
UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR
DE INGENIEROS DE TELECOMUNICACIÓN

GRADO EN INGENIERÍA DE TECNOLOGÍAS Y
SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND IMPLEMENTATION OF A MOTOR
CONTROL SYSTEM BASED ON micro-ROS

MARÍA GARCÍA PEROTE
2023

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR
DE INGENIEROS DE TELECOMUNICACIÓN

GRADO EN INGENIERÍA DE TECNOLOGÍAS Y
SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND IMPLEMENTATION OF A MOTOR
CONTROL SYSTEM BASED ON micro-ROS

Author
MARÍA GARCÍA PEROTE

Tutor

ALEJANDRO GÓMEZ MOLINA

Co-tutor
ÁLVARO GUTIÉRREZ MARTÍN

2023

Abstract

Control systems are an important part of our daily lives due to the large number of
applications in which they are integrated, from automated vehicles to medical systems.
They are part of more complex robotic systems and their main functionality is to
regulate the behaviour of other devices to achieve a certain result.

These systems must meet stringent constraints and requirements while trying to reduce
the likelihood of error. However, the communication between the principal functional
blocks of these systems presents a challenge, which results in a long development time
even for experts.

Therefore, the aim pursued by the current BSc Thesis is to develop a standard software
platform based on ROS architecture, which will be scalable and will facilitate the
design process of control systems for developers.

For this purpose, a motor control system has been developed and implemented and
a simple functional application has been integrated to work on it. Thanks to PID
controllers and the use of micro-ROS, this will allow the user to control and drive the
motors to a desired position.

Keywords: embedded systems, middleware, microcontrollers, motor, controller,
ROS

vi

Resumen

Los sistemas de control constituyen una parte importante de nuestro día a día
debido a la gran cantidad de aplicaciones en las que aparecen integrados, desde
vehículos automáticos hasta sistemas médicos. Forman parte de sistemas robóticos
más complejos y su principal funcionalidad es la de regular el comportamiento de otros
dispositivos para conseguir un cierto resultado.

Estos sistemas deben de cumplir con estrictas restricciones y requerimientos a la vez
que tratar de reducir las probabilidades de que se produzca algún error. Sin embargo,
la comunicación entre los bloques funcionales principales de estos sistemas supone
todo un desafío, lo que se traduce en un largo tiempo de desarrollo incluso para los
más expertos.

Por tanto, el objetivo que persigue el actual Trabajo de Fin de Grado es desarrollar
una plataforma estándar de software basada en la arquitectura ROS, que sea escalable
y facilite a los desarrolladores el proceso de diseño de los sistemas de control.

Para ello, se ha desarrollado e implementado un sistema de control de motores y
se ha integrado una sencilla aplicación funcional que trabaje sobre este. Gracias a
controladores PID y al uso de micro-ROS, esto permitirá al usuario controlar y dirigir
los motores a la posición deseada.

Palabras clave: sistemas embebidos, middleware, microcontroladores, motor,
controlador, ROS

viii

Acknowledgements

I would like to thank my supervisor, Alejandro Gómez, for all the dedication and
support that he has offered me during the development of this thesis. Thank you
for your time, enthusiasm, advice and patience, and for introducing me to a field
of engineering in which I will undoubtedly continue to deepen. None of this would
have been possible without you. I would also like to thank Álvaro Gutiérrez for the
opportunity he gave me to develop a project that I would like and that would be a
challenge for me, so that I could feel satisfied putting an end to my career.

There are many people who have accompanied me on this journey and their support
and affection have been essential for me to get this far. Since I arrived in Madrid
I have met wonderful people who have become more like family than friends, and I
would like to thank them for their affection and words of encouragement that have
helped me so much. I would also like to thank my life partner for all the love, support
and trust he has given me, for encouraging me and giving me the strength I needed
to fight for everything I want to achieve and which makes me happy.

Finally, I would like to thank my family for being the fundamental pillar of my life,
but especially my parents and my brother, for their unconditional love and support
and for believing in me even when I had stopped to believe. I get emotional just
thinking about that 12-year-old girl who wanted to be a telecommunications engineer
has finally fulfilled her dream.

Grandpa, I did it. I dedicate this to you.

x

Contents

Abstract v

Resumen vii

Acknowledgements ix

Contents xi

Figure Index xiii

Table Index xv

List of acronyms xvii

1 Introduction and goals 1
1.1 State of the art . 1

1.1.1 Embedded systems . 1
1.1.2 Microcontroller . 2

1.1.2.1 Peripherals . 3
1.1.2.1.1 Timers . 3
1.1.2.1.2 PWM . 4
1.1.2.1.3 Rotary encoder . 5
1.1.2.1.4 Ethernet . 6

1.1.3 H-bridge . 7
1.1.4 Controllers . 8
1.1.5 ROS . 9

1.1.5.1 micro-ROS . 10
1.2 Motivations and goals . 11
1.3 Document structure . 12

