in the best way. Panels of Figure
4.17 are divided into two, depending on the approximation used. The results are
gathered in Figure 4.18, in which panel A contains all the result for a ∆s[k] = s[k +
1] − s[k], and panel B contains the result for ∆s[k] =

(∑k+1
l=k−10 s[l + 1] − s[l]

)
/10. First

option computes directly the difference with the previous value of the environment
signal, while option B does the average value of the environment signal in a window
of 10 samples. In both cases, the fitness performance grows with the population size
and the mutation rate. So, large populations of individuals with high mutation rates
reach better performance values than smaller populations with lower mutation rates.
Moreover, in both cases, the dispersion of the data decreases as the population size
and the mutation rate increases.
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However, the results for the Fitness A are lower than the results for Fitness B. The
mean performance for option A begins in a value lower than 0.85 and increases its value
until it surpasses 0.9, being close to it. On the other hand, option B presents a smooth
ascent beginning approximately in 0.87 until it reaches the end of the simulation with
a mean value that also surpasses the 0.9 performance, approximately 0.92. Option
A presents a higher slope for the mean of the different simulation configurations. In
spite of being closer, option B presents better results than option A. However, it is
difficult to appreciate the differences for the maximum and the minimum in Figure
4.18, so that the maximum, median and minimum tendencies have been calculated
for the two fitness options.

Figure 4.19 represents the different tendency of quartiles for the data from Figure
4.18. The data is sorted by the population growth. In the case of Q3, both fitness
options are parallel but still the maximum values are achieved by option B. On the
other hand, the median and Q1 are not parallel, so that the differences among the
two options decreases as the population sizes increases. In both cases, the slope of
option B is less than the slope of option A. However, option B obtains always better
results than option A. Thus, option B will be selected as the fitness function to train
our network structure.

Summary of selected parameters

In conclusion, all the referred neural architectures have just been trained to prove
the best set of parameters for the algorithms. The selected parameters are those whose
performance is the best of all the possible configurations. Hence, the architecture with
the best performance and complex enough to solve the problem, is the one with a
single hidden layer and 4 neurons inside it (1L4). The best range of values for the free
parameters of the neural structure is the one in which positive and negative values
can be taken, because inhibitory and excitatory synapsis can be arranged between
the different neurons. The interval selected is {W ,Θ} ∈ [−5, 5].

Then, it has been discussed how the different configurations of the GA affects the
performance of the neural structure. Therefore, after the simulation experiments,
it has been found that the higher populations sizes are, the higher the fitness
performance is. The reason is that more individuals are tested each generation,
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CTRNN

Structure 1L4

{W ,Θ} [−5, 5]

GA

Population size 100

Mutation rate 0.1

∆s[k]
(∑k+1

l=k−10 s[l + 1] − s[l]
)
/10

Table 4.4: Summary of the parameters selected after the simulations for both

algorithms.

making easier to find the best solution from the diversity of the population. In
addition, the same effect happens with the mutation rate, the higher it is, the
higher the fitness performance is. And finally, from the two possible fitness options
proposed, the instant derivative of the environment signal has lower performance
than the cumulative approximation of 10 previous samples of the environment signal.
Thus, the final configuration of the GA consists of a population of 100 individuals,
a mutation rate of 0.1 and the fitness uses ∆s[k] =

(∑k+1
l=k−10 s[l + 1] − s[l]

)
/10. All the

final configurations of the CTRNN and the GA are gathered in Table 4.4.

4.5 Post-evaluation

After evolution, it is necessary to check that the behavior of the evolved CTRNN
with the selected parameters {W ,Θ} corresponds to the objective evaluated by the
fitness function. Thus, a process of post-evaluation is performed to test that the
evolution was correct. This process will consist of studying the output of the evolved
neural controller for the characteristics of the environment described in Figure 4.9.
In order to carry out the post-evaluation, some figures of merit have to be declared.
These figures will help to quantify the effect of the neural controller output in the
environment in order to smooth its shape and tend to be constant.

Thus, 7 were the selected coefficients for the assessment of the signal. They
measure different aspects of the signal to quantify its flatness and the time taken to
converge to the solution. In order to analyze the waveform of s[k], 4 central moments
have been used which are computed in terms of the signal mean value. The next 2
coefficients are relationships with different parameters of the signal to evaluate its
variability. And the last one is a measure of time to know when the algorithm reaches
a stable operating mode. So, these coefficients are as follows:

� Mean (µ0 = µ). The mean is the central value that in average the signal takes
through a time period. This measure will give information about where the
signal will be on average and will also serve as the reference value to develop the
next central moments around it. The post-evaluation signals are greater than
zero, so this value will be also greater than zero. This parameter is calculated
as in Equation 4.26.

µ0 = µ = E[X] =
1

K

K∑
k=1

s[k] (4.26)

� Variance (µ2 = σ2). The variance is a measure of the dispersion of the data
around a value, in this case µ. For us, it will indicate how far the points of
s[k] are spread out from its average. Higher values of σ2 will indicate that the
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variability of the signal is too high, while a zero value indicates that all values
will be the same, so that s[k] will be constant. σ2 is the second central moment
and its mathematical expression is as follows:

µ2 = σ2 = E
[
(X −E [X])2

]
=

1

K

K∑
k=1

(s[k]− µ)2 (4.27)

� Skewness (µ3). This parameter measures the asymmetry of the data, if it is
above or below µ. Thus, it indicates how the signal is distributed around its
average in a time period. It can be interpreted for positive values as the signal
is above µ most of the time. Whereas if it is below µ, it indicates that most of
the time the signal is below the data. In case of 0, the data is around the mean.
This is the third central moment and it is calculated as:

µ3 = E
[
(X − E [X])3

]
=

1
K

∑K
k=1(s[k]− µ)3

σ3
(4.28)

� Kurtosis (µ4). This is another measure of the form of the signal as µ4. In this
case, the kurtosis is studying the dispersion of a signal related to the average
through the points closest to it compared with those points of the distant ends.
Therefore, a high value of µ4 means that there are lots of points around the
mean but at the same time lots of them are also in the ends of the signal.
On the contrary, a low value means that all the points are concentrated in the
average of the signal. The mathematical expression is:

µ4 = E
[
(X − E [X])4

]
=

1
K

∑K
k=1(s[k]− µ)4

σ4
(4.29)

� Coefficient of variation (cv). This parameter establishes a relationship between
the average of the signal and its variance. When the data is around the mean,
this coefficient is next to 0 and otherwise the data will present mean deviations.
This coefficient is described mathematically in Equation 4.30.

cv =
σ

µ
(4.30)

� Crest factor (Cf ). The last parameter related with the form of the signal is the
crest factor. This factor measures the waveform through the ratio of maximum
values of the signals compared to its effective value. Thus, it indicates how high
the peaks are present in the form of the signal. A Cf of 1 indicates that the
signal does not have any present peak and it is constant, whereas higher values
indicates how accused those peaks are. This factor compares the maximum of
a signal with respect to Root Mean Square (rms) of the signal for a time period
(see Equation 4.31).

Cf =
|s|peak
srms

∣∣∣∣
K

(4.31)

� Time of convergence (tc). The last parameter used is the convergence time
of the neural controller to flatten the environment signal. It is a measure of
the stability of the algorithm indicating when the signal becomes stable and
abandons the transitory state. Hence, it is considered that the environment has
reached a stable state when the σ2 is less than an established minimum during
a period of time. This is expressed in Equation 4.32.

tc = |σ2| < σ2
min

∣∣K (4.32)
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Signal µ σ2 µ3 µ4 cv Cf tc

z1[k] 1.000 0.00 0.00 0.00 0.00 1.0000 14

z2[k] 0.999 2.98 · 10−7 4.77 · 10−7 −1.13 · 10−6 5.46 · 10−4 1.0008 25

z3[k] 1.003 1.59 · 10−3 −1.67 · 10−5 9.65 · 10−6 3.98 · 10−2 1.0880 56

z4[k] 0.998 4.65 · 10−5 −2.38 · 10−7 2.98 · 10−7 6.83 · 10−3 1.0101 28

z5[k] 1.003 3.67 · 10−5 −9.54 · 10−7 1.91 · 10−6 6.04 · 10−3 1.0149 35

z6[k] 0.994 6.68 · 10−2 8.97 · 10−4 6.37 · 10−2 2.60 · 10−1 1.9468 24

Table 4.5: Summary of the post-evaluation results for the 6 different signals.

The different measurements have been introduced to evaluate the response of the
evolved neural controller. The best chromosome with higher fitness value has been
chosen for the neural architecture of 1 hidden layer and 4 neurons inside it with its
free parameters of the form {W ,Θ} ∈ [−5, 5]. To begin the post-evaluation, it is
necessary to select several waveforms of z[k] that the neural controller has to smooth.
6 different signals have been selected, each with different characteristics. These signals
are chosen in order to evaluate the adaptability and the ability of generalization of
the network. Their mathematical expressions are gathered in Equation 4.33.

z1[k] = 0 (4.33a) z2[k] = sin(f · k) (4.33b)

z3[k] = sin(2 · f · k) (4.33c) z4[k] = sin(f · k/2) (4.33d)

z5[k] =

{
a · k if 0 ≤ k < K/2,

1− a · k if K/2 ≤ k ≤ K.
(4.33e) z6[k] =

{
0 if 0 ≤ k < K/2,

1 if K/2 ≤ k ≤ K.
(4.33f)

The first signal z1[k] of Equation 4.33a is a constant signal of zero value. This
signal is used to test the response of the network in absence of any other element,
only its own output. Then, z2[k] is a periodic sinusoid with the same frequency of
the one used during the evolution (see Equation 4.33b). z2[k] was chosen to test that
the fitness value obtained after the evolution was correct and it is able to compute
the opposed derivative of the input signal. z3[k] and z4[k], whose expressions are
gathered in Equations 4.33c and 4.33d, are both sinusoid waveforms, but with different
frequencies. z3[k] has a frequency double of the sinusoid of z2[k] and z4[k] has half
of the frequency. These two signals test how the network responds to changes in the
speed of the waveforms. Finally, two other signals were defined that present some
peculiarities in their form and in the derivative of both of them. Both are periodic
but its derivative suffers some sudden changes. z5[k] is a triangular signal which is
periodic and continuous but the sign of the derivative changes suddenly at the peak
(see Equation 4.33e). And z6[k] is a square signal with a duty cycle of 50% (half of
the period is at 0 and the rest is at 1), which is also periodic but not continuous (see
Equation 4.33f). In both cases, these signals are used to analyze what happen when
the derivative change (z5[k]) or it is undefined (z6[k]) to evaluate the response of the
network to signals of different nature to the ones proposed for the training.

The post-evaluation was done by evaluating the behavior of s[k] over a period of
the waveform selected when the algorithm has reached its stable state. All the results
to the signals described above are presented in Table 4.5. In addition, Figure 4.20
shows the different waveforms for each of the signals post-evaluated. In general, the
algorithm is able to compute the derivative of the environment signal, to oppose to
it and to flatten it. Moreover, it also converges in few steps to a stable state in which
it will remain until the end of the simulation.

However, the results are not the same for all the signals due to its characteristics.
In the case of the absence of input, z1[k], it can be observed in Figure 4.20(a) that
x[k] is constant and also s[k] since there is no other signal. Thus, in the absence of
z[k], the network obtains a constant output. Table 4.5 shows that µ is located at a
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Figure 4.20: Waveforms for the post-evaluated signals selected: (a) z1[k], absence

of z[k], (b) z2[k], sinusoidal z[k] with the same frecuency used for evolution, (c) z3[k],

sinusoidal z[k] with double frequency than the one in (b), (d) z4[k], sinusoidal z[k]

with half frecuency than the one in (b), (e) z5[k], triangular z[k] and (f) z6[k], square

z[k]. In red is the environment signal, s[k], in blue is the non-controllable signal, z[k],

and in green is the output of the CTRNN, x[k].

value of 1 and the rest of the dispersion parameters are zero. The Cf has the best
value that it can take which is 1 because it does not present any peaks. The tc of the
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Signal zCf sCf
∆Cf/sCf

[%]

z1[k] – 1 0

z2[k] 1.63065 1.00083 62.9302

z3[k] 1.63137 1.08802 49.9397

z4[k] 1.63166 1.01013 61.5298

z5[k] 1.32944 1.01495 30.9859

z6[k] 2.27303 1.94682 16.7563

Table 4.6: Comparison of Cf with and without the evolved neural controller.

network is quickly, in 14 time steps it reaches the stable state in which it will remain
until the end.

The next signal, z2[k] is the same signal used for the training, so it is expected a
high performance. Table 4.5 shows that s[k] is centered in 1 again and there is not
any dispersion around µ. Its σ2 is negligible, the skew of the signal is near zero and
they are very concentrated in the mean since the kurtosis is also negligible. The cv
also indicates that the dispersion of the data is small and Cf confirms the absence of
peaks for s[k] since is near to the optimum. tc is again very low in 25 time steps the
algorithm has already converged. The waveforms of Figure 4.20(b) show that x[k] is
in antiphase to z2[k] to produce a flattened s[k].

z3[k] and z4[k] are again two sinusoids to prove the behavior of the network when
the frequency of the sinusoid varies. In the case of z3[k], it can be observed in Figure
4.20(c) that the controller does not behave as great as in Figure 4.20(b), because it
presents a ripple in s[k]. In Table 4.5, the moments σ2, µ3 and µ4 are higher than ones
for z2[k] so the data dispersion is bigger. And also the form of the waveform presents
some peaks that are also present in the value of Cf . In addition, tc is approximately
double the one of z2[k]. On the contrary, when the frequency is lower, the results are
very similar to the one obtained for z2[k]. Low values for the dispersion coefficients,
σ2, µ3, µ4 and cv. And also a very close value of Cf to 1, so that it has not any
pronounced peak. tc is also as low as z2[k]. Thus, the neural controller behaves
similar for frequencies less than the one selected for the evolution. For frequencies
higher than the one selected in the evolution they reduce the variability of the signal
but they present some peaks in the resultant waveform.

z5[k] has little dispersion around the mean as the value of the σ2 and cv are low
(see Table 4.5). In addition, the data is concentrated in the mean and with no skew
above or below due to moments µ3 and µ4 are also low. The waveform is also really
flatten as it can be seen in Figure 4.20(e) and checked with a Cf close to 1. And the
convergence time is low, only 35 time steps. On the other hand, the performance of
z6[k] is the worst compared to the rest of signals. There is more dispersion around
the mean because the σ2, µ4 and cv are higher compared to the rest. The data is not
skewed because it presents a relative low value. About the form in Figure 4.20(f), the
presence of peaks can be observed at the point in which the signal changes of state.
Therefore, Cf has a high value far from 1 because of the presence of those peaks.
However, the response of the network is very fast and in only 24 steps the network
has converged.

Table 4.6 shows a comparison summary of the algorithm application. In the case
of z1[k], there is no improvement due to the absence of signal at the input of the
network. There is a reduction of Cf in all cases. In the best of the cases (for signals
z2[k] and z4[k]), a reduction of the 60% was achieved. Whereas in the worst case (for
signal z6[k]), a reduction of 15% was achieved. Thus, the application of the algorithm
always reduces the peaks, increasing the flattening of the s[k].

A last trial was carried out in order to test how the neural controller performs
with a signal similar to the grid aggregated consumption. Thus, an artificial grid
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Figure 4.21: Result of the post-evaluation for a z[k] with a waveform similar to the

grid. In red is the environment signal, s[k], in blue is the non-controllable signal, z[k],

and in green is the output of the CTRNN, x[k].

signal is made based on the principal components of its spectrum. It is used the sum
of three sinusoids with the weekly, daily and half daily frequency components. The
mathematical expression is gathered in Equation 4.34.

z7[k] = A1 · cos (14 · f + φ1) +A2 · cos (7 · f + φ2) +A3 · cos (f + φ3) + µ (4.34)

Hence, each sinusoid possesses a frequency in each component and the amplitude
of z7[k] is between 1 and 0.5 since the consumption of a real grid is greater than 0.
The application of the controller to this signal can be observed in Figure 4.21. It can
be observed that the result is as expected with the previous signals, the network is
able to compute the derivative, change its sign and be in antiphase to z7[k] producing
an almost constant s[k]. µ of s[k] is in 1.004 and σ2 of the signal is 1.84 · 10−5, so
s[k] does not present much variation and is close to the µ. s[k] is concentrated in the
value of µ since the skew is low, µ3= −8.34 · 10−7 and µ4= 3.10 · 10−6. The Cf of
z7[k] is also reduced, Cf (s[k]) = 1.0078 and Cf (z[k]) = 1.2703, so the reduction of
applying the neural network is a 26.05%. This factor is also closer to the ideal value
of 1. Finally, the convergence time of the algorithm is 31 steps, again the CTRNN
reaches quickly a stable state.

To sum up, the application of the evolved neural network always improves the
behavior of the environment signal. Reducing the variability of the z[k] and obtaining
an antiphase signal from the CTRNN. In the case of signals with the same nature as
the one evolved, the results are better than in other cases. For signals in which the
derivative does not exist, the algorithm does not perform so well, but still it could
also reduce the variability of the signal, converging quickly to a steady-state.

4.6 Summary and conclusion

In this Chapter, the environment and the different elements that compose this Thesis
have been presented. From the perspective of this Thesis, a grid is composed by
a series of facilities, which consume electricity and could have some source of local
generation. Hence, they have been divided from the controllability point of view
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of its consumption in controllable and non-controllable facilities. The objective of
this Thesis, consists of reducing the variability of the aggregated consumption of the
different users. However, this problem is too complex to solve in one step so it has
been simplified by dividing the environment in only two blocks, one controllable and
one non-controllable.

Then, different possibilities have been considered in order to flatten the aggrega-
tion of the different users. In this way, it is thought that cancelling the derivative
of the non-controllable signal will be enough to obtain a constant aggregated signal.
So, the derivative algorithm followed was explained in order to create a destructive
interference that will be in antiphase to the one corresponding to the non-controllable
users. This approach was possible due to the properties of the CTRNN inside the
controllable user. A signal processing approach was followed to understand the
problem and simplify it. Rather than using the grid aggregated consumption, a
stage was used in which the non-controllable demand, z(t), was sinusoidal. Thus, the
CTRNN has to produce the antiphase output in order to obtain an s(t) flatten.

In spite of having stated the problem, the neural architecture was not clear and it
was necessary to develop a series of experiments to have the best performance network.
388800 simulations were conducted to obtain the best neural architecture consisting
of 1 input layer with 2 neurons, 1 hidden layer with 4 neurons and 1 output layer with
only 1 neuron corresponding to the output of the neural controller taking values for
the free parameters inside the interval [−5, 5]. To find this architecture, 12 different
structures have been evolved with 6 ranges of values for the free parameters of the
network. The GA used for the evolution has different sizes of populations (20–100) and
different mutation rates (0.01–0.1). To evaluate the performance, a fitness function
was defined using the concept of cancelling the derivative of the environment signal to
obtain a constant one. Each experiment was initialized 30 times with different seeds
to randomize the beginning initial conditions of the simulation.

Once the architecture and the configuration of the GA were obtained, the behavior
of the best chromosome was checked with different signals. A series of post-evaluation
experiments have been done in which the first 4th central moments and the cv were
analyzed to know more about the dispersion of the signal around its mean, checking if
it is enough flattened. Then, the Cf was evaluated to know the form of the resultant
environment signal and if it presents some peaks on it. Last parameter is the time
of convergence of the algorithm or the number of steps that the algorithm takes
to reach a stable state. These coefficients were tested with seven different signals
which possesses different characteristics: i) absence of z[k], to test the stability of the
architecture, ii) sinusoid of the same frequency as the one trained, iii) sinusoid of the
double of frequency, iv) sinusoid half of the frequency, v) triangular, to understand
the behavior when there are points with no derivate, vi) square, to understand what
happens when there are discontinuities, and vii) sum of sinusoids, imitating the grid
aggregated consumption in order to see the potential of the controller developed. In all
the cases good results were achieved, in the case in which the derivate is not defined,
v) and vi), it was able to reduce its variability but not as well as with continuous and
class C1 signals. With abrupt changes (triangular), the controller is able to produce a
flattened s[k], however with discontinuities (square), is almost impossible and peaks
are produced at the discontinuity point. In the best of the cases, the peaks were
reduced around the 60% and in the worst case a 16%. In the case of the artificial
signal of the grid, the Cf was near to 1 and it was reduced a 26.05%. Thus, it can
be concluded that these results are good enough to follow with the next step of the
problem, the collective behavior of the controllable users described in Chapter 5.
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5Collective Controller
“The ones who are crazy enough to think that they can change

the world, are the ones who do” — Steve Jobs

O
nce the neural controller has been evolved, a part of the problem has
been solved in a reduced environment. However, it is necessary to
advance on the complete problem presented in Section 4.1. To that
end, this Chapter goes a step further and adds more complexity to the

environment by putting more individuals of the two types in which the grid is divided.
The addition of more controllable and non-controllable users threatens the neural
controller developed in Chapter 4. The reason is that the controller was designed in
order to smooth the demand when the controllable power is half the power of the
system (the other half is coming from the non-controllable user). In this way, the
neural controller was able to achieve good results and the difference between valleys
and peaks was reduced.

As explained in Chapter 4, the central block of the distributed system has been
designed based on the tendency of the derivative. This block is a dynamic system
consisting of a Continuous Time RNN (CTRNN) that behaves in antiphase to an
unknown signal. Its output, added to the non-controllable signal, cancels the variance
in the resultant signal and generates a constant one. Thus, a first approach consists
of using this neural controller for all the controllable users, in order to generate the
antiphase signal. Figure 5.1 shows the response of an environment in which around
the 65% of the signal comes from controllable sources and the remaining 35% is
from non-controllable sources. It can be observed that each individual xi[k] puts
the same exact quantity of signal and their aggregation produced more peaks in the
environment signal without leaving their transitory state. However, this approach
may incur in a serious problem of instability depending on the size of the environment
since all the neural controllers behave the same. In addition, there are some other
issues related with the nature of the controller, such as the output range (between
[0, 1] due to the sigmoid function) or the level of the input signal to the network since
its output is bounded.

On the other hand, a real grid is a heterogeneous environment in which one of
the methods used to smooth the demand curve consists of the aggregation of more
loads to the system and augmenting the diversity inside it. As discussed in Section
2.1.5, the consumption of residential and service sectors present a variability that
repeats periodically. The habits of users are very similar and repeat along the time
but they are not the same. Therefore, the use of the same neural controller for all
the controllable users provide the same response for each of them. At the time to
aggregate their consumption, new peaks are found when the valley of the demand
curve occurs because the controller will try to displace the consumption at those
points. Thus, it is necessary to coordinate the different controllable individuals to
continue having a flattened curve and not to get a worse situation than the beginning.

But how can a population of neural controllers be coordinated when there is no
communication among them? The answer to this question can be easily tackled when
the different parts and blocks of the system are interconnected creating a complete
neural system. The reason is that synaptic connections are used to regulate the pass of
information along different parts of the neural system. Thus, with enough connections
among the controllers, their output could be regulated with some inhibitory or
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Figure 5.1: Result of applying the neural controller to each controllable individual.

In blue non-controllable signal z[k], in green the controllable aggregated signal x[k],

in purple each controllable signal xi[k] and in red the total aggregated consumption

signal s[k].

excitatory mechanisms. However, there are not any connections among them, so the
problem resides in how the output of the neural controller can be modified only with
the global information coming from the environment. In addition, the modification of
the internal synaptic weights of the evolved neural controller will not guarantee that
the network behaves the same and compute an antiphase signal. So, it is required to
revise the different free parameters that are still available inside the neural controller.

Finally, it is necessary to face this new environment with a new strategy based on
the evolved controller that computes the inverse derivative of the environment. Thus,
a development of the evolved controller is required in this new scenario in order to
adapt each controllable user and maintain the flattened curve. This development will
be based on the rest of free parameters that were not used during the evolution of
the CTRNN. The reason is that part of the problem is solved by using the evolved
controller, but the smoothing of the signal has to be done collectively in order to
fulfill the objective of this Thesis. The validity of the development is given by the
number of users that can be added or the controllable sharing that can be included
within the environment.

The reminder of the Chapter is as follows. In Section 5.1, the environment has
been revisited to increase the level of complexity and to evaluate the possibilities of
the addition of more individuals. After that, in Section 5.2, it will be introduced an
algorithm for searching a solution to the coordination of the different individuals in
order to achieve the flattening of the aggregated signal. Section 5.3 shows the results
obtained for the different configurations of the environment in which the proposed
algorithm is going to be tested. Finally, in Section 5.4, the different results obtained
will be discussed during the development phase of the neural controller to reach its
final stage.
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Figure 5.2: Complete environment description in discrete time with the different

elements that comprised it: (a) a grid environment composed by m non-controllable

facilities and n controllable ones, and (b) evolved neural controller used in each

controllable facility based on a CTRNN structure. The synaptic weights of each

layer neuron is represented in the first neuron inside the layer.

5.1 Environment revisited

In Section 4.3, the problem was simplified in order to evolve a neural controller in a
reduced part of the environment. The reason was to test the hypothesis of cancelling
the derivative of the environment signal in order to obtain a constant one. Hence, the
evolved neural controller was able to produce a destructive interference in antiphase,
based on the tendency of the global behavior of the system. However, the system
was composed by only two facilities, one for each type, being an extremely reduced
scenario. In addition, a sinusoid function, with a period of a consumption day sampled
in 20 minutes, was used as input during the evolution.

In the first stage of the problem, a CTRNN structure was successfully obtained
in order to flatten a continuous periodic signal. However, in a real scenario, there
are more than two individuals and many components can be found inside the system
that consume power. Thus, the idea is to advance to the next stage of complexity
that brings closer to the practical final case of study.

