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Abstract

Essential tremor (ET) is one of the most common motor disorders, whose principal
symptom is pathological tremor. This situation hampers or even impedes those patients
to successfully accomplish their basic daily living activities. Nowadays, it does not exist
efficient, affordable and wide-applicable treatments for managing tremor symptoms. Recent
studies conducted investigations on new approaches based on the electrical stimulation
of afferent pathways. This method employs strategies, such as out-of-phase and Selective
Adaptive Timely Stimulation (SATS), in order to apply the electrical pulses to the muscles.
They consist on stimulating a pair of antagonists muscles with electrical pulses, synchro-
nized with periods of tremor activity. The main problem those strategies are facing is the
prediction of future intervals of tremor. As a first approach, they based their predictions on
tremor frequency analysis. However, this led to synchronization errors in long prediction
windows. Also, reliable classification techniques are needed, in order to correctly identify
tremor periods.

Some studies have evaluated the usage of kinematic signals for classification and
prediction of tremor intervals, but few investigations were conducted in the sense of
employing physiological signals instead. This thesis proposes and assesses the viability of
using traditional machine learning (ML) algorithms (Gaussian Naive-Bayes (GNB), Random
Forest (RF), K-Nearest Neighbors (KNN) and Support Vector Machines (SVM)), and deep
learning (DL) models (Long Short-Term Memory (LSTM)) to classify electromyographic
(EMG) signals into those presenting tremor activity and those that not. Classification task
is performed using raw and filtered signals, as well as different sequence lengths (0.4 s,
0.6 s, 0.8 s and 1.0 s). Also, a LSTM based predictor is built and tested on prediction task
of only EMG signals presenting tremor, using various prediction horizons. Classification
datasets are composed by signals from 12 ET patients and 8 healthy subjects. Tagging process
is conducted by means of signals’ PSD values. The dataset for prediction only includes
sequences from ET patients.

Best traditional ML algorithms were RF and SVM, reaching precision and recall values
over 0.85 using raw and filtered signals, for each window length. Meanwhile, GNB and KNN
had notable differences between precision and recall values, in all cases. However, every
algorithm experimented improvements as shorter was the window length, as well as when
using filtered signals instead of raw ones. The LSTM classifier did not improve the results
obtained by traditional algorithms. Nonetheless, the model achieved greater accuracies on
classifying raw signals. The LSTM predictor reached correlations over 0.9 for the next 100
ms period, being trained with 20, 30, 40 and 50 samples. For longer prediction windows,
correlation values gradually decreased to 0.35 for the next 1.0 s period.

Results demonstrate that usage of ML and DL algorithms is an effective method to
be implemented along with out-of-phase and SATS strategies, in order to identify tremor
periods using EMG signals. However, prediction results, while promising, showed that this
field needs for further investigation, so as to achieve acceptable results for longer prediction
windows.

Keywords: tremor suppression, classification of tremor, prediction of tremor, essential
tremor, electrical stimulation of afferent pathways, out-of-phase, SATS, machine learning,
deep learning, LSTM.
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Chapter 1

Introduction

Tremor belongs to a group of involuntary movements, such as tics, myoclonic
jerk, chorea, athetosis, dystonia or hemiballism. It can be defined as involuntary,
oscillatory and rhythmic movements of one or more body parts, not only including
limbs [1]. It is not necessarily a sign of pathology, so there exist uncontrolled move-
ments of body parts that are naturally present. This is called physiologic tremor
and is common in situations of anxiety, fear, physical exhaustion, hypoglycemia,
hyperthyroidism or alcohol withdrawal, among others [2]. Nonetheless, there are
certain diseases whose primary or most acute manifestation is tremor, where it is
considered as pathological. In fact, pathological tremor is one of the most common
involuntary movement disorders assessed in clinical practice [1].

There are two main types of tremor: resting tremor and action tremor. The first
type is related to involuntary movements that occur when the body part is relaxed,
while the second type refers to tremor during voluntary movements [3]. Action
tremor can also be divided into 3 subtypes:

• Postural: when the body part is voluntarily maintained against gravity.

• Isometric: during an stationary muscle contraction.

• Kinetic: may occur while doing any kind of voluntary movement. When
tremor is amplified as the target object is reached, it is considered as a subtype
of action tremor called kinetic-intention.

Pathological tremor is most common among middle-aged and older adults, due
to neural and motor system ageing. Nevertheless, it can appear at any age. Some
of the most important causes include: neurodegenerative diseases, stroke, head
injury, drugs and toxins, demyelinating disorders, systemic illnesses or metabolic
disorders [4]. The two principal diseases that are characterized by presence of tremor
are Essential Tremor (ET) and Parkinson’s Disease (PD) [5]. This thesis will primarily
focus its investigation on ET.

1
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1.1 Context

1.1.1 Problem description

ET is a chronic neurodegenerative disease [6] which has as primary manifestation
kinetic tremor at hands and arms, even if it may eventually spread to other parts of
the body. This tremor has components between 4 and 12 Hz [7] typically. Postural
and rest tremor are also present in patients with ET, but it has been proved that their
amplitudes are lower than those in kinetic tremor [8].

There is no consensus about the origin of ET, even a new conception of ET
as a family of diseases, whose main feature is kinetic tremor of the arms, is
increasing in popularity [9]. First studies in this matter proposed that a tremor
pacemaker at inferior olivary nucleus was the responsible of ET [10]. Recent studies,
including surgical, neurophysiological and postmortem, showed that there are other
brain structures participating on tremor generation in ET: cerebellum, red nucleus,
thalamus, and cerebral cortex (the cerebello–thalamo–cortical network) [5].

Regarding to impact of ET disease, some studies made across various countries
since 1960 to 2019, showed that prevalence of ET in population older than 60 years
is between 2,3% to 14,3% (median: 6,3%), as it increases with age [11]. But this kind
of disorders not only end to motor dysfunctions, they also result in psychological
problems (i.e. depression) that join difficulties to get daily life activities done [12]. In
addition, it is known that the impact of motor dysfunctions, caused by diseases like
ET or PD, will keep growing for the next years.

1.1.2 Therapeutic treatments

Nowadays, there exist several techniques that aim to suppress, in certain grade,
pathological tremor in ET patients. They use different strategies to achieve the best
possible results: from medication to surgical interventions or direct stimulation of
brain structures and motor pathways.

1.1.2.1 Medication

Most common drugs used to deal with ET symptoms are propranolol and primi-
done. Recent studies have concluded that topiramate can be another first line drug
for ET patients, so it reaches results close to those obtained with propranolol and
primidone. Estimated improvement results of these drugs are shown at Table 1.1.
Also, there are new alcohol based drugs in development, which are potent, but
dangerous, solutions [13].

All pharmacological treatments for ET aim to handle with its symptoms, so
patients can experiment an improvement on their quality of living, for as long as
possible. However, drugs cannot be considered as complete solutions due to their
inconveniences: they are not wide-applicable (only effective for around 50% of
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Drug Estimated improvement percentage in tremor amplitude
Propranolol 32-75
Primidone 42-76
Topiramate 30-41

Table 1.1: Most common used drugs for ET [13].

patients) [14], their side-effects leads to withdrawal of treatment in 33% of cases [15],
patients can develop cognitive disorders after treatment period [16].

1.1.2.2 Thalamotomy

A thalamotomy is a surgical procedure which consists on an ablation of part of
the thalamus using radio frequency through an opening, in order to improve brain
function in patients. Generally, the target area for doing the ablation is the Ventralis
Intermedius (VIM) [17]. Results achieved with this technique, in terms of tremor
suppression, reach from 74% to 90% of total tremor [18]. Although these are good
improvements, some disadvantages have to be considered: difficulties to localize
intervention site precisely and irreversible partial destruction of thalamus [19].

There exists a variant of traditional thalamotomy based on Gamma Knife (GK)
that use an external ablation strategy, so same process can be done through a non-
invasive way. This is applicable to those patients who cannot be treated with
traditional thalamotomy, due to comorbidity. Using this procedure, 63% of tremor
reduction can be reached after 12 months [20]. By contrast, thalamotomy with
GK has some side-effects to be studied for each case: hemiparesis, paresthesia,
dysphasia, dysphagia and delayed neurological deficits [18].

1.1.2.3 High Intensity Focused Ultrasounds (HIFU)

The HIFU technique is a novel treatment for pathological tremor. It is a minimally
invasive surgical process where target structures (ventral intermediate nucleus,
subthalamic nucleus, and internal globus pallidus) are hit by ultrasounds, in order
to conduct cerebral ablation. After 3 months, around 62% of patients can experiment
an improvement, becoming around 80% after 12 months [21]. Other advantages
of using ultrasounds are better precision and spatial resolution than those of
thalamotomies [22]. Even though, some drawbacks of HIFU approach are that it
is irreversible and its side-effects, namely: paresthesia, ataxia, gait instability and,
less frequently, ischemic stroke, fingers dysesthesia and deep vein thrombosis [18].

1.1.2.4 Deep Brain Stimulation (DBS)

DBS is a surgical procedure in which implants are placed on target brain struc-
tures, whose function is to generate electrical pulses to modulate tremorgenic
activity. Its main objective is to retain propagation of tremor through the cere-
bello–thalamo–cortical network using these pulses [23].
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This procedure is an alternative to pharmacological and other approaches, with
an improvement of around 50% on speech, tremor amplitude and bradykinesia.
It also has the advantage of being reversible, unlike other strategies such as
thalamotomy (see Section 1.1.2.2) or HIFU (see Section 1.1.2.3) [24].

However, the most inconvenience of DBS is the selective group of patients who
can be treated using this method. There is a whole set of requisites to be satisfied
by every patient who wants to be involved into a process of this kind, reducing
the percentage of suitable subjects [25]. Moreover, there exist adverse events that
may occur during the surgery (hypotension, seizures, symptomatic intracerebral
hemorrhages, ischemic strokes) and after (wound infection, device malfunctioning).
Typically, these events are notified in 2% of cases [24].

1.1.2.5 Functional Electrical Stimulation (FES)

FES technique is meant to be a promising, feasible alternative to the other seen
approaches for handling with pathological tremor. It is based on using superficial or
intramuscular electrodes [26] placed over muscles, that generate low level electrical
pulses, above motor threshold, so these muscles can be activated, resulting in certain
grade of contraction [27, 28, 29, 30]. It should be noted that applying pulses over
the motor threshold has some inconveniences: fatigue, discomfort and interferences
with voluntary movements [31, 32]. An example of a FES system is shown in
Figure 1.1.

Figure 1.1: Workflow schema of a FES system [26].

Additionally, FES technique can be applied following two different strategies
known as: out-of-phase and co-contraction.

• Out-of-phase: this strategy consists on muscle stimulation in order to generate
opposite forces to those from tremor activity. Before stimulation period begins,
either kinematic or electromyography (EMG) signals are analyzed. Then,
tremor frequency and period are calculated so electrical pulses may be applied



1.1. Context 5

simultaneously to tremor intervals.

Figure 1.2: Out-Of-Phase strategy [26].

In more detail, when EMG signal are used, first step is to calculate the
signal envelope so as to easily detect peaks of activity. After that, frequency
and period of peaks are calculated. This is done for a pair of antagonist
muscles: flexor/extensor. At this point, based on temporal metrics, it is
possible to determine a prediction horizon for next peaks of activity and, using
this information, stimulation periods can be intentionally planned for each
antagonist muscle, so they generate opposite movement to that from tremor
activity. An illustration of this strategy is shown in Figure 1.2.