2 Hardware architecture 13
2.1 Introduction . 13
2.2 Requirements . 13
2.3 Hardware selection . 14

2.3.1 Microcontroller . 14
2.3.2 Motor control board . 15

2.3.2.1 H-bridge . 17
2.3.3 Motor . 17

xi

xii CONTENTS

2.4 Complete hardware system diagram 18

3 Software 21
3.1 Introduction . 21
3.2 Requirements . 21
3.3 Middleware . 22

3.3.1 Timers . 22
3.3.2 PWM . 23
3.3.3 Encoders . 25
3.3.4 Controller . 26
3.3.5 Third party middlewares . 28

3.3.5.1 FreeRTOS . 28
3.3.5.2 LwIP . 29

3.4 ROS2 . 29
3.4.1 micro-ROS . 29

4 Testing 31
4.1 PWM middleware . 31
4.2 Encoder middleware . 32
4.3 PID middleware . 32
4.4 LwIP middleware . 33
4.5 ROS middleware . 33
4.6 Functional application . 34

5 Conclusions 37
5.1 Conclusions . 37
5.2 Future improvements . 38

Bibliography 39

A Ethical, social, economic and environmental aspects 43
A.1 Introduction . 43
A.2 Description of relevant impacts related to the project 43

A.2.1 Ethical impact . 43
A.2.2 Social impact . 43
A.2.3 Economic impact . 44
A.2.4 Environmental impact . 44

B Project budget 45

C User manual 47
C.1 Requirements . 47
C.2 Install dependecies . 47
C.3 Starting XRCE-DDS agent . 48
C.4 Compiling the project and running the application in Python 49

List of Figures

1.1 Basic structure of an embedded system [4]. 2
1.2 Different examples of duty cycles - 50%, 20% and 80% [8]. 5
1.3 Directions of a quadrature encoder [8] 6
1.4 Switching characteristic definition [13]. 7
1.5 Structure of a control system [14]. 8
1.6 The ROS ecosystem [17]. 9
1.7 Communication between nodes in ROS [18]. 10
1.8 Comparison between ROS2 and micro-ROS architecture [21]. 11

2.1 Conceptual diagram of hardware requirements. 14
2.2 NUCLEO STM32F746ZG development board [24]. 15
2.3 X-NUCLEO-IHM04A1 expansion board [25]. 16
2.4 Connection of two bidirectional DC motors [25]. 16
2.5 Motor selected (a) with its encoder (b) [30]. 18
2.6 Complete hardware system diagram. 19

3.1 Timer callback representation [38]. 23
3.2 PID feedback control scheme [40]. 26
3.3 PID controller block diagram [42]. 27

4.1 PWM test on the oscilloscope. 31
4.2 Encoder test on the oscilloscope. 32
4.3 Agent connection log. 34
4.4 Application topic list. 34
4.5 Platform for functional application. 35
4.6 Python application diagram. 35
4.7 Application workflow. 36
4.8 Data received from the application. 36

C.1 Capture of the IP configuration that needs to be modified. 48
C.2 Step 1: Open the downloaded project. 50
C.3 Step 2: Import the project. 50
C.4 Step 3: Change in debugger configuration. 51
C.5 Step 4: Compiling and debugging options. 51
C.6 Capture of the rqt console. 52

xiii

xiv LIST OF FIGURES

Table Index

1.1 Features of each timer category [8]. 4

2.1 Truth table of an H-bridge [26]. 17
2.2 Hardware connections. 19

3.1 Communication topics. 30

B.1 Human resources costs. 45
B.2 Costs of materials. 46
B.3 Total cost. 46

xv

xvi TABLE INDEX

List of Acronyms

API: Application Programming Interface.

A-D: Analog-to-Digital.

ARP: Address Resolution Protocol.

ARR: AutoReload Register.

CCRx: Capture/Compare Register.

CPR: Counts Per Revolution.

CPU: Central Processing Unit.

CSMA/CD: Carrier Sense Multiple Access with Collision Detection.

CPR: Counts Per Revolution.

DC: Direct Current.

DHCP: Dynamic Host Configuration Protocol.

DDS: Data Distribution Service.

DMA: Direct Memory Access.

DMOS: Double-Diffused MOSFET.

DNS: Domain Name System.

D-A: Digital-to-Analog.

EEPROM: Electrically Erasable Programmable ROM.

FPGA: Field Programmable Gate Array.

HAL: Hardware Abstraction Layer.

HSE: High Speed External.

HSI: High Speed Internal.

HW: Hardware.

IC: Integrated Circuit.

xvii

xviii LIST OF ACRONYMS

ICMP: Internet Control Message Protocol.

IEEE: Institute of Electrical and Electronics Engineers.

LAN: Local Area Network.

LED: Light Emitting Diode.

LwIP: Lightweight Internet Protocol.

MAC: Media Access Control.

MAN: Metropolitan Area Network.

MCU: Microcontroller Unit.

MII: Media Independent Interface.

MOSFET: Metal Oxide Semiconductor Field-Effect Transistors.

P2P: Peer-to-Peer.

PHY: Physical.

PID: Proportional Integral Derivative.

POSIX: Portable Operating System Interface.

PWM: Pulse-Width Modulation.

PSC: Prescaler.

RAM: Random Access Memory.

RLC: ROS Client Library.

ROM: Read-Only Memory.