In this Chapter, the environment grows and consists of different individuals
belonging to both types of users. As in Chapter 4, each facility only consumes
power, they do not generate or store any electric power. Figure 5.2(a) shows the
new environment composition, which consists of m non-controllable individuals and
n controllable individuals that will oppose in antiphase to the m individuals. There
is no information about each of the m non-controllable individuals, so they are
grouped together, because the only available information of these users is their
overall behavior. In this case, the same structure of Chapter 4 for the non-
controllable users is maintained. In contrast, the environment controllable part has
been divided in n facilities, since each of them will contribute to generate a response in
antiphase to the m non-controllable individuals. Each of the n controllable facilities
implements a neural controller, responsible for modifying the contribution of the
facility to the environment. And the only information available for each of the n
controllable facilities is the aggregated signal of the environment, s[k]. In summary,
the environment is governed by Equation 5.1.
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s[k] = z[k] + x[k] = z[k] +
n∑

i=1

xi[k] (5.1)

where z[k] is the total contribution of the m non-controllable individuals, xi[k] is each
contribution of the n controllable individuals and s[k] is the environment signal which
aggregates all the contributions. Both Figure 5.2 and Equation 5.1 are represented
in discrete time following the same reasoning of Chapter 4.

Again, the solution to the problem is that s[k]→ C, where C is a constant. The
controllable part of the environment is the only part accessible and adjustable from
the total aggregated s[k] signal. However, there is more than one individual and it is
not trivial how each controllable individual should respond in order to smooth s[k].
Thus, based on the solution of the previous simplified environment, all controllable
individuals behave as in Equation 5.2 to flatten it.

n∑
i=1

xi[k] = C − z[k] (5.2)

However, there is no uniqueness of solutions to this problem. A priori, any
combination of xi[k] that will produce a constant s[k] is accepted as solution to this
problem. As observed in Figure 5.2(a) and Equations 5.1 and 5.2, this environment
consists of a generalization of the previous one presented in Section 4.1. Thus, it was
conceived the idea of using the same neural controller designed and evolved for the
previous problem in first place (see Figure 5.2(b)). In this case, all controllable users
compute the opposed derivative of the input signal and respond to the environment
by opposing to it and cancelling the fluctuations on it. However, if the same exact
controller is used for all the n individuals, they will try to put the same contribution to
the environment. This behavior will destabilize the environment signal, augmenting
its variability.

The proposed problem can be tackled from a signal decomposition point of view,
in which the overall behavior has to be divided in n different parts. More concretely,
this problem is similar to a Blind Source Separation (BSS) problem, in which the
separation of a source from the combined signal of a group is done without or
with very little information about the sources or the mixing process (Haykin, 2000).
However, the solutions to this problem are undetermined and the different methods
that implements this technique search for a set of possible solutions in which the
desired solution is included, conditioned by the problem itself. Based on these ideas,
it is necessary to build an ensemble of neural networks with no communication among
them that are able to self-organize and coordinate to compute the antiphase signal of
the non-controllable facilities. In addition, using the idea of Chapter 4, an algorithm
has to be elaborated in order to compute the opposed derivative of the environment
signal collectively. For this purpose, a development of the evolved neural controller
is required in order to move a step closer to the solution of the problem presented in
this Thesis. This new neural controller will be referred as Evo-Devo Neural Controller
(EDeNC), where evo refers to the evolutionary part of the controller and the devo to
its development part. The reason is that the evolved neural controller cannot be used
directly as shown in Figure 5.1 and discussed above, so that a learning process will
be computed.

Following the BSS approach to the problem, numerous signals accomplish the
signal decomposition proposed in first place. For example, in case the environment
is composed by 2 controllable individuals (facilities, x0[k] and x1[k]) and 1 non-
controllable (z[k]), there exist multiple waveforms that can accomplish the task.
Figure 5.3 shows 4 different examples in which the demand is smoothed with different
behaviors of the controllable users. In Figure 5.3, it is represented the behavior of
x0[k] and x1[k], the controllable aggregated consumption x[k], the non-controllable
demand z[k] and the aggregated consumption s[k]. As shown in Figure 5.3(a), the
first approach to divide a signal in parts will consist of equally dividing it into as
many parts as necessary. However, it is unlike that two users behave exactly the
same due to the characteristics of the problem. Another possible solution is that
only one individual consumes everything and the other one nothing. Thus, the neural
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Figure 5.3: Environment composed by 2 controllable individuals, x0[k] and x1[k],

with different responses that flatten s[k]: (a) x0[k] = x1[k] = 1/2 ·x[k], (b) x0[k] = x[k]

and x1[k] = 0, and (c) x0[k] present a periodic waveform variable in time x1[k] ≈ x[k],

(d) x0[k] ≈ x[k] and x1[k] ≈ 0.25. In blue non-controllable signal z[k], in green the

controllable aggregated signal x[k], in purple x0[k] controllable individual, in olive

x1[k] controllable individual, and in red the total aggregated consumption s[k].

controller of the first facility computes directly the derivative of the environment signal
(see Figure 5.3(b)). But this approach is not possible because all facilities will consume
and their consumption cannot be zero all the time. On the other hand, in Figures
5.3(c) and 5.3(d), two different waveforms are observed for the two individuals whose
approach differs from the previous ones. In these examples, both facilities present a
consumption different from 0 and compute collectively the desirable behavior.

Different solutions can be used to solve the problem, although not all of them are
feasible for this environment. Some constraints have to be considered in the design of
the solution for the collective control of a group of neural ensembles. The collective
behavior should take into account the following considerations taken from the real
implementation of the problem:

� Non-zero consumption. The different facilities, which compose an electrical
grid, consume power and present a demand profile that differs from 0. So it is
necessary to assure that the response of the EDeNCs is different from zero for
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at least a period of time. Mathematically, this means that

∀xi with i ∈ {1, 2, . . . , n}; ∃k ∈ {1, 2, . . . ,K} | xi[k] ̸= 0

Furthermore, this behaviour is repeated periodically by the facilities based on
the consumer habits. Thus, there are various time periods (several ks) in
which the consumption is non-zero. Then, solutions, such as the one of Figure
5.3(b), are not taken into account because they are not feasible for this kind of
environment.

� Heterogeneous demand profiles. The demand profiles of the different facilities
of an electrical grid are not the same. They are grouped together depending
on the typical loads that generate those consumption profiles. Although they
have similar loads, the demand profile is not exactly the same because users
consume based on their necessities at different time periods. So, the EDeNC
should produce different outputs for each controllable facility. They can be
similar but not the same. Thus, solutions, such as the one of Figure 5.3(a), are
possible but not reasonable for a real implementation.

� Scalability. Another aspect of the environment is the number of individuals who
are part of it. It is necessary that the algorithm can operate independently of
the number of users and adapt the output of the controllable ones to the non-
controllable in order to smooth the aggregated demand curve. The proposed
distributed control solution has to be able to adapt to the different possible
scenarios in which the contribution of the users can vary. The environment can
be composed of different combinations of m and n users, in which m can be
less, equal or greater than n. Thus, the n controllable users should always react
and do their best effort in order to flatten the aggregated demand curve. In
addition, the algorithm should be able to react to any size of the controllable
users or to the incorporation of new users into the environment.

� Real time operation. The last aspect to consider is its operation. It is required
that the EDeNCs can adapt to the changes in the environment. So, the
EDeNC learning algorithm has to adapt to those changes since the grid evolves
constantly. This adaptation process should be fast enough to respond to changes
in demand and able to react to any modification occurring in the environment.
Then, the algorithm should operate in real time to confront these problems and
the ones derived from the environment operation.

The algorithm, proposed in this Chapter, should be built taking into account
these four aspects for the development of the evolved neural controllers. However,
once the neural controller is evolved, the different parameters of the network are fixed
and it behaves as the antiphase signal for the non-controllable users. Thus, a first
approximation could be based on retuning {W ,Θ} in order to adapt the output of
each controller. There exist various problems to this approximation. The first one is
that the Genetic Algorithm (GA) proposed in Chapter 4 cannot be used, since the
operation has to be done in real time in order to vary those parameters. Secondly,
each controller has to estimate a variation of its previous parameters to achieve the
collective flattening of the signal. Hence, it implies that the algorithm has to be fast
enough in order not to interfere with the controller output. Finally, the last problem
is related with the size of the environment. Depending on the algorithm construction,
adding new users could destabilize the operation due to new elements or the reactions
of the algorithm could be slow.

This strategy of retuning the connections of the network is not the best strategy
to tackle the problem. However, it would be more interesting to leave the network
in its evolved form and change the controller output in order to avoid overlapping
with the other users’ output. For example, the different controller outputs can be
displaced in time. Thus, they do not overlap and the controllers parameters do not
have to be retuned. τi is the neural parameter related with time and represents the
membrane time constant, related with the action potential of the neuron. The value
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Figure 5.4: Effect of modifying the τi of a CTRNN whose output is sinusoidal. The

three time constants are different and their relationship is τ1 < τ2 < τ3.

of this parameter represents the reaction speed of a neuron to a stimulus. Therefore,
the neuron firing rate can be increased or decreased by adjusting this parameter.

In addition, τi was not used during the evolution. Thus, in principle, the behavior
of the network will not be affected by changing τi. It will only slow down the network
output and rescale it. This new approach will be able to tackle the scalability and
the processing speed problems found with the first approximation idea. Moreover, a
heterogeneous response is achieved by using this approach in an easier way since less
parameters are involved in the process.

5.2 τ-Learning Algorithm: coordination of neural en-

sembles

In this Section, the algorithm used to coordinate an ensemble of controllable users
is introduced. Each user implements the same evolved neural controller developed
in Chapter 4. However, the controller response is the same for all of them so it was
necessary to implement an algorithm to develop the response of the neural controllers.
This algorithm is based on modifying τi, one of the last free parameters available inside
the network.

τi is the time constant of the CTRNN. The modifications of this parameter affect
the output as it is delayed. Figure 5.4 shows an example of the modification of τi,
where τ1 < τ2 < τ3. The same waveform was obtained for the three outputs but with
a modification of the frequency. The effect of increasing the value of τi corresponds
to slow the output of the network increasing the period of the sinusoidal. In other
words, the bigger τi is, the slower the response of the CTRNN is and vice versa.

According to Beer (1995), changes in the time constants do not alter the number
of equilibria points. However, it could change their behavior and affect the stability
and type of equilibria. Thus, it is necessary to take this into account to know which
values τi can take. In Section 5.2.1, an analysis is done to study the possible values
of τi that make the system stable.

Therefore, the output of the network can be displaced by changes in the value
of τi. Moreover, based on the studies of Draye et al. (1995), the adaptation of τi
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value can help improving the capacities of Recurrent Neural Networks (RNNs) in the
prediction of chaotic systems. By changing the values of τi, it can help improving the
performance of the system and obtain the objective of this Thesis. But, how can an
algorithm be implemented to coordinate the different τi? The algorithm must be able
to modify in real time the value of the different τi from the distributed controllers
around the environment. Thus, this problem can be directed as a reinforcement
learning one. The reasons are that s[k] contains all the information needed to evaluate
the performance of the global behavior, modifying τi and actuating again over the
environment. In Chapter 3, the typical case of a reinforcement learning scenario was
defined in Figure 3.7(c). The idea consists of taking all the available information,
input and reinforcement signals, from the environment in order to elaborate a reward
signal and modify the output of the Artificial Neural Network (ANN). And then, the
ANN acts on the environment again, repeating the cycle.

Figure 5.5 shows the adaptation of the reinforcement learning scene to our
problem. Comparing Figures 3.7(c) and 5.5, both scenes are very similar. In this
case, the sole information coming from the environment is s[k]. Thus, there is no
reinforcement signal, but this information can be extracted from the input signal.
There is also no observer to give the reward to the neural controller. However,
inside each controllable facility, there is a performance block. The performance
block elaborates the reward signal that will alter the status of the neural controller.
Specifically, this block is in charge of modifying the value of τi depending on the s[k]
coming from the environment and the actions of the neural controller. Finally, once
the reward or the punishment is applied to the neural controller, it will act in the
environment and the cycle begins again.

After introducing the learning paradigm followed, it is necessary to develop the
performance block in order to analyze the displaced output of the different neural
controllers. The final objective is to achieve an environment signal that meets s[k]→
C. A first idea could consist of reducing the variability of the signal (σ2

s→ 0) in order
to make that s[k] tend to its mean (s[k] →µs). Thus, µs and σ2

s can be obtained
from the input signal in the performance block. However, as a real time algorithm
is required, it cannot extract these two parameters from the complete history of the
signal each time step by two reasons. The first one is the computation required each
time step as the number of samples increase each time step. And the second one is
that distant events in the past have not excessive relevance when taking the actual
decision. Thus, it is necessary to evaluate them in a window of time, WK , and take
the actions necessary to modify the behavior of the controller.

An example of these parameters is shown in Figure 5.6. In this Figure, it can
be observed that s[k] (in black) presents different peaks and consequently a σ2

s ̸= 0.
The µs for the portion of signal inside the window is shown in blue. And in green,
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Figure 5.6: Environment signal through time, represented with its mean and

variance evaluated in a window of time.

the time window is represented in which the different parameters of the signal will be
determined.

A first idea to build this learning algorithm is based on reducing the peaks that
s[k] presents, getting closer to µs. So, Equation 5.3 defines an error measure based
on the differences between them.

Es =
∑

k∈WK

µs − s[k] (5.3)

where, µs is the mean of s[k] but evaluated only inside the time window WK , i.e.

µs =
1

WK

∑
l∈WK

s[l] (5.4)

Thus, the local performance of the neural controller is evaluated through the error
Es of Equation 5.3. This measure is used by the algorithm as an indicative of how
well the controller is cancelling the non-controllable demand. The algorithm tries
to reduce Es in order to decrease the variability of the signal. Mathematically, this
implies that the algorithm is looking for,

Es → 0 =⇒ σ2
s → 0 (5.5)

However, it can be only tackled from a local perspective. Hence, the algorithm
will minimize the Es with respect to the local τi of the neural controller since it is
the only available parameter. Then, the algorithm uses a gradient descent technique
inspired by the supervised learning algorithms in order to minimize the error. It will
compute the partial derivative of the error with respect to the partial derivative of
the τi. The minimization of this behavior is expressed in Equation 5.6

min
τi

Es =
∂Es

∂τi
=

∂

∂τi

 ∑
k∈WK

µs − s[k]

 =
∑

k∈WK

∂µs

∂τi
− ∂s[k]

∂τi
(5.6)

Thus, the minimization of Es has two parts, the first one corresponds to the µs
of the signal and the second one corresponds to each point of the signal. Therefore,
the problem is going to be solved by each part at a time. Firstly, the part related to
µs is analyzed. Then, if Equation 5.4 is substituted in Equation 5.6, it is obtained
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∂µs

∂τi
=

∂

∂τi

 1

WK

∑
l∈WK

s[l]

 =
1

WK

∑
l∈WK

∂s[l]

∂τi
(5.7)

The result of Equation 5.7 is equal to the second part of Equation 5.6, so for both
of them the partial derivative of s[k] regarding τi is computed. In order to solve this
partial derivative, Equation 5.1 will be substituted in the second part of Equation 5.6
and in Equation 5.7. The result is shown in Equation 5.8.

∂s[k]

∂τi
=

�
0

∂z[k]

∂τi
+

∂

∂τi

 n∑
j=1

xj [k]

 =

n∑
j=1

∂xj [k]

∂τi
=

 0 if i ̸= j
∂xi[k]

∂τi
if i = j

(5.8)

As can be observed, the partial derivative of the environment signal with respect
to τi only depends on the output of the ith neural controller which corresponds to the
7th neuron in the output layer (see Figure 5.2(b)). Moreover, the minimization of the
error only depends on the controller whose τi is being analyzed since the derivative is
0 for i ̸= j. Hence, the error is calculated with respect to the output of the controller
or its 7th neuron output. Then, the partial derivative of Equation 5.8 is as follows,

∂xi[k]

∂τi
=

∂σi(νi,7[k])

∂τi
= σ′

i(νi,7[k]) ·
∂νi,7[k]

∂τi
= σ′

i(νi,7[k]) ·

∂yi,7[k]

∂τi
+

7
0

∂θ7
∂τi

 (5.9)

where, σi(νi,7[k]) is the output of 7th neuron for the ith controller, νi,7[k] is the
propagation rule of the ith controller for the 7th neuron, σ′

i(νi,7[k]) is the derivative
of the activation function, which in this case is a sigmoid function and its derivative
is equal to

dσ(u)

du
=

d

du
· 1

1 + e−u
=

e−u

(1 + e−u)2
= σ(u) · (1− σ(u)) (5.10)

and yi,7[k] is the state of the 7th neuron of the ith controller and the only one that
has a relationship with τi. The neural controller is governed by Equation 4.18, so the
state derivative of the last neuron of the network is as follows,

∂yi,7[k]

∂τi
=

∂

∂τi
·
[

:0
yi,7[k − 1] +

1

τi
·∆yi,7[k − 1]

]
=

= − 1

τ2i
·∆yi,7[k − 1] +

1

τi
· ∂∆yi,7[k − 1]

∂τi

(5.11)

where, the dependency with τi is limited to only one step despite being a recurrent
equation. That is the reason why the term yi,7[k−1] is eliminated at the beginning of
the derivative in Equation 5.11. Then, the term ∆yi,j [k] corresponds to the discrete
difference of the state for the jth neuron of the ith neural controller, and it is equal
to

∆yi,j [k] = −yi,j [k] +
Npre∑
l=1

wi,jl · σi,l (yi,l[k] + θi,l)+

+

Nfeed∑
f=1

wi,jf · σi,f (yi,f [k] + θi,f ) +

nin∑
m=1

gi,m · Ii,m[k]

(5.12)
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where, Npre is the number of output neurons of the previous layer, Nfeed is the number
of neural feedback loops with other neurons and nin is the number of inputs. The
output of the different neurons has been separated in order to obtain the derivative of
each contribution. Finally, substituting Equation 5.12 in Equation 5.11, it is obtained

∂yi,7[k]

∂τi
= − 1

τ2i
·∆yi,7[k − 1] +

1

τi
· ∂∆yi,7[k − 1]

∂τi
=

= − 1

τ2i
·

[
∆yi,7[k − 1] +

1

τi
·

6∑
l=3

wi,7l · σ′
i,l (yi,l[k − 1] + θi,l) ·

·

∆yi,l[k − 1] +
1

τi
·

2∑
p=1

wi,7p · σ′
i,p (yi,p[k − 1] + θi,p) ·∆yi,p[k − 1]


(5.13)

To sum up, the derivative of the error with respect to τi, after all the intermediate
steps to obtain its expression, has the form presented in Equation 5.14.

∂Es

∂τi
=
∑

k∈WK

 1

WK

∑
l∈WK

σ′
i,7(yi,7[l] + θi,7) ·

∂yi,7[l]

∂τi

− σ′
i,7(yi,7[k] + θi,7) ·

∂yi,7[k]

∂τi

 (5.14)

where, ∂yi,7[k]/∂τi is the expression calculated in Equation 5.13.
The gradient of the error has been computed, but the value of τi has not been

updated yet. The next step of the algorithm will compute the new value of τi based
on the gradient of the error. A first approximation to update the value of τi is as
follows,

τi[k + 1] = τi[k] +
∂Es

∂τi

∣∣∣∣
k

(5.15)

As can be observed in Equation 5.15, there is a problem with this update and it
is based on the nature of the neural controllers. All the τi are going to have the same
value each time step and still there is no coordination between the different ensembles
of neural controllers. Then, a multiplier for the gradient of error can be used in order
to set the learning pace of τi. This technique is used in different supervised learning
algorithms to establish the growth pace of the parameters to adjust as shown in
Section 3.5.1.1. Equation 5.16 shows this new τi update rule.

τi[k + 1] = τi[k] + αi ·
∂Es

∂τi

∣∣∣∣
k

(5.16)

where, αi is the learning rate of the gradient error for the ith neural controller.
Normally, the learning rate in any supervised learning algorithm is a fixed number.
However, in this case, it is necessary to use a random learning coefficient.

The objective of this algorithm is to reduce the variability of the aggregated signal
when there is more than one controllable user. Thus, it is required that the τi varies
quickly when the variations around µs are very high and slower when those variations
are closer to zero. In addition, another issue to take into account is that the closer
that τi is to the evolved value (τi= 1), the more similar the controller output would be
to the original antiphase signal. However, the only available coefficient to implement
both design rules is αi. It has to be related with σ2

s and try to spread the value of
τi near to its evolved value. Then, the values of αi are randomized by following an
exponential distribution, such as the one of Equation 5.17.
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Algorithm 1 High-level description of the τ -Learning Algorithm.

1: /* Initialize the environment */

2:
∑

i∈n xi ← CTRNN ▷ n individuals with the same controller

3: z ← Power profile ▷ m non controllable individuals

4: for k ← 1, . . . ,K do

5: for all i ∈ n do

6: xi[k]← f(s[k − 1],y)

7: end for

8: s[k]← z[k] +
∑

i∈n xi
9: if k%WK == 0 then

10: Calculate {µs, σ
2
s}

11: for all i ∈ n do

12: Compute ∂Es/∂τi based on Equation 5.14

13: Obtain αi following Equation 5.17

14: Update τi based on Equation 5.16

15: Assure stability of the system

16: end for

17: end if

18: end for

αi(x, σ
2
s) =

{
σ2
s · e−σ2

s ·x x ≥ 0,

0 x < 0.

where σ2
s =

 1

WK

∑
l∈WK

s[l]

2

− µ2
s

(5.17)

where, αi(x, σ
2
s) is the exponential probability function for the αi and whose mean is

located at σ2
s , which is the variance of s[k] for WK . This distribution has been selected

because the higher probabilities are around the mean of the exponential distribution
(in this case is σ2

s). So most of the τi are going to have a similar rate of change.
Moreover, being the exponential distribution centered on σ2

s , αi will change with its
value. Fulfilling that αi will be lower as the σ2

s is being reduced, the values of τi will
change slowly, and vice versa.

To sum up, all the steps of the τ -Learning Algorithm (τLA) are gathered in
Algorithm 1. First of all, the environment is initialized with m non-controllable
users and the n controllable users. After that, the time starts and it will first
calculate the output of each neural controller. Then, their responses are added to
the environment together with the non-controllable users. When the time is of the
same size as WK , then the environment status is evaluated. Therefore, it computes
the different measures to correct the behavior of the neural controllers and finally, it
updates the value of τi. Algorithm 1 has been tested in simulations. However, before
testing the algorithm, it must be analyzed the stability of the system and the values
that τi can take.

5.2.1 Stability

Depending on the value of τi, there will be different stability behaviors. Thus, it is
interesting to analyze the values that τi can take in order to maintain the stability of
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the neural controllers. Each neural controller is governed by a system of differential
equations, in which each neuron is represented by Equation 4.15. However, Equation
4.15 is simplified in order to analyze the effect of τi in the stability of the ith neuron.
This simplification is as follows,

ẏi(t) = a · yi(t) + ui(t) (5.18)

where, a = − 1/τi and ui(t) is the rest of the terms of Equation 4.15, grouping together
all the inputs to the neuron. In order to work with the neural controller, it is used
in discrete time. The discretization of Equation 5.18 is particularized for only one
sample (∆k = 1) as it was done in Section 4.3.2.

yi[k]− yi[k −∆k]

∆k
= a · yi[k] + ui[k] −→

∆k=1
yi[k]− yi[k − 1] = a · yi[k] + ui[k] (5.19)

In order to analyze Equation 5.19, the Z-transform is used to pass from the discrete
time to the complex frequency domain. The Z-transform is,

(1− a) · yi[k] = yi[k − 1] + ui[k]
Z−→ (1− a)Yi(z) = z−1 · Yi(z) + Ui(z)

Hi(z) =
Yi(z)

Ui(z)
=

1

(1− a)− z−1

(5.20)

Finally, the stability of the neuron is given by the poles of the Hi(z), which are
in the denominator D(Hi(z)). Thus, the system will be stable if the poles are inside
the unit circle of the complex plane. In this case, the Region of Convergence (ROC)
is of the form,

|z| >
∣∣∣∣ 1

1− a

∣∣∣∣ (5.21)

Hence, the denominator of the ROC condition must be greater than 0, in order
to meet and to assure the stability of the system. Then, substituting a by τi, the
possible values of τi are obtained in order not to disrupt the stability, as shown in
Equation 5.22.

1− a ≥ 0
a= − 1/τi−→ |τi| ≥ 1 (5.22)

The stability of the neuron depends on the value that τi can take. It can be
considered that τi belongs to the positively defined axis since the sign is given by the
state of the neuron. Thus, in order to assure that the system is stable, τi∈ [1,+∞).
And the τLA should assign values to τi respecting this condition.

5.3 Simulation Results

The environment is configured as in Figure 5.2(a) for the simulations of τLA. It has
been divided in m non-controllable users and n controllable users. Each one of the n
controllable users have the same neural controller as the one of Figure 5.2(b). The
environment is governed by Equation 5.1 and it is necessary that τLA coordinates
the n different users in order to smooth s[k]. In this case, for the evaluation of the
τLA, only one input signal is used to simulate the non-controllable power profile.

The aggregated consumption of the m non-controllable individuals is now
modelled as the aggregated consumption of a real grid. However, it is not exactly
the same signal (z7[k]), used in Section 4.5 and shown in Figure 4.3. A new signal
has been synthesized which consists of a sum of sinusoids. Five frequencies have been
selected, which are the ones with greater amplitude in the spectrum of Figure 4.3(b).
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Figure 5.7: Non-controllable demand of sinusoidal form corresponding to the most

significant frequencies of a real grid aggregated consumption. The frequencies selected

are the half daily, daily, weekly, monthly and annually. (a) one week representation

and (b) one year representation.

The frequency of each sinusoid corresponds to half daily, daily, weekly, monthly and
annually frequencies. The mathematical form of z[k] is presented in Equation 5.23.

z[k] = A1 · cos (730 · f + φ1) +A2 · cos (365 · f + φ2)+

+A3 · cos (52 · f + φ3) +A4 · cos (12 · f + φ4) +A5 · cos (f + φ5) + µ
(5.23)

where Ai is the amplitude of each sinusoid extracted from the spectrum of the grid
from Figure 4.3(b), all frequencies have been normalized by the annually frequency
and µ is the mean value of the signal taken from f = 0 of the grid spectrum.