The main disadvantage of this strategy is that a recording window without
stimulation is needed, since electrical pulses generates artifacts in the EMG
signals. That leads to a limitation for predicting future peaks, due to the non-
stationary nature of EMG signals: as prediction horizon increases, synchro-
nization of peaks will become more inaccurate.

• Co-contraction: as out-of-phase method, co-contraction aims to activate a pair
of antagonists muscles at the same joint. Although, co-contraction is based on
simultaneously activation of muscles, this leading to an increment of rigidity
at the joint and forcing its stability. However, most important withdraw is that
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patients suffer stiffness and movement limitations [33, 34, 35].

From these two approaches, out-of-phase strategy is gaining relevance compared
to co-contraction, due to its greater tremor suppression while applying fewer
amount of pulses to muscles. A summary of different studies in these FES techniques
is shown at Table 1.2.

Reference Patients Joint Strategy % Suppression
Javidan et al., 1992 3 ET, 4 PD Wrist Out-of-Phase 53±25%
Gilard et al., 1999 3 PD Wrist/Finger Out-of-Phase 83±2%
Grimaldi et al., 1999 1 ET, 2 PD Wrist/Shoulder Co-contraction 9±35%
Popovic Maneski et al., 2011 3 ET, 4 PD Wrist Out-of-Phase 67±13%
Widjaja et al., 2011 1 ET Wrist Out-of-Phase 57%
Gallego et al., 2013 2 ET, 2 PD Wrist Co-contraction 52±25%
Dosen et al., 2015 2 ET, 4 PD Wrist Out-of-Phase 60±14%
Jitkritsadakul et al., 2015 34 PD Wrist Co-contraction 44±33%

Table 1.2: FES studies and their results.

1.1.2.6 Electrical stimulation of afferent pathways

As an alternative to traditional FES methods, in the past years, some studies on
stimulation of afferent pathways for tremor suppression have come with promising
results. This approach seek to use spinal reflexes and interneurons for the purpose
of cancel involuntary movements, still following opposite movement of antagonists
muscles philosophy [36]. Afferent pathways suitable for being stimulated, seeing
that they are involved into tremor activity, are Ia and Ib types. In addition, superficial
and intramuscular electrodes are apt for its usage [37]. An schematic illustration of
this method, using Ia afferent pathway, is shown in Figure 1.3.

Figure 1.3: Reciprocal inhibition pathways in the spinal cord [38].
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Stimulation of afferent pathways may use same strategies as FES (Out-of-Phase,
Co-contraction). Nevertheless, an alternative approach is Selective Adaptive Timely
Stimulation (SATS) technique. SATS seeks to overcome the prediction horizon and
de-synchronization issues from out-of-phase, by using recording and stimulation
windows sequentially [37] (see Figure 1.4).

Figure 1.4: Control flow diagram of SATS strategy. [37].

Most interesting benefit of stimulating afferent pathways is that electrical pulses
under motor threshold are able to reach tremor suppression, namely: an average
of 52% [39]. That solves most of FES methods issues. Moreover, it does not have
known side-effects yet, it is feasible for every subject, harmless and affordable [36].
Nonetheless, there are still improvements to be done, as variability of results is high
(see Table 1.3).

Reference Patients Strategy Pathway % Suppression
Dosen et al., 2015 2 ET, 4 PD Antagonist/Out-of-Phase Ia 57±6%
Dideriksen et al., 2017 5 ET, 4 PD IM-S/Out-of-Phase Ia 52%
Muceli et al., 2019 2 ET, 4 PD IM/Out-of-Phase Ia 58%
Pascual-Valdunciel et al., 2020 9 ET IM/SATS Ia 32%

Table 1.3: Studies on afferent pathways stimulation. IM: intramuscular, S:
superficial.

1.1.3 Machine Learning (ML) and Deep Learning (DL)

In the past 10 years, taking advantage of increasing ML and DL progress, new
studies on classification and prediction tasks of tremor signals came out as a
promising approach for dealing with involuntary movements. Most of them take
ET and PD patients as study subjects and try to classify kinematic signals, for the
purposes of identify tremor and non-tremor periods, classify tremor into unified
types or evaluate improvements after surgery. The investigation in this thesis aims
to develop ML and DL models, in order to evaluate their performance on classifying
and predicting tremor signals.
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ML refers to the design and implementation of computer programs, which
can learn about data to take future decisions without human intervention. This
process relays on algorithms capability of extracting rules and patterns from data.
ML is also part of a bigger investigation field called Data Mining, whose purpose
precisely is extracting unknown information from data by means of mathematical
algorithms [40]. This leads to a two kinds of problems known as supervised
learning and unsupervised learning. First regards to situations where tagged or
expert reviewed data is available and the objective is to make predictions on new
instances. The second refers to those problems where data is not tagged, so there is
a descriptive task to be accomplished [41]. On this thesis, only supervised learning
algorithms will be used.

Supervised learning is also divided into two categories, regarding to the kind
of problem is faced: classification and regression. The objective of classification is
to build a model capable of predicting an output class for input data. In order to
do that, classification algorithms are previously fed with a training dataset, so they
could fit their internal parameters based on it and learn about data features. On the
other hand, regression refers to problems where main objective is to assign input
values to a continuous function [41].

DL is a novel branch of ML that is meant to develop automatic algorithms
capable of emulate human perception in different areas, such as natural language
processing or image perception and description. DL algorithms are based on the
mathematical model for human neurons, which is used to build complex neural
networks using different architectures i.e: convolutional neural networks, recurrent
neural networks (RNN), auto-encoders, etc. [42]. For the purpose of this thesis, most
important architecture will be RNN, as they are meant to work with time series data.

1.1.3.1 Recurrent Neural Networks

The RNN are a group of neural networks specifically designed to work with
sequential data, for example: time series information. Their main difference from
other architectures is the ability to save memory states as they are processing data.
This behavior is achieved by parameters share along multiple time steps. In order
to share information across time, RNN implement sequence unrolling, which means
that previous time steps outputs are connected to current time step input [43] (see
Equation 1.1).

ht = f(Wxt + Uht−1 + b) (1.1)

where ht,ht−1 are RNN outputs of current and previous time steps, respectively; W
is the current weights matrix, U the previous weights matrix, xt the input vector and
b the bias vector.
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Figure 1.5: Folded and unfolded RNN architecture illustration [44].

By extending this process to the whole sequence, RNN achieve an approximation
to memory notion [43]. An illustration of a RNN is shown in Figure 1.5.

Back Propagation Through Time (BPTT)

It is known that most of neural networks implement a mathematical procedure
named back-propagation, in order to be able of refitting their parameters and
learn from data. However, as RNN share their parameters across different time
steps, while staying at the same iteration, this type of architecture needs for a new
implementation of back-propagation which can take into account multiple time steps
through the same train iteration. Figure 1.6 shows an illustration of how BPTT is
performed.

Figure 1.6: Example of a simplified BPTT computational graph [43].

BPTT includes time dimension on back-propagation process by making the loss
function (L) of the current time step dependent of previous ones. As there are many
time steps to be computed, this dependency extends to the whole sequence [43].
At this point, the objective of BPTT is still the same as that of traditional back-
propagation: minimize loss function, searching for best parameters values, based on
gradient-descent algorithm. The weights of W, U matrices and b vector are updated
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as shown in Equations 1.2, 1.3 and 1.4.

Wt+1 = Wt − α
δL
δWt

(1.2)

Ut+1 = Ut − α
δL
δUt

(1.3)

bt+1 = bt − α
δL
δbt

(1.4)

where α is the learning rate.

Besides BPTT solves back-propagation for sequential data, as sequences increase
in length, RNN become unable to maintain memory states from past time steps,
that is, they cannot recognize long-term patterns. This is known as the vanishing
gradients problem (see Appendix C). New architectures such as Long Short-Term
Memory (LSTM) were created in order to overcome this issue.

Long Short-Term Memory (LSTM)

LSTM is a RNN based architecture designed to handle long-term dependencies in
large sequential data, specifically, the vanishing gradient problem, in which long-
term gradients tend to zero. The core of a LSTM is a memory cell which can maintain
its state over time, and non-linear gating units able to regulate the incoming and
outgoing information flow [45] (see Figure 1.7).

Figure 1.7: LSTM cell computational graph [44].

One LSTM cell is composed by 4 different gates, namely: input gate, forget gate,
context gate and output gate. They are defined by Equations 1.5, 1.6, 1.7 and 1.8.
Matrices first index corresponds the vector they process, while second index refers
to the gate [43].

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (1.5)
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ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (1.6)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt + Whcht−1 + bc) (1.7)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (1.8)

for xt ∈ RN , where xt is the input vector and N the feature length, at time step t,
while ⊙ represents the Hadamard product (element-wise multiplication).

Then, the output gate generates the final hidden state which is propagated to the
next step:

ht = ot ⊙ tanh(ct) (1.9)

It should be noted that it, ft,ot,ht,ht−1, ct, ct−1,b ∈ RH , where H is the hidden
state dimension, also known as the number of neurons per cell.

The purpose of these equations is to build a model for human memory notion. A
roughly simplified way to explain this, based on the above equations, is that LSTM
cells are building a representation for new (it) and past (ft) information, by means
of linear combinations between the input (xt), previous outputs (ht−1) and previous
context (ct−1) (see Equations 1.5, 1.6), which can be considered as similar to what
humans do. Then (see Equation 1.7), the current cell information (Wxcxt+Whcht−1+

bc) is filtered by applying the tanh function and an element-wise multiplication with
the input. At this point, this information is added to that from an element-wise
multiplication between the forget representation and the previous context, which
still makes sense. Now, the output state is created using the new context vector (see
Equation 1.8) and, finally, the new output is generated, based on new context and
the output state (see Equation 1.9).

1.1.4 Application of ML and DL algorithms on tremor signals

In 2013, Julien Stamatakis et al. [46] used 18 extracted features from kinematic
signals of PD patients to classify tremor, following an standard scale named Unified
Parkinson’s Disease Rating Scale (UPDRS). Results reached around 87% of accuracy.
Jeon et al. [47] searched for the same performance by extracting 19 features from wrist
kinematic signals. They trained a Support Vector Machine (SVM) whose accuracy
ascended to 85.5%. In 2016, Alam et al. [48] determined tremor grade in PD by
means of portable inertial sensors at finger/wrist and a SVM algorithm. Its accuracy
reached 88.6% at rest and 78.8% for postural tremor.

In 2015, Le Moyne et al. [49] worked in the development of ML algorithms
that could identify presence of tremor correctly, on stimulation and no-stimulation
periods of DBS. Their SVM achieved 100% of accuracy.
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Subsequently, a recent study carried by Alves et al. [50] in 2020 compared the
performance of a set of ML algorithms on classifying signals from healthy and PD
patients. Combining different amount of extracted features (272, 190, 136, 82 y
27), using various time intervals (1, 5, 10, 15 s), they proved that most relevant
features of those signals were: average frequency, linear prediction coefficients,
power ratio, power density skew and kurtosis. Also, their best algorithm was a
K-Nearest Neighbor (KNN) with 90% of accuracy. In 2020, Shahtalebi et al. [51]
proposed an architecture of bidirectional recurrent deep neural nets, called PHTNet,
whose main objective was to characterize pathological tremor. Its main novelty was
the separation between voluntary and tremor movements, without assuming that
their spectral components should be different, which is quite inaccurate as there are
superpositions between them. This project employ a dataset of signals from 81 ET
and PD patients. However, this method has never been applied.