RMII: Reduced Media Independent Interface.

RMW: ROS Middleware Interface.

ROS: Robot Operating System.

RTOS: Real-Time Operating Systems.

TCP/IP: Transmission Control Protocol/Internet Protocol.

TCM: Tightly-Coupled Memory.

UDP: User Datagram Protocol.

UART: Universal Asynchronous Receiver-Transmitter.

UDP: User Datagram Protocol.

UTP: Twisted Pair.

XRCE-DDS: eXtremely Resource Constrained Environment Data Distribution

System.

Chapter 1

Introduction and goals

Control systems are an important part of our daily life and they are integrated into
more complex robotic systems. The environment is continually changing and, in most
cases, is unpredictable. This makes it challenging to predict the timing, location and
nature of disturbances due to the infinite number of possible variations. Therefore,
creating systems capable of handling all these changes is currently unachievable, but
the development of control systems that can autonomously adjust their conduct to
external changes is within reach. Their main functionality consists on addressing or
regulating the behaviour of other devices to achieve a desired result, which entails
meeting strict requirements while reducing the likelihood of error [1].

Their relevance lies in the large number of applications in which they appear. They
belong, not only to automated vehicles, humanoids robots or airplane controllers,
but also to biomedical systems in charge of controlling respiratory or cardiovascular
variables, among others. This means that the performance and efficiency of control
systems is of paramount importance as they contribute to the well-being and safety
of people.

The communication between the principal functional blocks in these systems is
something difficult to manage and it requires a long development time nowadays.
Thanks to the emerging software tools, such as ROS (Robot Operating System), which
is an open-source framework that facilitates the integration of complex robot systems,
it is possible to offer a standard software platform to developers, easing this design
process. This is the main objective pursued by the current final degree project.

1.1. State of the art

1.1.1. Embedded systems

Embedded systems are computer systems based on microprocessors or microcontrollers
that are designed to execute a dedicated function, frequently with real-time computing
constraints, which means that a delay meeting deadlines might lead to a complete
system failure. Moreover, they are required to operate autonomously for extended

1

2 1. Introduction and goals

periods of time, so they are designed to be efficient, reliable and cost-effective [2].

These systems can operate as standalone devices but they are usually part of high-
level systems, and they are composed of both hardware and software components,
closely related to each other. Embedded systems combined with the stringent timing
requirements [3] mentioned can boost a wide range of services, from regulating traffic
lights or monitoring plane takeoffs to regulating our blood pressure.

The basic structure that composes an embedded system is made up of different parts
as it is shown in the block diagram of Figure 1.1.

Figure 1.1: Basic structure of an embedded system [4].

• Sensor: it converts the physical magnitude to an electrical signal and stores
the measured quantity to the memory.

• A-D converter: A-D stands for Analog-to-Digital. It converts the analog signal
sent by the sensor into a digital one.

• Processor: data is processed by this part to determine the output and store it
in memory.

• D-A converter: it stands for Digital-to-Analog and transforms the digital data
given to the processor from digital to analog.

• Actuator: this component is in charge of comparing the output received with
the expected one.

1.1.2. Microcontroller

A microcontroller (also called MCU or Microcontroller Unit) is an integrated circuit
(IC) which constitutes a very small computer, also known as a chip, designed to
perform specific tasks, commonly, in embedded systems. It is used to control the
behaviour of the system, collect data from sensors and provide output signals to
actuators based on the information gathered [5].

Microcontrollers are driven by synchronous sequential logic circuits and their states

1.1. State of the art 3

change only at discrete timing regulated by a clock signal. Furthermore, its speed
is determined by its clock frequency, which represents the number of cycles the
microcontroller can complete in one unit of time, usually measured in megahertz
(MHz) or gigahertz (GHz). This is directly related to the performance of the
microcontroller and how fast it can execute instructions and perform tasks efficiently
and reliably.

It is also important to mention that microcontrollers contain thousands of transistors,
which are electronic components used to control and amplify electrical signals, on a
single chip. This has been achieved thanks to the development of integrated circuit
technology and as Moore’s law states, the number of transistors of a microprocessor
continues to double in every 18 months [6].

The main parts of a microprocessor are the following: a processor, a memory (RAM,
ROM or EEPROM), an internal oscillator and peripherals of different types, from
input/output ports whose main use is to interface with the external world, to timers,
pulse width modulation (PWM) nodes or serial communication interfaces such as
UART. Regarding the processor, it is a CPU (Central Processing Unit) which controls
all the processes taking place in the MCU and executes instructions stored in memory,
that can be either ROM (Read-Only Memory) or EEPROM (Electrically Erasable
Programmable Read-Only Memory). The internal oscillator functions as the MCU’s
core clock and its purpose is to monitor the internal processes [7]. We will discuss
peripherals in more depth in the next subsection of this project.

1.1.2.1. Peripherals

Microcontroller peripherals are hardware modules that are embedded into the
microcontroller and offer an interface with the external world. Peripherals can be used
to carry out specific tasks, such as generating analog signals, interacting with external
devices or capturing input signals. The availability and flexibility of peripherals can
be a key factor in choosing a microcontroller for a particular application.