The idea of using this type of signal is to get closer to a real scenario in which
the controllable demand should be used to flatten the aggregated consumption. The
resultant z[k] can be seen in Figure 5.7, in which it can be observed the similarity
with the form of the aggregated consumption of a grid. The aggregated sinusoidal
grid consumption is normalized with respect to the number of individuals that form
part of z[k]. Figure 5.7(a) shows the variability of the power profile during a week,
in this case the pronounced difference between weekdays and weekends is not as high
as in the real one. But there exists a considerable difference between the days of a
week. Moreover, the annually aggregated consumption of Figure 5.7(b) shows the
variability of the aggregated consumption along the whole year. The aggregated
demand presents seasonal differences along the year and the consumption is always
different from 0. Thus, this synthetic signal includes the most prominent behaviors
of a real grid aggregated consumption. This is exactly what it is needed to test the
coordination capabilities of τLA for an ensemble of controllable users.

On the other hand, the controllable part of the environment is formed by n
identical evolved neural controllers. Thus, in order to test the algorithm, the
controllable capacity of these n users is varied. The aggregated controllable demand,
x[k], is going to change its contribution to the environment, by increasing or decreasing
its power to study the effect on the flattening of the demand. So, the controllable
load capacity (LC) is defined as

LC [%] =
maxx[k]

max s[k]
· 100 (5.24)

where maxx[k] is the maximum of the controllable aggregated consumption and
max s[k] is the maximum of the total aggregated consumption. Hence, this ratio
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relates the amount of controllable power to the total. Moreover, with the definition
of LC , it is also known the amount of power that the non-controllable users represent.

For the simulations, an amount of power is set for the controllable users through
LC and at the same time, the n size of controllable users is varied. Therefore, the
test will consist of analysing if the τLA is able to coordinate different ensembles of
neural controllers and if their self-organization is able to reduce the variability of the
non-controllable signal by obtaining a smooth s[k]. In the simulations, the percentage
of LC varies from 0% to 100%. With this sweep of LC , it is analyzed the full range of
situations that may occur in the environment, from an initial state at which there is
no controllable demand (LC near 0%) until all the demand is controllable (LC near
100%). Per each LC , the number of controllable users n is varied. The distribution of
the number of individuals is not linear because it is necessary to test that τLA works
for every population. Thus, it will be used a population set that grows exponentially
whose values are n ∈ {1, 2, 5, 10, 25, 50, 100, 250, 500, 1000}. The idea of this set of
individuals is to increase the difficulty of coordination for the algorithm. The reason
is that for small populations the variations that individuals can introduce in the
environment are smaller than the ones of bigger populations. So, simulations with
few individuals are easier to solve than the ones with bigger populations since less
instabilities are present and fewer individuals need to coordinate.

The different simulation elements have just been described but the evaluation
method has not been discussed yet. This method will consist of analyzing the global
behavior of the environment through the status of s[k]. For this purpose, 3 figures
of merit are used: i) crest factor (Cf ), ii) load factor (Lf ) and iii) demand factor
(Df ). In this case, all three parameters evaluate the form of the signal and assess
its smoothness. Thus, the performance of the algorithm is based on how flattened is
s[k]. The reason is that the coordination of all the individuals must reduce the signal
variability. The first evaluation coefficient was already used in the post-evaluation of
the evolved neural controller. On the other hand, the other two evaluation coefficients
are used in a real grid context to evaluate its dimension with respect to the maximum
load. These three parameters are as follows:

� Crest factor (Cf ). It has been already defined in Section 4.5 and its
mathematical expression is gathered in Equation 4.31.

� Load factor (Lf ). The second evaluation coefficient is based on the use of
the resources from the grid. It measures the average consumption in a period
with respect to the maximum consumption. Thus, this coefficient serves as
a measure to verify that the designed capacity of an electrical grid meets the
demand. Equation 5.25 shows the mathematical expression of this ratio which
consists of the average load divided by the peak load in a specified time period.

Lf =
s[k]

speak

∣∣∣∣∣
K

(5.25)

where, s[k] is the average environment signal in a period K and speak is the
maximum of the environment signal in a given time period. The value of this
ratio is less than or equal to 1. Typically, this coefficient has a value less than 1
because the facilities never operate at full capacity for the duration of the entire
period selected. The interpretation of this coefficient is that the closer Lf is to
1, the more constant is the usage of the grid. On the other hand, low values of
Lf show a demand profile in which occasionally high peaks appear. Thus, the
best value of Lf is closer to 1 and indicates that s[k] is flattened.

� Demand factor (Df ). This is the last factor of the evaluation and it also
measures the use of the resources. Df expresses the relationship of the amount
of consumed power relative to the maximum power available that could be
consumed in the grid. Thus, Df compares the maximum demand in a time



164 5. Collective Controller

period with respect to maximum consumption of the system:

Df =
max s[k]

smax

∣∣∣∣
K

(5.26)

where, max s[k] is the maximum of s[k] in the specified time period K and smax
is the maximum possible load of the system. This is a measure of the occupancy
of the system and it is relevant when trying to design the amount of load that
a system should be rated for. This factor is always less than or equal to 1. The
closer Df is to 1, the greater the use of the system is. In this way, the system
would not be oversized and the resources will be used constantly, having again
a flattened consumption.

In the simulations, z[k] has been sampled every 15 minutes. The total length of
a simulation is 35040 samples, which is the time length of a year sampled every 15
minutes. In addition, the size of WK has to be adjusted for the algorithm in order to
evaluate the performance of the controller. The length of the chosen WK is of a day,
because during this period s[k] presents various peaks and it is enough time for the
ensemble of neural controllers to be coordinated and flattened the aggregated s[k].
Each experiment is repeated 30 times with different seeds to randomize the process
and test if similar solutions can be obtained for different starting points. In addition,
the sweep done in the LC goes from 0% to 100% in steps of 5% for the 10 sizes
of individuals in the environment defined previously (from 1 to 1000). Then, 6300
experiments are simulated to test the algorithm capabilities.

In the evaluation process, three figures of merit are defined. However, it was
not mentioned the evaluation time in which they are going to be evaluated. As
observed in Figure 5.7, there exist different peaks in the grid signal. Thus, the EDeNC
effectiveness is evaluated in order to cancel the main frequencies of the signal. The
evaluation of each coefficient is going to be done by using the daily, weekly, monthly
and annually periods. Hence, the controller behavior is tested during different time
periods. The final result is the average of the number of times evaluated per time
period, i.e.

Cf,K =
1

NK

∑
i∈NK

Cf,i (5.27a) Lf,K =
1

NK

∑
i∈NK

Lf,i (5.27b)

Df,K =
1

NK

∑
i∈NK

Df,i (5.27c)

where K ∈ {day, week,month, year} and NK is the number of periods in which s[k]
have been evaluated. Then, the average behavior of the controller is obtained along
a year for these three coefficients.

It has been explained all the different parameters and the evaluation assessment
that take part in these simulations. However, simulations were carried out in two
type of environments depending on how s[k] is interpreted. The simulations have
been divided in environment A (see Section 5.3.1) and environment B (see Section
5.3.2). In the first one, the maximum consumed power is limited while in the second
one there will be no restriction. As in Chapter 4, all the simulations are done using
the same hardware and software, neuralSim, already introduced. Thus, the results
for each environment are as follows.

5.3.1 Environment A: power constraints

In this environment, it is considered that the maximum power that can be consumed
by all individuals is limited. So, the controllable users have to adapt their consumption
to the non-controllable demand in order not to consume more than the available
maximum. With this environment, it is studied the adaptivity of the Evo-Devo Neural
Controller (EDeNC), and the ability of the τ -Learning Algorithm (τLA) to coordinate
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Figure 5.8: Cf for environment A evaluated for four different periods of time: daily,
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users (#n).

different sizes of controllable ensembles for a given maximum power. This test wants
to cope with the case in which an existing grid is already working and new users are
included without modifying the total power capabilities of the network.

A microgrid is a good example of this behavior which consists of a small community
with some sources of local energy generation. In this microgrid, the generation is
designed in order to supply the local demand. Thus, if new users are added to this
microgrid, the local energy source would not be able to meet the demand and it
would be necessary to add more generation. However, if new users could adapt their
consumption to the old ones, it would not be necessary to add more generation and
the use of the system would be improved.

In this case, the maximum of s[k] is limited to 1. For this purpose, the sum
of the m non-controllable users and the n controllable ones must not exceed this
limit. Therefore, z[k] and xi[k] have been normalized to take values in the range
[0, 1]. Moreover, under these conditions, there is no necessity to evolve again the best
neural controller obtained in Chapter 4. Thus, the chromosome used in each neural
controller for xi[k] is the one evolved previously.

The average crest factor, Cf , results are shown in Figure 5.8. The results have
been separated for the four different periods of time in which s[k] is evaluated. Each
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point of the line is the median value of the Cf for the 30 seeds. In this case, the
InterQuartile Range (IQR) is low, so the quartiles are very close and they cannot
be seen. This means that τLA reaches similar solutions regardless of the seeds
used for the environment configuration which implies that it is independent of the
initial conditions of the simulation. It can be also observed that the differences
between the number of controllable users are negligible for all the periods. There
are slightly disparities between different population sizes when the evaluation period
is high (annual period) and the amount of controllable load is the same as the non-
controllable (LC ≈ 50%). Hence, τLA is able to coordinate different ensembles of
controllable users, independently of the size of the ensemble and the starting point of
the algorithm.

In order to evaluate the effects of the controllable users, the improvement of the
Cf is defined as

∇Cf (LC) =
|Cf (LC)− Cf (0%)|

Cf (0%)
· 100 (5.28)

In this case, it can be observed in all periods of evaluation an exponential decay
towards the best value (Cf = 1) with the increase of LC . For all periods of time, any
controllable capacity improves the network situation. In fact, a strong reduction of
Cf can be observed in all the cases with relatively low fractions of controllable load.
For example, for LC = 10%, relative reductions between 5% and 10% are achieved,
compared to the base-case (non-controllable load). Then, the decay continues at a
slightly reduced rate in the mid region of controllable load fraction (LC ≈ 40%). The
same happens for high factors of controllable load (LC > 50%), with the best value of
Cf = 1, reached for LC = 100%. Another observation is that the initial value of Cf for
LC = 0% grows according to the period of evaluation taken. The reason is that there
is more variability of the signal for a whole year than in a day (see Figure 5.7). But in
all the situations the EDeNCs are able to reduce the peaks of the environment signal
towards a flattened s[k]. Note that τLA is able to coordinate all the controllable
users in the environment even in the absence of non-controllable demand and is able
to produce a constant s[k] since Cf = 1.

For the daily period, the value of Cf in absence of controllable users is equal
to 1.119. Whereas, the use of the EDeNC is able to reduce it to 1.005 when all the
demand is controllable. It is necessary that the controllable demand represents a 40%
of the total demand in order to obtain a considerable reduction of the Cf (∇Cf ≈ 8%)
with respect to the situation of non-controllable demand. The maximum reduction is
achieved when LC = 100%, in which the ∇Cf = 10.16%.

For the weekly period of evaluation, the initial value of Cf without controllable
demand is 1.185, which is higher than the daily period of evaluation. The reason is
that there is more variability in the waveform along a weekly period than in a day. In
this case, from LC = 40%, the reduction of Cf is equal to ∇Cf (40%) = 12.65%. And

the maximum reduction obtained is for a LC = 100%, ∇Cf (100%) = 15.55%, which

corresponds to Cf = 1.0007, being closer to 1 than in the daily period.

The next time period evaluated is the monthly one. In this case, the Cf without
controllable load is higher than in the weekly and daily periods, and its value is 1.207.
Again, the reason is the presence of more peaks during this evaluation period and the
increase of variability. Now, for a controllable capacity of 40% the decrease of the
Cf is considerable, ∇Cf (40%) = 14.02%. This value represents near the double of
the daily period evaluation, so that this figure indicates that the variability is highly
reduced. The maximum reduction is achieved by LC = 100%. The Cf value is 1.0002
and the percentage of reduction compared to the case without controllable demand
is ∇Cf (100%) = 17.17%.

Finally, for the last evaluation period, Cf with a LC = 0% is the higher of all

evaluation periods and it is equal to 1.263. In this case, for LC = 40%, the Cf

reduction achieved is ∇Cf (40%) = 17.13%, which means a great reduction in the
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Figure 5.9: Lf for environment A evaluated for four different periods of time: daily,

weekly, monthly and annually. The x-axis represents the variations of controllable
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users (#n).

peaks of the waveform towards a constant s[k]. The reduction achieved for LC = 100%
has a value of ∇Cf (100%) = 20.85% and the final Cf value is 1.0003. From these
results, the EDeNCs achieve the goal of reducing the peaks of the environment signal,
obtaining favorable results for all the controllable load percentage. In Table 5.1, all
the results for the different percentage of LC and periods of evaluation are gathered.

The EDeNC evaluation continues by analysing the next coefficient of the process.
So, the second factor of the assessment is the average load factor per period of
evaluation, Lf , which will give us information about how fitted is the grid with
respect to the demand through the measure of the system resources’ occupation.
Figure 5.9 collects all the simulation results for this coefficient. In order to compare
the results of Figure 5.9, they have been divided in 4 panels, one per each period of
evaluation. As the results of Cf of Figure 5.8, each point of the lines of Figure 5.9
represents the median of each evaluation period for the 30 seeds. There is almost no
dispersion and all the quartiles are really close to each other. The reason is that the
development of the evolved neural controller through the τLA reaches very similar
solutions for all the 30 different starting points. It is also confirmed, as in the analysis
of the Cf , that the algorithm is able to coordinate the different ensembles of neural
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controllers independently of the number of controllable users. Although it obtains
similar solutions for all of them, the output of each user is not the same. τLA is able
to adjust the output of each controllable user depending on the number of individuals
and LC .

Figure 5.9 shows a logarithmic growth of Lf for all periods of evaluation. The

bigger the evaluation period is, the lower Lf (LC = 0%) is. This behavior is due to the
peaks and variability of the z[k] signal, which are higher when the evaluation period
is larger. As mentioned above, the difference in the results between the number of
controllable users are negligible. However, little differences can be observed for the
annual evaluation period and a controllable capacity around LC ≈ 50%, in which the
value of Lf is lower for large sizes of controllable users. A strong increase of the

Lf can be observed in all cases with relatively low fractions of controllable loads.

Moreover, the growth slows down from a LC ≥ 40% in all cases. The closer to 1 Lf

is, the greater the flattening of s[k] is. Note that the Lf maximum value is almost
reached for LC = 100% and also τLA is able to coordinate the ensemble of users in
the absence of z[k] by achieving a flattened response. In all cases, the EDeNCs are
able to improve the average use of the available resources since Lf positive grows for
all LC values.

In the case of an evaluation period of a day, the value of Lf in the absence of
controllable demand is 0.8838. This value is increased until it reaches a maximum of
0.9896 in the best case, when the entire environment consists only of controllable users.
In order to measure the improvement of Lf for the different LC values, ∆Lf (LC) is
defined as

∆Lf (LC) =
|Lf (LC)− Lf (0%)|

Lf (0%)
· 100 (5.29)

At the point where the change of slope occurs (LC = 40%), the improvement of
Lf is ∆Lf (40%) = 9.53%. Whereas the maximum Lf is reached at LC = 100%

and the percentage of this improvement has the value ∆Lf (100%) = 11.97%. For
this evaluation factor, the difference between the case of LC = 40% and the total
controllable demand is not as pronounced as for Cf . The reason is that the average
demand takes advantage of almost all the available resources, although peaks still
exist in the waveform of s[k].

For the weekly evaluation period, Lf starts with a value of 0.8371 for the case in
which non-controllable demand is set in the environment. This parameter presents a
lower value than the previous evaluation period because the average load decreases
due to higher variability, therefore Lf decreases. In the change of tendency point,

it is obtained that Lf has improved in ∆Lf (40%) = 15.29%. For the maximum

controllable capacity, Lf = 100%, the improvement obtained is ∆Lf (100%) = 19.28%,

which corresponds to Lf = 0.9985.

For the monthly evaluation period, Lf has a value for LC = 0% lower than the
previous two evaluation periods and it has a value of 0.8219. This value is similar to
the weekly evaluation period because the average demand in a month is similar to the
average of the weeks inside the month. For LC = 40%, ∆Lf (40%) = 17.14%, which is
also pretty similar to the value of the weekly evaluation period. And for LC = 100%,
Lf = 0.9996 which meant an improvement of ∆Lf (100%) = 21.62% with respect to
the absence of controllable demand.

The annual Lf for LC = 0% has a value of 0.7850, which is also the minimum value
of all the evaluation periods. The reason is that the whole simulated environment
signal is taken into account and there is a significant variability that makes difficult
to use the entire available resources. Lf grows faster until it reaches LC = 40%,

which represents an improvement of ∆Lf (40%) = 21.67%. And then, the Lf

continues growing slowly until it reaches a value of Lf = 0.9998, an improvement

of ∆Lf (100%) = 27.42% with respect to the non existence of controllable demand.
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Figure 5.10: Df for environment A evaluated for four different periods of time: daily,

weekly, monthly and annually. The x-axis represents the variations of controllable

capacity (LC) and the color of each line represents a different size of controllable
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All the results for the different ∆Lf of all the evaluation periods and LC are gathered
in Table 5.1.

In Figure 5.10, Df results are gathered for the different configurations. The results
have been divided in 4 panels one per period. As in previous assessments, it is
represented the median and standard deviation of the Df per period of evaluation
and configuration of the environment. The deviation of the 30 seeds is low since the
IQR is low and the quartiles are very close and they cannot be seen. τLA reaches
similar solutions for all the different configurations regardless of the seed used and the
differences between the number of controllable users are negligible for all the periods.
This behavior continues supporting that the τLA effectiveness is independent from
the starting point of the simulation.

Note that in the case where the evaluation period is one year, the results for all
the sizes and LC fractions are the same because the maximum in this period is the
same amount for numerator and denominator of the coefficient. In this case, it also
presents a little more variability for different sizes of controllable users. For all periods
except the annual, all of them present a difference in the result less than 1% between
a 35% and 65% LC fraction for the different sizes of controllable users.
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Figure 5.10 shows a logarithmic growth as the results of Lf for daily, weekly

and monthly results. In this case, unlike the Lf results, the smaller the evaluation

period is, the bigger the value of Df for a LC = 0% is. This behavior is because the
consumption of most of the days is far from the maximum annual consumption. In
addition, it can be observed a rapid growth for LC < 40%. This growth slows down
until it reaches its maximum for LC = 100%. The best value for all the cases is 1,
which means that the system is using all the resources during the entire evaluation
period. With the EDeNCs, the system efficiency is increasing by using its full capacity
and producing a flat signal that takes advantage of it.

For a daily evaluation period, Df is 0.876 for LC = 0%. Then, as the controllable
capacity increases in the environment this value grows until it reaches its maximum
(Df = 1) for LC = 100%. As done before, a factor is defined that measures the
improvement of adding more LC . This coefficient has the following form,

∆Df (LC) =
|Df (LC)−Df (0%)|

Df (0%)
· 100 (5.30)

In the point at which the speed of growing reduces, the improvement achieved is
∆Df (40%) = 11.05%. Whereas for the maximum value of the factor, s[k] was

improved in ∆Df (100%) = 13.72%. At LC = 100%, Df has reached its maximum

value so the ∆Df (100%) is the maximum value that s[k] could improve with the help
of the EDeNC.

The next evaluation period is the weekly period. In this case, Df begins with a
value of 0.936 for LC = 0%. It is bigger than the daily period since the peaks during
the week are higher than for one day. At a LC = 40%, the EDeNC have improved the
factor in ∆Df (40%) = 5.56%, which is lower than the previous value since it starts

closer to the maximum value. With LC = 100%, it is obtained a Df = 1 with an

improvement of ∆Df (100%) = 6.82% with respect to the case with no controllable
load. As can be observed, the improvement for the best LC is similar to a LC = 40%.
The reason is that the maximum peak of the week is closer to the maximum of
the system, but the algorithm continuous improving this value until its maximum is
reached.

The last period analysed is the monthly period, since the improvement of the
annual period is inexistent as it always uses the maximum capacity of the system. A
bigger value of Df is achieved for LC = 0% which is equal to 0.955. It also reaches

the maximum value of Df = 1 for LC = 100%, which means a maximum improvement

of ∆Df (100%) = 4.76% (lower than the previous periods due to being close to the

maximum). Meanwhile, for LC = 40%, the algorithm achieves ∆Df (40%) = 3.89%
which is closed to the maximum possible value of improvement. By following the same
reasoning as with the weekly period, the maximum peak found during the evaluation
of a month is closer to maximum of the system, so the Df is closer to 1. The rest of
the results are summarized in Table 5.1 for all the periods and LC .

One last result that it is going to be analyzed is how flat the environment signal
is for the different controllable fractions, LC . In order to do this analysis, the
representation of the load duration curve explained in Section 2.1.5 is used. This
representation consists of sorting decreasingly the consumption along the 8760 h of
a year. Thus, the maximum consumption of the year is at 0 h and the minimum
is located at 8759 h. And in order to compare them, the load is normalized by the
maximum load available in the environment, i.e. the sum of the maximum load that
each user can consume. Figure 5.11 shows the different load duration curves for
different controllable fractions.

In view of these results, it can be concluded that the use of any controllable
demand will improve the grid status since the variability of s[k] is reduced (the value
of the slope decreases) and also the maximum consumption of the grid is reduced
as LC grows. Another finding that emerges from these results is that the demand
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LC[%]
Day Week Month Year

∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 1.67 1.87 3.96 3.26 3.59 2.24 3.90 4.27 1.58 5.37 5.93 0.00

20 4.87 5.54 7.37 8.06 9.30 3.71 9.04 10.48 2.60 11.26 13.35 0.00

30 7.15 8.28 9.48 11.06 13.19 4.78 12.27 14.75 3.34 15.00 18.57 0.00

40 8.19 9.53 11.05 12.65 15.29 5.56 14.02 17.14 3.89 17.13 21.67 0.00

50 8.93 10.44 11.83 13.79 16.83 5.77 15.26 18.86 3.96 18.37 23.54 0.00

60 9.08 10.63 12.10 13.95 17.04 6.01 15.41 19.08 4.20 18.71 24.05 0.00

70 9.35 10.96 12.53 14.36 17.61 6.23 15.86 19.73 4.35 19.26 24.91 0.00

80 9.66 11.34 12.96 14.80 18.23 6.44 16.35 20.42 4.50 19.84 25.81 0.00

90 9.93 11.67 13.35 15.20 18.78 6.63 16.78 21.05 4.63 20.35 26.63 0.00

100 10.16 11.97 13.72 15.55 19.28 6.82 17.17 21.62 4.76 20.85 27.42 0.00

Table 5.1: Comparison of Cf , Lf and Df for all the periods of time and all

controllable capacities in environment A. In bold, the results discussed throughout

the text are highlighted.

curve gets flatter as LC grows and the slope of the load duration curve decreases.
Regardless the size of the environment, the coordination of the different users always
improves its status. Furthermore, note the fast improvements introduced by relatively
low values of the controllable fraction (LC ≤ 20%). It is interesting to analyze the
first 10 h of higher demand in which it can observed an important reduction of the
system marginal costs in order to meet the maximum power demand. For LC = 40%
the slope of the load duration curve has been reduced approximately in an 80% with
respect to the case with no controllable demand. The maximum has been reduced
around a 25%. Whereas for LC = 100% the slope reduction is of 100% and the
maximum reduction is around 50%. In conclusion, the EDeNCs are able to improve
the state of s[k] and make a better use of the available resource as observed in the
results presented in this Section.

5.3.2 Environment B: no power constraints

Significant results have been achieved for bounded environments, in which the
EDeNCs must adapt their output in order to cancel the variability of s[k]. However,
in order to get closer to a real grid environment, the consumed power cannot be
constrained. The reason is that grids are constantly evolving and their boundaries
grow as the needs of their users also increase. In this Section, it is considered an
environment in which the maximum generation capacity of the system is bigger than
the maximum power that the different users can consume. Thus, there are no power
constraints and the users can consume what they need in order to get a smooth
environment signal. This environment configuration analyzes that the controllable
users are able to self-organize with the non-controllable ones and achieve a flattened
s[k] regardless any limitation to their consumption.

As in Section 5.3.1, τLA is necessary to coordinate the different sizes of
controllable ensembles and to guarantee the stability of s[k] independently to the
number of EDeNCs. The idea behind this environment is the design of a grid in
which the controllable users will try to adapt their consumption to enhance the
operation of the grid and relax the designing conditions of the system. In this case,
the grid assures to meet the demand of the users at any time, so the power constraints
disappear. In addition, the EDeNCs consume any amount of power, so the output is
not limited to 1, which is the maximum output of the EDeNC by design. Each xi[k]
is denormalized multiplying it by a maximum power (px,max), being the new output
range per controllable user xi[k] ∈ [0, px,max]. Thus, it is not assured that s[k] would
be in the range at which the EDeNCs produces an antiphase output and it could be
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Figure 5.11: Load duration curve of environment A for different controllable load

capacities.

in saturation or in inhibition regime. Therefore, it is necessary to add a preprocessing
part which assures that s[k] is within the firing range of the neural controller. To this
extent, the environment signal is normalized with respect to the configuration of the
environment by following Equation 5.31.

ŝ[k] =
s[k]

zmax + xmax
(5.31)

where zmax is the maximum amplitude for the m non-controllable users and xmax
is the maximum amplitude for the n controllable users. Thus, the environment is
normalized by the maximum power that the users can consume.

ŝ[k] will be at the firing range of the neural controller, even for the worst case
in which all users consume at full capacity. Now, the input to each neural controller
is normalized and belongs to ŝ[k] ∈ [0, 1], guaranteeing that the neural controller
always responds to it. This normalization of s[k] implies that the EDeNCs could
work under any combination of environment parameters. Furthermore, ŝ[k] will
provide the necessary information of the waveform to the controllable users since the
information about the total capacity of the system is not revealed. In a real scenario,
the normalized information will be provided to the users by the grid operators which
have access to all the system information. So, this mechanism increases the security
of the system and provides only the necessary information. This makes the system
more robust and increases the efficiency of the shared information.