By contrast, prediction task is not as present as classification, but there are still a
few studies on this field. In 2019, Zanini et al. [52] implemented different neural net
based models (Multilayer Perceptron (MLP), MLP autoencoder, LSTM and LSTM
autoencoder) for predicting EMG signals from a PD patient. They employed both
raw and filtered EMG sequences of 60 s of duration and tested algorithms on
predicting task. As correlation become smaller as prediction window enlarges, in
this study the defined horizon was fixed to 200 ms, still under the required window
size for tremor frequencies. Nonetheless, results were promising. The best model
performing prediction, using raw and filtered EMG, was the MLP decoder with a
linear combination of 3 layers (see Figure 1.8).

Figure 1.8: Raw EMG prediction examples using the MLP decoder [52].

At the same time, MLP and LSTM models based on a combination with
autoencoder architectures performed better. They conclude that those DL models
can successfully predict EMG tremor behavior, not only by means of the EMG
envelope, but also using raw EMG sequences. Another recent study on tremor
signals prediction was developed in 2020 by Ibrahim et al. [53]. This time data
were composed by kinematic signals from 13 PD patients, acquired using Inertial
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Movement Units (IMU). The selected model was a 2-layer CNN net followed by a
MLP as the output layer. They only assessed this model on prediction horizons of
10 ms, 20 ms, 50 ms and 100 ms, where it achieved very good results: over 90% of
prediction percentage accuracy in all cases (see Figure 1.9).

Figure 1.9: Prediction and estimation of true tremor kinematic signal. Green
scattered line corresponds to last 10 ms predicted segment. [53].

Finally, they concluded that the development of wearable suppression devices,
based on tremor activity prediction by means of DL models, can be a feasible
approach for handling tremor. Nevertheless, there is more investigation to be done,
in order to increase prediction windows as much as possible.

1.2 Motivation

Throughout Section 1.1, impact of ET, in terms of patients number and future
trends, has been explained, as well as the state of art about methods for handling
pathological tremor. In conclusion, today, most patients are treated using traditional
pharmacological treatments. These solutions have several drawbacks, regarding
to patient quality of living, due to all well known side-effects of medications, in
exchange of temporal and inconsistent improvements. Surgical procedures, such as
thalamotomy, DBS and HIFU appeared as suitable alternatives to drugs. However,
their highest disadvantage is the surgery itself, as it could lead to difficulties
and adverse events, even during and after intervention (hemiparesis, paresthesia,
dysphasia, dysphagia, ischemic stroke, deep vein thrombosis, wound infection,
device malfunctioning, among others). Moreover, patients do not experiment quite
an improvement until several months since surgery was completed. Finally, these
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procedures, excepting DBS, are irreversible.

Therefore, this field claimed for new strategies to handle tremor activity, that
were meant to overcome all of these inconveniences. Then, FES systems and
studies on afferent pathways stimulation came with modern, minimal or even non-
invasive methods. First, FES experimented a huge improvement on its results
when applying more sophisticated ways to stimulate muscles, such as out-of-phase
and co-contraction. Despite of still generating pulses over motor threshold, out-
of-phase reduced the amount of electrical stimulation applied to muscles, then
achieving a more comfortable experience for patients. It is a better alternative
than even co-contraction, which leads to barely be unable to perform voluntary
movements. Afferent pathways stimulation solves complications of stimulating over
motor threshold, showing decent results with lower pulse amplitude. In addition,
SATS strategy means better optimization for stimulation. Unfortunately, for both
out-of-phase and SATS based systems, there exists an important limitation which is
prediction window length.

As was discussed in Section 1.1.4, the application of new advances on Artificial
Intelligence (AI) field could bring solutions to those kind of problems, electrical
stimulation techniques are facing to. The main objective is to achieve a synchronous
stimulation with tremor activity, using least possible number of electrical pulses.
For this purpose, first, it is fundamental to classify signals, either kinematic or
physiological ones, in order to identify if they corresponds to tremor or not-tremor
activity, and do not begin stimulation period until it is really necessary. Then,
algorithms should be able to deal with noise and artefacts, achieving high levels
of accuracy on signals classification. At this point, they also should accomplish
a prediction task, so systems could anticipate next stimulation and no-stimulation
periods, that is, future tremor activity. Recent DL models, specially those based on
RNN such as LSTM, have been designed specifically to perform well in time series
prediction.

In this context, EMG signals might be the best alternative to be used in afferent
pathways stimulation approaches. First of all, EMG represents physiological activity
directly, without any transformation, as it is done, for example, in methods that use
kinematic signals. Therefore, working with EMG may be the most feasible way to
synchronize stimulation with activity from the nervous system, as final purpose is
to employ afferent spinal pathways and reflexes to interfere with tremor.

In conclusion, ML and DP bring hope about future, more powerful systems,
capable of predicting either kinematic or EMG signals for a sufficient interval of
time, knowing that typical tremor frequencies are between 4 and 12 Hz. That is the
main motivation for investigations that will be carry out on this thesis.



1.3. Objectives 15

1.3 Objectives

This investigation aims to develop a comparative analysis between various ML
algorithms, including traditional ones and DL models, based on their performance
in classification and prediction tasks for EMG signals from patients who suffer
pathological tremor. All these algorithms will be fed with raw and filtered signals,
searching for differences in terms of performance metrics, as employing raw data
means an advantage in terms of reducing pre-processing work. Also, that could be
useful for implementing the algorithms into portable devices.

The study consists on 3 stages:

1. Design scripts for building databases containing EMG signals (raw or filtered),
which should be able to admit different parameters of sampling rate and
different window lengths. Data would be tagged using EMG features.

2. Design Machine Learning models for classification and prediction of EMG
signals. There might be included traditional algorithms, such as Random
Forest, KNN, SVM and Naive Bayes, and more complex neural networks based
models, such as LSTM. Evaluate each model results individually.

3. Results assessment between models, focusing on their performance in terms of
signal parameters (window length, sampling rate) and the differences between
using raw or filtered signals.

The essential purpose of this thesis is to bring a wide set of results, which
could help in the design of modern tremor suppression systems that use ML/DL
algorithms, in order to provide personalized treatments adapted to patient-specific
pathological tremor.

1.4 Hypothesis

Pathological tremor has a characteristic frequency, which oscillates between 4
and 12 Hz as discussed in Section 1.1.1. Therefore, a potential way to head
classification task, using only EMG signals, should be tag the sequences based on
tremor frequency band, while taking into account that they are not stationary (their
properties change through time). Then, this method may be useful for creating the
datasets.

For its part, it is well known that EMG signals are noisy and difficult to analyze,
but working with ML and DL algorithms may help to avoid these inconveniences.
For the purpose of evaluate their ability to handle with noisy signals, raw and
filtered data are going to be used. It is expected that most algorithms will perform
better with filtered signals, while still giving good results with raw data.

Traditional ML algorithms are supposed to bring performances, at least, over
70% in precision and recall metrics on classification task, using raw signals. For
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filtered signals, those metrics should increase to over 80% or more. On the
other hand, DL models performance might be greater or, at least, equal to that
of traditional algorithms, using both kind of signals, due to their more complex
architecture.

Finally, expected results for prediction task are correlations between real and
predicted signal above 0.7, for the first 10 samples, which corresponds to a window
of 200 ms with a sample frequency of 50 Hz. Prediction horizon will be increased to
a maximum of 50 samples (1 s), yet correlations are supposed to be below 0.5 as a
consequence of using highly noisy signals.



Chapter 2

Materials and Methods

Throughout the following chapter, there will be explained details about data used for
this study, dataset creation processes and ML and DL models for classification and
prediction tasks, as well as the development tools employed during the experiments.

2.1 Materials

Twelve ET patients were selected from the Movement Disorders Clinic of Gre-
gorio Marañón Hospital (Madrid, Spain), between April 2019 and January 2020,
to participate on an experiment [37] whose objective was to evaluate if muscle
afferent stimulation could be a feasible approach to reduce pathological tremor.
Those patients were clinically examined by movement disorders specialists of the
Neurological Department and satisfied the following criteria: diagnosis of ET
according to Tremor Research Investigation Group criteria [54], present clinically
postural tremor; age between 18-80 years; tremor affecting at least one of the upper
limbs, with prominent wrist flexion-extension; absence of another neurological or
musculoskeletal pathology; ability to understand the procedure and sign the in-
formed consent. In addition, patients that were under any anticoagulant treatment,
presented coexistence of other diseases that distort movement; or mixed or complex
tremors, with involvement of multiple muscles and concomitant important medical
pathology, were excluded.

2.1.1 Data acquisition and description

On the study performed by Alejandro Pascual-Valdunciel et al. [37], kinematic and
EMG signals were recorded from ET patients. For the purpose of this thesis, only
EMG signals were of interest.

Patients underwent surface (SurfStim) stimulation experiments. Before each
session, a neurologist evaluated their basal condition, based on the Fahn-Tolosa-
Marı́n [55] tremor rating scale (specific and motor tasks) and the Clinical Global
Impression of Severity (CGI-S)/of Change (CGI-C) [56]. Bipolar surface electromyo-
graphy (sEMG) electrodes were placed over the muscle belly of FCR and ECR, after
cleaning the skin with alcohol. Surface EMG signals were acquired at 2042 Hz [37].

17
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Apart from recruited ET patients, another eight healthy subjects participated on
the study, under the same conditions exposed before. EMG signals from FCR were
recorded via surface electrodes, while subjects were performing voluntary flexor
contraction. These data were employed only for the classification task.

In terms of recording time, 140 records of 60 s where finally acquired from ET
patients, while 76 records of 34 s came from healthy subjects. It should noted that
there are two EMG records (ECR and FCR) for each of the 140, and only one (FCR)
from those 76 of healthy patients.

2.1.2 Pre-processing

Besides all records included EMG signals, not every sequence satisfied minimum
requisites for signal quality, so as to be acceptable on this study. After sessions
were ended, each record was assessed and tagged according to its quality, based
on visual inspection performed by an expert in EMG tremor signals. A 3-class scale
was established as following: 0 (Not-Acceptable), 1 (Acceptable) and 2 (Good). For
the purpose of this investigation, only EMG records tagged as 1 or 2 quality classes
were considered and included into the datasets. Table 2.1 shows number of useful
records per class.

EMG-ECR EMG-FCR
Acceptable (1) 23 46
Good (2) 41 10
Total 64 56
Available records 120

Table 2.1: Number of useful EMG records.

Nevertheless, this criteria only applies for records from ET patients, so those from
healthy subjects all satisfied requisites of signal quality.

Once data were selected by quality, an undersampling process was performed.
The reason of doing this is, primarily, reducing computational cost of processing a
great amount of samples per sequence, while it is not strictly necessary: the objective
is making algorithms capable of rapidly identify typical tremor components in EMG
signals, which are between 4 and 12 Hz. Then, undersampling helps algorithms
to work faster, as no relevant signal information is lost. Raw EMG signals were
undersampled by a 4 factor, that is, to 510 Hz from 2042 Hz; filtered signals sample
rate was reduced to 50 Hz. Figure 2.1 shows a raw EMG signal example.
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Figure 2.1: Example of raw EMG signal.