The most important peripherals for this project are described hereafter:

1.1.2.1.1. Timers

Timers are hardware components which behave as free-running counters that work
with a counting frequency that is a fraction of their source clock [8]. They are typically
included as part of a microcontroller’s on-chip peripherals and they are used for a wide
range of purposes, such as measuring the frequency of external events, generating
waveforms on their outputs or implementing real-time systems with accurate timing
requirements.

To explain the timer architecture, it is important to take into account that an STM32
microcontroller shall be used in this project. These timers include interconnection

4 1. Introduction and goals

features, thereby enabling several of them to be combined and synchronized. There are
different types of them: basic timers (which feature 16-bit counters), general purpose
timers (16/32-bit counters), advanced timers, low power timers, and so on. Timers
mainly differ in the number of inputs and outputs they have, in their resolution and
in some functional features (some of them can be programmed in up/down counting
mode or in direct memory access (DMA) mode). The most relevant features of each
timer category are depicted below in Table 1.1:

Table 1.1: Features of each timer category [8].

1.1.2.1.2. PWM

Pulse-width modulation (PWM) is a type of technique that can be implemented
in microcontrollers by using a timer in a specific mode. It is a modulation used
in electronics to control the amount of power delivered to a device or component
by generating several pulses with different duty cycles in a given period of time or
frequency. A duty cycle is the percentage of one period of time in which a signal
is active [8]. DC (Direct Current) motors, which are electric motors that convert
electrical into mechanical energy [9], respond exclusively to DC signals because these
motors rely on the consistent flow of current in one direction to generate the magnetic
fields needed for their operation, avoiding instant changes. For that reason, in
the presence of a high-frequency signal, the motor’s response is limited to its DC
component, commonly known as the average voltage.

Expression 1.1 shows the mathematical relation between duty cycle and average
voltage, where D is the duty cycle, Ton is the time the signal is active, Vmax is the
peak voltage of the signal and Vavg is the average voltage.

D =
Ton

Period
x 100% (1.1)

1.1. State of the art 5

Vavg = Vmax xD (1.2)

However, these applications can be divided into two main categories: on the one hand,
by using a PWM signal to control the voltage applied to the motor, it is possible to
effectively control the amount of energy supplied to a load (the output voltage and
hence the current) and, on the other hand, to encode a message on a carrier wave (a
square wave, for instance). PWM is widely used in microcontrollers and other digital
circuits and has many applications, including controlling the speed and direction of
rotation of DC motors, regulating the brightness of LEDs, and so on.

Figure 1.2 depicts that if the duty cycle of the PWM signal is increased, the average
voltage supplied to the motor increases too, and therefore its speed.

Figure 1.2: Different examples of duty cycles - 50%, 20% and 80% [8].

In comparison to other techniques, PWM has several advantages for controlling
DC motors. For instance, it is more efficient than using a resistor to control the
voltage because the PWM signal switches the voltage on and off rapidly, reducing the
amount of power wasted as heat. PWM control is also useful for applications that
need smooth speed modifications since it enables precise and accurate speed control.

1.1.2.1.3. Rotary encoder

An encoder is a device used to measure the position or speed of a rotating shaft or
linear motion. Rotary encoders generate signals that are used to measure changes in
the angular position, which it is used to determine the speed, the position and the
direction of an object.

6 1. Introduction and goals

Rotary encoders are a type of incremental encoders which provide a series of pulses
that are generated cyclically as the shaft rotates, indicating the direction and amount
of movement relative to a reference point [8]. These incremental rotary encoders are
the most widely employed in the industry due to its capability to provide signals that
can be simply interpreted to provide motion related information like velocity [8].

These encoders use two quadrature outputs, labeled as A and B, which are 90 degrees
out of phase with each other. The direction of the motor is determined by the phase
relationship between the two signals, with the leading phase indicating the direction
of rotation. Whether phase A leads phase B or phase B leads phase A determines the
direction of the motor, forward or backward, as shown in Figure 1.3:

Figure 1.3: Directions of a quadrature encoder [8]
.

It is also important to point out that by counting the number of pulses generated
on both channels over one revolution of the shaft, the encoder can determine the
number of counts per revolution (CPR), thus measuring its angular resolution. Higher
resolution encoders can detect smaller angular changes and provide more precise
position feedback.

1.1.2.1.4. Ethernet

The Ethernet standard is a set of specifications and protocols that define the physical
and data link layer standards, commonly, for wired Local and Metropolitan Area
Networks (LANs and MANs, respectively). This defines the physical (PHY) layer
standards for transmitting data between devices on a network, including the format
of data packets, the mechanisms for addressing and error detection and correction. It
was commercially introduced in 1980 and first standardized as IEEE 802.3.

Using a Media Access Control (MAC) protocol, Ethernet LAN operation is specified
for certain speeds ranging from 1 Mb/s to 400 Gb/s [10]. It works as an interface of,
for instance CPUs or FPGAs, for data processing and communicating with the PHY
chip. The PHY layer is responsible for transmitting the data received from the MAC
layer as an analog signal over the physical network interface, using copper (twisted
pair (UTP) and coaxial) or fiber-optic cables.