In this environment, all the controllable users have a px,max = 1 in order to
simplify the environment calculus. Then, the maximum amplitude of the m non-
controllable users is adjusted through LC , i.e. pz,max = n · px,max · LC . This amount
of power will be used to multiply it by the profile of Figure 5.7. So, each environment
configuration will have a different amplitude of s[k]. In this case, the environment
conditions have changed and the best evolved chromosome can no longer be used.
The neural controller has been evolved again based on the best parameter scenario of
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Figure 5.12: Cf for environment B evaluated for four different periods of time: daily,
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Chapter 4 with the new environment conditions. After the evolution, the new best
chromosome is used in each EDeNC to test this new environment closer to the reality.

The first factor to analyze is Cf and all results are gathered in Figure 5.12. These
results are presented differentiating the evaluation period, the population size of the
controllable users and the controllable fraction, LC . As in environment A, each point
of the representation is the median of the 30 seeds used to evaluate each configuration
of the environment. The deviation per configuration is represented in shadow grey,
but the 1st and 3rd quartile are too close to the median so it is negligible. Again, τLA
develops the ensemble of evolved neural controllers in order to coordinate them and
reduce the peaks of the aggregated waveform. In spite of obtaining similar results for
all the parameter configurations, more discrepancies can be observed depending on
the ensemble size for all periods. Best results are always achieved by bigger sizes of
ensembles since τLA has major quantities of energy to adapt the controllable demand
to the non-controllable one. The reason of this behavior is that for different LC and
n, s[k] is different for each one and ŝ[k] may differ for each one, so the solution
might differ depending on the ŝ[k]. Despite these differences, the algorithm is able
to coordinate the ensemble of controllers no matter the size and the starting point of
the simulation.
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At the view of these results, it can be concluded that the inclusion of controllable
demand in the environment improves the waveform of the environment signal, making
it more constant as LC grows. This appreciation is observed for any of the evaluation
periods since the Cf is always reduced. In Figure 5.12, an exponential decay is

observed for all evaluation periods towards Cf = 1 as LC increases. It is also observed
that for LC ≤ 10%, the decay is slow. Then, it changes rapidly until it reaches a
LC = 35%. And again the decay slows down until the best value of Cf is achieved for
LC = 100%. In this case, the point at which the decay changes significantly is achieved
before than in environment A. This is a positive effect because it indicates that the
greatest benefits are obtained at low LC , i.e. moderate investments. Moreover, the
Cf starting point grows with the evaluation period, since the variability of the signal
also increases. As in environment A, τLA is able to coordinate the EDeNC ensemble
even in the absence of z[k] and achieves a Cf = 1.

In order to detail the performance of the EDeNCs, the results of Figure 5.12 are
described as follows. For the case with LC = 0% in the daily period, the Cf value is

equal to 1.119, which is the same value as in environment A. The reason is that Cf is
a waveform factor and it is independent of the scale. The application of τLA for the
ensemble coordination is able to obtain a Cf = 1.005, which is also the same value
as in environment A. So, Equation 5.28 will give the same amount of improvement
of Cf , ∇Cf (100%) = 10.16%. However, at the point of change of slope LC = 35%,

a value of ∇Cf (35%) = 8.07% is obtained which is greater than in Environment A
under the same percentage of controllability percentage. Therefore in both cases, the
algorithm has developed the evolved neural controller to the minimum Cf possible.

The same behavior can be observed for a weekly period of evaluation. At the
point LC = 0%, the Cf obtained has a value of 1.185. Then, for LC = 35%, the

improvement of Cf is ∇Cf (35%) = 12.71%. s[k] is almost flattened at this point, it
only needs a small percentage to get its response as flatten as possible. Finally, the
maximum reduction of Cf is achieved for LC = 100% and has a value of 1.001. This

value means an improvement of the waveform of ∇Cf (100%) = 15.55%.
The next period evaluated is the monthly one. At this period, the starting point

of Cf is bigger than the previous ones because the variability of the signal is also

increased since more peaks of s[k] are evaluated. The value of Cf for LC = 0% is
1.208. With the increase of LC , this value is reduced and at a controllable capacity
of 35%, this reduction has a value of ∇Cf (35%) = 13.92%. The maximum reduction

is achieved by LC = 100%, the value of the Cf is 1.0002 and the reduction of the Cf

is of ∇Cf (100%) = 17.17%.
Finally, the last evaluation of the environment is done by taking into account the

annual period signal. For this period, Cf has the biggest value due to the variability

of the signal. At a LC = 0%, the Cf has a value of 1.263. Then, Cf is reduced as
the controllability of the system grows. So, for the point which the slope changes its
speed, LC = 35%, an improvement of ∇Cf (35%) = 16.52% is achieved. For this value
of LC , the s[k] has smoothed almost all the peaks presented in its waveform. The
reduction of Cf continues growing until it reaches a value of 1.0001, which means an

improvement of ∇Cf (100%) = 20.82%. For all the periods, the results at LC = 100%
are very similar, meaning that the coordination algorithm found the best possible
solution to flatten s[k]. All the reduction results are gathered in Table 5.2 to see in
more detail the values obtained for each controllability fraction.

The next evaluation coefficient is Lf which will report information about how
good the average occupation of the environment is with respect to the maximum
consumption. It is a measure of how well the grid meets its demand. Figure 5.13
shows all the result for the assessment of this factor. Note that, the closer Lf is to 1,
the more constant is s[k]. The four evaluation periods are represented in a different
panel of Figure 5.13. All the points are the median representation of evaluating



5.3. Simulation Results 175

Day Week

Month Year

0.80

0.85

0.90

0.95

1.00

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100 0 20 40 60 80 100

LC [%]

L f
# n 1

2
5
10

25
50

100
250

500
1000

Figure 5.13: Lf for environment B evaluated for four different periods of time: daily,

weekly, monthly and annually. The x-axis represents the variations of controllable

capacity (LC) and the color of each line represents a different size of controllable

users (#n).

Lf in the corresponding time period for the 30 different seeds. In addition, the
1st and 3rd quartile are also represented as the limits of a grey shadow behind the
line. However, τLA reaches a similar solution to all the 30 seeds so there is no
deviation in the data. The algorithm is able to coordinate the ensemble of controllers
for any size as the tendency of each line is positive and the value of Lf grows.
However, more discrepancies are shown than in environment A due to the different
s[k] signals. Despite these small differences, the best results are achieved by bigger
sizes of populations since the algorithm is able to displace major quantities of signal.
τLA achieves similar results for all the 10 different sizes of controllable users in the
environment and the controllable capacity.

For all the periods, the tendency of the Lf growth is logarithmic (see Figure 5.13).

The value of Lf for a LC = 0% is lower as the evaluation period increases its value.
The reason is the disparity of the average load and the maximum of the environment
as the period of evaluation grows for z[k]. It is also observed that for LC ≥ 10%,
Lf grows slowly, then it speeds up until LC ≥ 35% and again it slows down until
LC = 100%. Even for the worst situation in which z[k] = 0, the algorithm is able to
coordinate the ensemble of users achieving a value very close to the unity.
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In order to insist about the EDeNC performance, the results per each period of
evaluation are described. Again, all the values of the Lf for a LC = 0% are the same,
since the scale factor is not taken into account by this factor. In this case, for a daily
evaluation period, Lf in the absence of controllable demand is 0.884. At the point
at which the growing tendency change their value, the improvement obtained using
Equation 5.29 is of ∆Lf (35%) = 9.40%. And the maximum value of Lf is 0.989

reached at LC = 100% which means an improvement of ∆Lf (100%) = 11.97%. The

difference in the results are not as pronounced as for Cf , because the match of the
average load with the capacity of the system is greater in spite of presenting peaks.

For the case of weekly evaluation periods, it follows the tendency as for daily ones.
In this case, Lf starts with a value of 0.837 in the absence of controllable demand.
Then, for the elbow point of the logarithmic growth (LC = 35%), the factor has
increased ∆Lf (35%) = 15.38%. And for the best value of simulations, LC = 100%,

it reaches a value of Lf = 0.998 and an improvement of ∆Lf (100%) = 19.28%. This
value is higher than for the daily period since it is easy to get closer to the system
maximum for higher periods.

For a monthly period of evaluation, the starting value of the factor has decreased
to Lf = 0.821 in the absence of controllable demand. Then, this value is improved

rapidly until it reaches LC = 35% at which the improvement measured is ∆Lf (35%) =

17.00%. The maximum improvement is ∆Lf (100%) = 21.62% for LC = 100% and

the value that the factor reaches is Lf = 0.9991.
Finally, the last results for the entire signal evaluation length are as follows. The

value of the factor for LC = 0% is 0.785, which is the minimum value reached by all
the evaluation periods. This value grows quickly until it reaches LC = 35% at which
the factor has already improved ∆Lf (35%) = 20.78%. Lf continues growing but at
a speed slower than the previous one, obtaining an improvement of the factor for the
maximum value of ∆Lf (100%) = 27.33%. At this point, the maximum value of Lf

reached is equal to 0.9995. Again for this factor, as in the case of Cf , the results at
LC = 100% are very similar for the two environments. The reason is that τLA reaches
the best possible coordination at this point, because differences can be observed in the
growing of the coefficient. All the different ∆Lf for different controllable percentages
are gathered in Table 5.2 in order to analyze them in more detail.

The last factor of the evaluation is represented in Figure 5.14. As the previous
factors, Df analyses the performance of the EDeNCs in the environment through
the utilization of the maximum capacity of the system. The results are divided in
4 panels for each evaluation period of the factor, varying LC and n. Each point,
contained in the lines of Figure 5.14, represents the median of the average factor for
the corresponding evaluation period. The same configuration of the simulation is
repeated for 30 seeds, but as for previous results the deviation is so small that it is
difficult to appreciate in Figure 5.14.

The results of the annual period of evaluation are always the same, since it is
comparing the maximum reached for the signal length within the evaluation period
with the maximum capacity of the system which in this case is the same. The rest
of evaluation periods present a logarithmic growth. In this case, the smaller the
evaluation period is, the bigger the starting value of Df is. The reason is that for
shorter evaluation periods its maximum consumption is far from the annual maximum.
In this case, the change of tendency in the curve is produced for LC = 50%. They
have similar results for all sizes of n. But it can be observed that for bigger values
of n the value of Df decreases a little as the LC grows. The reason is that some
disturbances occur during the coordination of the biggest ensembles for high LC that
maintain s[k] flattened but its maximum value decreases. In spite of this behavior,
the maximum value reached is close to 1, which means that the system is working
to its maximum capacity the entire evaluation period. Therefore, with the EDeNCs,
a smoothed s[k] is produced that is enhancing the system as the working point is
situated at the full environment capacity.
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Figure 5.14: Df for environment B evaluated for four different periods of time: daily,

weekly, monthly and annually. The x-axis represents the variations of controllable

capacity (LC) and the color of each line represents a different size of controllable

users (#n).

The value ofDf for a daily evaluation period at the point of absence of controllable
demand is 0.876. In this case, the improvement coefficient defined in Equation 5.30
is also used. Then, the value of Df grows rapidly until it reaches LC = 50%. At this

point the improvement obtained in the environment is ∆Df (50%) = 13.20%. From

this point and depending on the size of the controllable users, Df value grows for
n ≤ 50 and decreases in less than 0.1% for the rest of n. Anyway, in the best case the
maximum value reached by Df is 1 and s[k] is improved in ∆Df (100%) = 13.72%.

In the weekly case, the starting point of the curve is higher than for the daily
period. The reason is that during the week, s[k] is closer to demand the full capacity
of the system. The value of Df at LC = 0% is equal to 0.936. Then, this values
grows until it reaches the elbow point of the curve for LC = 50%. At this point, the
EDeNCs have improved the value of Df in ∆Df (50%) = 6.49%, which is lower than

the previous evaluation period since Df starts closer to the maximum value. As in the

daily evaluation period, the best value of Df is obtained for n ≤ 50 and for the rest of
the sizes, the values differ in less than 0.1%. Thus, for the maximum LC , the reached
value of Df is equal to 1 and means a final improvement of ∆Df (100%) = 6.82%.



178 5. Collective Controller

LC[%]
Day Week Month Year

∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 1.86 2.14 0.15 1.91 2.24 0.00 1.89 2.24 0.00 1.82 2.19 0.00

20 5.00 5.78 1.53 6.32 7.41 0.02 6.32 7.42 0.00 6.17 7.30 0.00

30 7.48 8.68 8.67 11.53 13.82 3.80 12.52 15.12 2.62 14.63 18.09 0.00

35 8.07 9.40 10.40 12.71 15.38 4.72 13.92 17.00 3.26 16.52 20.78 0.00

40 8.44 9.85 11.75 13.47 16.39 5.51 14.85 18.29 3.81 17.86 22.77 0.00

50 8.88 10.38 13.20 14.20 17.40 6.49 15.78 19.60 4.52 19.31 24.99 0.00

60 9.21 10.79 13.53 14.59 17.93 6.71 16.20 20.21 4.68 19.84 25.82 0.00

70 9.50 11.14 13.64 14.89 18.35 6.78 16.51 20.66 4.73 20.18 26.35 0.00

80 9.75 11.45 13.49 15.14 18.70 6.63 16.75 21.01 4.59 20.40 26.69 0.00

90 9.97 11.73 13.48 15.36 19.01 6.61 16.97 21.32 4.57 20.61 27.00 0.00

100 10.16 11.97 13.72 15.55 19.28 6.82 17.17 21.62 4.76 20.82 27.33 0.00

Table 5.2: Comparison of Cf , Lf and Df for all the periods of time and all

controllable capacities in environment B. In bold, the results discussed throughout

the text are highlighted.

The Df for the monthly evaluation period at LC = 0% has a value of 0.954.

Like the previous periods, Df presents the same behavior for the different sizes of

controllable users. It reaches a maximum value of Df = 1 for LC = 100%, which

means a maximum improvement of ∆Df (100%) = 4.52%. Whereas at the point

of tendency change LC = 50%, the algorithm achieves ∆Df (50%) = 4.76% quite
near to the maximum improvement. As for the previous coefficients, the results
are very similar to the two environments, although the tendencies in the graphical
representations differ. For all the periods and LC , the results are collected in Table
5.2.

During the evaluation assessment of environment B, little differences have been
found with respect to the results of environment A. Despite the difference in scale,
τLA is able to found an optimum working point in all situations. Thus, the ensemble
of evolved neural controllers is coordinated in order to flatten the response of s[k].
However, some differences are appreciated as the tendencies and the different Cf , Lf

and Df curves present different forms. In addition, the last result of the assessment is
the flatness of the environment through its load duration curve. Figure 5.15 represents
the load duration curve for different percentage of controllable users. The curves have
been normalized in order to compare them. In this case, τLA has reached different
solutions than the ones obtained in Figure 5.11 for environment A. This confirms that
τLA is able to coordinate the ensemble of individuals searching for the best solution
to flatten s[k].

As stated before, the inclusion of any percentage of controllable demand improves
the behavior of the system and reduces the variability of the grid. The slope of the
curves in Figure 5.15 is reduced as LC grows and gets flatter with the increasing
controllable demand. It can be also observed how the maximum consumption of
the system is reduced since the system efficiency increases with flatness of the grid
environment. Regardless the size of the environment, the coordination of the different
users always improves its status. As in environment A, it can be observed the fast
improvements introduced by relatively low values of the controllable fraction (LC ≤
20%). And the analysis of the higher demand for the first 10 h leads to an important
reduction of the system marginal costs in order to meet the maximum power demand.
To put some numbers to Figure 5.15, in the case for LC = 30%, the slope of the curve
has been reduced in a 81.60% with respect to the case of LC = 0% and the maximum
consumption of the environment has been reduced in a 28.93%. For the maximum
controllable capacity (LC = 100%), the curve is constant, the reduction of the slope



5.4. Summary and discussion 179

0.4

0.6

0.8

1.0

0 1460 2920 4380 5840 7300 8760

k [h]

Lo
ad

LC [%] 0
10

20
30

40
50

60
70

80
90

100

Figure 5.15: Load duration curve of environment B for different controllable load

capacities.

is 100% and the maximum reduction is 66.29%. In this case the results are different
from the ones obtained in environment A. Comparing Figures 5.11 and 5.15, the
load duration curves differ from the different environments. In this case, it has been
obtained an increasing reduction for all the controllable percentages in the slope of
the curves and the maximum achieved.

5.4 Summary and discussion

In this Chapter some progress has been made towards the solution to the problem
considered in this Thesis. The complexity level of the grid environment has been
increased by adding more users to it. Specifically, there are m users for the non-
controllable part of the demand and n controllable users. Both types of facilities only
consume from the grid since firstly the problem of the collectivity has to be faced. The
problem is focused to solve the interaction of a heterogeneous environment comprised
by different quantities of users in order to reduce the variability of the aggregated
consumption.

A small part of the problem has been already solved in Chapter 4 with a
simplification of the environment consisting of only two users, each one for each
type of demand. Thus, the next natural step to solve the whole problem was to use
the solution reached in this new environment comprised by more users. However, the
results of applying directly the same evolved neural controller for all the controllable
users were not completely satisfactory. The reason was that all of them were trying to
consume the same power at the same time, so more peaks appeared in the waveform
of the signal. It was necessary to develop a mechanism that will adjust the response
of the controllable users in real time, to modify their demand profile. In addition,
this mechanism had to respect the essence of the evolved neural controllers in order
to obtain a destructive interference through cancelling the derivative of s[k].
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Based on these premises and inspired by the Blind Source Separation (BSS)
techniques, the development of the evolved neural controllers arose in the form of
an algorithm that adjusted the value of the last free parameter of the Continuous
Time RNN (CTRNN). This last free parameter is the τi, which is related with the
speed reaction of the neurons. Thus, the algorithm displaces the output of the evolved
neural controllers through changes in values of τi. It is necessary to assure that the
stability of the system has not been comprised by the changes of τi. So, the algorithm
has a range of values in which the stability is guaranteed. This algorithm was inspired
by a reinforcement learning scheme, in which the analysis of the environment status
s[k] gives a measure of its flatness to alter the value of τi. The measurement to modify
the τi was based on the difference of s[k] to its mean value. Thus, the algorithm tries
to minimize this difference through a descent gradient technique and the result of the
minimization is used as the quantity to modify τi. The rate at which each τi learns
for each controller is randomized by following an exponential distribution.

With the use of τ -Learning Algorithm (τLA), the development of the evolved
neural controllers was achieved in this new environment. However, it was necessary
to test that τLA was the proper solution to the problem. Thus, an evaluation process
was defined in which three factors were analysed: i) crest factor (Cf ), ii) load factor
(Lf ) and iii) demand factor (Df ). The first one is a direct measure of the waveform,
normally Cf ≥ 1. The other two are environment utilization factors that measures its
efficiency with respect to the maximum capacity of the system, they take a value Lf ≤
1, Df ≤ 1. Moreover, two modes of actuation were defined for the test: environment
A, in which the maximum power was constrained, and environment B, in which there
was no maximum power limitation. For the first environment, the controllable users
had to adapt their output to the behavior of the non-controllable users in order not
to surpass the maximum power available. The best chromosome obtained in Chapter
4 was used for the Evo-Devo Neural Controller (EDeNC). On the other hand, there is
not any power limit in environment B, so the neural controllers can consume what they
need to flatten s[k]. For this environment, it is necessary to normalize the CTRNN
input so the neural controller could respond to the environment. But, this required
to re-evolve the neural controller since the boundary conditions have changed.

The results obtained during the evaluation process proved that the use of the τLA
for the EDeNCs improves the status of the environment for any LC . In addition,
no matter the seed used, the τLA converges to a similar solution in all the cases.
Even for different sizes of controllable users at a fixed LC , the algorithm was able
to find the optimum solution for all of them. For environment A, from LC = 40%
the environment signal smoothed its waveform in a 80% while in environment B
this cipher was reached from LC = 30%. The maximum flatness of the environment
signal was achieved for LC = 100% and it was of a 100%. Four periods of evaluation
were defined for the 3 factors in both environments for all the possible configurations.
The best value of each parameter was achieved in both environments for the highest
controllable capacity LC = 100%, i.e. Cf ≈ Lf ≈ Df ≈ 1. The improvement of each
coefficient for the different LC was gathered in Tables 5.1 and 5.2 for environment
A and B, respectively. In conclusion, the EDeNCs using τLA were able to achieve a
constant s[k] which improves the performance of the environment, working always at
the full capacity of the system.
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“I’m gonna show you, how great I am” — Muhammad Ali

R
egarding to the results obtained in Chapter 5, the ensemble of neural
controllers was able to smooth a synthetic demand curve based on
the principal frequency components of a real aggregated consumption.
The neural controllers were evolved to obtain the opposed derivative

of the input signal (aggregated consumption) and cancel the variability of the
continuous signal at their input. After that, they were developed using the τ -Learning
Algorithm (τLA) in order to cancel collectively the environment signal (aggregated
consumption). A heterogeneous response was obtained for the different controllers
when the algorithm was applied. Figure 6.1(a), shows an example of the behavior
of 10 users in which the controllable demand is divided. Each of them presents
a different demand profile and a flatten aggregated consumption is achieved when
added to the non-controllable demand. Although this environment is close to a real
electric grid, it is still far from its implementation. In this Chapter, the level of
complexity is increased to test the development of the evolved neural controllers in
an environment with real demand and Distributed Energy Resources (DER). To this
extent, the possibilities of using this kind of coordination algorithms are analyzed in
real environments. In addition, the inclusion of DER elements gives the opportunity
to assess the interaction of local generation and demand, and how the controllable
capacity would help to the DER integration inside the grid.

So far, neural controllers were able to use all the power available to cancel the
variability of the non-controllable demand. However, the necessities of the users,
controllable and non-controllable, must be met. Thus, the neural controllers are
restricted to use only the power from the deferrable loads which can be displaced
around the time axis. Moreover, a new criterion to displace the power of deferrable
loads is developed by adding local energy resources capabilities. The controller has to
take into account this new dimension of the problem in order to smooth the aggregated
consumption plus the maximization of the local energy resource. These two objectives
are in conflict a priori. The reason is that the maximum production of Photovoltaics
(PV) electricity is located at the central hours of the daylight concurring with one of
the daily maximum consumption periods. Thus, if the consumption of all the users
were supplied locally by PV generators, the aggregated consumption would present a
form such as the one of Figure 6.1(b). In this Figure, it is represented the generated
power gPV [k] and the aggregated consumption with or without taking into account the
effect of the PV generation, sPV [k] and s[k]. The waveform of sPV [k] in Figure 6.1(b)
presents a higher variability than the current behavior of the grid, s[k]. Thus, the
algorithm needs to confront a higher variability and discontinuity of the environment
signal, which makes difficult the smoothing of the aggregated consumption.

In this Chapter, a new approximation for the neural controllers is described in
order to meet these new restrictions. An improved algorithm is built based on the
use of the neural controllers described in Chapters 4 and 5 and the addition of the
users behavior plus the DER elements. This algorithm uses the demand profiles
generated by the Evo-Devo Neural Controllers (EDeNCs) to smooth the aggregated
consumption in a distributed way. The EDeNC consumption patterns are used
to schedule the deferrable loads that each user allows controlling. Moreover, the
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Figure 6.1: Grid behavior for different environments: (a) example of the τ -learning

algorithm to divide the antiphase controllable demand into 10 different users and (b)

effect of the PV generation in the aggregated consumption. In red the PV generation,

gPV , in green the environment signal without PV, s, and in blue the environment

signal with PV, sPV .

algorithm combines the EDeNC patterns with the local generation for the scheduling,
since all consumers have PV generators. The algorithm builds a pattern based on
the response of the EDeNC and the PV generation forecast. Thus, the algorithm
seeks the balance between the smoothing of the aggregated consumption and the
maximization of the self-consumption, which focuses on the maximum use of the own
generated energy, while the energy provided by the grid remains an optional generator
or consumer.

The GridSim1 simulator has been used to develop this new algorithm and to
carry out the final tests of this new algorithmic approximation. It is an open
source simulator in which the power balances of a virtual electrical grid are analyzed.
GridSim simulator was introduced in Castillo-Cagigal (2014). Hence, this simulator
incorporates all the elements necessary to simulate the real behavior of the users and

1Source: https://github.com/Robolabo/gridSim
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Figure 6.2: Schema of the main elements of the simulator GridSim.

the different elements of the grid into a virtual environment. A brief explanation
of the simulator and its elements is included in Section 6.1. Then, the Neural Grid
Algorithm (NGA) which is the new algorithm developed using the EDeNC response
is presented in Section 6.2. The scheduling of loads based on different profiles is
explained together with the control strategy followed. After that, simulations are held
to test the NGA approximation and the final tests of the EDeNC for its application
in a virtual environment (see Section 6.3). Finally, a conclusion of the Chapter is
carried out in Section 6.4.

6.1 GridSim: virtual grid environment

GridSim is an open source software which simulates the real behavior of a grid referred
to the power balance of its components. With this piece of software, simulations of
real environments are carried out to test the NGA. The structure of the simulator
consists of a group of nodes which are connected together through a virtual power
line. And the set of virtual power lines are connected together creating the structure
of a virtual grid (see Figure 6.2). Each node is composed by different elements:

� A consumption profile, whose form depends on the energy necessities of the user.
Different profiles can be used in order to satisfy different users necessities. So,
the profile depends on the user selected and the loads that it possesses.

� A DER system consisting of a local generator with or without an storage system.
In this Thesis, a PV system is used as source of the Distributed Generation
(DG) and the storage system is composed by a lead-acid battery. Despite not
being the most efficient technology, lead-acid batteries are the most known,
widely used and economic technology. GridSim also offers the possibility of
incorporating other DER technologies, by changing the models used and the
different parameters of the element.