For filtered signals datasets, each sequence was passed through a Butterworth
bandpass filter of order 2 and cut frequencies 4 and 10 Hz, in order to obtain the
envelop. This kind of filters does not have ripple in its passband and the transition
between pass/removed bands is not very abrupt. Also, the digital filter was applied
forward and backward to the signals, which means a zero phase distortion [57].
Figure 2.2 shows a filtered EMG signal example.

Figure 2.2: Example of filtered EMG signal.

At this point, either raw and filtered data were normalized in range (0, 1).
This is a good practice when working with ML and DL models, even a common
requirement for some estimators which might behave badly if the individual
features do not look similar to standard normally distributed data [58]. Then,
two normalization algorithms known as StandardScaler (see Equation 2.1) and
MinMaxScaler (see Equation 2.2) were employed (see Section 2.2.2.6).



2.1. Materials 20

z =
(x− µ)

s
(2.1)

where x is the sample value, µ the mean of all samples, s their standard deviation
and z the standard score of sample x.

Xstd =
X − Xmin

Xmax −Xmin

Xscl = Xstd · (Max−Min) +Min

(2.2)

where X is the sample, Xmax, Xmin the maximum and minimum samples values,
and Max, Min the limits of desired feature range, which in this case are 1 and 0,
respectively.

Finally, it is important to mention that, as signals from patients were in mV and
those from healthy subjects were in µV , all sequences were normalized to µV , in
order to unify units.

2.1.3 Classification datasets

First stage of the investigation will be the classification of EMG signals in two classes:
Tremor and No-Tremor. Besides, algorithms will be fed with sequences of different
length. Window lengths selected for this study are: 1 s, 0.8 s, 0.6 s and 0.4 s. As there
are two types of signals (raw and filtered), eight different datasets will be created in
total. The defined strategy to tag the EMG sequences followed two steps:

1. Define global thresholds based on spectral components from signals to estab-
lish the limit between those presenting tremor and those that not.

2. Extract spectral components from each sequence, compare them to the corre-
sponding threshold and tag it as Tremor or No-Tremor.

The selected spectral components to be used for this study were the Power
Spectral Density (PSD) values, more specifically, the greatest value between 4 and
10 Hz. The PSD contains information about the percentage of total signal power
that corresponds to each frequency component. Formal definition of PSD (see
Equation 2.3) is the Fourier Transform of the correlation function, that is, the
correlation between the signal and a copy of itself delayed a certain time τ [59, 60].
PSD was considered as an appropriate method for tag process, so it allows to identify
objectively power distribution over typical tremor frequencies

S(f) = TF (R(τ)) =

∫ +∞

−∞
R(τ) · e−j2fτπdτ (2.3)

where R is the hop size window and k the number of available observations.

Nonetheless, as it is shown in Equation 2.3, the PSD is calculated through an
infinite period of time, while the length of EMG signals is finite, in other words,
available time information of the signal is limited. At this point, in substitution to
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calculating PSD, an spectral estimation will be performed. This is a probabilistic
analysis that allows to calculate PSD values of a signal when using a finite number of
observations (k). In order to use this kind of methods, signals must be considered as
stationary (signal properties do not change through time) and ergodic (estimations
average corresponds to real average) stochastic processes. There exist different
methods to estimate PSD values. For the purpose of this study, Welch’s method
was employed. It is a non-parametric method that is based on the formal definition
of PSD [59, 60]. In order to apply this method, a Hanning type window was used, as
number of observations was 510 and 50 for raw and filtered signals, respectively.

At this point, six different instances of EMG signals, from each raw and filtered
sets, were chosen to calculate thresholds. Those signals were selected manually so
two came from patients whose tremor was qualitatively defined as High, two as
Low and, finally, two signals from healthy patients. Then, every signal was passed
through the same filter as explained in Section 2.1.2 (excepting those already filtered)
and its estimated PSD was calculated. Due to the noise and artifacts present in
EMG signals, PSD values were quite variable and, in some cases, those coming
from healthy subjects signals were greater than values from patients’ sequences.
Figure 2.3 shows examples of extracted PSDs. In order to solve this situation, it
was decided to calculate arithmetic means of maximum PSD values between 4 and
10 Hz and take the result as the threshold (see Equation 2.4).

mean(HT1,i,HT2,i) = HTm,i,

mean(LT1,i, LT2,i) = LTm,i,

mean(HS1,i,HS2,i) = HSm,i,

mean(HTm,i, LTm,i) = Pm,i,

mean(Pm,i,Hsm,i) = Ti

i ∈ W = {1.0, 0.8, 0.6, 0.4} (2.4)

where HT1,i,HT2,i are PSD max. values between 4 and 10 Hz from High tremor
signals, LT1,i, LT2,i those from Low tremor, HS1,i,HS2,i those from healthy subjects
and Ti the threshold for window i.

It should be noted that PSD values change for different window lengths, so this
procedure was repeated for each of the eight datasets. Defined thresholds are shown
in Table 2.2.

Raw EMG Filtered EMG
Window 1.0 s 0.8 s 0.6 s 0.4 s 1.0 s 0.8 s 0.6 s 0.4 s
PSD value 8.2012 7.8758 7.5504 4.5744 7.9881 7.8758 7.5504 7.3104

Table 2.2: PSD max. values between 4 and 10 Hz considered as tremor threshold.

The result of tag procedure, in terms of number of instances per class for each
dataset is shown in Table 2.3. Number of instances per class and window is expected
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to be the same for raw and filtered signals, however, there are few differences, while
proportions between Tremor and Not-Tremor instances are virtually consistent. The
reason for this might be that there are sequences which PSD values should be closer
to the threshold so, as thresholds minimally vary for filtered signals, some of those
instances change their tag. The optimal method for tagging EMG sequences should
be based on a consistent estimation for thresholds, using the PSD or other signal
features. In this investigation, as a first approach, the estimation explained before,
based on arithmetic means of PSD values from example sequences, conducted
to acceptable results. Nonetheless, there is improvement to be done for future
approaches.

Raw EMG Filtered EMG
Window 1.0 s 0.8 s 0.6 s 0.4 s 1.0 s 0.8 s 0.6 s 0.4 s
Tremor 4882 5805 7162 10318 4734 6042 7576 10662
No-Tremor 5054 6543 9426 14610 5202 6306 9012 14266

Table 2.3: Total instances per class after tag process.

All datasets should be 50/50 balanced to avoid algorithms of becoming more
likely to classify instances on one class. Moreover, for the purpose of helping
algorithms, specially DL models, to be trained faster, select least possible number
of instances is recommended. In conclusion, datasets are composed by: 8000, 10000,
14000 and 20000 instances (50% Tremor, 50% No-Tremor) for 1.0 s, 0.8 s, 0.6 s and 0.4
s window lengths, respectively.

(a) High tremor signal. (b) Low tremor signal.

Figure 2.3: Examples of PSD values between 1 and 10 Hz from signals with tremor.
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For classification task, datasets have been divided into two subsets: train set
(2/3 of total instances) and test set (1/3 of total instances). This method prevents
algorithms from suffering of overfitting, so they become more capable of working
with unseen data. For those more complex models (i.e DL ones), it is necessary to
build another split of data, that will be used during validation process. At this point,
half of the test set is separated as the validation set (1/6 of total instances).

2.1.4 Prediction dataset

Last part of this study will be the prediction of EMG signals. This task needs for
another dataset, different from those built for classification, so this time it is not
necessary to tag instances: the target will be another signal. Signals came only
from ET patients, as the objective is predicting tremorgenic activity. Also, prediction
will be performed only on filtered EMG signals, as predicting raw EMG could be
excessively difficult for the model. For this purpose, sequences of 2 s length are built,
so now each instance corresponds to two 1 s signals. This investigation consists on
using different window lengths for training and various prediction horizons, but
this will be implemented in model’s own code, more specifically, in the training loop
function. Moreover, dataset is built with 50% of overlapping between signals, that
is, 1 s of overlap. The objective of doing this is to use every 1 s sequence available
for training, otherwise those signals employed as targets would never be used for
training. The dataset is composed by 7000 2 s sequences of filtered EMG.

2.2 Methods

2.2.1 Development tools

The experiments performed on this investigation have been implemented using
Python programming language and some of its libraries and frameworks. Python
brings usable, complete and powerful tools for data analysis and data mining to
developers, what makes this programming language a great tool for working with
data structures and building ML and DL models [61]. The main Python libraries
that have been used on this investigation are: NumPy, Pandas, SciPy, Scikit-Learn and
Matplotlib, along with an specific framework based on it named Seaborn.

2.2.2 Classification algorithms

2.2.2.1 Gaussian Naive-Bayes (GNB)

GNB is a variant of Naive Bayes methods. These consist on a set of supervised
learning algorithms based on applying Bayes’ theorem with the assumption of
conditional independence between every pair of features, given the value of the class
variable [58]. First of all, Bayes’ theorem states that, given a class variable y and a
vector of features x = (x1, x2, x3, · · · , xn):

P (y|x1, · · · , xn) =
P (y)P (x1, · · · , xn|y)

P (x1, · · · , xn)
(2.5)
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At this point, the ”naive” assumption corresponds to conditional feature inde-
pendence, that is:

P (xi|y, x1, · · · , xi−1, xi+1, · · · , xn) = P (xi|y) (2.6)

for all i features in x.

This leads to a simplified version of Equation 2.5:

P (y|x1, · · · , xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, · · · , xn)
(2.7)

As P (x1, · · · , xn) is constant given the input, the following classification rule can
be applied:

P (y|x1, · · · , xn) ∝ P (y)

n∏
i=1

P (xi|y),

ŷ = argmaxyP (y)
n∏

i=1

P (xi|y)
(2.8)

Finally, by Maximum A Posteriori estimation, P (y) and P (xi|y) can be estimated,
being P (xi|y) the relative frequency of class y in the training set. The existent
various methods based on Naive-Bayes differ on probability distribution assumed
for P (xi|y). Among their main advantages, it should be mention that this methods
require small amount of training data to estimate parameters, their training process
is faster than most other algorithms and they achieve decent results in real-
world situations. Nonetheless, Naive-Bayes classifiers are known for being bad
estimators [58, 62].

GNB is a Naive-Bayes classifier used for binary classification tasks. Its particular-
ity is that the likelihood of features is assumed to be Gaussian (see Equation 2.9) [58].

P (xi|y) =
1√
2πσ2

i

exp

(
−(xi − µi)

2

2σ2
i

)
(2.9)

where µi and σi are estimated using maximum likelihood.

2.2.2.2 K-Nearest Neighbors (KNN)

KNN is one of the most popular algorithms in ML, widely used for classification
tasks. Its strategy is based on comparing data points to those in their ”neighbor-
hood”, that is, the closest points to them. Namely, the principle behind KNN is to
find a predefined number of training samples closest in distance to the new point,
and predict the label from these. That number of samples can be defined as a
constant (k). On the other hand, the distance can be any metric measure, such as
Euclidean, Chebyshev or Minkowsky distances (see Equations 2.10, 2.11 and 2.12
) [58].
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deuc(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.10)

dchb(x, y) =
n

max
i=1

|xi − yi| (2.11)

dmnk(x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

(2.12)

where x and y are two n-dimensional vectors and p is the order of the Minkowski
distance.

Classification is achieved through a simple majority vote of the nearest neighbors
of each point: assigned data class to a point is that having the most representatives
around it. The main disadvantage of KNN is that it employs every instance from the
training set to classify a point, so it demands memory and compute time from the
CPU.