With the aim of connecting the MAC with the PHY layer, two different types of

1.1. State of the art 7

interfaces can be used, MII (Media Independent Interface) or RMII (Reduced Media
Independent Interface). MII uses a 4-bit wide data bus to transmit and receive data
at a rate of 25 MHz, allowing for a maximum data rate of 100 Mbps, and also includes
several control signals to manage the data flow and detect errors. Meanwhile, RMII
is a more compact version which uses a 2-bit wide data bus and operates at a rate of
50 MHz, allowing the same maximum data rate but using fewer pins and less board
space [11].

Commonly, the Ethernet data link uses the Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) protocol, which helps to avoid collisions when data
from different devices is transmitted on the network simultaneously.

1.1.3. H-bridge

In electronics, sometimes there are heavy loads incorporated into a circuit that are not
possible to be powered and driven directly from a microcontroller system. In these
cases, an H-bridge driver is used and the microcontroller is responsible for controlling
it with a high degree of efficiency. The most common scenario is when there are motors
or other high-power devices.

It is called a bridge because it consists of four switching elements, which are usually
power transistors or MOSFETs, arranged in two pairs and placed in parallel with the
load, controlling the current flow through it [12]. The timing and duration of the
switch transitions can be adjusted in order to optimize the load’s performance, as it
is shown below in Figure 1.4:

Figure 1.4: Switching characteristic definition [13].

In the current project it has been decided to use an H-bridge. This kind of bridge
is typically used to control the direction and speed of DC (Direct Current) motors,
enabling bidirectional motor driving by activating one of the diagonally-opposed
switch pairs. This means that motors can be driven forward or backward, which

8 1. Introduction and goals

provides greater control and flexibility in areas such as robotics or electric vehicles.
H-bridges also allow the use of pulse-width modulation to control the average voltage
applied to the motor, which reduces power consumption and increases efficiency.

1.1.4. Controllers

A controller is a device or component that manages or regulates the behavior of a
system by adjusting its output signal based on feedback from sensors or other sources
of information, using control loops. They are widely used in several applications such
as automation or robotics.

As it is shown below in Figure 1.5, the basic structure of a control system that uses a
controller is composed of the following main blocks:

• Controller: it receives the error signal from the error detector (or the input
signal when the loop starts) and determines the appropriate control action to
be taken, applying control algorithms to minimize the error.

• Plant: it is referred to the motor and is the part of the system that is being
controlled. The plant takes the actuating signal from the controller and produces
the output action.

• Feedback elements: these are the sensor and the feedback path that provides
information about the actual value of the magnitude measured of the motor.
The feedback signal is fed back to the error detector, which allows the controller
to make adjustments as necessary.

• Error detector: it compares the desired or reference value of the magnitude
to be measured with the actual value and calculates the error signal, which
represents the difference between both measures.

Figure 1.5: Structure of a control system [14].

There are different types of controllers, but this BSc Thesis focuses on the position
and the speed ones.

1.1. State of the art 9

The position control of a DC motor is crucial in applications for precision control
systems [9]. The purpose of a position controller is to drive the motor to a desired
setpoint, generating a control signal, with high accuracy and stability using feedback.
The control signal is typically a voltage or current signal that is sent to a motor
or other actuator to drive the device being controlled. On the other hand, speed
controllers work in the same way but trying to achieve a specific speed.

1.1.5. ROS

The Robot Operating System (ROS) is an open-source framework that provides
a collection of libraries and tools for developing robot software, including drivers,
algorithms, and hardware abstraction layers [15]. ROS facilitates the integration of
complex robot systems and simplifies the development of new robot applications.
It also provides a peer-to-peer (P2P) communication system through its publish-
subscribe messaging paradigm. For these reasons, ROS is widely used in the robotics
community for both research and commercial applications and supports a variety of
robot platforms, such as autonomous vehicles.

However, due to problems such as lack of security and no real-time support, ROS2
was eventually created [16]. One of the key changes in ROS2 is the adoption of a new
communication middleware, called Data Distribution Service (DDS), which is an API
(Application Programming Interface), and provides better performance, reliability and
interoperability. DDS enables different components of a robot system to communicate
with each other, regardless of programming language or machine. The figure below
(Figure 1.6) represents the different blocks that conform the framework:

Figure 1.6: The ROS ecosystem [17].

It is vital to understand the main components that enable communication in this
system. These are:

• Nodes: individual programs that perform specific tasks and are able to
communicate with each other through the communication infrastructure.

• Topics: channels over which nodes can publish messages and subscribe to
receive messages.

• Messages: data structures that nodes use to communicate with each other over
topics.

10 1. Introduction and goals

In a ROS system, nodes can communicate with each other in four different ways,
shown in Figure 1.7:

• Publish-subscribe messaging: nodes can publish messages on a specific topic,
and other nodes can subscribe to that topic to receive the messages.

• Service request-response: this is an asynchronous form of communication
where a node can request a service from another one, which will then provide a
response.

• Parameters: they are used for storing data that can be accessed by several
nodes, which allows changes in the behavior and settings of the nodes.

• Actions: they are a form of communication that provide a way for nodes to
execute complex behaviors in a coordinated manner adding support for feedback.