� A controller can also be added to manage the different power flows that are
concurring inside the node by establishing different objectives to modify the
node behavior. Different controllers can be used, for example for battery
management or for Demand Side Management (DSM) of a set of local loads.

Thus, different types of nodes can be defined by combining the different elements
inside them. For example, there can be nodes with only consumption or generation,
nodes with both of them, nodes with controllers to manage the power flows inside the
virtual grid, back-up nodes with storage systems to store electricity or any possible
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combination among them. To simplify the operations inside the grid, each line
groups together only one type of node. So, the nodes inside of a line have the
same configuration and possess the same elements. Then, GridSim calculates the
power balances of every node and they are aggregated in their common line. And the
aggregated consumption is calculated as the sum of the power balances of each line.

The configuration of the nodes varies depending on the situation simulated. The
simulations of this Chapter consist of analyzing the behavior of the NGA in a closer
environment to the Smart Grid (SG). To this end, the nodes are equipped with PV
and local storage systems that constitute their DER. Moreover, the nodes will be
also provided with controllers based on the previous development of the EDeNC.
However, the size of the controllable population will depend on the controllability
capacity of the grid. Hence, the population of users will be divided in controllable
and non-controllable ones.

6.1.1 Consumption profile: virtual user

The consumption profile of the users is composed by the three types of loads presented
in Section 2.3.4. The representation of these three loads inside the simulator is
presented in Figure 6.3. There are some differences between them, the elastic loads
consume instantaneously the power that they are demanding (e.g. corresponds to
air-conditioning loads or Electric Vehicle (EV)). On the other hand, deferrable and
non-deferrable loads are discretized in energy packages of determined power amplitude
(P ) and time length (∆t, see Figure 6.3). Their mathematical expression is gathered
in Equation 6.1.

pLi,j(t) =

{
P t ∈ [tacti,j , t

act
i,j +∆t]

0 t ∈ rest
(6.1)

where pLi,j(t) is the instantaneous power consumed by the load (deferrable and non-

deferrable) for the jth load of the ith user, tacti,j is the activation time of the load, P is
the power consumed by the load and ∆t is the duration of the load. Apart from the
power consumed by the load, the difference between deferrable and non-deferrable
loads is the time at which the load starts (tacti,j ). For non-deferrable loads, this time
is fixed and cannot be displaced by the controller. For deferrable loads, this time is
not set and can be assigned within the user preferences inside a period of time given

by him or a running range (∆tui,j = [tbegi,j , t
end
i,j ]).

This representation of the node loads makes easier to model any type of user,
residential, commercial or industrial. It is possible to simulate their behavior by
knowing the amplitude of the loads, their duration and the time at which the different
loads are activated. For this Thesis, the nodes are going to simulate residential
users, so the energy packages are going to represent the different appliances and home
electronics devices that they possess. In the example of Figure 6.3, the form of the
three types of loads can be observed. The elastic loads in purple present a continuous
profile whose form evolves through time (for representations purposes, the elastic
consumption profile is discretized to make easier its aggregation to the other loads).
Non-deferrable loads present a discrete profile consisting of different energy packages
representing different loads whose tacti,j is fixed by the user preferences. Finally, the
deferrable loads are represented in green. In this case, each energy package also
represents different loads but the tacti,j can be displaced in time inside the limits by a
controller. The main difference between these two types of loads in this representation
is the time when the load starts and how this time is assigned. As observed in Figure
6.3, a non-deferrable load is a deferrable one whose limits of the ∆tui,j are tacti,j or in
other words, there is no interval to select the time. The consumption profile of the
node consists of the aggregation of all the loads inside it and presents the behavior of
the simulated user.

GridSim also incorporates a data base of appliances profiles and other residential
consumptions to simulate the concrete behavior of a residential user. These residential
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Figure 6.3: Consumption profile for a user with different load types: elastic, non-

deferrable and deferrable. In purple the elastic loads, in orange the non-deferrable

loads and in green the deferrable loads.

loads include the typical electrical appliances of a highly electrified house. The non-
controllable loads of the data base are: cooking appliances, fridge, freezer, lighting,
computers and entertainment appliances. While there are only three deferrable
appliances: washing machine, dishwasher and dryer. All the information was
measured in the demonstrator MagicBox with a time resolution of a minute and
these data was gathered in Castillo-Cagigal et al. (2011b). For the simulations, the
energy package discretization is used since any electrical behavior can be represented.
Thus, how is GridSim able to place these packages in order to simulate the behavior
of an entire grid? The loads of the node that can be placed in the time axis are
the deferrable and non-deferrable loads. Deferrable loads have a flexible tacti,j and
they will be scheduled following the given ∆tui,j by a controller. This process will be
explained in Section 6.2. However, if there are no controllers, these deferrable loads
are assigned in the same instant of their creation and will follow a consumption profile
as the non-deferrable ones since the tasks have to be done.

In order to simulate the aggregated consumption of a grid, a virtual user is used.
This virtual user consists of the creation of random loads whose tacti,j is assigned by

using a local consumption pattern, defined as fL,i(t). Thus, deferrable loads are used
to follow the consumption pattern of a grid. fL,i(t) defines the shape of the user local
consumption and through the aggregation of all users, the global behavior should be
similar to the one of a real electrical grid. To this extent, the different loads are
positioned in the time axis following the local pattern which is used as a probability
density function. Thus, tacti,j is considered as a random variable whose value is taken

with a certain probability from pdf(tacti,j ). In this case, the user has a number of loads
that have to be done per day, which are used or not daily according to the user’s
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needs. Then, the mathematical expression of the pdf(tacti,j ) is represented in Equation
6.2.

pdf(tacti,j ) =
1

C
· fL,i(t) for t ∈ [tacti,j , t

act
i,j + tday]

C =

∫ tacti,j +tday

tacti,j

fL,i(t)dt
(6.2)

where C is a normalization factor of fL,i(t) since pdf(tacti,j ) is a probability density

function and tday is the length of fL,i(t) at which the loads have to be placed. In this
case, the length of a day in minutes is used (tday = 1440).

Thus, if the global behavior of the users should be similar to the aggregated
consumption of a grid, the fL,i(t) provided to the user will be the aggregated
consumption itself. The reason is that in probability the user should consume more
in the peaks than in the valleys following the shape of the aggregated consumption.
One user does not have enough loads to represent it, but the aggregation of all users
will give the expected result of a similar aggregated consumption. Figure 6.4 shows
the behavior of M virtual users and their aggregation. In this Figure, the incoming
loads are activated based on the day aggregated consumption of a grid. They are
distributed by following the patterns provided and new incoming loads are placed in
the most probable time to occur. pdf(tacti,j ) is calculated by using the activation time

of the load and the next 1440min (the length of a day in minutes) to place it in the
most probable time. Two examples of load assignation are described in Figure 6.4 for
nodes 1 and M . Both profiles present different shapes and through the aggregation
of the M nodes, a grid aggregated consumption similar to the real one is obtained.

Finally, depending on the node, the loads can be rescheduled with a controller
following the user preferences, ∆tui,j , and change their consumption profile. Thus,
the aggregated consumption changes depending on the objective of the controller.
However, if the node does not have any controller, the consumption remains the same
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without any change. So the virtual user will provide the local consumption of each
node and the use of controllers will alter the grid behavior.

6.1.2 Distributed Energy Resources module

GridSim incorporates two modules related with DER: i) generation and ii) storage
systems. The different elements (consumption, generation, storage system and grid)
inside a node are connected following an Alternating Current (AC) bus topology
such as the one of Figure 4.5. The generation module inside the node is used to
simulate DG. This module only incorporates PV generation and can be configured
with different sizes of generators. It also incorporates the elements inside a PV system,
such as inverters. The generation module also takes into account the losses and
efficiencies of the system through the configuration of those parameters. GridSim is
able to calculate the output power of a PV system from the environment data (solar
radiation and temperature), the generator parameters (size, orientation, inclination,
etc.), losses factors (voltage drops, thermal, shadows, etc.) and conversion efficiency
of the inverters. So, it gives the possibility to simulate any PV generator of flat silicon
PV modules.

In addition, the generation module of GridSim has an input mode in which
the output power of a real system can be introduced to simulate different types of
generation. Thus, different sources of generation can be added to the simulations in
order to emulate the generation mix of real electrical grid. It is also possible to change
the PV penetration by adding more nodes. Moreover, the isolation of generation
from the consumption is also possible through changes in the grid configuration by
defining a line with only generation and no consumption. A line can be defined
per type of generation by adding nodes with no consumption plus an input file with
the power output. GridSim gives a lot of possibilities to simulate different types
of generation and their configuration in order to understand the different power
flows inside an electrical grid. In order to study the maximization of the local
energy resources, simulations are done using the PV DG systems through the use
of real grid measurements. Specifically, these data correspond to the PV generation
measurements of the Spanish peninsular system during the year 2015.

The other DER module available in GridSim that completes the node con-
figuration is the storage system. The simulator allows configuring an storage
system consisting of a battery and a bidirectional inverter that allows charging and
discharging the battery. In order to resemble to the real functioning of an storage
system, GridSim allows configuring the conversion efficiencies of the inverter, the
size of the storage system in days of autonomy, the state of charge of the battery,
the nominal voltage, etc. At the moment, only lead-acid batteries are modeled
and programmed inside the simulator since their behavior are well-known and this
technology is mature enough.

The storage system in GridSim is configured by default as a backup system which
is only discharged when the node is isolated from the grid and there is no power source
to feed the loads. In addition, the battery is only able to charge from local energy
sources and never from the grid. In this way, GridSim avoids some questionable
transactions with the system, such as buying cheap electricity to sell it when it is
more expensive. By default, the battery voltage is 48V and the capacity is 1 day of
autonomy and the minimum State of Charge (SoC) is 40%. These parameters have
been selected based on the studies of Castillo-Cagigal et al. (2011a).

All the storage system parameters can also be modified from the corresponding
configuration file and other batteries with new materials can also be added. Moreover,
the behavior of the storage system in the node can be altered by adding a controller in
charge of managing the battery. Thus, the storage can be used not only as a backup
system, but also as a local resource to supply the loads when the power of the local
generator is not enough. Hence, in this case the grid is used as the backup system,
only supplying power to the loads when there is not enough power supplied locally.
In addition, the grid also receives the surplus of electricity generated that cannot be
used to supply the loads or to store in the battery. Thus, the exchanges with the grid
are reduced and the autonomy of the node is increased.
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As the generation module, the grid topology could incorporate only storage
systems that serve as backup to store the surplus of generated electricity. Therefore,
the inclusion of distributed storage capacity should serve to relax the condition to meet
the demand since they can be used to adapt the electricity production to the demand.
Moreover, distributed storage increases the self-consumption of local energy resources,
displacing the extra generated electricity to those times where the electricity is needed.
In this Chapter, the influence of these DER elements are studied from the perspective
of the grid global behavior. To that extent, different simulations environments are
configured.

6.2 Neural grid: scheduling with ANN and PV genera-

tion

The node configuration allows the addition of a controller to manage the different
power flows circulating inside it. Based on the EDeNC approximation explained in
Chapters 4 and 5, a new algorithm is designed to manage the node power flows
and it is called Neural Grid Algorithm (NGA). The NGA is going to reschedule
the deferrable loads of the local facility in order to achieve multiple objectives: i)
smoothing the aggregated consumption and ii) maximizing the use of local energy
resources or maximizing the self-consumption. Thus, NGA looks for reducing the
global variability of the grid at the same time that maximizes the self-consumption of
the local energy sources. The facility is composed by the GridSim elements already
presented, a discretized consumption in energy packages and the DER.

In order to schedule the different loads, NGA will assign tacti,j of each deferrable
load within ∆tui,j selected by the user. So, when a new deferrable load is created, NGA

is fed with the user preferences and it will define tacti,j based on the time preferences,
assuring that time restrictions are satisfied. The algorithm uses a local consumption
pattern in order to assign tacti,j (fL,i(t), see Section 6.1.1). At the same time, fL,i(t)
can be composed by different shapes which identify different objectives to schedule
the loads. Hence, NGA uses fL,i(t) as the objective form that the local consumption
should resemble and it is also used as pdf(tacti,j ) to schedule the loads. As in Section

6.1.1, tacti,j is considered as a random variable which takes a value inside ∆tui,j with

a certain probability given by pdf(tacti,j ). In this case, the pdf(tacti,j ) form introducing
∆tui,j in its definition and the temporal limits of Equation 6.2 are changed. This new
form is gathered in Equation 6.3.

pdf(tacti,j ) =
1

C
fL,i(t

act
i,j ) for tacti,j ∈ [tbegi,j , t

end
i,j ]

C =

∫ tend
i,j

tbegi,j

fL,i(t)dt
(6.3)

where C is the normalization constant which guarantees that pdf(tacti,j ) is a probability
density function. Thus, NGA will be placing the deferrable loads following the desired
local consumption pattern.

NGA provides the deferrable loads with the local pattern based on the two
objectives previously stated: flattening the aggregated consumption and maximizing
the self-consumption. Thus, the fL,i(t) is also divided in two parts. The first
one corresponds to the first objective and its shape is the output of the EDeNCs,
fEDeNC
L,i (t). The EDeNCs have already proven that can cancel collectively the
variability of a signal. While the second one is associated with the local generation
and it will have the form of the PV generation forecast, fPV

L,i (t). Therefore, fL,i(t)
has the expression

fL,i(t, β) = β · fPV
L,i (t) + (1− β) · fEDeNC

L,i (t) (6.4)
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where β ∈ [0, 1] is the parameter used to adjust the priority or the importance of the
objectives in the local consumption pattern. This means that for β = 0 the algorithm
prioritizes the smoothing of the aggregated consumption since the local pattern tends
to be equal to fEDeNC

L,i (t). While for β = 1, the algorithm is prioritizing the self-
consumption of the local generated electricity, since the local pattern is equal to
fPV
L,i (t). Notice, that for both functions, fEDeNC

L,i (t) and fPV
L,i (t), the algorithm needs

their future shapes that is the reason of using the forecast PV generation. But the
response of EDeNCs cannot be used directly since the controllers work on real time
and some changes are required to obtain the fEDeNC

L,i (t).

6.2.1 EDeNC as consumption profile

As presented in Chapter 5, the EDeNCs generate a distributed antiphase signal based
on the creation of a destructive interference that cancels the variability of a global
input. To do that, the EDeNC is able to forecast one step ahead the behavior of the
input, which is a signal of class C1. It extracts the necessary information of the signal
through the tendency of its derivative. However, the forecasting horizon of one step
is not enough for scheduling the deferrable loads. So, it is necessary to extent this
forecasting horizon. There are two possible options, the first one consists of evolving
and developing the neural controllers by taking into account this new restriction, or
the second one based on the same EDeNCs and adapting its output dynamically to
the requirements of the process.

As explained in Section 2.1.5 and 4.1, the aggregated consumption of an electrical
grid is a periodic signal in which the user behavior has a high repeatability. For
example, the consumption of the different working days (Monday to Friday) has
a similar shape and does not differ too much in energy terms. However, weekends
present a different shape compared to the working days. Hence, analyzing the different
periods of the signal through the Fourier Transformation, the result is that there is
a high weekly component. For this reason, the fEDeNC

L,i (t) could be built by using
the consumption profile of the previous week applied to the current one since the
differences in shape and energy are low. Thus, the actual EDeNCs could still be
used and its output takes into account the real time information plus the information
about what happened a week earlier. Then, the EDeNCs output would be enough to
place the deferrable loads in the time axis following their response. Finally, the load
pattern corresponding to the controllers will be governed by Equation 6.5.

fEDeNC
L,i (t) = xi(t,∆tweek) (6.5)

where, xi(t,∆tweek) is the output of the ith EDeNC and ∆tweek is the historical time
corresponding to the previous week from which the algorithm will place the deferrable
loads.

The EDeNC output is in the range [0, 1] which is necessary for pdf(tacti,j ). And
the aggregation of all facilities with this modification of the EDeNC will continue
having the same properties described in Chapter 5. In addition, it will allow to
continue applying the developed algorithm, τLA, since the neural controller response
will adapt to the new environment and no extra modifications have to be done in
the structure. Thus, the controllable users will generate an antiphase consumption
pattern collectively that will oppose to the aggregated consumption of the non-
controllable ones, flattening it. Therefore, when fL,i(t) has a β = 0, the consumption
pattern of the local facility is directly the EDeNCs output used as pdf(tacti,j ) and it
presents the following form,

pdf(tacti,j ) =
1

C
fEDeNC
i (tacti,j ) for tacti,j ∈ [tbegi,j , t

end
i,j ]

C =

∫ tend
i,j

tbegi,j

fEDeNC
i (t)dt

(6.6)
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Figure 6.5: Assignment of tacti,j for the different deferrable loads using the output of

the EDeNC as local consumption pattern.

A graphical example of how the algorithm schedules loads with the EDeNC can
be observed in Figure 6.5. When an incoming deferrable load arrives, it adjusts tacti,j

within ∆tui,j for the probability density function obtained from the EDeNC. Thus,
the local consumption will possess a discretized form in energy packages that will
resemble the shape of the EDeNC output. Figure 6.5 shows how the algorithm places
the different deferrable loads and its similarity to the pdf(tacti,j ) used. Through the
aggregation of all controllable loads, the load scheduling has the same smoothing
property as the set of EDeNCs.

6.2.2 PV forecasting as consumption pattern

The second objective of the NGA consists of maximizing the self-consumption of the
local energy resources. To that extent, it is necessary to include the response of the
PV system inside the algorithm. However, NGA cannot use the real time production
since it happens instantaneously and it needs a profile based on the future generation
values in order to schedule the incoming deferrable loads. Thus, the use of PV forecast
generation is required to place the load in the time axis. The more accurate the PV
forecast is, the bigger the self-consumption value is since the loads will be placed
inside the time of electricity production.

In order to understand how the incoming loads are placed following the PV
forecast, imagine that NGA only schedules them following that profile. In this
case, β = 1 and the local consumption pattern for the ith facility will be equal
to fL,i(t, β = 1) = fPV

L,i (t). As the consumption pattern is used to build pdf(tacti,j ), it
is necessary to normalize the PV generation forecast. The normalization is done by
dividing the predicted values of the PV generation by the maximum generation of the
PV generator. Therefore, the profile is limited between [0, 1] and it is used directly
by the algorithm as pdf(tacti,j ) which presents the form of Equation 6.7.
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Figure 6.6: Assignment of tacti,j for the different deferrable loads using as local

consumption pattern the PV forecast of the local generator.

pdf(tacti,j ) =
1

C
fPV
L,i (t

act
i,j ) for tacti,j ∈ [tbegi,j , t

end
i,j ]

C =

∫ tend
i,j

tbegi,j

fPV
L,i (t)dt

(6.7)

In Figure 6.6, it can be observed an example of how the algorithm places the
incoming loads using only the PV forecast profile when β = 1. The algorithm
schedules the loads inside the generation profile given, following its bell shaped
form. Following this distribution, the self-consumption of the local energy source
will increase its value since the consumption matches local generation. However,
the increase of the self-consumption favors the reduction of interactions with the grid
which is translated in a higher variability on the aggregated consumption. The reason
is that there is less consumption to aggregate during the generation period in contrast
to the non generation periods in which users will continue consuming from the grid.
Thus, a high difference between the two periods is created and its value depends on
the PV penetration of the grid.

The elaboration of the PV generation forecast is a complex process due to the
influence of different phenomena like atmospheric that alter the variability of the
resource. In order to place the deferrable loads in the time axis, it is necessary an
accurate forecast that takes into account the variability in the prediction, such as
seasonal, daily or intradaily variabilities. So, the PV generation forecast used in the
simulations consists of the one used by the Spanish grid operator for the year 2015 of
the Spanish peninsular system. These forecasts take into account the different aspects
before mentioned and are elaborated by grid operators for a better integration of the
PV generation inside the system.
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Algorithm 2 High-level description of the Neural Grid Algorithm for the facility ith

of the grid.

1: /* Deferrable load information from the user */

2: [∆ti,j ,∆tui,j ]← Get the duration of the deferrable load and the user preferences

3: /* Calculate local consumption pattern */

4: fEDeNC
L,i (t)← Get antiphase consumption pattern from EDeNC

5: fPV
L,i (t)← Get normalized local generation forecast

6: fL,i(t) = β · fEDeNC
L,i (t) + (1− β) · fPV

L,i (t)

7: /* Calculate tacti,j */

8: pdf(tacti,j )← Calculate the probability density function

9: tacti,j ← Get value of random variable with pdf(tacti,j )

6.2.3 Neural Grid Algorithm

Each NGA part has been explained independently in order to understand how to
schedule the loads following each one of the two objectives presented. This algorithm
is conceived to help the users to decide where the deferrable consumption should be
placed in the time axis following: a local objective of enhancing its self-consumption
or a global objective of enhancing the status of the grid. Thus, NGA is executed
in real-time and it will only be activated when a new deferrable load is going to be
added by the user.

In order to be executed, the algorithm requires some information: i) the deferrable
load duration and ii) the time preferences of the user in which the load will be
executed. Therefore, it is the user who will fed the system with this information.
Once the information is supplied, the algorithm will calculate the load consumption
profile for the temporal limits given by ∆tui,j . First, the response of the EDeNC is

obtained in the form of the fEDeNC
L,i (t). In spite of executing NGA asynchronously,

the EDeNCs are executed synchronously to obtain the antiphase profile, used after to
schedule the incoming deferrable loads. Thus, NGA will obtain from the response of
the EDeNC, a one week ahead prediction of the antiphase aggregated consumption.
After that, the local generation resources optimization is calculated. The algorithm
will obtain fPV

L,i (t) from the PV forecast, calculated as in Equation 6.7. Then, both

responses will be used in order to calculate the local consumption profile fL,i(t, β) as
in Equation 6.4. And pdf(tacti,j ) to schedule the loads is obtained for ∆tui,j preferences

following Equation 6.3. Finally, tacti,j of the deferrable load will be assigned from

pdf(tacti,j ) as the execution of a random variable.

A descriptive summary of the algorithm is gathered in Algorithm 2. All the steps
to assign tacti,j of the incoming deferrable load are gathered in this Algorithm. In
addition, an execution example of NGA is described graphically in Figure 6.7. In
this example, the local consumption profile used by the algorithm is a combination
of the two functions that compose the fL,i(t). The β used in this case has a value of
0.5 and its pdf(tacti,j ) is a combination of pdf(tacti,j ) used in Figures 6.5 and 6.6. Some

differences are observed with respect to pdf(tacti,j ) of previous examples. In this case, a
local maximum appears at the valley of the antiphase aggregated consumption which
corresponds to the maximum of the PV forecast generation. And finally, NGA places
the incoming deferrable loads following this consumption profile and the result is a
discretized consumption pattern which follows pdf(tacti,j ).
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Figure 6.7: Assignment of tacti,j based on the combined consumption profiles selected

by the algorithm.

6.3 Simulation Results

After enunciating the proposed NGA, it is necessary to test the hypothesis suggested.
The algorithm is analyzed in a simulation environment carried out in GridSim (see
Section 6.1). The evaluation process consists of a series of simulated experiments in
which the benefits of using NGA in an electrical grid are tested. To that extent, each
experiment analyzes different parts of the algorithm in different environments where
it could improve the grid status. The simulations were divided into three different
phases:

� Analysis of the EDeNC response. In this set of simulations, the part of the
NGA corresponding to the flattening of the aggregated consumption is analyzed.
Thus, each facility will be composed only by loads and there will be no local
energy resource available to feed them. In order to test the response of the NGA,
the controllable fraction LC of the facilities will be varied. However, the EDeNC
response has not been tested in a real environment. Thus, a first experiment
will consist of using directly the EDeNC over elastic loads and varying the LC
in order to smooth the aggregated consumption (see Section 6.3.3). Once the
controllers have been tested, in the next experiment NGA will schedule the
deferrable loads only by using the delayed consumption profiles given by the
EDeNC, so β = 0 (see Section 6.3.4).

� Analysis of the NGA with DG. In this case, PV generation is added locally to
all facilities without an storage system. This set of experiments will evaluate
the NGA capacity to meet the two proposed objectives, the smoothing of the
aggregated consumption and the maximization of the local energy sources.
To this end, LC and PVp will vary and NGA will search for the equilibrium
between both objectives by scheduling the deferrable loads properly. In a first
experiment, NGA will integrate PV generation by only scheduling loads by
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following the smoothing of aggregated consumption (see Section 6.3.5). After
analyzing the variability that PV introduces, NGA will schedule loads for the
worst scenario following the two objectives by varying the value of β (see Section
6.3.6).

� Analysis of the NGA with DER. Finally, in the last simulations, the environment
will also incorporate an storage system together with local PV electricity
generator. The storage system is only able to charge the battery from the
local surplus of generated electricity. Thus, it can be possible to defer the
consumption of previously generated energy over time. In this experiment,
NGA schedules the deferrable loads trying to reduce the variability of the grid
and consuming as much as possible from the local sources. Those effects are
analyzed varying the PVp and the storage capacity (see Section 6.3.7)

In order to perform this analysis, the environment has been set following the
elements configuration of Section 6.3.1, and all the different figures of merit used in
the analysis are described in Section 6.3.2.

6.3.1 Environment configuration

For all the simulations, the aggregated consumption profile used corresponds to the
one of the Spanish peninsular grid during 2015 according to official data provided
by the grid operator Red Eléctrica de España (REE)2. The grid is divided in nodes
whose local consumption is created by the virtual user already described in Section
6.1.1. Although the simulator allows creating as many nodes per lines as possible,
the computation resources have limited the number of nodes that can be simulated.
Thus, the number of nodes in which the grid is divided has been limited to 600 which
are enough to study the behavior of the NGA.

Each node is composed by a virtual user in charge of the consumption, a PV
generator and an storage system. The last two elements would be included in the
simulations depending on the requirements of the experiment. In this case, the
environment has been escalated to the mentioned number of nodes and each node
represents more than one facility. So each node consists of the aggregation of various
facilities composed by the same elements (consumption, PV generation and storage
system).