2.2.2.3 Random forest (RF)

RF algorithm is, as well, another popular ML model frequently employed on
classification problems. It is based on various decision trees working together [40].

First of all, a decision tree consists on a set of nodes and branches, where nodes
correspond to some data features and branches represent decision rules. When
initializing the algorithm, it starts searching for a certain number of features (that
can be user specified), which are selected regarding to how well they differentiate
data instances. In order to measure that, decision trees calculate the Information
Gain from each node/feature. IG is defined as:

IG = E(ParentNode)−
∑

(wiE(ChildNode)) (2.13)

where wi is the relative size of the child node, that is, number of instances given
by it over those given by the parent node. Also, E refers to node’s entropy, which
represents the grade of disorder in it [61]. Entropy is defined as:

E =
c∑

i=1

(−pi log2 pi) (2.14)

where pi is the probability that an instance belongs to one of the classes and c is the
number of classes.

After this process, those features having greatest IG will be selected as nodes for
the decision tree. RF repeats this procedure for a set of trees through the bagging
method. It consists on dividing the training set into random N subsets (N is the
number of decision trees employed) and fed each tree with one of them. This way,
different trees never see the same data. After the feeding, each one generates an
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output yi, which is the class assigned to the instance. Finally, that class receiving
more votes become the output of the RF (see Figure 2.4).

Some advantages of using RF are their versatility and flexibility, as the user can
specify number of trees, nodes, nodes’ length, among others; and that it avoids well
overfitting, due to the random segmentation of training data.

Figure 2.4: Illustration of RF workflow using 3 decision trees [63].

2.2.2.4 Support Vector Machines (SVM)

SVM is one of the most powerful algorithms among traditional ML models, and
one of the most used for classification problems of pathological tremor. This is due
to their versatility and great performance on binary classification tasks, including
linear and non-linear problems [61].

SVM take each instance as a Ω-dimensional vector, when Ω is the number
of features. SVM are able to perform multi-class classification, however, binary
classification process will be explained as that is the kind of problem in this
investigation. Therefore, SVM aim to separate two different groups of vectors (two
classes) on a hyperplane defined as:

wx − b = 0,

wx =
Ω∑
i=1

wixi
(2.15)



2.2. Methods 27

At this point, a hypothesis function h(x) can be defined for making predictions:

h(x) =

{
0 : wx − b < 0,

1 : wx − b ≥ 0
(2.16)

Then, SVM algorithm faces an optimization task, whose objective is to find the
values for w and x that maximizes the distance between groups. In order to achieve
that, SVM come with a set of parameters which can be tuned depending on the
problem to solve.

First one is C, known as the regularization parameter. It affects the margins’ size
from the hyperplane. Greater C values allow margins to be tighter, so the algorithm
adjusts more to data and could suffer from overfitting. Lower C values cause the
opposite: force margins to be greater, increasing algorithm’s ability to generalize
and, maybe, underfitting.

Figure 2.5: Illustration of SVM algorithm. Solid line corresponds to the
hyperplane [64].

Another relevant parameter is the kernel, which refers to the core function of the
SVM and affects the hyperplane shape. There exist various kernel functions that can
be divided into linear and non-linear. Figure 2.6 shows some effects of changing the
kernel function. On this investigation, the Radial Basis Function (RBF) is employed,
which is defined as:

K(xi, xj) = exp(γ||xi − xj ||2) (2.17)

where ||xi − xj ||2 represents the square euclidean distance between two input
instances (xi, xj) and γ is an scalar that refers to the influence of each instance in the
kernel. Lower γ values mean that the RBF will become similar to a linear function.
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Figure 2.6: Influence of different kernel functions on SVM classifiers [58].

2.2.2.5 LSTM classifier

The LSTM based model for classification is shown in Figure 2.7. It is formed by
three layers: two LSTM and a final linear layer, which is a perceptron. The inputs
for the first LSTM layer are the time sequence values (i1, i2, i3, · · · , iτ ). The hidden
states from this layer (h1i ) are sent to the second LSTM layer as inputs. Last hidden
state from this layer (h2τ ) corresponds to the input for the linear layer, as it stores
information from all the sequence. Finally, output (y) is generated as predicted tag
for input sequence it.

The training loop consists on 4 stages per epoch, i.e. each time the model has
been fed with the whole training set.

1. Load data and feed the model. The model generates its output.

2. Calculate loss from predictions and actual labels. In order to do that, the
model uses a loss function, which in this case is the Binary Cross-Entropy
(recommended for binary classification tasks) defined as [40]:

HBCE = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (2.18)

where yi is the tag for instance i, p(yi) the probability of that instance belonging
to class y and N the number of instances.

3. BPTT and weights update using Adam optimizer. According to [66], Adam
method is ”computationally efficient, has little memory requirement, invariant
to diagonal rescaling of gradients, and is well suited for problems that are large
in terms of data/parameters”.

4. Validation process. This stage consists on evaluate model performance on the
validation set and calculate its loss. Then, if loss is lower than that of the
previous model, the current one is saved.
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Figure 2.7: LSTM classifier [65].

2.2.2.6 Parameters selection

All algorithms has been tested using different combinations of parameters, looking
for those giving better performance. Only the GNB algorithm was evaluated without
any changes, as its parameters were related with giving priorities to certain classes
and calculation stability [58], so they were not of interest for this study.

In order to perform models evaluation, the selected method was the K-Fold Cross
Validation, with K=10. This procedure consists on dividing training data into K
different splits of same size, train the algorithm on K-1 folds and evaluate the model
using the last subset. This process is repeated for every split: first stage train with
{S1, S2, · · · , Sk−1} and test on Sk, second stage train with {S1, S2, · · · , Sk−2, Sk} and
test on Sk−1, etc. The result of this procedure is the model that performed the best on
the test stage, which can be considered the best possible model that can be achieve
using the training set and K different splits. Nonetheless, K-Fold Cross Validation
was only employed for traditional ML algorithms, i.e. GNB, KNN, RF and SVM. The
LSTM classifier has its own training algorithm, as explained in Section 2.2.2.5. Then,
parameters selection for each algorithm was:
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• KNN. Data normalization algorithm: StandardScaler.

– Number of neighbors: {2}. For filtered EMG datasets: {4,5,6}.

– Weights: {Distance}.

– Algorithm: {Ball Tree}.

– Leaf size (for Ball Tree): {30, 35}.

– Metric: {Euclidean, Chebyshev, Minkowsky}.

• RF. Data normalization algorithm: MinMaxScaler.

– Trees: {85, 90 ,95, 100}.

– Criterion (function to measure split quality): {Entropy}.

– Max. Features (when looking for the best split): {log2(N),
√
N}, where N

is the number of data features.

– Min. Samples per leaf: {2}.

• SVM. Data normalization algorithm: StandardScaler.

– C: {0.1, 1, 10}.

– γ: {1, 0.1, 0.01}.

– Kernel: {RBF}.

• LSTM classifier. Data normalization algorithm: StandardScaler.

– Learning rate: {0.005, 0.001, 0.0001}.

– Hidden size: {20, 35, 50}.

2.2.2.7 Performance metrics

The evaluation of classification algorithms performance is conducted by four differ-
ent metrics: precision, recall, f1-score and accuracy. These are calculated by using the
confusion matrix, in which distribution of real and predicted instances are visually
displayed [40]. Confusion matrix is based on the definition of four types of instances:

• True Positive (TP): signals tagged as Tremor and classified as Tremor as well.

• False Positive (FP): signals classified as Tremor but tagged as No-Tremor.

• True Negative (TN): signals tagged and correctly classified as No-Tremor.

• False Negative (FN): signals tagged as Tremor but classified as No-Tremor.

Predicted Class
No-Tremor Tremor

Real Class
No-Tremor TN FP

Tremor FN TP

Table 2.4: Confusion Matrix Template.
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Then, precision is the rate between signals correctly classified as Tremor and the
total of signals classified as Tremor (see Equation 2.19). It is a measure of how good
is the algorithm identifying positives as actually positives [40].

Precision =
TP

TP + FP
(2.19)

Recall is similar to precision, even they usually appear together as can be
considered complementary metrics. It represents the rate between signals correctly
classified as Tremor and all signals tagged as Tremor, including those incorrectly
classified as No-Tremor (FN)(see Equation 2.20). Recall simply represents how many
positives the algorithm does not identify [40].

Recall =
TP

TP + FN
(2.20)

F1-score is the harmonic mean between precision and recall. This metric is used
to ensure that classifiers have good precision and recall at the same time, balancing
the values of those metrics equally (see Equation 2.21).

F1 = 2
Precision ·Recall

Precision+Recall
=

TP

TP + 1
2(FP + FN)

(2.21)

Finally, accuracy is a very useful metric to preview algorithm’s performance,
even is a good practice to combine this measure with others, such as precision and
recall. It provides the rate of all correctly classified instances over the test set [40]
(see Equation 2.22).

Accuracy =
TP + TN

TP + FP + TN + FN
(2.22)

2.2.3 Prediction models

Two models were built to perform prediction tasks. They consists on various layers,
as well as the model employed for classification (see Section 2.2.2.5):

• Model 1: one LSTM layer, one linear layer and the sigmoid function applied
right before generating the output (see Figure 2.8).

• Model 2: two LSTM layers, one linear layer and the sigmoid function (see
Figure 2.9).
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Figure 2.8: Model 1 for prediction.

The main difference between these models and the LSTM classifier is that the
last LSTM layer produces a δ-dimension output, where δ corresponds to the number
of predicted samples. Then, this values are passed through the sigmoid function.
Regarding to the training loop, the process is still the same as explained for the LSTM
classifier (see Section 2.2.2.5). However, the loss function selected for evaluating the
prediction model is now the Mean Squared Error:

MSE =

(
1

N

) N∑
i=1

(ii − yi)
2 (2.23)

where N is the number of predictions made, ii the input value and yi the predicted
value.
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Figure 2.9: Model 2 for prediction.

2.2.3.1 Parameters selection

Prediction models were evaluated using a wide selection of different parameters:

• Data normalization algorithm: MinMaxScaler.

• Train samples: {20, 30, 40, 50}.

• Prediction horizon (in number of samples): {5, 10, 20, 30, 50}.

• Learning rate: {0.001, 0.0005, 0.0001}.

• Hidden size: {20, 35, 50}.

Given all possible combinations between these parameters, the number of total
trained models ascends to 360.

2.2.3.2 Performance metrics

In order to evaluate the prediction models, new metrics should be defined as
to work with time series data. These metrics are the Mean Squared Error (see
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Equation 2.23), the Root-Mean-Square Error (see Equation 2.24) and Pearson’s
Correlation Coefficient (see Equation 2.25).

RMSE =

√√√√( 1

N

) N∑
i=1

(ii − yi)2 (2.24)

PCC = ri,y =

∑N
i=1(ii − ii)(yi − yi)√∑N

i=1(ii − ii)2
√∑N

i=1(yi − yi)2
(2.25)

where N is the number of predictions made, ii the input value and yi the predicted
value.

The Root-Mean-Square Error value provides information about the prediction
accuracy of the model, calculating differences between real and predicted values.
On the other hand, the Pearson’s Correlation Coefficient represents the similarity
between real and predicted signals, as values of this coefficient closer to 1 mean a
higher linear relationship between them.