Figure 1.7: Communication between nodes in ROS [18].

1.1.5.1. micro-ROS

Micro-ROS is a version of ROS designed for microcontrollers and other resource-
constrained devices which provides a lightweight framework that can be deployed on
small embedded devices, reducing costs and increasing development efficiency [19].

It uses the same programming model and communication infrastructure as ROS, but
its implementation is optimized for extremely constrained computational resources.
Micro-ROS allows ROS2 APIs to be brought to microcontrollers, so that developers
can benefit from most relevant, major ROS 2 concepts [20], simplifying the transfer
of advanced software to the application level.

1.2. Motivations and goals 11

As it is pictured in Figure 1.8, micro-ROS reuses the libraries of ROS2. The layers
that have been maintained are the ROS Client Library (RLC), the ROS Middleware
Interface (RMW) and also, the RCLCPP, which is a C++ abstraction layer on top of
the RCL [21]. It is important to point out that the RMW implementation is based on
a library called Micro XRCE-DDS, which comes from the ROS2’s library, XRCE-DDS
(eXtremely Resource Constrained Environment Data Distribution System). This relies
on a client-server architecture, which connects low-resource devices (XRCE Clients) to
a server (XRCE Agent), acting as a bridge between the clients and the DDS network.

Figure 1.8: Comparison between ROS2 and micro-ROS architecture [21].

Moreover, one of the main features of Micro-ROS is its support for different real-
time operating systems (RTOS), such as FreeRTOS, which will be also important in
the development of this final degree project.

1.2. Motivations and goals

Taking into account the difficulties in developing motor control systems and managing
the communication between their principal functional blocks, the aim of this BSc
Thesis is to carry out the design and implementation of a motor control system based
on the Robot Operating System, ROS2.

In order to reach this goal, the creation of this control system embedded in a
microcontroller will be essential. It will use ROS2 as the communication and control
interface, so that anyone with just a few software requirements can control it from
their computers. In this way, a scalable, reusable and user-friendly system will be
created, which may be implemented as a powerful tool in engine control laboratories.

12 1. Introduction and goals

With the purpose of achieving the objectives set and developing the project in more
organized means, the following steps are defined:

• State of the art of control systems.

• Analysis of hardware requirements.

• Analysis of software requirements.

• Design and implementation of the embedded software.

• Unit testing.

1.3. Document structure

This manuscript has been structured in five main sections.

In this first chapter an introduction of the main important aspects related with this
project is described, along with a theoretical framework and the motivations and goals
of its development.

Chapter 2 describes the hardware selected including a description of the different
blocks and the relation among them.

Chapter 3 contains an explanation of the software design developed to facilitate the
fulfillment of this project, describing both the requirements gathered and the steps
taken to achieve its implementation.

Chapter 4 is focused on the testing process. It describes the tests performed to check
the functionality of the project, at both hardware and software levels.

Finally, Chapter 5 describes the results and the conclusions drawn from the thesis, as
well as future improvements.

Chapter 2

Hardware architecture

2.1. Introduction

Hardware (HW) refers to the physical and tangible components which integrate a
computer or electronic system. Thanks to the interoperability with the firmware,
which is embedded into the hardware to control it, and the software that runs programs
on top of it, it is capable of running a computing system [23]. Hardware is not
only present in computers and electronic devices, but also extends its functionalities
to cars, phones, cameras and so on. Furthermore, it is important to notice that
the performance of any computer system will depend to a large extent on the
characteristics of its hardware components.

The architecture implemented in the current project is explained in this chapter. It
is based on the interconnection between motors, encoders, a motor control board and
a microcontroller development board.

2.2. Requirements

The development of this BSc Thesis has required a prior analysis of the needs found
in the field of control systems and an approach to the potential applications or
functionalities to be implemented. As the aim is to facilitate the design process for
software developers in control systems, the following technical requirements have been
gathered to be taken into account:

• The system must be able to control at least two motors simultaneously.

• It is required that the motor is fitted with an encoder, to allow an easy control
of its speed and position.

• The motor selected must be able to rotate in both directions, depending on the
polarity of its power supply.

• The chosen board must have enough timers to connect both motors and encoders,
and set up the respective PWM signals.

13

14 2. Hardware architecture

• The power stage must be equipped with two H-bridges to control the motors.

• The microprocessor must have sufficient available memory to allow the use of
micro-ROS.

• Ethernet connection is required to communicate with the computer.

Figure 2.1: Conceptual diagram of hardware requirements.

2.3. Hardware selection

In order to cover the control and connectivity needs of this BSc Thesis, both a
NUCLEO STM32F746ZG development board and an X-NUCLEO-IHM04A1 motor
control board have been used, whose main features are described below.

2.3.1. Microcontroller

The STM32F746xx microcontroller (see Figure 2.2) is based on the high-performance
ARM Cortex-M7 32-bit RISC core and is capable of running at up to 216 MHz clock
speed with a power supply from 1.7 to 3.6 V. This device also integrates an extensive
range of enhanced I/Os and a variety of on-chip peripherals, including ADCs, DACs,
thirteen general-purpose 16-bit timers (including two PWM timers for motor control),

2.3. Hardware selection 15

two general-purpose 32-bit timers and communication interfaces such as SPI, I2C,
UART, USB, Ethernet, and CAN [24].