The virtual user is in charge of creating the different loads of the node. All the
loads created by the virtual user are deferrable and their tacti,j is assigned following the
local consumption pattern. In addition, this user will create the loads randomly and
they can be created at any time during the simulation. If they are not scheduled by
any controller, they will be executed at the creation time of the virtual user. For the
simulations the length of the time step used is of 1min. In the absence of a controller,
each virtual user is going to follow the aggregated consumption pattern provided.

Nevertheless, each virtual user has a number of deferrable loads that can be created
per period of time to simulate the same amount of energy that a local facility can
consume. The virtual user has a window of time to set its deferrable loads of 1 day
or 1440min. Each deferrable load consists of an energy packet of a power amplitude
of P = 50MW and a duration of ∆t = 60min. So, for the simulated grid to be
equal to the real one, it is necessary that the energy consumed in both of them is
the same. The Spanish grid in 2015 has a total energy consumption of 248TWh, so
the energy consumed per node in the simulator will be equal to 414GWh. Finally,
a node possesses around 8300 deferrable loads per year to simulate the behavior of
the Spanish grid based on the energy consumed per node and the amplitude of the
energy packets.

With respect to the local PV generation, the data used corresponds to the total
predicted and measured PV generation of the Spanish grid for the year 20153. The
shape of the generation is extracted directly from this data. In order to incorporate

2Spanish peninsular grid measurements, source: R.E.E. e-sios
3PV generation forecasts and measurements, source: R.E.E. e-sios

https://www.esios.ree.es/es/analisis/1293
https://www.esios.ree.es/es/analisis/1161
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inside the simulation, the data is normalized by the maximum generation of the year.
The reason is that the amount of generated power varies in order to analyze the effect
of different percentages of PVp. For a PVp= 100%, the maximum nominal power of
the generator is 240MWp per node, such that the sum of the generation of all nodes
is 144GWp. This maximum nominal power is selected for the generator to produce
the same amount of energy consumed in Spain in 2015, i.e. around 248TWh.

The last element included in the simulations is an storage system per node. This
simulated system consists of a battery inverter, a lead-acid battery and a battery
controller. The capacity of the battery is modified in order to study its effects in
the variability of the grid. Thus, the capacity of the battery is varied from the
absence of capacity to 2 days of autonomy. The inverter parameters are adjusted to
the battery and the controller will only charge the battery with the surplus of PV
electricity. Hence, the function of the battery controller is double, maximizing the
self-consumption without compromising the battery lifetime avoiding its over-charge
and over-discharge situations.

6.3.2 Evaluation process

Each experiment is executed during 13months or 568800min. The first month is used
by the algorithm to stabilize and the evaluation is done during the remaining time.
NGA has been built by following two objectives. Thus, different figures of merit are
needed to evaluate each part of the algorithm. In order to evaluate the smoothness
of the aggregated consumption, the method selected analyzes its waveform. Whereas
for the analysis of the second objective, a figure that relates the energy consumed
with the one produced is required. In particular:

� Analysis of the aggregated consumption variability. It has been conducted
primarily with the crest factor figure of merit (Cf ), already used previously (see
Sections 4.4 and 5.3). The mathematical expression is contained in Equation
4.31 and as a reminder, Cf is a relationship of the maximum of a signal with
respect to its effective value during a period of time.
For those experiments in which there is no local generation, the load factor (Lf )
and demand factor (Df ) are also used as in the evaluation process of Section
5.3. The mathematical expression of the Lf is included in Equation 5.25 and
for Df is in Equation 5.26. Both of them are figures of merit used not only
to analyze the form of the aggregated consumption but also the use that the
different nodes of the grid made of the resource. In all the cases, the best value
is 1 and they are evaluated for different periods of time, specifically: i) daily, ii)
weekly, iii) monthly and iv) annually. The 3 evaluation parameters are averaged
for this 4 periods of time as in Equation 5.27.

� Analysis of the self-consumption. In order to evaluate the second part of the
NGA, it is necessary to define a new figure of merit. This figure should assess
the amount of energy from the local energy resources that feed the consumption.
Thus, the self-consumption factor (ξ) is defined as the fraction of the electrical
energy consumed by the loads which is only supplied by the local generation
sources (Castillo-Cagigal et al., 2011b,a). The self-consumption factor has two
variants depending on the term used to normalize it:

– Consumption normalization. It is defined as the fraction of load that is
supplied (directly and indirectly) from the PV system. The mathematical
expression is collected in Equation 6.8.

ξL =
EDER

EL
=

EPV,L + EBat,L

EL
(6.8)

where EL is the total energy consumed by the loads and EDER is the
electrical energy generated locally which in this case is divided in: EPV,L,
the energy directly supplied by the PV generator to the loads, and EBat,L,
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the PV origin energy supplied by the storage system to the loads. Notice
that depending on the environment configuration, the term EBat,L could
be zero and it represents the deferred use of the PV generated electricity
in time.

– Generation normalization. It is defined as the fraction of generated
electricity that is used to supply the loads and it is defined as

ξG =
EDER

EG
=

EPV,L + EBat,L

EG
(6.9)

where EG is the total generated electricity locally by the PV system.

ξL expresses the independence of the user over the grid while ξG represents
the use of the local generated electricity to meet the demand of a user. Since
the direct and indirect local use of PV production ultimately depends on the
demand, it can be concluded that ξL ∈ [0, 1] and ξG ∈ [0, 1]. However, the
meaning of each factor is different. A ξL = 0 means that the node has no
available local generation, while a value of ξL = 1 means that the energy
consumed by the node is totally supplied by the local energy generation sources.
On the other hand, ξG = 0 means that all the generated electricity goes to the
grid and the user does not self-consume anything, and a ξG = 1 means that
all the generated electricity supplies the local demand. It should be noted
that both proposed factors could be used in different time frames. In addition,
because they are normalized, comparisons between the ξ of PV systems with
different sizes and loads are possible. However, only the ξL is used as the
assessment factor for the simulations with local DER. The reason is that during
the simulations, the energy consumed by the nodes is fixed and the DER sizes
are varied in order to quantify their effects over the consumption.

6.3.3 Direct load control

In this first experiment, the EDeNC response is going to be tested in a real
environment. The environment is composed only by consumption nodes, there is
no local generation. Each node is equipped with a virtual user and the number
of controllers varies depending on the LC , the fraction of total consumption that is
controllable. The consumption is composed by two different types of loads: deferrable,
to create an aggregated consumption similar to one given, and elastic, to evaluate the
controllable capabilities of the users.

Virtual users create deferrable loads following the local consumption pattern of
the Spanish grid, but the EDeNCs are not scheduling tacti,j of the loads. Thus, the
deferrable loads are going to be executed when they are created. On the other hand,
those nodes equipped with an EDeNC will use elastic loads in order to smooth the
aggregated consumption. The EDeNCs modify directly the consumed power of the
elastic loads. Thus, the power that these loads consume is given by multiplying the
normalized output of the EDeNC by the maximum power that they can consume. In
addition, the response of the controllers is executed in real time without taking into
account the one week history information to elaborate it.

During the experiment, LC is the percentage of nodes that is controllable. Each
simulation used a different percentage of LC and varies from 0% to 100%. As the
deferrable loads of the virtual users are assigned randomly, each simulation is repeated
for 30 different seeds per percentage of LC . With this number of seeds, the dispersion
for each realization is observed in order to validate statistically the experiment. The
results of this experiment are represented in Figure 6.8.

Each panel of Figure 6.8 represents the median of each parameter for each of the
30 seeds used to evaluate each percentage of LC . The deviation per simulation is
also represented in shadow grey, but the 1st and the 3rd quartile are too close to the
median so it is negligible. Thus, the EDeNCs achieve a very similar solution for all the
seeds. In general, from the results of Figure 6.8, it can be observed that the tendency
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Figure 6.8: Evaluation of the EDeNC to control directly the power of elastic loads

in real time. In black Cf per period of time, in blue Df per period of time and in red

Lf per period of time.

for all the three parameters in all periods of evaluation tends to the best value of each
of them, 1, thus achieving the desired outcome (aggregated curve smoothed).

The first parameter to analyze is the Cf . For no controllable capacity in the

environment, the median Cf obtained per period are: 1.16 daily, 1.24 weekly, 1.29

monthly and 1.43 annually. With respect to the trend of the Cf value, it decreases
as the LC grows, but it can be observed in Figure 6.8 that there is a change of slope
for LC = 30%. Cf decreases rapidly for LC values less than this point and then
decays slowly for bigger values of LC until it reaches its minimum at LC = 100%. At
a LC = 30%, the Cf value per period has decreased in 12.59% daily, 19.13% weekly,
22.50% monthly and 30.58% annually with respect to the absence of controllability
capacity, LC = 0%. Finally, Cf reaches its minimum at the end of the experiment for

LC = 100%. Thus, the Cf suffers a decrease in percentage of 16.50% daily, 24.87%
weekly, 29.66% monthly and 42.71% annually comparing the starting LC = 0% and
ending LC = 100%. Thus, the inclusion of controllable elements in the environment
enhances the grid status since its variability is reduced. Table 6.1 shows the results
for all controllable capacities
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LC[%]
Day Week Month Year

∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 4.93 5.18 2.30 6.90 7.14 0.25 7.05 7.33 0.07 6.94 7.28 0.00

20 9.76 9.52 7.40 14.41 13.47 3.23 16.14 14.83 1.56 17.85 16.18 0.00

30 12.59 11.82 14.21 19.13 16.89 8.99 22.50 19.25 6.25 30.58 24.42 0.00

40 14.17 13.05 16.69 21.57 18.57 11.01 25.63 21.27 7.90 36.24 27.69 0.00

50 15.00 13.68 17.93 22.86 19.42 12.04 27.28 22.28 8.74 39.42 29.40 0.00

60 15.31 13.91 18.43 23.34 19.73 12.47 27.88 22.65 9.11 40.68 30.06 0.00

70 15.55 14.09 18.63 23.66 19.94 12.63 28.29 22.90 9.25 41.33 30.40 0.00

80 15.79 14.26 18.74 23.96 20.14 12.73 28.61 23.09 9.31 41.80 30.66 0.00

90 16.04 14.45 18.83 24.29 20.35 12.79 29.00 23.32 9.35 42.20 30.90 0.00

100 16.50 14.79 18.98 24.87 20.73 12.88 29.66 23.69 9.41 42.71 31.32 0.00

Table 6.1: Comparison of Cf , Lf and Df for all the periods of time and all

controllable capacities in the direct control of the loads. In bold, the results discussed

throughout the text are highlighted.

The second evaluation parameter is Lf , the closer Lf is to 1, the flatter the
aggregated consumption is. Thus, it is used as a measure of how well the grid responds
to meet the demand. For all evaluation periods the trend is positive. So as LC

increases, Lf grows until it reaches its maximum for LC = 100%. In case LC is non-

existent, the median per period of the Lf are: 0.8515 daily, 0.7927 weekly, 0.7628

monthly and 0.6901 annually. As in the value of the Cf , there is a change in the

growing trend at LC = 30%. Prior to this point, Lf grows rapidly until it reaches

that curvature point in which its growth rate decreases and the growth of Lf continues

slowly until it reaches its maximum value of 1. At LC = 30%, Lf has an improvement
with respect to the absence of controllable capacity of, 11.82% daily, 16.89% weekly,
19.25% monthly and 24.42% annually. At last, the increase of Lf in a grid with
total control over the loads with respect to the one with absence of control is of
14.79% daily, 20.73% weekly, 23.69% monthly and 31.32% annually. As a result, it
can be concluded that the inclusion of controllable elements within the grid improves
the utilization of the available resources increasing its occupation by flattening the
aggregated consumption. All the results for this factor are gathered in Table 6.1.

The last parameter of the evaluation is Df which measures the utilization of a
grid measuring the utilization of the maximum resources of the grid. Thus, for the
annual period of evaluation, the result of this factor is always the same and equal
to 1. The reason is that the aggregated consumption always reaches the maximum
capacity of the system for the annual evaluation period. Figure 6.8 shows a sigmoid
tendency for the Df growth in the remaining periods. In the absence of controllers,
the median per evaluation period is: 0.8102 daily, 0.8711 weekly and 0.9058 monthly.
In this case, the value of Df grows slowly until it reaches LC = 15%, then grows
fast until it reaches LC = 30% and finally grows slowly until it reaches its maximum
at LC = 100%. So for the change of tendency point of LC = 30%, the perceptual
increase per period is 14.21% daily, 8.99% weekly and 6.25% monthly. Finally, the
maximum Df achieved was found at the end of the experiment for LC = 100%, which
mean an increase of 18.88% daily, 12.81% weekly and 9.37% monthly with respect
to the absence of control in the environment. For all LC , the results of Df are in
Table 6.1.

In view of these results, the inclusion of controllable loads enhances the status
of the grid, reducing its variability and improving the use of the available resources.
In addition, it is not necessary that the controllable loads exceed in number to the
non-controllable one, but with a 30% of the LC , the results are quite visible within
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the grid. However, in this experiment the EDeNCs have total access to the power
of the loads because they are elastic ones. So, it is necessary to move a step closer
to the reality since the loads that allow accessing them and changing directly their
power are few.

6.3.4 Random deferrable loads

Once the EDeNC response has been tested successfully, it is necessary to use them in a
closer environment to the reality. In this experiment, the smoothing of the aggregated
consumption is tested by using the EDeNC part of the NGA. As in the experiment
of Section 6.3.3, the grid is composed only by consuming nodes and there is no DER
inside them. However, the type of loads that compose the node consumption consists
only of deferrable loads. Then, each node is equipped with a virtual user and the
control capacity varies depending on the percentage of LC .

The virtual users inside the nodes are the ones in charge of creating the deferrable
loads using as consumption pattern the Spanish aggregated consumption. Depending
on LC , NGA is going to schedule the deferrable loads created by the virtual user. So
for those nodes without NGA, their loads are executed in their creation time. As the
output of the EDeNC is normalized, it can be used directly for the assignment of tacti,j .
The execution of the loads is in real time, but the actions to schedule them are taken
one day in advance in order to assign tacti,j .

The grid is formed by 600 nodes from which an LC percentage of nodes are able
to actuate over the scheduling time of the deferrable loads through the use of NGA.
During the experiment the percentage of LC is varied from 0% to 100%, i.e. from
the absence of load control in the environment to its total control. As the loads are
assigned randomly by the virtual users, each simulation was executed 30 times with
different seeds. So, the necessity of using various seeds consists of evaluating the
repeatability and dispersion of the solutions found by the algorithm for different load
collocations in the times axis. This number of seeds is enough to validate statistically
the experiment. Figure 6.9 shows the results of this experiment.

Each panel of Figure 6.9 represents a period of evaluation, from daily to annually.
In each panel, the median of the average performance of each coefficient is represented
in the period of evaluation for the 30 seeds in which each simulation is composed.
Moreover, the deviation of each point of the median is represented in shadow grey.
However, the distance of the 1st and the 3rd quartile with respect to the median is so
small that it is negligible. Thus, NGA found a similar solution per each configuration
of the experiment. As the previous experiment results, in Figure 6.9 can be observed
that all coefficients reach the best value at the end of the simulation and the tendencies
of each parameter are not as pronounced as in Figure 6.8.

With respect to the waveform of the aggregated consumption, the Cf is
represented in black in Figure 6.8. In case of no control over the activation of the
deferrable loads, the value of Cf per period is of: 1.16 daily, 1.24 weekly, 1.28 monthly
and 1.41 annually. These values are very similar to the ones of Section 6.3.3. But in
general, for all the evaluations periods, the decreasing tendency of Cf in Figure 6.9
is slower than the one of Figure 6.8. The reason is that the direct control allows to
locate the exact quantity to be in antiphase to the aggregated consumption. Thus,
the discretization error of the consumption profile plus the prediction error of using
the EDeNC response produce values above 1 for Cf . In this case, the decreasing
tendency is more linear than exponential as in the previous experiment. Therefore,
at the middle of the simulation (LC = 50%), the values of Cf correspond to a
decrease of the 5.83% daily, the 7.35% weekly, the 9.44% monthly and the 11.90%
annually with respect to the absence of controllability capacity. At last, Cf reaches

its minimum at LC = 100%. Thus, the Cf has decreased in percentage an amount of
7.45% daily, 11.41% weekly, 13.37% monthly and 19.55% annually with respect to
the beginning of the experiment at LC = 0%. In spite of the results being far from
the unity in all periods, the inclusion of controllable elements in the grid flattens the
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Figure 6.9: Experimental results of the NGA in order to smooth the aggregated

consumption assigning the tacti,j of the deferrable loads. In black the Cf per period of

time, in blue the Df per period of time and in red the Lf per period of time.

form of the demand curve. The rest of the values for all fractions of controllable loads
are gathered in Table 6.2.

The next factor to analyze is Lf in charge of measuring the average occupation of

the grid with respect to the available resources. As in the case of Cf , the tendency of

Lf is positive but slower compared to the one of Figure 6.8 for the same coefficient.

The reason of this behavior is the same explained for the Cf . The tendency in all
periods of evaluation tends to be almost linear. In the absence of controllers to
schedule the loads, the median value of Lf per period of evaluation is 0.85 daily,

0.79 weekly, 0.77 monthly and 0.69 annually. The value of the Lf increases as the
LC grows. Thus, at the middle of the experiment for LC = 50%, these values mean
an increase in percentage of Lf about 6.86% daily, 10.43% weekly, 11.46% monthly

and 14.80% annually with respect to LC = 0%. Then, Lf continues growing and
getting closer to 1 until the best values per period are reached at the end of the
experiment. Therefore, in a scenario with total control over the deferrable loads, it
means an increase of Lf around 8.81% daily, 13.97% weekly, 16.63% monthly and
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LC[%]
Day Week Month Year

∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df ∇Cf ∆Lf ∆Df

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 1.88 2.16 1.71 3.18 3.69 0.22 3.26 3.77 0.06 3.35 3.98 0.00

20 3.07 3.55 3.63 4.94 5.84 1.17 5.38 6.31 0.95 6.1 7.25 0.00

30 4.19 4.89 4.19 6.50 7.75 1.56 6.88 8.23 1.33 7.63 9.27 0.00

40 5.00 5.86 6.00 7.61 9.14 2.80 8.20 9.90 2.23 10.15 12.46 0.00

50 5.83 6.86 7.35 8.64 10.43 3.82 9.44 11.46 2.77 11.90 14.80 0.00

60 6.35 7.49 8.93 9.52 11.53 5.08 10.54 12.91 3.44 13.42 16.87 0.00

70 6.80 8.02 11.43 10.24 12.45 7.12 11.59 14.24 5.52 15.94 20.41 0.00

80 7.34 8.67 13.16 11.17 13.65 8.29 12.72 15.76 6.32 17.49 22.71 0.00

90 7.17 8.48 15.15 11.31 13.85 9.67 13.18 16.39 7.34 18.78 24.68 0.00

100 7.45 8.81 15.75 11.41 13.97 10.44 13.37 16.63 7.99 19.55 25.87 0.00

Table 6.2: Comparison of Cf , Lf and Df for all the periods of time and all

controllable capacities while scheduling random deferrable loads. In bold, the results

discussed throughout the text are highlighted.

25.87% annually with respect to the case with no control over them. In the end, using
NGA to schedule the deferrable loads allow increasing the performance of the grid
through a better use of the environment reducing the distance with the maximum.
All the increases of this factor are shown in Table 6.2.

Finally, the last factor evaluated is Df . This factor of the three analyzed is the one
that gets a closer value to its maximum for all periods of evaluation. At the beginning
of the simulation, in the absence of controllers, the value of Df is around 0.81 daily,
0.87 weekly, 0.91 monthly and 1 annually. As in the previous factors, the growth
tendency does not have a pronounced slope as in Figure 6.8. Moreover, this slope is
almost linear and grows slowly. Thus, in the middle of the experiment for LC = 50%,
the value of Df has increased in percentage with the respect to the beginning of the
experiment in a 7.35% daily, 3.82% weekly and 2.77% monthly. Then, the value of
the factor continues growing until it reaches its maximum at LC = 100%. So, the
factor has grown a 15.75% daily, 10.44% weekly and 7.99% monthly with respect to
the configuration with no controllable demand.

In view of the results and as conclusion of this second experiment, the inclusion
of controllable elements favors the enhancement of the grid status. The use of NGA
to flatten the aggregated demand achieved its objective and respect the preferences
of the user. Moreover, adding controllers for scheduling the deferrable demand allows
improving the usage of the grid, closing the gap between its maximum and the average
consumption. Up until now, the response of the EDeNC and the NGA to flatten
the aggregated demand were tested. In the next experiments, the capacity of the
algorithm to integrate the local PV DG is analyzed.

6.3.5 NGA with DG

The first two experiments have been centered in the objective of smoothing the
aggregated consumption through the response of the EDeNCs. This experiment
serves also to test the smoothing capabilities of the NGA when adding DG of PV
origin to the grid. So, the properties of the NGA would help to integrate the PV
DG, mitigating the effects that it possesses over the variability of the aggregated
consumption. In this case, the node topology is a bit more complex than the one
used previously. Now, each node is composed by a virtual user in charge of creating
deferrable loads plus a PV generator that supplies the electricity needed by the local
loads. Moreover, depending on the LC percentage, the node will be using the NGA
to set tacti,j of the deferrable loads.
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The virtual users implement as consumption pattern the peninsular Spanish
aggregated consumption in order to activate the deferrable loads created by it. On
the other hand, those nodes equipped with a controller use NGA in order to set the
tacti,j of the deferrable loads but following the objective of smoothing the aggregated
consumption, i.e. β = 0. Thus, the consumption pattern followed to schedule the
loads is only the forecast of the normalized output of the EDeNC. The number
of controllable nodes will depend on the percentage of controllable load, LC . The
remaining non-controllable nodes will activate their deferrable loads at the moment
that they are created.

The grid is composed by 600 nodes with the elements already described above,
in which not only LC varies but also the energy of the PV generators through the
percentage of PVp. During the experiment the percentage of both LC and PVp are
varied from 0% to 100%. Thus, all the possible combinations of both parameters are
scanned during the experiment, from the absence of controllers and generation to an
scenario in which all the loads are controllable and the amount of PV electricity
produced is the same as the total energy consumed. Then, the grid is scanned
searching for the best combination of parameters that improves the current situation.
The PV per node use the waveform of the total Spanish PV peninsular generation and
it is scaled taking into account the number of nodes and the PVp for each simulation.
For this experiment, only the measured total Spanish PV peninsular generation was
used as the NGA only uses the normalized output of the EDeNC to schedule the
loads. In addition, for each combination of parameters, LC and PVp, the simulation
is repeated for 30 different seeds as there is a random component for each simulation.

In this experiment the figure of merit used to evaluate the form of the aggregated
consumption is the Cf . The other two coefficients used up until now are strongly

related with the Cf . Therefore, in order to simplify the analysis, the average value

of Cf per period of evaluation is the only coefficient analyzed. The results of this
experiment can be observed in Figure 6.10. They are represented in the form of heat
maps divided in 4 panels, each one representing one evaluation period, from daily
to annually. The value of Cf is the median of its average performance in the period
of evaluation for the 30 seeds in which the simulation is composed. As in previous
experiments, the deviation with respect to the median is negligible (less than 0.1%)
so it is not represented.

Figure 6.10 shows that, in general, in the absence of DG the variability of the
aggregated consumption decreases as the LC increases its value. In addition, as the
percentage of the PVp increases, the value of the Cf is far from the unity. The
reason is that the increase of local generation produces a higher variability between
the peaks and the valleys as the consumption is fed locally and there is no exchange
with the grid. However, the use of controllers favors the integration of the DG since
Cf decreases as the LC grows since NGA schedules the loads during the valleys and
reduces the consumption during the peaks. In the case that there is no controllable
capacity and no DG, the aggregated consumption presents a value of Cf per period of
evaluation of: 1.16 daily, 1.23 weekly, 1.28 monthly and 1.41 annually. These values
are similar to the ones of the real Spanish aggregated consumption. The best values
of Cf are achieved for LC = 100% and the absence of DG (PVp = 0%). And the

values that Cf takes in this scenario per period of evaluation are 1.07 daily, 1.09
weekly, 1.11 monthly and 1.13 annually. This entails a decrease in the variability
in the best possible scenario for the different periods of evaluation of 7.76% daily,
11.38% weekly, 13.28% monthly and 19.85% annually. On the other hand, in the
worst case scenario, in which there is no controllability (LC = 0%) and the amount
of electricity produced locally is the same as the energy consumed (PVp = 100%),

the value of Cf per period of evaluation is equal to 1.66 daily, 1.77 weekly, 1.83
monthly and 2.05 annually. In this case, consuming the energy locally will favor the
self-consumption but it is worsening the variability of the signal. Thus, the value of
Cf suffers an increase per period of evaluation of 43.10% daily, the 43.90% weekly,
the 42.96% monthly and the 45.39% annually comparing to the absence of controllers
and local PV generation. For any other combination of LC and PVp, the values that
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Figure 6.10: Experimental heat map results of Cf for the different combinations of

controllable load capacity and photovoltaic electricity penetration using the Neural

Grid Algorithm to smooth the aggregated consumption. In black, the contour lines

that separate the different regions of achieved Cf values.

Cf can take are between them. Consequently, depending on the combination of the
parameters, the local PV generation could be integrated inside the system without
making worse the actual status of the system. In the best case, with LC = 100%,
it could be integrated a PVp = 20% without worsening the Cf values for LC = 0%
and PVp = 0%. Including controllable loads to the grid enhance its performance and
make a better use of the local resources through their management with the NGA.