Chapter 3

Results

This chapter presents the classification and prediction results for each ML and DL
model, as well as comparisons between them. The results include: performance
metrics (see Sections 2.2.2.7 and 2.2.3.2), models’ performance using different
parameters and window lengths, and employing raw and filtered signals. Prediction
results also include some examples of predicted signals using the defined prediction
horizons (see Section 2.2.3.1).

3.1 Classification results

3.1.1 GNB

No changes were made to GNB parameters as explained in Section 2.2.2.6). There-
fore, we proceed to present the results from those GNB models that performed the
best after conducting a K-Fold Cross Validation process.

Table 3.1 shows the precision and recall obtained for different window lengths
and using raw and filtered signals. Precision is always better than recall, while
former’s minimum value is 0.60 when using filtered EMG and 0.8 s window length.
Nonetheless, it can be seen that, for most of the cases, shorter window lengths and
usage of filtered signals suppose an improvement. This classifier achieved its best
results with 0.4 s and filtered EMG: 0.9708 of precision and 0.7502 of recall.

Window
1.0 s 0.8 s 0.6 s 0.4 s

R F R F R F R F
Precision 0.9556 0.9597 0.9472 0.9364 0.9587 0.9630 0.9468 0.9708
Recall 0.6965 0.6769 0.7108 0.6048 0.7274 0.7025 0.7089 0.7502

Table 3.1: GNB classification performances. R: Raw; F: Filtered.

GNB performance evolution through different windows is visually presented in
Figure 3.1. Also, all confusion matrices can be found at Appendix E.1.
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(a) Raw EMG results. (b) Filtered EMG results.

Figure 3.1: GNB performance per window.

3.1.2 KNN

K-Fold Cross Validation for KNN was applied for six models, corresponding to
those for raw EMG, and twelve models for filtered EMG. Tables D.2 and D.1 in
Appendix D.1 show all models and their parameters.

After cross validation assessment, best KNN models (see Appendix D.1) under-
went the test stage. It should be noted that some models gave the same results for
equal conditions (see Appendix F.1), so only one of them was finally selected, as for
simplifying results. Table 3.2 shows the metrics obtained using the best KNN model
per window and signal type and Figure 3.2 shows performance evolution through
windows. First of all, from cross validation process we conclude that most influential
parameter is the number of neighbors. After testing the models, all precision values
are over 0.9 for all cases, while not making any relevant improvement with shorter
windows and being greater with raw EMG signals, except for 0.4 window. On
the other hand, recall is improving as window length decreases and is greater
when using filtered signals. Best results came from using 0.4 s window length and
filtered data: 0.94 of precision, 0.91 of recall. Confusion matrices can be seen in
Appendix E.2.

Window
1.0 s 0.8 s 0.6 s 0.4 s

R F R F R F R F
Precision 0.9629 0.9123 0.9433 0.8826 0.9554 0.9211 0.9221 0.9441
Recall 0.6402 0.7583 0.6898 0.7680 0.6887 0.8384 0.7295 0.9106

Table 3.2: KNN classification performances. R: Raw; F: Filtered.
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(a) Raw EMG results. (b) Filtered EMG results.

Figure 3.2: KNN performance per window.

3.1.3 RF

Regarding to RF algorithm, K-Fold Cross Validation was applied for a set of eight
models, which, this time, are the same for raw and filtered EMG. Table D.4 in
Appendix D.2 shows all models and their parameters. All boxplots from cross
validation are available in Appendix F.2. Variety in best models selection (see
Appendix D.2) is greater in this case, which means that choosing appropriate
values of parameters Max. Features and Trees is crucial, in order to achieve good
performance results.

Window
1.0 s 0.8 s 0.6 s 0.4 s

R F R F R F R F
Precision 0.8560 0.8853 0.8503 0.8636 0.8667 0.9068 0.8698 0.9324
Recall 0.9568 0.9302 0.9356 0.9263 0.9043 0.9451 0.8976 0.9636

Table 3.3: RF classification performances. R: Raw; F: Filtered.

As shown in Table 3.3, RF performs quite well on classifying either raw and
filtered signals. Unlike GNB and KNN, this algorithm finally achieves values over
0.85 for both metrics, for every window and signal type. Precision values increase
as shorter is the window length. For its part, recall decreases for raw signals and
increases for filtered ones (see Figure 3.3). One more time, best results were reached
using 0.4 s window length and filtered signals: 0.93 of precision, 0.96 of recall.
Confusion matrices can be seen in Appendix E.3.
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(a) Raw EMG results. (b) Filtered EMG results.

Figure 3.3: RF performance per window.

3.1.4 SVM

Nine SVM models were assessed by cross validation (see Appendix D.3) for both
raw and filtered datasets. All boxplots related to this process are available in
Appendix F.3. Models giving best performances have C values 1 and 10 (see
Appendix D.3), which means that SVM benefits from having tighter margins. This
is probably caused by high variability in data, so the algorithm needs for smaller
margins in order to separate instances into classes.

In regards to the results, they are very promising. As shown in Table 3.4 and
Figure 3.4, metrics values are over 0.8 in all cases. Working with raw signals,
precision and recall become more imbalanced as reducing window size. On the other
hand, we can notice an increasing trend for both metrics, when using filtered data,
as window size increases. Best results are reached for 0.4 s of window length and
filtered EMG: 0.94 of precision and 0.96 of recall. Confusion matrices can be seen in
Appendix E.4.

Window
1.0 s 0.8 s 0.6 s 0.4 s

R F R F R F R F
Precision 0.9071 0.8903 0.9047 0.8631 0.8318 0.9038 0.8690 0.9412
Recall 0.9099 0.9279 0.8935 0.9184 0.9565 0.9416 0.9270 0.9597

Table 3.4: SVM classification performances. R: Raw; F: Filtered.
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(a) Raw EMG results. (b) Filtered EMG results.

Figure 3.4: SVM performance per window.

3.1.5 Best models comparison

We proceed to make a deeper comparison between all assessed ML models, taking
into account how different window sizes affect, as well as the usage of raw and
filtered signals. The main objective is to identify which models perform the best for
every situation and how prominent are the differences.

Figure 3.5 shows the comparison between models using raw data for all window
sizes. RF and GNB seem to perform quite the same, independently from the window
length, while making tiny improvements as it becomes shorter. However, RF
metrics are more balanced that those from GNB. SVM benefits from longer windows,
regarding to similar precision and recall values, but still achieves its best results
with 0.4 s size. GNB and KNN are the algorithms giving most imbalanced results:
precision is always high but recall never takes values over 0.8. Then, this models
have difficulties on identifying tremor signals as they bring many false negatives,
which supposes an important problem if they are implemented in tremor handling
devices. Therefore, best algorithms for working with raw signals situations are RF
and SVM, while the former gives better results.
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(a) W = 1.0 s. (b) W = 0.8 s.

(c) W = 0.6 s. (d) W = 0.4 s.

Figure 3.5: Best models comparison. Raw EMG.

On the other hand, Figure 3.6 shows the comparison between models using
filtered data. RF and SVM are still the algorithm that give better results overall.
They behave similar to when using raw signals, while metrics values increases with
filtered data, in most cases. The biggest difference is for KNN and GNB models,
which now reach more balanced precision and recall values, specially for KNN. GNB
is still far from being able to reduce the number of false negatives identified. For its
part, KNN is now an appropriate algorithm for facing classification task.
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(a) W = 1.0 s. (b) W = 0.8 s.

(c) W = 0.6 s. (d) W = 0.4 s.

Figure 3.6: Best models comparison. Filtered EMG.

Finally, Figure 3.7 compares models’ performances when using raw and filtered
signals, for all window sizes. We can see models start to give better results for filtered
signals as window size decreases. When using longest windows (i.e. 1.0 s and 0.8
s) models seem to perform the same, except from KNN which, as explained before,
experiments greater improvements when working with filtered signals, and since
1.0 s window length performs better. Bigger differences start to appear for 0.6 s and
0.4 s windows, where f1 scores rise gradually.

After evaluating the results from traditional ML models, a LSTM based classifier
is going to be assessed in classification task, looking for better or, at least, equal
results than those from models already presented.
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(a) W = 1.0 s. (b) W = 0.8 s.

(c) W = 0.6 s. (d) W = 0.4 s.

Figure 3.7: Best models comparison. Raw EMG vs Filtered EMG.

3.1.6 LSTM classifier

As explained in Section 2.2.2.6, six different parameters (three learning rates, three
hidden sizes) were selected for building LSTM classifiers. That gives a total of nine
different models to be evaluated in classification task, searching for best parameters
combination per window (see Appendix D.4). After training process, those models
giving the best performances (see Appendix D.4) were conducted to the test stage. It
should be noted that all models passed through validation process during their train
stage, in order to ensure their improvement.

Almost all proposed models were selected as best in performance for at least
one situation, which means that influence of learning rate and hidden size values
is decisive, so as to reach better results. Nonetheless, other parameters, such as the
optimizer (Adam) and the loss function (Binary Cross Entropy), have high importance
for training. It could be interesting to train this LSTM models using also different
combinations of optimizers (i.e. Stochastic Gradient Descent) and loss functions.
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The results of LSTM classifiers are promising, with accuracies over 0.88 for
all cases. Those windows where LSTM became more unstable and reaching
convergency was more difficult are 0.8 s and 0.6 s. At the same time, convergency
was faster and smoother when using filtered EMG signals. Train and valid
loss functions become more distant as training progresses, in most cases (see
Appendix G). Meanwhile, using filtered data, those functions are closer. The
conclusion is that raw signals, being noisier than filtered ones, make training process
more demanding for LSTM. Besides, models still perform well in classification. Best
result come, as happened with the other classifiers, from using 0.4 s window size
and filtered signals: 0.94 of accuracy.

Window
1.0 s 0.8 s 0.6 s 0.4 s

R F R F R F R F
Accuracy 0.9265 0.8909 0.8933 0.8891 0.9117 0.9100 0.9306 0.9352

Table 3.5: LSTM classifiers performances. R: Raw; F: Filtered.

(a) W = 1.0 s. (b) W = 0.8 s.

(c) W = 0.6 s. (d) W = 0.4 s.

Figure 3.8: Comparison between best ML algorithms and LSTM classifier.
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Finally, Figure 3.8 shows a comparison between RF and SVM, which are the
algorithms that performed the best among traditional ML ones, and the LSTM.
This time, the metric selected was the accuracy, as it was the computed metric
for LSTM classifier. Results are quite similar among the compared models. As
already explained, SVM and RF experiment some improvement when using filtered
signals, which, in the case of LSTM, is barely imperceptible, except for 1.0 s window.
Regarding to the influence of window length, there are some aspects to highlight.
First, if we look at performances when using raw signals, the LSTM classifier
keeps accuracies high, always similar to those obtained for filtered data, while the
differences seen for SVM and RF are more noticeable. Also, we can observe that,
from 0.6 s window length, SVM and RF start to achieve higher accuracies than LSTM,
using filtered signals.

3.2 Prediction results

Table 3.6 shows the results for the best models for each combination of prediction
horizon and input sample length, after training stage. Also, some examples of
predicted signals are shown in Figures 3.9, 3.10 and 3.11.