Figure 2.2: NUCLEO STM32F746ZG development board [24].

It also incorporates high-speed embedded memories with a Flash memory up to 1
MB, 320 KB of SRAM (including 64 Kbytes of Data TCM (Tightly-Coupled Memory)
RAM for critical real-time data), 16 KB of instruction TCM RAM (for critical real-
time routines) and 4 KB of backup SRAM available in the lowest power modes [24].

It has been decided to use this development board due to several factors: it allows
working at a suitable clock frequency for the correct operation of the system, its low
cost and its numerous timers, which will be needed to generate the PWM signals and
for the encoders of the motors. But mainly, because it offers Ethernet connectivity, a
fundamental characteristic to develop the software of the project.

In addition, the use of an ST family board provides the possibility of using an
efficient, intuitive development environment with a wide range of functionalities, from
configuring the pins, peripherals and middleware to facilitate software development to
generating the code.

These features make the STM32F7 microcontroller family suitable for a wide range
of applications such as motor drive and application control, medical equipment and
industrial applications.

2.3.2. Motor control board

The X-NUCLEO-IHM04A1 (see Figure 2.3) is a dual brush DC motor drive expansion
board that provides an affordable but robust solution for driving one to four DC
motors. Some of the key features [25] of this expansion board are:

16 2. Hardware architecture

• It is compatible with STM32 Nucleo boards and with the Arduino UNO R3.

• It is able to drive dual-bipolar DC or quad-unipolar DC motors.

• A voltage range of 3.3 V to 5 V is required to power the logic circuitry.

• The supply voltage of both motors supports a voltage from 8 V to 50 V DC.

• Its motor phase current is up to 2.8 A RMS (Root Mean Square).

Figure 2.3: X-NUCLEO-IHM04A1 expansion board [25].

In particular, to develop this BSc Thesis the connection and control of two
independent bidirectional DC motors simultaneously will be essential. This is achieved
by connecting both motors and the power supply to the Nucleo expansion board, as
shown in Figure 2.4.

Figure 2.4: Connection of two bidirectional DC motors [25].

2.3. Hardware selection 17

2.3.2.1. H-bridge

One of the particularities of the X-NUCLEO-IHM04A1 is that it is equipped with
a power stage and an H-bridge. The power stage is responsible for amplifying the
control signal received and supplying the current necessary to power the DC motor.
As it is explained in Section 1.1.3, this kind of bridge is typically used to control the
direction and speed of DC motors and it allows the use of PWM to control the average
voltage applied to the motor.

It is based on the L6206 device which is a DMOS (Double-Diffused MOSFET) dual
full bridge which integrates two independent power MOS full bridges [26]. Regarding
its operation, the inputs (IN1 and IN2) of both bridges (A and B) can be configured
at high or low level by looking at its truth table (see Table 2.1), depicted hereafter:

Table 2.1: Truth table of an H-bridge [26].

Depending on the set input values, the motor will react in different ways
(represented in OUT1 and OUT2):

• If the enable (EN) is deactivated, the motor does not move.

• Once the enable is activated, the motor will move only if the inputs of the IN1
and IN2 signals are different (one at HIGH and the other at LOW). According
to which one is at high level, the motor will rotate in one or another direction.

• Finally, if both input signals are set to the same level, a short circuit will be
triggered in the power stage and the motor will not rotate.

2.3.3. Motor

A DC motor is an electromechanical system that converts electrical energy into
mechanical rotational motion by creating a magnetic field powered by direct current.
There are different types but the one chosen is a brushed DC motor. It incorporates
two key components: a stator, which is the stationary part and contains permanent

18 2. Hardware architecture

magnets, and a rotor, which is the rotating part [27].

Brushed DC motors operate through the interaction of a rotating coil and the magnets
surrounding it. The rotation of the coil causes the contact between the commutator
and the brush to change, altering the current flow in the coil. This mechanism allows
the motor to generate motion [28].

By varying the voltage applied to the motor, it is possible to control its speed and
apply control techniques, such as PWM. Moreover, simply by shifting the polarity
of the power supply, DC motors can quickly change their rotational direction. They
are relatively simple to use, reduce power consumption and their size is perfect for
applications where space and weight constraints apply. However, they also have some
disadvantages [29], such as: they require higher maintenance, are generally less efficient
than brushless DC motors and are not suitable for high-power applications.

One of the reasons why brushed DC motors are often preferred over other types of
motor is their ability to precisely control their speed, thus facilitating position control,
which is the main reason why they have been selected for the development of the BSc
Thesis.

(a) (b)

Figure 2.5: Motor selected (a) with its encoder (b) [30].

Specifically, a Pololu Metal Gearmotor with a rotary encoder has been chosen,
shown in Figure 2.5, whose nominal voltage to operate optimally is 12 V [30]. This
encoder provides a series of pulses that are generated cyclically as the shaft rotates,
indicating the direction and amount of movement with respect to a reference point. It
has six color-coded wires: two for powering the motor, two for powering the encoder
and lastly, two for connecting the encoder to each of the channels.