Up until now, the analysis has measured the effects of the aggregated consumption
and the controllability of the grid. Now, as the PV DG appears in the environment,
it is necessary to measure the use of the local available resources through ξL (see
Equation 6.8) In this experiment, the value of the ξL is obtained by dividing the
annual generated electricity that fed the local loads and the total annual energy
consumed by them. Figure 6.11 shows the ξL results achieved with the local energy
resources. The values showed in the heat map corresponds to the median value of
the 30 realizations per configuration of the environment. In general, the higher the
available local energy is, the greater the natural self-consumption is. Natural self-
consumption means that without modifying the demand of the users (LC = 0%),
the quantity of local demand that can be covered by local PV generation. As it can
be observed, the maximum is reached for a LC = 100% and PVp = 100% and the
ξL has a value of 50.18%. This means that half of the local consumption would be
supplied by the local generation. The reason is that the controllers, searching for
smoothing the aggregated consumption, schedule the loads below the bell shaped PV
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Figure 6.11: Experimental heat map results of the annual ξL for the different

combinations of controllable load capacity and photovoltaic electricity penetration

using the Neural Grid Algorithm to smooth the aggregated consumption. In black,

the contour lines that separate the different regions of achieved ξL values.

electricity production in order to fill the valley created in the grid signal by supplying
the loads locally. It can also be observed in Figure 6.11 that the increase of LC
helps increasing the value of ξL in those cases in which the local generation exceeds
the local consumption, so that an electricity surplus would occur. The reason was
explained before, NGA schedules more consumption below the generation hours in
order to smooth the aggregated consumption curve. Thus, the contour lines of Figure
6.11 begin to bend from values greater than PVp > 35%. For a given PVp, the value
of ξL grows as LC is greater.

In view of these results, the use of the NGA to schedule loads following the
objective of smoothing the aggregated consumption not only serves to flatten it but
also to integrate the local PV generation. In addition, it helps integrating in the best
of the cases a 20% of locally generated electricity without worsening the aggregated
consumption of the grid (LC = 0% and PVp = 0%). NGA also contributes to
increase the self-consumption of the local generated electricity and in the best case
half of the local consumed energy is supplied locally. Consequently, this supports
that the distributed control approach of NGA serves to enhance not only the global
objective of smoothing the aggregated consumption but also the local one of increasing
the self-consumption of the local generation.

6.3.6 NGA following grid and PV

All the experiments described above are based on a common objective, specifically,
to smooth the aggregated consumption in order to enhance the grid status. But,
which are the consequences of adding the local generation to the algorithm as another
objective? In the experiment of Section 6.3.5, the PV DG appears as an element of
the grid and NGA only schedules deferrable loads following the EDeNC consumption
profile. However, in this experiment, the second objective of the NGA to schedule
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deferrable loads is added. Thus, each controllable node is going to schedule loads
following the EDeNC consumption profile and the forecast of the PV generation
weighting the different objectives by the value of β. The node configuration is the
same as in the experiment of Section 6.3.5.

In this case, the capacity of NGA to schedule loads following the antiphase
aggregated consumption and the local generation profiles is tested together with the
penetration of the PV local generation. Therefore, the entire population of nodes
is going to be controllable, i.e. LC = 100%. This environment was chosen since
the algorithm has full actuation capacity over the deferrable loads and its actions will
affect directly the status of the grid. The virtual user is going to create the loads of the
node and defines ∆tui,j to schedule them with NGA respecting the user preferences.
In order to schedule the loads, the followed consumption pattern is composed by
the weighted sum of the EDeNC forecast output and the normalized PV generation
forecast for the next day. Hence, depending on the β value of the algorithm, it will
schedule the loads prioritizing one objective over the other.

As in previous simulations, the number of nodes used during the experiment is
600, all equipped with NGA to schedule the loads. The priority of one objective
against the other is varied by changing the value of the β coefficient. In addition, the
energy of the local generators will also vary in order to study the effects of different
PVp levels in the algorithm and the grid. Thus, during the experiment the value of
β will be varied from 0 (schedule loads to smooth the demand curve) to 1 (schedule
loads to maximize the self-consumption). Whereas the energy of the generators is
varied using the percentage of the PVp from 0% to 100%. So, during the experiment
all the possible combinations are scanned to identify the best ones that improve the
performance of the grid and the local self-consumption. The PV generation used is
the Spanish waveform denormalized to the amount of energy indicated by PVp and
the PV generation forecast from the grid operator. For each combination of β and
PVp, the experiment has been repeated for 30 seeds to check the repeatability of the
experiment and its statistical validity.

As in the experiment of Section 6.3.5, the only factor analyzed is Cf . This factor
is used to evaluate the effects of the NGA and the PV local generation in the status
of the grid. The results of this experiment can be observed in Figure 6.12. The
Cf evaluation has been divided in 4 different periods of evaluation, from daily to
annually. Then the results are presented in 4 panels, each one corresponding to a
heat map for period of evaluation. The color scale is assigned depending on the value
of Cf with respect to β and PVp and it goes from the low values in blue to the
maximum values in red. The value of the coefficient represented in Figure 6.12 is the
median of the average performance per period of evaluation for the 30 seeds. As in
previous experiments, the deviation with respect the median is negligible so it is not
represented.

In general, the behavior observed in Figure 6.12 shows that the variability of the
aggregated consumption increases as β and PVp increase their value. In addition, as

both parameters increase, the value of the Cf per period of evaluation is far from
unity and even higher compared to the maximum of Figure 6.10. The reason is that
as the value of β grows NGA will schedule more loads below the generation curve
and as the local generator grows in size, the difference between off and on generation
periods produces a bigger variability in the aggregated consumption. With respect
to prioritizing one objective against the other, NGA achieves similar values of Cf

for β ∈ [0, 0.5] in all periods of evaluation. However, for β > 0.5, the algorithm
gives greater weight to schedule the deferrable loads following the PV forecast which
produces different values of Cf as PVp grows. The best value of the Cf is obtained by
the algorithm in the absence of DG (PVp = 0%) independent of the value of β since
there is no local generation. These values are per period of evaluation equal to 1.07
daily, 1.09 weekly, 1.11 monthly and 1.13 annually. However, for values of PVp ̸= 0%,

Cf increases and it reaches the highest value for PVp = 100%. In this case, the values

achieved by Cf per period of evaluation are 5.09 daily, 5.18 weekly, 5.23 monthly and
5.26 annually. Thus, the grid stability is in danger since the variability presented is



206 6. Neural Grid

Day Week

Month Year

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 0 25 50 75 100
PVp [%]

β

1.07

1.67

2.26

2.86

3.46

4.06

4.65

5.25
Cf

Figure 6.12: Experimental heat map results of Cf for the different values of

photovoltaic electricity penetration using Neural Grid Algorithm weighting by β its

two objectives: to smooth the aggregated consumption and to maximize the self-

consumption. In black, the contour lines that separate the different regions of achieved

Cf values.

too high. For any other combination of parameters, the value of Cf is between them.
However, most of the results have lower values than the worst case. In case of β = 0.5
and PVp = 100%, the Cf value per period of evaluation is equal to 1.74 daily, 1.89
weekly, 1.99 monthly and 2.30 annually. These values mean an increase of percentage
of 62.67% daily, the 73.39% weekly, the 79.27% monthly and the 103.54% annually.
60% of the simulated environments are equal or below these values. In this case,
NGA could integrate without worsening the grid Cf only a PVp of 10% for β ≥ 0.5,
whereas for β < 0.5 a 20%.

On the other hand, the analysis is completed with the study of ξL. It is necessary
to analyze not only the global effects that the variations of β and PVp produce in the
grid, but also the local effects in self-consumption of the local PV generation. ξL is
calculated using the annual local energy generated that supplied the loads and the
total energy consumed annually. In Figure 6.13, the results of the self-consumption
of the local energy resources are presented. The value of each point of the heat map
is the median value of ξL for the 30 realizations done by each configuration of the
parameters. As in the results observed in Figure 6.11, the higher PVp is, the higher
the ξL value is. As can be observed, the increased β value helps to increase the value
of ξL. This value grows until its maximum of ξL= 62.31% reached at a β = 1.0 and
a PVp = 100%. Thus, comparing the maximum achieved in this experiment and the
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Figure 6.13: Experimental heat map results of the annual ξL for the different values
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one obtained in the experiment of Section 6.3.5, the increase of ξL was of 12.13%
by using the PV forecast to schedule the loads. In general, the increase of the β
value helps increasing ξL. In Figure 6.13, for PVp > 25% the surplus of generated
PV electricity is better used as the value of β is increased. That is the reason why
the contour lines present an exponential form from this value of PVp. For previous
values, the contour lines of ξL are linear and do not suffer any variation since there
is no surplus of generated electricity and it is covered totally by the loads.

To sum up, the use of NGA to schedule the loads following the two objectives
weighted by β does not only entail an increase of the self-consumption but also an
increase of the variability of the aggregated consumption. So depending on the target,
the value of β can be used to give more weight to one decision versus the other. In
view of the results, it has also been stated that the two objectives of the NGA are
conflicting since the increase of the self-consumption decreases the smoothing of the
aggregated consumption. For high values of β and PVp, Cf is far from the unity but
more than the 60% of the consumption is supplied locally. Thus, a better solution has
to be found in order to increase the self-consumption without influencing negatively
the aggregated consumption waveform.

6.3.7 NGA with DER

As already shown, adding the second objective to the NGA favors the self-
consumption but the variability of the signal is increased. This fact has forced
to rethink the use of the algorithm since in situations with high amount of local
PV electricity generation, the algorithm produces non-desirable effects in the grid
depending on the priority of the objectives. The increased variability occurs mainly
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due to the shape of the PV generation which presents a bell shape centered in daylight
hours. This forces the algorithm to put a greater amount of deferrable loads during
this period for a better use of local energy. So, there is a possibility to decorrelate the
local PV generation to the consumption and it is the use of an storage system. This
type of system allows not following the generation shape in order to maximize the
self-consumption and distribute the local generated electricity along the time axis.

For this experiment, the use of the Distributed Energy Resources (DER) together
with NGA is going to be tested. As the battery makes possible to differ the use
of the local generated electricity in the time axis, the algorithm is going to schedule
the deferrable loads with the objective of smoothing the aggregated self-consumption.
Thus, it is not necessary to schedule the loads by following the local PV generation
since the battery is going to be charged with the surplus of generation and the
generated electricity is going to be used when required. Then, each node is going
to be composed by a virtual user, a controller with the NGA, a PV generator and an
storage system. As in Section 6.3.6, the totality of the nodes is going to be controllable
since the flattened aggregated consumption is going to be altered by the use of the
DER, being the worst case scenario. Thus, the virtual users only create the deferrable
loads and establish a set of ∆tui,j to schedule them with NGA. The deferrable loads
are going to be scheduled with the consumption pattern of the EDeNC in order to
smooth the aggregated consumption (β = 0).

In this experiment, the grid is configured with 600 nodes of the characteristics
described above, in which the energy of the PV local generation and the nominal
battery capacity (Cbat) are varied in order to study the enhancement of the grid and
local energy resources. Thus, the percentage of PVp is varied from 0% to 100%.
The storage system of each node is composed by a battery with variable Cbat and an
inverter to charge and discharge the battery, which is scaled depending on the Cbat
and the size of the installation. The Cbat for this experiment is defined in days of
autonomy which is the energy that the battery can store in order to supply the local
consumption. Thus, Cbat varies from 0 to 2 days of autonomy which is enough to
virtually isolate the node from the environment (Castillo-Cagigal et al., 2011a). The
battery is only allowed to charge from the surplus of PV generation and it will be
discharged until a safe SoC of 40%. Finally, for each combination of parameters, PVp
and Cbat, the experiment is repeated 30 times in order to study the repeatability of
the solution and the statistical validity of the experiment.

In order to study the waveform of the aggregated consumption, the parameter
used is Cf . The results of this experiment can be observed in Figure 6.14. Cf has
been studied using 4 periods of evaluation, from daily to annually, and each one
is represented in one panel of Figure 6.14. Each panel corresponds to a heat map
whose scale depends on the value of Cf with respect to Cbat and PVp. The color

scale is assigned following the criteria of the closer to 1 the value of Cf is, the more

blue the result is. On the other hand, the further the value of Cf is from 1, the
more red the result is. The value represented in each heat map is the median of the
average performance per period of evaluation for the 30 realizations per parameters
combination. As in previous experiments, the deviation with respect the median is
negligible so it is not represented.

In general, Figure 6.14 shows that the use of an storage system allows increasing
the integration of the PV generation without increasing the grid crest factor as much
as in the experiment of Section 6.3.6. Furthermore, the higher the values of Cbat and
PVp are, the greater is the value of Cf . The reason is that each node is going to be
more virtually isolated from the grid as Cbat increases and there is more available PV
surplus to charge it. When the nodes need to consume from the grid it produces a high
variability that it is translated in high values of Cf . In this case, the inclusion of an

storage system allows integrating more PV generation without worsening the Cf . For

a LC = 0%, the algorithm allows integrating a value of PVp = 35%. The values of Cf
achieved per period of evaluation are 1.07 daily, 1.09 weekly, 1.11 monthly and 1.13
annually. On the other hand, the worst values were achieved for a PVp = 100% and a
Cbat = 2days of autonomy and they are per period of evaluation equal to 2.62 daily,
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Figure 6.14: Experimental heat map results of Cf for the different combinations

of nominal battery capacity and photovoltaic electricity penetration using the Neural

Grid Algorithm to smooth the aggregated consumption. In black, the contour lines

that separate the different regions of achieved Cf values.

2.71 weekly, 2.83 monthly and 2.97 annually. These values mean an increase of Cf

with respect to the values no PV generation per period of evaluation of 144.86% daily,
148.62% weekly, 154.95% monthly and 162.83% annually. These values are still high
but compared to the maximum achieved in the experiment of Section 6.3.6, the results
are far better using an storage system to defer the use of generated electricity. In
Figure 6.14, the contour lines change their form from a PVp ≥ 50%. They have a form
similar to exponential curves since as Cbat grows. The virtual isolation from the grid
is bigger because the surplus of generated electricity is also bigger and consequently,
the Cf values obtained are worse. However, at the same time, a battery with enough
capacity (Cbat ≤ 0.5 days of autonomy) to store only the excess of PV generation
allows to relax the values of the Cf per period of evaluation.

The global effects on the aggregated consumption have been quantified up until
now. However, it is necessary to analyze the local effects of adding an storage system
plus the variation of the PV generation through ξL. Figure 6.15 shows the value of
ξL achieved for the different combinations of the battery capacity and size of the PV
generation. The value of ξL represented is the median of the 30 simulations done per
each experiment configuration of both parameters. This factor is calculated using
the annual generated PV electricity (directly from the PV generator or coming from
the battery) supplying the local loads and the total energy consumed annually. The
higher PVp and Cbat are, the higher ξL is achieved. In addition, the use of the storage
system helps increasing this factor since more local generation is been used to feed
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Figure 6.15: Experimental heat map results of the annual ξL for the different

combinations of nominal battery capacity and photovoltaic electricity penetration

using the Neural Grid Algorithm to smooth the aggregated consumption. In black,

the contour lines that separate the different regions of achieved ξL values.

locally the consumption. The minimum value obtained is ξL= 0% which is achieved
when no local generation is available. Whereas the maximum ξL is achieved at the end
of the experiment for a Cbat = 2days of autonomy and PVp = 100% and it is equal
to 79.98%. Comparing to the maximums achieved in the experiments of Sections
6.3.5 and 6.3.6, it implies an increase of 29.80% and 17.67%, respectively. Thus, the
storage system allows a better use of the local resources as shown by the contour lines
of Figure 6.15. Furthermore, the use of an storage system does not only benefit the
local self-consumption, but also globally, it allows integrating a higher percentage of
PV generation and decreases the Cf of the grid, as if the loads were consuming all
the local electricity generated at the same time that it is produced.

In conclusion, this experiment shows that adding an storage system to the node is
a better option in order to increase the self-consumption of the local resources and not
increasing in excess the variability of the aggregated consumption. The storage system
allows consuming the PV electricity not only at generation hours, so that relatively
low Cbat that absorbs the surplus of the PV enhance the system both locally and
globally. In addition, even with higher values of PVp, it has been reduced the effects
seen in Section 6.3.6 but the variations introduced are still too high. However, the
storage system allows bigger quantities of PV generation inside the grid, PVp ≤ 35%,
and it achieves that 80% of the consumption can be fed locally.

6.4 Summary and discussion

In this Chapter the EDeNC response, developed in Chapters 4 and 5, was tested
in a simulated environment which resembles a real grid. For this purpose, the
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GPLV3.0 open simulator GridSim4 was used as a tool to develop all the analysis
and experiments. GridSim is a powerful tool that simulates the power flows of an
electrical grid and models different elements inside the grid that resembles the real
ones. In this case, the facilities used during the simulations were composed by three
elements: consumption, local PV generation and an storage system. The consumption
is formed by the three types loads: deferrable, non-deferrable and elastic. Thus, the
direct application of the EDeNC is complex inside this environment. In addition,
with the appearance of local energy sources, a new objective was posed in order to
enhance its local use.

In this scenario, the proposed algorithm in this Thesis has been completed
and validated according to two objectives: one global, smoothing the aggregated
consumption of a grid, and one local, maximizing the self-consumption of the local
energy resources. This proposed algorithm, called Neural Grid Algorithm (NGA),
was developed based on the use of the response of the EDeNC and the PV DG that
the facilities incorporate. In order to achieve the first objective, the NGA uses the
properties of the EDeNC to reduce the variability of a signal, which corresponds
perfectly to the objective of smoothing the aggregated consumption of a grid. On the
other hand, the second objective of the NGA needs to include information relative
to the local generation in order to decide when the facility should consume and take
advantage of it. Therefore, the NGA incorporates the forecast of the day ahead for
the local PV generator. Both objectives are weighted by a β coefficient in order to
give different priority to the objectives.

NGA actuates over the demand of the facility based in these objectives. The
EDeNC response is prepared to actuate directly over the power of the facility, however
in a real environment a few consumptions can be modified directly. Hence, the NGA
used the consumption profiles of both objectives in order to schedule the different
loads of the user. Then, the consumption has been discretized in energy packages that
represent the loads of a facility and depending on the grade of the controllable load
capacity (LC), the algorithm has more energy to defer following the two objectives.
These energy packets are created by a virtual user which uses a consumption profile
to schedule them in probability. It is the virtual user which establishes the amount of
energy that it is deferrable, non-deferrable or elastic. Thus, the NGA would actuate
over the activation time of the deferrable loads respecting the user preferences and
scheduling them by the use of a probability density function based on the weighted
sum of the two objectives of the algorithm.

Once the definition of the algorithm has been introduced, five different experiments
were designed in order to test it. Each of them tests different aspects of the algorithm.
The first one tests the direct use of the EDeNC response with elastic loads over the
grid by varying LC . The second one test the load scheduling capacities of the NGA
in order to smooth the aggregated consumption by varying LC . In the third one,
the PV DG was added to the facilities to test the integration of the PV generation
when the NGA only schedules loads based on the first objective. In this case, LC
and photovoltaic electricity penetration (PVp) were varying. The fourth experiment
studies the full capabilities of the NGA in order to schedule the loads based on the
two objectives. In this case, LC was equal to 100% and β and PVp were varied.
Finally, the last experiment, following the results of the previous one, used an storage
system together with the PV generation in order to enhance the grid status. In this
experiment, the NGA was used to schedule loads with the objective of smoothing the
demand since the properties of the storage systems were tested. LC was equal to 100%
and Cbat and PVp were varied. In the first two experiments, the analysis consisted of

studying the average crest factor (Cf ), average load factor (Lf ) and average demand

factor (Df ) to quantify the effects on the grid. Whereas in the rest of the experiments

Cf and self-consumption normalized by the consumption (ξL) were studied to analyze
the effects on the grid and quantify the local use of the DER.

As a general remark, the inclusion of LC with the NGA improves the grid status
through the reduction of the variability of the aggregated consumption and also
improves the use of available resources. In case of using elastic loads, it is needed

4Source: https://github.com/Robolabo/gridSim
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a 30% of LC to achieve an annual reduction of the variability of 30%. Whereas
using the algorithm to recommend the user when is the best time to activate the
deferrable loads, it is needed an LC = 50% to at least reduce annually the variability
in a 13%. In addition, the NGA presents some errors due to the discretization of
the consumption and the use of the forecast response of the EDeNC. Furthermore,
the use of the NGA following only the first objective allows a better integration of
the PV DG as LC increases. But, it allows that for values of PVp less than 20%
the grid status does not get worse and the maximum ξL achieved is of 50%. At the
same time, the NGA allows enhancing the self-consumption of the facility increasing
the use of the local energy sources. With respect to the two objectives of the NGA,
prioritizing the second objective produces a higher variability on the grid but at the
same time higher values of ξL are achieved around 60%. For values of β ∈ [0, 0.5] the
algorithm is able to maintain relatively similar variabilities in the grid and achieves a
high use of the local resources. Finally, the inclusion of an storage system relaxes the
constraints of the environment and allows consuming the generated electricity when
it is needed. Thus, with an storage system, the PVp achieved is of 35% and at the
same time reduces the variabilities achieved by scheduling loads following the NGA
objectives. In addition, the use of the local energy resources is improved and reaches
a value of the 80%.
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Conclusions





7Conclusions and Future Works

“Stay hungry. Stay foolish” — Rashmi Bansal

K
ey features of a self-organized coordination algorithm to manage the
power flows of an electrical grid have been presented in this Thesis.
The aim of the Thesis was the application of Artificial Intelligence
(AI) algorithms, specifically Recurrent Neural Networks (RNNs), to

the distributed control of a grid with the presence of Distributed Energy Resources
(DER). In this last Chapter, the main achievements and remarks of the Thesis are
summarised, both in the computer science and energy fields. The remainder of
the Chapter is as follows. Section 7.1 presents an overview of the developments,
improvements and results obtained within the objective proposed in the present
Thesis. Section 7.2 presents different application possibilities of the results of this
Thesis and some proposals to develop in future research. Finally, Section 7.3
summarizes the main contributions of the author over the course of fulfilling this
dissertation.

7.1 Conclusions

The present structure of the electrical grid has not suffered disruptive changes since
its creation in the XIX century. However, its evolution has become essential as some
factors are threatening its stability such as the growing demand, while others are being
recently developed inside it without their proper integration such as Information and
Communications Technology (ICT) or Distributed Generation (DG). The emergence
of DG supposed a change of paradigm in the structure of the grid, since the generation
is closer to the places where it is consumed, enhancing the local system status.
Furthermore, the degree of connectivity between the different grid elements has been
increased thanks to ICTs, being necessary to process all the data gathered in order to
enhance the grid operation. The present Thesis sheds light on the problems arising
from the management and operation of existing electrical grids and their evolution to
what is considered the grid of the future or Smart Grid (SG).

The SG has arisen from the convergence of five key aspects that all the definitions
have in common: i) the grid, ii) ICTs, iii) renewable energies, iv) Electrical Energy
Storages (EESs) and v) Demand Side Management (DSM). In this Thesis, a definition
of the SG has been suggested to explain the meaning of this huge concept and to
understand what would the next generation of grids become. Thus, in the framework
of the present Thesis, a SG is considered as an electricity network that uses the ICTs to
coordinate the needs of all groups inside the system to operate all its parts as efficiently
as possible, minimizing costs and environmental impacts while maximizing system
reliability, resilience and stability. The SG presents benefits for all the members of
the grid (security of supply, reliability, efficient, etc.), and also for the environment.
SG is still at an early stage to be deployed and a lot of research has to be done before
its final stage arises. However, it also faces a lot of barriers to be fully adopted, but
the most worrying problem is the lack of investment to carry out the development of
these technologies.
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This Thesis consists of a first step towards the SG by linking and integrating
the five key aspects for its development and deployment in the near future. To this
end, an algorithm is proposed to process the tones of data that the ICTs gather
in order to benefit all the parts of the grid. Greater operational efficiency, cost
reductions and reduced risks are achieved. The current centralized structure of the
grid does not favor the information processing as the data load is large enough to
take decisions by the operators. Thus, the proposed algorithm follows a decentralized
approximation in order to alleviate the data load of the centralized node. In this
scenario, the decentralization was taken to the end of the grid, making the users
participants in their decisions and being able to manage their power flows into a
common objective, increasing the sustainability of the system, through DER and
an efficient use of electricity generated. The proposed algorithm is based on DSM
techniques combined with an automatic control of demand that helps to integrate
DER (renewable energies and EES), which leads to an innovative concept called Active
Demand Side Management (ADSM). This ADSM algorithm serves as the cohesive
element that links all the elements that define the SG.

Among all the possibilities to implement an ADSM algorithm, the proposal of
the Thesis is based on one of the famous algorithms coming from the field of the AI,
the Artificial Neural Networks (ANNs). They have been studied since the 50s, but
it was during the 80s that almost all the developments were done. Some problems
were found during this time, but they were overcome and nowadays they enjoy of
a fame well deserved thanks to their properties. As the ADSM algorithm is going
to be used in large scale and changing environment, ANNs were selected for their
properties of adaptivity, generalization, redundancy, fault tolerance and distributivity,
among others. In addition, the modularity of ANN offers the possibility to divide a
complex problem into easier tasks that help to solve the global problem. All the
properties that the ANN possesses are similar to the ones that the future SG will
provide to conventional power systems. There exist plenty of ANN types, but for
the proposed algorithm there are two fundamental attributes that must be targeted,
the time variable and the presence of memory. So, the type of ANNs selected is the
RNNs, specifically the Continuous Time RNNs (CTRNNs) since it includes all those
properties in its structure plus dynamic features that help in a changing environment.

The objective of the proposed ADSM algorithm is to enhance the performance of
the grid. To this end, the local consumption is managed to reduce the variability of
the aggregated consumption producing an smoothed signal and at the same time it
also responds to local conditions. The ADSM strategy followed is applied locally but
its effects impact globally in the system. Therefore, it is necessary to involve users in
this process and the coordination between facilities and the grid should be performed,
where a facility is owned by a particular consumer whose management depends
on him and is composed by Photovoltaics (PV) generation, an storage system and
consumption. However, the coordination process is done without any communication
among the users. Thus, the only information available to coordinate the ensemble
of users is the aggregated consumption of the grid. Data protection and anonymity
is guaranteed following this approach. Consequently, the different users inside the
grid are self-organized to contribute to smooth their aggregated consumption. To
this extent, the CTRNN was used to control the local electric behavior taking into
account the aggregated consumption of the electrical grid, local energy resources and
users requirements.