Best LSTM models for prediction
St Ph Nl Hs Lr PCC MSE (u2) RMSE (u)
20 5 3 20 0.001 0.9030 0.0035 0.0508
20 10 3 20 0.0001 0.7179 0.0135 0.1014
20 20 3 20 0.001 0.5199 0.0230 0.1383
20 30 3 20 0.0005 0.4200 0.0263 0.1515
20 50 3 35 0.0001 0.3228 0.0290 0.1627
30 5 3 20 0.001 0.9023 0.0028 0.0448
30 10 3 20 0.0001 0.7233 0.0130 0.0976
30 20 3 20 0.0001 0.5156 0.0228 0.1373
30 30 3 20 0.001 0.4137 0.0263 0.1513
30 50 2 20 0.0005 0.3154 0.0292 0.1633
40 5 3 20 0.0001 0.9043 0.0028 0.0455
40 10 2 20 0.0005 0.7245 0.0130 0.0100
40 20 3 35 0.0001 0.5201 0.0225 0.1369
40 30 3 20 0.0001 0.4250 0.0259 0.1500
40 50 3 20 0.0001 0.3204 0.0294 0.1635
50 5 2 20 0.0001 0.9083 0.0026 0.0436
50 10 3 20 0.0005 0.7597 0.0115 0.0927
50 20 3 35 0.0001 0.5413 0.0218 0.1338
50 30 3 20 0.0001 0.4386 0.0262 0.1501
50 50 3 20 0.0001 0.3489 0.0296 0.1637

Table 3.6: LSTM best models’ parameters and performances for prediction. St:
training samples; Ph: prediction horizon; Nl: number of layers; Hs: hidden size;
Lr: learning rate; PCC: Pearson Correlation Coefficient; MSE: Mean Squared Error;
RMSE: Root-Mean-Square Error.
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Figure 3.9: Examples of predicted EMG signals. Train samples: 30. Prediction
Horizon: 5.

Figure 3.10: Examples of predicted EMG signals. Train samples: 40. Prediction
Horizon: 10.
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Figure 3.11: Examples of predicted EMG signals. Train samples: 20. Prediction
Horizon: 20.

Results are quite similar among all models. They reach their best correlation
coefficients when with shortest prediction horizon (5 samples). Then, correlation
between predicted and real signals is high, always over 0.9 in all cases. We can
see a very tiny improvement as training window increases to 50 samples, which
corresponds to a 1 s sequence. However, improvements are almost irrelevant.
Looking for longer prediction distances, models still perform well for 10 future
samples, with correlation values around 0.75. These are acceptable performances,
knowing that models are working with few pre-processed signals. The examples
above show that, even when EMG sequences are filtered, they have still poor quality,
so it is expected that predictions for long windows are going to decrease in accuracy.
For prediction horizons of 20, 30 and 50 samples, correlations decline to values
around 0.5, 0.4 and 0.3, respectively. Those are not sufficient at all for even trying
to identify signal and tremor trends in future windows.
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Conclusions and future approaches

4.1 Discussion

The results for classification of EMG signals are quite promising. After comparing
all assessed models, we conclude that RF and SVM provide good results, in terms
of precision and recall. Also, those metrics increase when using filtered signals,
while they are still acceptable with raw data. The combination between using
filtered sequences and short windows leads to best results: over 0.9 for precision
and recall values. Apart from traditional algorithms, LSTM classifiers also perform
with accuracy values over 0.9. However, their results are not improving those from
traditional ML models, even the SVM and RF gave better results in some cases.
Therefore, there is no reason, regarding to raw performance metrics, to employ
LSTM models for classification task in substitution of those traditional models. SVM
and RF are sufficiently powerful for identifying tremor in EMG signals from the
datasets employed in this investigation and under the same conditions.

On the other hand, prediction task demands for more investigation to be made.
The LSTM based models showed that they are able to predict EMG tremorgenic
signals for a few future samples. In those cases, when they had to predict next
5 samples, the results are more than acceptable with correlations over 0.9, even
when training with a 400 ms window length. In addition, results showed that
performances do not increase substantially when augmenting training samples.
Nonetheless, results are still not sufficient for implementing these algorithms in
tremor handling devices, as tremor band frequency is between 4 and 12 Hz, which
means that models must be able to predict the next 250 ms with good accuracy.
In this respect, we have seen how correlations are getting worse as prediction
horizon increases. For a prediction window of only 10 samples (200 ms), correlations
between real and predicted sequences reach values around 0.7. At this point, if
we continue enlarging the horizon, we obtain values under 0.5, which are not
yet acceptable, in order to identify future signals trends. It was expected that
models would perform worse when augmenting the number of samples to predict.
Nonetheless, this results might be influenced by different aspects related to the
datasets employed. First of all, it was explained that EMG signals were selected
regarding to its quality. However, those sequences might be too much noisy and
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present artifacts, all contributing to make prediction task more demanding for
models. Also, it should not be forgotten that EMG signals come from a variety of ET
patients, with different tremor grades, so this adds another difficulty in recognizing
patterns, which, in addition, might be specific for each subject. This situation could
have led to relatively high performances for the first few samples and, then, to
models losing their ability to identify next steps. Fortunately, in recent years, new
DL models, more powerful than LSTM based ones working with time series data,
were developed, such as transformers [67]. There are still many experiments to do,
in order to achieve models capable of predicting EMG signals and, consequently,
tremor activity.

4.2 Conclusions

Comparing these results with those from previous studies (see Section 1.1.4), we
can conclude that classification of EMG signals into Tremor and No-Tremor ones is
actually possible, using either traditional ML algorithms or DL models, as it was
when using kinematic signals. Furthermore, most algorithms perform good even
for raw and short EMG sequences, while the SVM and RF give results over 0.9 of
precision and recall in those situations. However, as classification problem can be
considered as solved, the next step, prediction task, needs for better solutions. The
LSTM architecture presented in this thesis, while being simpler than models from
other studies based on combinations of MLP and LSTM [52], reaches correlations
around 0.9 for the next 100 ms window, even when using a 400 ms EMG window
for training. For a prediction horizon of 10 samples (200 ms), correlations decrease
to around 0.7. Then, EMG prediction for identify tremor periods is possible with
less sophisticated models, but the problem of enlarging prediction windows while
preserving acceptable correlations remains unresolved.

One of the main hypothesis was that EMG sequences could be tagged by means
of frequency components between 4 and 10 Hz, which is the typical band for tremor.
Results showed that it is possible using, in this case, an estimation of the PSD, even
when this approach assumes EMG to be stationary. Nonetheless, classifiers did not
seem to suffer from a bad tagging process. Another important hypothesis was that
algorithms were supposed to perform worse when classifying raw sequences, in
comparison when using filtered signals. It was demonstrated that, indeed, classifiers
improve their performance when they are fed with filtered sequences. Some of them,
such as KNN or GNB, experiment higher improvements than others, increasing
their values of recall by 0.1 and 0.2, in some cases. In RF and SVM models, we
observe lower improvements, with differences between metrics obtained using raw
and filtered signals of around 0.05. In short, all algorithms brought results, in
terms of precision and recall values, over 0.7 in all cases, which are acceptable.
Finally, it was proposed that correlations values in prediction task would decrease
as the number of future samples enlarges. This is also demonstrated by the results
obtained. However, for the shortest prediction windows, correlations were above
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0.9, which means that predicting EMG signals is a feasible method for detecting
tremor activity.

In regards to the objectives of this thesis, the design, implementation and
assessment of ML and DL algorithms in classification and prediction of EMG signals
were successfully accomplished. Recent techniques, such as electrical stimulation
of afferent pathways, can benefit from this investigation, in terms of including the
usage of EMG signals in their tremor suppression strategies. The results would help
on further investigations aiming to implement these kind of technology in portable
suppression devices, which, hopefully, would suppose a huge advance in tremor
handling approaches.

4.3 Future approaches

Further investigations in this field should focus on various improvements:

• This study was conducted using data extracted from only ET patients. In future
experiments, it would be desirable to include information from patients who
suffer tremor symptoms, but caused by other motor diseases, such as PD. This
can lead to a general method to handle pathological tremor, widely applicable
to patients who suffer from it.

• Tagging process needs for a more consistent and accurate solution, in order to
avoid variability and standardize tremor thresholds. Further studies should
aim to evaluate what are the most important and useful signal features which
allow to consistently tag EMG tremor sequences.

• Of course, more investigation is needed for prediction models. In future
experiments, usage of new DL architectures, such as transformers, and other
powerful models in time series prediction should be assessed and, hopefully,
could bring higher performances for longer windows. Nonetheless, it should
not be forgotten that the final goal is to implement these algorithm in portable,
even affordable, devices which have limited computational power.

• Last but not least, it might be interesting to combine kinematic and physi-
ological signals, in order to determine if models benefit from having these
information given at the same time. We already now that DL architectures
such as LSTM networks can be fed with multi-feature time series data, that is,
with more than one feature per time step. This behavior brings the opportunity
to employ not only one type of signal, but a combination of various sources of
tremorgenic activity information.
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Appendix A

Ethical, economic, social and
environmental impacts

A.1 Introduction

Pathological tremor is one of the most common symptoms caused by motor dys-
functions, such as ET or PD. It leads to patients suffering from cannot control
their own movements and not being able to carry out many of their daily life
activities. It is another critical medical issue that has to be investigated, so it needs
for general, affordable and effective solutions. Therefore, this thesis is involved into
the experiments which aim to achieve better remedies to pathological tremor, in
substitution to traditional solutions such as pharmacological approaches or surgical
procedures. More in detail, this thesis aims to assess viability of using EMG signal
classification and prediction for recent tremor suppression techniques, such as FES
and afferent stimulation. Besides the experiments conducted throughout this thesis
could help on improving those strategies, it is important to understand and evaluate
the main impacts this investigation has on society.

A.2 Analysis of most relevant impacts related to this project

• Ethical impact. In this thesis, data collected from ET patients were used in
order to carry out the experiments. It is important to ensure that the data
collection process obeys the current legislation for data protection. In this case,
these process is protected by the General Data Protection Regulation (GDPR)
from the European Union (Regulation (EU) 2016/679) that was put into effect
on May 25, 2018 [68].

• Social impact. This project has an straight effect on patients who suffer
from pathological tremor caused by ET disease, as well as for their families.
The development of new and better tremor handling techniques derives into
more comfortable and personalized treatments which help to improve patients
quality of living.

• Economic impact. The results brought by this thesis can help in the devel-
opment of new treatment approaches for pathological tremor. Nowadays,
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most treatments are based on medication or surgical procedures, which
both suppose an important investment of economic resources, while not
being completely effective solutions. New strategies such as FES or afferent
stimulation, to which this investigation aims to improve, are considered as the
future treatments for handling tremor, being less expensive and more effective
than current ones.

• Environmental impact. This thesis is involved into the development of
sustainable and wide-applicable approaches for handling pathological tremor,
namely: FES and afferent stimulation. In conclusion, further results of this
investigation would have a minimal detrimental impact on the environment.

A.3 Conclusions

After performed this evaluation of the different impacts of this thesis, we can
conclude that it is worth to invest on this field of investigation, which, hopefully,
in the incoming future would bring better and sustainable solutions for tremor
suppression systems, helping patients and society to overcome the drawbacks of
this type of diseases.



Appendix B

Economic budget

This project was conducted throughout six months in collaboration with the Neural
Rehabilitation Group from the Cajal Institute-CSIC. All data employed in the exper-
iments come from the European project EXTEND-Bidirectional Hyper-Connected
Neural System, in which the Cajal Institute is contributing. Regarding to the
required economic budget, in order to conduct the investigations of this thesis, an
estimation of costs is presented below.