In the implementation of the ADSM, it was crucial the use of the CTRNN because
its signal processing and forecasting abilities make particularly interesting their use
in a changing environment as the grid. In addition, the dynamic properties and the
short-term memory of its structure helped to create an approximation to reduce the
variability of a signal. The aggregated consumption is a complex signal which depends
on the behavior of all users connected to the grid. However, this signal presents some
characteristics that helps to identify an approach to flatten it. Among its features,
it presents that it is continuous, periodic, bounded and differentiable of class C1.
Thus, taking into account these signal features, a CTRNN controller is built to cancel
the derivative of the aggregated consumption achieving a constant aggregated signal.
Consequently, the controllable users build a destructive interference through their
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consumption that it is in antiphase to the one corresponding to the non-controllable
users and as a result, the aggregation of all the consumptions will generate a smooth
aggregated consumption.

However, it was necessary to define the structure of the CTRNN to be able to
cancel the derivative of the input aggregated signal coming from the environment.
During the selection of the architecture some considerations were taken about its size
since large CTRNNs are difficult to analyze and computationally slow. Thus, small
structures were explored in order to be able to use them together with any technology
inside any type of user facility. At the same time, a modular approximation was
followed consisting of neural blocks where each one solves parts of the problem. In
order to find the right structure of the neural controller, a second algorithm was
used to tune its synaptic weights, the Genetic Algorithm (GA). During the search
of the best structures, not only different parameters of the neural controller were
adjusted but also an analysis of the best configuration of the GA was carried out in
order to understand the influence of its parameters in the search of the best solution.
The GA evaluated the capacity of the evolved structure to cancel the variability
of the input signal through the extraction of its derivative and the consumption of
an antiphase output. To this end, 388, 800 simulations were carried out for all the
different neural structures. The best structure found was the one formed by an input
layer of 2 neurons, a hidden layer of 4 neurons and an output layer of 1 neuron. The
information goes feedforward between layers, each neuron presents a feedback loop
with itself and the ones of the hidden layer present feedback loops among them. In
addition, there is a feedback loop from the output to the input, so the network can
store its last actuation. A post-evaluation was done to analyze the response of the
evolved neural controller and for all the tested signals, a variability reduction of the
input signals between the 60% and the 16% was achieved.

The evolved neural controller is the central block of the ADSM controller. How-
ever, its direct application in the grid could not be done since all users will consume
the same and the grid is composed by an heterogeneous environment. Moreover,
if all users try to consume the same power at the same time, greater variabilities
of the aggregated consumption are reached. Thus, a coordination algorithm was
implemented in order to produce collectively the antiphase consumption necessary to
flatten the aggregated consumption. Inspired in the Blind Source Separation (BSS)
techniques, the τ -Learning Algorithm (τLA) was used to regulate the output of the
neural controller ensemble based on the last free parameter of the network, the time
constant (τi). This parameter is related with the reaction speed of the neurons.
The τLA was implemented following a reinforcement learning paradigm in which the
minimization of the variability of the aggregated environment signal is used to change
the value of this parameter. The use of the τLA implies that after the evolution, each
evolved neural controller was developed to obtain its own output different from the
majority of controllers. With this achievement, the birth of the Evo-Devo Neural
Controller (EDeNC) arose to control the local demand of a user. The EDeNC could
be used in two modes of operations: adapting to the environment with or without
power constraints. In both cases, an smoothed aggregated environment signal is
achieved from a neural distributed way.

Finally, the direct use of the EDeNC is not recommended as it actuates directly
over the power of the user and there are a few loads that allows this behavior. In
addition, local Distributed Energy Resources (DER) considerations are not taken
into account in the EDeNC. Thus, the proposed algorithm, which is implemented
as an ADSM controller, uses the response of the EDeNC and a local PV generation
forecast to elaborate a consumption pattern of the user. This algorithm or Neural Grid
Algorithm (NGA) has two objectives: one global, the smoothness of the aggregated
consumption and one local, the maximization of the local energy resources use.
Both objectives are weighted by a β coefficient to establish different priorities in
the objectives. Then, the consumption pattern generated by the NGA is used to
schedule the different deferrable loads that the user possesses. The algorithm was
tested in a virtual environment for selected scenarios closer to reality. The data
used in the simulations were the total PV generation forecast of one day ahead,
the total PV generated and the aggregated consumption of the Spanish peninsular
grid in 2015. As a general remark, the inclusion of the loads controllable fraction,
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LC , with the NGA improves the grid status through the reduction of the aggregated
consumption variability plus a better use of the available energy resources. It is needed
an LC = 50% to at least reduce annually the variability in a 13%. In addition, the use
of the algorithm allows integrating the local PV generation for photovoltaic electricity
penetration (PVp) less than 20% without worsening the status of the grid. The use
of local storage allows a bigger integration (PVp ≤ 35%) and a higher use of the local
energy is achieved. As conclusion, the algorithm was able to adapt the controllable
demand to the non-controllable one and thanks to its use, the NGA reduced the yearly
variability of the aggregated consumption. Thus, the NGA meets the main objective
sought in this Thesis.

To conclude, the use of the NGA developed in this Thesis entails an important
contribution to the deployment of the future SG. With its implementation, some
needs and barriers referred in Sections 2.2 and 2.3 were tackled. The benefits that
introduced the use of the NGA are summarized as follows:

� The efficiency of the system is increased with the reduction of the peaks as less
power is demanded instantaneously. The use of the NGA also helps to decrease
the oversizing of the electric system in order to guarantee the supply. And it
also helps the grid operators with their daily tasks such as the scheduling of the
generation for the next day, integrating some forms of energy, etc.

� Increasing the robustness as the redundancy of infrastructures inside the grid is
increased. As a distributed algorithm, if one of the facilities fails, the remaining
facilities will adapt their consumption to continue smoothing the aggregated
consumption. In this case, the distributed property of the algorithm is doubled,
not only at the facility level but also the EDeNC presents this property inside
the facility. In addition, the robustness is also increased since the essential
information is sent from the nodes to the grid and vice versa. Compromising
the information through the ICTs is more difficult due to the reduction of node
communications.

� Data privacy is assured since no communication between the nodes is available
with the algorithm.

� Reduced computational load. As all the decisions are made from the side of the
user, the computational load of processing and making decisions is not as high
as if a central node was in charge of doing all these operations. Moreover, the
simplified structure of the EDeNC makes possible its execution in any current
technology since the computational effort is not huge.

� Reduced investments and costs with the use of NGA since it adapts to the
current status of the grid. Some modifications are still required such as
the upgrade of the sensory platform in order to establish a double-sided
communication. However, it is not necessary that each node possesses high
computational power or any other sophistication, since only providing the form
of the aggregated consumption will be enough to deploy the NGA and take
benefit for all its features.

7.2 Future Work

This Thesis is the NGA mark I. Although a first approximation of the future SG
was achieved with this algorithm, further development is required in order to improve
its performance. In this Thesis, a combination of the Artificial Intelligence (AI) and
the energy management fields were found. During the development of this Thesis,
different research lines have been identified for future exploration that would be
interesting to study.

The algorithm developed in this Thesis is still in a first version of its development.
Furthermore, the NGA is not mature enough for its deployment at large scale in real
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grids, but it could be used in reduced environments, such as buildings or microgrids.
However, some improvements should be made in order to use its final implementation
in real environments. These improvements are listed as follows:

� Improve the prediction horizon. One of the problems found with the NGA to
smooth the aggregated consumption is the scheduling of the loads with the real
time operation of the EDeNC. The EDeNC was able to predict one step ahead
to cancel the derivative of a signal and thanks to the periodicity of the signal
it was able to achieve its purpose. However, the period of repeatability was
of one week being too much time for the algorithm if some unexpected event
happens. Thus, increasing the forecasting capabilities of the EDeNC would
increase the performance of the algorithm and unexpected events would be
taken into account. To do so, following the task partitioning approximation
by dividing the problem into simpler parts, a specific prediction module could
be added to the current form of the EDeNC. Hence, the EDeNC would not
be modified and this new module could be as complex as it is required to
elaborate the prediction of the aggregated consumption. On the other hand,
another possibility would consist of the modification of the EDeNC structure
by increasing the history and using more outputs corresponding to the different
time steps of the forecast. In this way, it would be necessary that the structure
of the EDeNC would follow a Nonlinear Autoregressive Moving Average with
eXogenous inputs (NARMAX) approximation. Apart from these two types of
approximations, a third way can be used to increase the prediction horizon.
Changing the neural structure could also be helpful. For example, the use
of Long Short Term Memory (LSTM) networks would help to increase the
forecasting capabilities without compromising the neural structure. LSTM
networks are a type of RNN which learn from experience to classify, process
and predict time series when there are important long time lags of unknown
size between events.

� User consumption profiles. In this Thesis, a virtual user was in charge of creating
loads with respect to a consumption profile. However, only elastic and deferrable
loads were used separately to show the characteristics of the EDeNC and NGA,
respectively. A more complex consumption profile could be achieved if the three
types of loads defined in this Thesis (non deferrable, deferrable and elastic) were
used together and assigned by the virtual user. In this way, a more realistic
demand profile per user should be simulated and the strategy of scheduling loads
by the NGA should be reconsidered. The control capacity of the NGA should
be increased in order to be able to manage the three types of loads added. For
the non-deferrable loads, the algorithm has to ignore them since they are going
to be executed when the virtual user needs them. The scheduling capacities
of the NGA are still valid, however the algorithm has to take into account
not only the deferrable energy packages but also the direct power load control
over the elastic ones. In addition, the specifications of the elastic loads are
different from the deferrable ones since each one presents different features: for
example, the Electric Vehicle (EV) is a mobile load that can also be used as
an storage system and the Heating, Ventilation and Air Conditioning (HVAC)
loads maintain a comfort temperature ordered by the user. Deferrable loads
could also increase their realistic form if the real consumption profiles of these
loads were implemented. In this Thesis, only the end user consumption profile
was used based on the residential sector. However, different types of users
have to be integrated in the system to give more realism to the virtual grid
environment, e.g. industrial or commercial users, as other special loads that the
grid operators use.

� Multi purpose algorithm. The NGA presented in this Thesis is composed by
more than one objective. However, both targets were antagonistic and the
increase of one of them will imply the decrease of the other. A better integration
of the two objectives was done with the addition of an storage system in the
environment but it was not part of the algorithm. Therefore, adding the storage
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system as part of the algorithm could suppose a great asset as both objectives
are better integrated and the algorithm achieves better performance. Moreover,
storage systems are increasingly used due to their value in terms of flexibility,
technological improvements of the different technologies, the appearance of new
solutions from different companies and the emergence of the EV. The paradigm
of the storage systems has been changing since the introduction of the EV
because the storage system is not static anymore, it is mobile. The peculiarity
of the EV is that it can be used as a load or as a storage system, always taking
into account not only the energy requirements of the user but also their mobility
capacity, as it can be connected in any part of the grid. For example, the user
needs the vehicle to move from home to another place in which is going to do an
activity, during those periods of time that the EV is not used, the NGA could use
it to charge or discharge the battery following the user requirements and taking
into account when it is going to be used again. This behavior complicates the
decisions that the algorithm has to take in order to achieve its objectives. But
it also gives the opportunity to a new field of research to reduce the variabilities
of the aggregated consumption in a concrete area.

� Complete neural system. The consumption pattern generated by the algorithm
was weighted by the β coefficient. This method serves to establish different
priorities for the objectives of the algorithm and achieve good results with the
integration of both objectives. However, the decisions were made using non
neural elements. In order to get a better performance, a good way to integrate
both objectives is the use of a complete neural system to decide the consumption
pattern. This modular neural system would respond to different objectives
generating only one response in which all the targets are integrated. As one
of the major applications of the ANN is the classification and decision making,
creating a whole neural system, it is unavoidable to increase the performance
of the algorithm. Thus, a first approximation would be using the EDeNC
response plus the PV forecast as inputs to an ANN that selects the better
objective each time. Adding new objectives (electrical savings) or new elements
(storage systems) into the system will consist of adding more inputs to the
neural decision-making block, but the training would include all these new
targets and elements in order to obtain the required results. Furthermore,
for a complete neural system, the PV forecasting can also be done by using
an ANN. This predictive module would help to elaborate predictions locally
which are essential coordinating the different regions that compose the grid.
A disadvantage of getting a large scale neural model is the complexity of the
training for each module and the computation capacity of the nodes. But once
the right direction of implementing a solution is found, it is the best way to
increase the whole performance.

� More forms of generation. The most widespread technology used in DG is
PV. This is also the form of local generation used for the development of the
algorithm proposed in this Thesis. However, there exist other DG technologies
among which are multiple renewable energy technologies. One of the most
popular forms of DG together with PV is the use of wind power generation.
Its integration in the current form of the algorithm is very easy and it can be
done in three different ways: substituting the PV, adding a new coefficient to
prioritize one local resource or the other, or directly in the generation forecast
by adding its response to the one of the PV. Hence, the NGA will continue
smoothing the aggregated consumption at the same time that tries to maximize
the self-consumption of one or more forms of local generation. In spite of the
fast integration in the system, wind power presents a high variability of the
resources since its availability is not controllable.
In addition, getting closer to a real environment, the virtual grid could
incorporate different forms of generation typical from the actual grid, such as
nuclear power plants or hydraulic ones in order to correlate the matching of the
consumption and the generation. By adding different forms of generation, the
correlation of the decisions made by the algorithm and the capacity of the system
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to respond to them will also be tested. The complexity of the environment
offers an opportunity to study the different effects that can happen with the
application of this type of algorithms.

� Spatial simulation grid configuration. During this Thesis, the aggregated
consumption is done instantaneously without taking into account the places
where the electricity generated comes from or the different sites where the
consumption occurs. As no spatial considerations were taken, the losses around
the transportation of electricity could not be taken into account or estimated
in the aggregation of the consumption. Therefore, quantification of savings
and losses introduced with the NGA could serve to its final deployment in the
current grids. This study would also serve as a measurement to improve the
conflicting points of the algorithm in the interaction of the facility with the grid.
In addition, the inclusion of the spatial dimension to the problem would serve
to understand better the effects of the DG and quantify the benefits of using
it with respect to the generated electricity coming from the grid. Some special
configurations could also be simulated like the island operation of a group of
facilities or some microgrids with shared resources. Finally, this study could
serve to design and sizing the equipment needed in the grid for the application
of the NGA to its future deployment in the SG.

These are some improvements that could be implemented for a fully operational
algorithm to be used inside the SG. However, at the same time there exist other
applications in which the developments achieved in this Thesis could also be used.
Some of these applications are also related with the energy field whereas other
applications are related with the signal processing capabilities of the algorithm. These
applications are as follows:

� Microgrid management1. During the development of the evolved neural
controllers, the adaptation capabilities of the controllers were tested in a reduced
environment in which new users have to adapt their consumption profile to
the one of the environment. The use of this property of the EDeNC is very
convenient to manage the different consumptions inside microgrids for the
optimization of the resources. The idea is that through the self-organization
capabilities of the EDeNC, the users are able to optimize the use of the local
resources minimizing the interactions with the grid. There exist some limitations
inside the microgrid that the EDeNC could use in order to share all the resources
among the different users. Moreover, the EDeNC could be used to adapt the
consumption of some users to other ones that have priority over the rest, so
no energy resource is wasted. In addition, not only the consumption inside
the microgrid can be optimized with the EDeNC, the combination of different
microgrids could also be coordinated with the use of the NGA.

� Load shedding. With the growth of the EV in the transportation sector, a new
concern has arisen with respect to the infrastructures to charge its battery.
Imagine that inside a garage of a block of flats, all the neighbors have an EV.
The parking spot of each neighbor will be equipped with a charger for its vehicle
but the common installation of the garage will probably not be changed since
the construction of the building. In the case that all the cars need to be charged
at the same time, a peak of current is demanded that would soon overload the
capacity of the infrastructure. For this reason, different approaches are used to
shed the load of the different EVs of the garage. However, this will disconnect
those loads that are not considered primary in the system, so some cars will
not be charged while the power demanded is reduced. It is in this scenario
that the use of the EDeNC could be beneficial in order to regulate the current
used to charge the batteries of the cars. Using the EDeNCs, all the EVs could
be charging but not at the maximum current of the installation since it will

1A microgrid is a localized grouping of electricity generation, energy storage, and loads that could

operate connected to a traditional centralized grid (macrogrid)
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be shared between all the components. Thus, none of them will be shed and
it is assured that they will be charged eventually. In addition, depending on
the preferences of the user, different priorities to charge the EVs could also be
established while also guaranteeing that all of them are being charged and the
installation is not overloaded.

� Optimize with respect to the price signal. The NGA was used to optimize
the performance of a grid with a global objective of smoothing the aggregated
consumption, and a local objective of maximizing the local use of the electricity
generation. However, there is more than one objective that can be used
in order to schedule the consumption of the different users inside the grid.
Following the increase of the electricity bill experienced by users worldwide in
the last years, users are concerned about the waste of energy and the electricity
prices. Furthermore, the new time pricing would make the users altering their
consumption habits in order to achieve higher benefits. This time pricing
signal is correlated somehow with the form of the aggregated consumption
since for peak periods, the electricity is more expensive than during valley
periods. This information can be used to smooth the aggregated consumption
while users benefit economically from the savings of consuming during off peaks
periods. Thus, the modification of the NGA would consist of using the price
signal rather than the normalized aggregated consumption of the grid. This
information is more feasible to achieve since the smart meters deployed in the
grid infrastructure are prepared for pricing the electricity in real time which will
report direct benefits over the users by giving it directly to them.

� Audio filtering. Up until now all the applications described were related to the
energy field. Another application in the signal processing field for the algorithms
developed in this Thesis is in the filtering of audio signals. The first part of the
EDeNC was based on the creation of a destructive interference to generate
the antiphase signal of an input one. This concept was based on the Active
Noise Control (ANC) in which the noise is cancelled by the interference of
other signals. The idea is to use the EDeNC not only to cancel a specific
pattern but also to coordinate different controllers in order to be able to filter
different noises whose origin is unknown and are present in the audio signal. In
addition, the EDeNC could also be used to equalize and color the audio signal
to those frequencies that the user wants to increase their power and cancel those
that are interfering with the rest. The advantage of using the EDeNCs is the
adaptability and forecasting properties that they present since they are going to
evolve dynamically its response to cancel the different interferences in favor of
those that the users want to reinforce. For example, the headphones are using
this type of systems to isolate the user, but a good test would be their inclusion
in smartphones to cancel the outside noise when speaking or in a theatre to
avoid those harmful interferences.

� Image filtering. Another application related with the signal processing is the
use of the algorithm in another filtering process, in this case one related with
the imaging. The EDeNC were evolved using a continuous and derivative of
class C1 signal, and react badly to discontinuities. However, this behavior can
be exploited to detect the borders of an image so that it serves to identify the
different forms that are inside it. Then, different EDeNC could be coordinated
to recognize different forms and classify them. Thus, it could be applied in
different tasks related to imaging because they are general purpose algorithms.
In addition, the EDeNC can also be used to filter noise of images and equalize
them since its continuous and interference creation properties. For example,
they could be used to eliminate the salt and pepper noise of black and white
images since those perturbations are localized and with the equalization done
by EDeNC this noise is easy to be eliminated. Furthermore, other image
characteristics can be also altered with the use of these algorithms such as
the contrast or brightness of various parts of the image.



7.3. Review of Contributions 223

� Pattern recognition. Last but not least, the EDeNC is based on techniques of the
BSS, so it could be used as a pattern recognition algorithm to separate different
types of signals. As the EDeNC divides a signal into different pieces part of a
whole, it is interesting its application in those environments in which there is
no information about the elements that it is composed with and the algorithm
could give a possible solution. For example, it can be used in a receptor to
identify the different sources of information inside a mixed environment. It can
also serve to reconstruct part of the information as some of it is proportioned
to the algorithm. So, the EDeNC has to adapt its behavior in order to respect
this information and the rest of the signal would be regenerated as one of the
EDeNC. For example, this can be applied in a shared environment with multiple
messages where some information is known and it is needed to be regenerated
at the end of channel.

These applications are only a sample of the multiple ones in which these algorithms
can be used. As they are general purpose algorithms with a high component of
signal processing, they can be applied to any application related with coordination of
ensembles to develop a self-organized task.

7.3 Review of Contributions

This dissertation describes original research carried out by the author. It has not
been previously submitted to the Universidad Politécnica de Madrid nor to any other
university for the awarding of any degree. Nevertheless, some studies have been done
to study different aspects of the energy management, ANNs, cooperative systems and
neuroscience. In this Section, all papers published or accepted for publication by the
author (11 journals and 6 conferences), together with a number of co-workers, are
explained and linked with this Thesis. The corresponding publications are detailed
in the following.

The early works of the author were centered in the studies of DSM with local
DER in the residential sector in order to maximize the self-consumption. These works
where done inside the framework of a national research project called GeDELOS-FV2.
Three conferences papers show the results achieved in this project. In Castillo-Cagigal
et al. (2010b), the results of the self-consumption studies based on the use of the PV
generation together with ADSM were published. Then, in Caamaño-Mart́ın et al.
(2010), the implementation of the GeDELOS-FV system was introduced. And finally,
a paper about the design of battery controller to optimize the self-consumption was
published in Castillo-Cagigal et al. (2010a).

Furthermore, the achievements during this research project also allowed the
publication of some journal papers. In Castillo-Cagigal et al. (2011a), an ADSM
system in which the local energy resources are used to enhance the consumption of a
residential user is presented. This paper addresses the improvements caused by the
combination of ADSM and storages systems. In Castillo-Cagigal et al. (2011c), the
sensor network used in the GeDELOS-FV project was introduced. This platform
consists of different embedded systems and smart meters, used to monitor and
measure the different variables analyzed during the project.

Following the results achieved during the GeDELOS-FV project, different studies
followed around the ideas of developing the concepts of the self-consumption and the
ADSM. In Matallanas et al. (2011), a study of the possibilities of self-consumption
in residential PV systems in the Spanish grid was carried out. This paper sowed the
seeds of this Thesis since Matallanas et al. (2011) studied the different PV systems
configurations, the possibilities of enhancing the self-consumption with ADSM and
storage systems and an economic analysis of the self-consumption in small grids.
It was based on the energy variables obtained from the experiments performed in

2GeDELOS-FV:Gestión de la demanda eléctrica doméstica con tecnoloǵıa solar fotovoltaisupported

by the Plan Nacional de Investigación Cient́ıfica, Desarrollo e Innovación Tecnológica, 2007-2010,

(ENE-2007-66135/ALT).
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GeDELOS-FV. After this study of the self-consumption, a new approach of the ADSM
and the maximization of the self-consumption was published in Matallanas et al.
(2012). In this paper, the ADSM was addressed from a neural network approach
searching for a higher automation of the process. Finally, the last results of the
GeDELOS-FV project were published in Masa-Bote et al. (2014). In this last paper,
PV forecasts are used to a better integration of the PV systems in the grid plus
helping the ADSM to increase the self-consumption.

The studies on the field ADSM and management of the local resources continue,
but moving to a new sector and studying a new user coming from an office building
with different PV technologies (CPV3). With this aim, the SIGMAPLANTAS4 project
was created. A new ADSM controller was developed in this project to meet the energy
needs of these users at the same time that the local resources were enhanced. This user
counts with the typical consumptions of an office plus a CPV system with an storage
system. During the development of the project two more publications were done. In
Trujillo et al. (2012), an introduction to the project and the different elements that
the installation possesses are described. In Trujillo et al. (2013), the first results of
the project are published following the objective of maximizing the self-consumption
of the local resources with the ADSM controller developed.

After all the studies made from the local perspective, the author moved to a grid
perspective through its collaboration in some research projects. The main relevant
project of this topic was the competition Solar Decathlon Europe, in which different
universities around the world design, build and operate an energetically self-sufficient
house connected to the grid in order to compete with each other in different contest
related with the house built. The author was part of the monitoring team in charge of
designing, implementing and installing the monitoring system for the different houses
of the competition. The competition was held in September 2012 and three papers
were published with the lessons learned in this competition. In Navarro et al. (2014),
a general overview of the competition is presented in which all its parts are described
and the results obtained are analyzed. In Matallanas et al. (2014), the electrical
contest is analyzed and the different results of the participants teams were shown.
Finally, in Rodriguez-Ubiñas et al. (2014), the paper addresses the use of passive
techniques, broadly architectonics techniques, to reduce the energy consumption in
the electrical grid.

During the development of this Thesis, the author did a research intern in the
Centre for Theoretical Neuroscience. The author wanted to increase his knowledge in
the biological part of the ANNs and also wanted to understand better the construction
of new models of neurons that resemble the biological ones. During his internship,
the work done was published in a conference and in a journal paper. In Rezai
et al. (2014a) and Rezai et al. (2014b), two parts of the brain were studied: the
Anterior IntraParietal area (AIP) and Caudal IntraParietal area (CIP) of the brain
of monkeys. The idea was to build a computational model of these two parts of
the brain related with the visual guided grasping function in order to obtain the
parametrization necessary to implement in a robotic system.

Finally, the author has been also developing some studies in the coordination
and cooperation of individual ensembles. This work motivated the coordination of
the different neural ensembles of the EDeNC during the development of this Thesis.
Following this research line, two more journal papers were published. In Castillo-
Cagigal et al. (2014), a division of labor model as a discrete-time dynamical system
is defined in which their different properties are studied and an algorithm to modify
its dynamical behavior was suggested. In Castillo-Cagigal et al. (2016), a multi-agent
periodic environment is coordinated by an algorithm that varies the internal frequency
of each individual in order to obtain the results pursued.

3Concentrated PV (CPV) technology uses optics such as lenses or curved mirrors to concentrate

a large amount of sunlight onto a small area of solar PV cells to generate electricity.
4 SIGMAPLANTAS: La innovación en las plantas y modelos de sistemas de Concentración

Fotovoltaica en España. Ministerio de Ciencia e Innovación, programa INNPACTO (CIN/699/2011)

IPT-2011-1468-920000.
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