• Personnel: in terms of personnel costs, salaries for the project leader (Biomed-
ical Engineer) and the student were considered (see Table B.1).

Hourly rate (e) Hours Total (e)
Project leader 25 85 2.125
Student 15 600 9.000
TOTAL 11.125

Table B.1: Personnel costs.

• Costs from material resources: in order to carry out the experiments made in
this investigation, the required hardware has been valued, taking into account
the corresponding devaluation for each component (see Table B.2).

Useful life
Units.

Cost Amortization Usage Total
(years) (e) (e/month) (months) (e)

Personal computer 5 1 1.000 16,66 6 100
Graphics Card

4 1 800 13,33 6 80
(NVIDIA GTX 1080 Ti)

TOTAL 180

Table B.2: Costs from material resources.
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Finally, total costs are summarized in Table B.3.

Cost
Personnel costs 11.125 e
Material costs 180 e
Subtotal 11.305 e
IVA 2.374,05 e
Total 13.679,05 e

Table B.3: Total costs.



Appendix C

Vanishing Gradients problem

The vanishing gradients problem refers to the fact that gradients tend to zero as
time sequences are longer. This is a very important issue that RNN architectures are
facing. In order to demonstrate the existence of this problem, an example based on
the resolution for weight matrix W is shown below, being the cases of matrix U and
vector b similar to this.

Let the partial derivative of loss function L with respect to W for time step t be:

∂Lt

∂Wt
=

∂Lt

∂yt

∂yt

∂ht
· · · ∂h2

∂h1

∂h1
∂Wt

=
∂Lt

∂yt

∂yt

∂ht

(
T∏
t=2

∂Lt

∂Wt

∂ht

∂ht−1

)
∂yt

∂W

ht = f(Wxt + Uht−1 + b)

(C.1)

Then, evaluating the partial derivatives in the sequential product leads to:

∂Lt

∂Wt
=

∂Lt

∂yt

∂yt

∂ht
· · · ∂h2

∂h1

∂h1
∂Wt

=
∂Lt

∂yt

∂yt

∂ht

(
T∏
t=2

f ′(Uht−1 + Wxt + b)U

)
∂yt

∂W
(C.2)

where f is the activation function.

Usually, tanh and sigmoid are used as activation functions. tanh maps their
entries between -1 and 1, while sigmoid function does it between 0 and 1. The
derivatives of these functions are delimited to 1, which leads to the derivative of
L tending to 0 for any t time step.

∂Lt

∂Wt
→ 0

Wt+1 = Wt − α
∂Lt

∂Wt
≈ Wt

(C.3)

Therefore, gradients would not be updated anymore, for a sufficiently great
value of t.
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Appendix D

Cross Validation ML models

D.1 KNN

KNN Models - Filtered EMG
ID Algorithm Leaf Size Metric Neighbors Weights

Model 1 Ball-Tree 30 Euclidean 4 Distance
Model 2 Ball-Tree 30 Euclidean 5 Distance
Model 3 Ball-Tree 30 Euclidean 6 Distance
Model 4 Ball-Tree 30 Chebyshev 4 Distance
Model 5 Ball-Tree 30 Chebyshev 5 Distance
Model 6 Ball-Tree 30 Chebyshev 6 Distance
Model 7 Ball-Tree 35 Euclidean 4 Distance
Model 8 Ball-Tree 35 Euclidean 5 Distance
Model 9 Ball-Tree 35 Euclidean 6 Distance

Model 10 Ball-Tree 35 Chebyshev 4 Distance
Model 11 Ball-Tree 35 Chebyshev 5 Distance
Model 12 Ball-Tree 35 Chebyshev 6 Distance

Table D.1: Cross Validation KNN models for filtered EMG.

KNN Models - Raw EMG
ID Algorithm Leaf Size Metric Neighbors Weights

Model 1 Ball-Tree 30 Euclidean 2 Distance
Model 2 Ball-Tree 30 Chebyshev 2 Distance
Model 3 Ball-Tree 30 Minkowski 2 Distance
Model 4 Ball-Tree 35 Euclidean 2 Distance
Model 5 Ball-Tree 35 Chebyshev 2 Distance
Model 6 Ball-Tree 35 Minkowski 2 Distance

Table D.2: Cross Validation KNN models for raw EMG.
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D.2. RF 62

Window
1.0 s 0.8 s 0.6 s 0.4 s

Raw EMG Model 1 Model 1 Model 1 Model 1
Filtered EMG Model 1 Model 1 Model 3 Model 3

Table D.3: Best KNN models per window for raw and filtered EMG.

D.2 RF

RF Models
ID Criterion Max. Features Min. Samples per leaf Trees

Model 1 Entropy log2 2 85
Model 2 Entropy log2 2 90
Model 3 Entropy log2 2 95
Model 4 Entropy log2 2 100
Model 5 Entropy sqrt 2 85
Model 6 Entropy sqrt 2 90
Model 7 Entropy sqrt 2 95
Model 8 Entropy sqrt 2 100

Table D.4: Cross Validation RF models.

Window
1.0 s 0.8 s 0.6 s 0.4 s

Raw EMG Model 3 Model 8 Model 6 Model 8
Filtered EMG Model 1 Model 8 Model 7 Model 4

Table D.5: Best RF models per window for raw and filtered EMG

D.3 SVM

SVM Models
ID C γ Kernel ID C γ Kernel

Model 1 0.1 1 RBF Model 6 1 0.01 RBF
Model 2 0.1 0.1 RBF Model 7 10 1 RBF
Model 3 0.1 0.01 RBF Model 8 10 0.1 RBF
Model 4 1 1 RBF Model 9 10 0.01 RBF
Model 5 1 0.1 RBF

Table D.6: Cross Validation SVM models.
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Window
1.0 s 0.8 s 0.6 s 0.4 s

Raw EMG Model 9 Model 9 Model 8 Model 8
Filtered EMG Model 4 Model 4 Model 4 Model 7

Table D.7: Best SVM models per window for raw and filtered EMG

D.4 LSTM classifier

LSTM classifiers
ID Learning rate Hidden size ID Learning rate Hidden size

Model 1 0.005 20 Model 6 0.0001 50
Model 2 0.005 35 Model 7 0.0001 20
Model 3 0.005 50 Model 8 0.0001 35
Model 4 0.001 20 Model 9 0.0001 50
Model 5 0.001 35

Table D.8: LSTM models for classification.

Window
1.0 s 0.8 s 0.6 s 0.4 s

Raw EMG Model 2 Model 1 Model 4 Model 3
Filtered EMG Model 1 Model 6 Model 5 Model 9

Table D.9: Best LSTM classifiers per window for raw and filtered EMG
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Confusion matrices from classifiers

E.1 GNB

Figure E.1: Confusion matrices for GNB per window (Raw EMG).
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Figure E.2: Confusion matrices for GNB per window (Filtered EMG).

E.2 KNN

Figure E.3: Confusion matrices for KNN per window (Raw EMG).
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Figure E.4: Confusion matrices for KNN per window (Filtered EMG).

E.3 RF

Figure E.5: Confusion matrices for RF per window (Raw EMG).
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Figure E.6: Confusion matrices for RF per window (Filtered EMG).

E.4 SVM

Figure E.7: Confusion matrices for SVM per window (Raw EMG).
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Figure E.8: Confusion matrices for SVM per window (Filtered EMG).
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Boxplots from K-Fold Cross
Validation results

F.1 KNN

Figure F.1: K-Fold Cross Validation boxplots for KNN and raw EMG.

69



F.2. RF 70

Figure F.2: K-Fold Cross Validation boxplots for KNN and filtered EMG.

F.2 RF

Figure F.3: K-Fold Cross Validation boxplots for RF and raw EMG.
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Figure F.4: K-Fold Cross Validation boxplots for RF and filtered EMG.

F.3 SVM

Figure F.5: K-Fold Cross Validation boxplots for SVM and raw EMG.
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Figure F.6: K-Fold Cross Validation boxplots for SVM and filtered EMG.



Appendix G

Train-Valid Loss graphs from best
LSTM classifiers

(a) W = 1.0 s. (b) W = 0.8 s.

(c) W = 0.6 s. (d) W = 0.4 s.

Figure G.1: Train-Valid loss graphs for best LSTM classifiers using raw EMG.
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(a) W = 1.0 s. (b) W = 0.8 s.

(c) W = 0.6 s. (d) W = 0.4 s.

Figure G.2: Train-Valid loss graphs for best LSTM classifiers using filtered EMG.
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Boxplots from prediction models

H.1 20 train samples

Figure H.1: Boxplots from prediction models. Train samples: 20. Prediction Horizon:
5.
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Figure H.2: Boxplots from prediction models. Train samples: 20. Prediction Horizon:
10.

Figure H.3: Boxplots from prediction models. Train samples: 20. Prediction Horizon:
20.
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Figure H.4: Boxplots from prediction models. Train samples: 20. Prediction Horizon:
30.

Figure H.5: Boxplots from prediction models. Train samples: 20. Prediction Horizon:
50.
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H.2 30 train samples

Figure H.6: Boxplots from prediction models. Train samples: 30. Prediction Horizon:
5.

Figure H.7: Boxplots from prediction models. Train samples: 30. Prediction Horizon:
10.
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Figure H.8: Boxplots from prediction models. Train samples: 30. Prediction Horizon:
20.

Figure H.9: Boxplots from prediction models. Train samples: 30. Prediction Horizon:
30.
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Figure H.10: Boxplots from prediction models. Train samples: 30. Prediction
Horizon: 50.

H.3 40 train samples

Figure H.11: Boxplots from prediction models. Train samples: 40. Prediction
Horizon: 5.
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Figure H.12: Boxplots from prediction models. Train samples: 40. Prediction
Horizon: 10.

Figure H.13: Boxplots from prediction models. Train samples: 40. Prediction
Horizon: 20.
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Figure H.14: Boxplots from prediction models. Train samples: 40. Prediction
Horizon: 30.

Figure H.15: Boxplots from prediction models. Train samples: 40. Prediction
Horizon: 50.
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H.4 50 train samples

Figure H.16: Boxplots from prediction models. Train samples: 50. Prediction
Horizon: 5.

Figure H.17: Boxplots from prediction models. Train samples: 50. Prediction
Horizon: 10.
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Figure H.18: Boxplots from prediction models. Train samples: 50. Prediction
Horizon: 20.

Figure H.19: Boxplots from prediction models. Train samples: 50. Prediction
Horizon: 30.
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Figure H.20: Boxplots from prediction models. Train samples: 50. Prediction
Horizon: 50.
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Examples of predicted signals

I.1 20 train samples

Figure I.1: Examples of predicted EMG signals. Train samples: 20. Prediction
Horizon: 5.
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Figure I.2: Examples of predicted EMG signals. Train samples: 20. Prediction
Horizon: 10.

I.2 30 train samples

Figure I.3: Examples of predicted EMG signals. Train samples: 30. Prediction
Horizon: 10.
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I.3 40 train samples

Figure I.4: Examples of predicted EMG signals. Train samples: 40. Prediction
Horizon: 5.
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Figure I.5: Examples of predicted EMG signals. Train samples: 40. Prediction
Horizon: 10.

I.4 50 train samples

Figure I.6: Examples of predicted EMG signals. Train samples: 50. Prediction
Horizon: 5.
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Figure I.7: Examples of predicted EMG signals. Train samples: 50. Prediction
Horizon: 10.
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