2.4. Complete hardware system diagram

Finally, after analysing the requirements of the project and selecting the electronic
elements that will be part of it, they will be interconnected, according to the

2.4. Complete hardware system diagram 19

indications of each datasheet respectively, as illustrated in Figure 2.6.

Figure 2.6: Complete hardware system diagram.

One of the advantages of using these boards is that they are designed to fit
together with compatible pin headers and connectors, so to connect the STM32F7
microcontroller to the X-NUCLEO expansion board, the boards are simply stacked
together. Thus, the functionality of the matching pins is the same.

In addition, it is important to consider that each of the encoders and PWM signals are
configured with different timers of the microcontroller for their correct operation. This
will be explained in more detail in the next chapter, but schematically the following
connections have been made:

Table 2.2: Hardware connections.

GPIO PERIPHERALS FUNCTION
PF15 - EN-A
PF5 - EN-B
PE9 PWM_0 TIM1 Bridge A CH1
PE11 PWM_0 TIM1 Bridge A CH2
PA3 PWM_1 TIM2 Bridge B CH4
PA5 PWM_1 TIM2 Bridge B CH1
PB4 ENCODER_0 TIM1 Bridge A CH1
PB5 ENCODER_0 TIM1 Bridge A CH2
PD12 ENCODER_1 TIM2 Bridge B CH1
PD13 ENCODER_1 TIM2 Bridge B CH2

Finally, it is important to highlight that the pins configured for the PWM must

20 2. Hardware architecture

match the input pins of the different bridges (IN1A, IN2A, IN1B, IN2B), so we
jumper PE9 to PE11 to match IN2A and PA5 to PC0 , coinciding with IN2B. The
PE11 and PA3 pins correspond correctly to IN1A and IN1B, respectively.

Chapter 3

Software

3.1. Introduction

According to Leon J. Osterweil [31], software is not only code to be executed on a
computer, but also is a compound of different specifications, designs and results, a
large collection of constraints and relations, which lead to the creation of different
programs required by the users.

Broadly speaking, software is a set of instructions, data or programs used to execute
specific tasks on electronic devices. It provides the data needed by computers for their
operation and meets users’ needs. Unlike hardware, software it’s non-tangible and its
main function is to handle physical entities, commonly with reduced resources and
capabilities, in a reliable and efficient way [32]. However, they are closely related to
each other, especially when it comes to making an embedded system work.

The development software platform used in this BSc Thesis is known as STM32CubeIDE.
The STM32 software development platform does not only provide the necessary drivers
to control their peripherals (timers, PWM, encoders, etc.), but also integrates a
Hardware Abstraction Layer (HAL), which is an official library to develop STM32
applications. The HAL will be used in the functions of the specific middleware
implemented.

In this chapter, all the concepts related with the design and implementation of the
different necessary software blocks will be described in detail.

3.2. Requirements

The development of this BSc Thesis has required a prior analysis of the needs found
in the field of control systems. In the same way as in the hardware chapter, and with
the intention of facilitating the design process for software developers, the following
technical requirements have been gathered:

• The software implemented must offer a scalable and easily understandable code
for the user.

21

22 3. Software

• The software must be able to implement the configuration for both motors
(PWM and encoder signals) and control them in position or speed.

• The software must implement two parallel PID [33] (Proportional Integral
Derivative) controllers to drive each motor individually.

• FreeRTOS [34] must be used to create different tasks to control the motor system.
It is important to consider that controllers and communication processes must be
implemented as individual tasks to ensure real-time execution of the application.

• The use of ROS2 [15] communications is essential in order to achieve greater
flexibility in terms of interoperability, integration and scalability of the system.

• It is necessary to implement lwIP [35] as the TCP/IP stack for embedded system
communications, in order to reduce memory usage.

3.3. Middleware

Middleware is a software layer that lays between the application and the driver layers.
It enables connectivity between two or more devices or components of a distributed
network, improves interoperability and removes complexities in the development of
applications, offering developers a uniform interface for support [36].

3.3.1. Timers

As mentioned in previous chapters, timers behave like counters whose operation
depends on their source clock. The STM32 family of microcontrollers can be
synchronised using two different clock sources: an internal RC oscillator or HSI
(High Speed Internal) or an external dedicated crystal oscillator or HSE (High Speed
External) [8]. In this project, the HSE was preferred to the HSI because it is a much
more accurate clock signal. However, it has a longer start-up time and higher power
consumption, but these are not a problem in this case. The crystal oscillator makes a
scale from 25 MHz, which is the input frequency, to 216 MHz, which is the maximum
timer frequency.

The microcontroller has different timers (Basic Timers, General Purpose Timers and
Advanced Timers) that can be configured for several purposes, but they all share the
same structure [8]. The three main parameters are:

• Prescaler (PSC): it is in charge of dividing the timer clock by any integer
between 1 and 65535.

• Counter Mode: it defines the counter direction of the timer, but the one set
is TIM_COUNTERMODE_UP.

• Counter Period: it sets the maximum value to which the timer will be able
to count, after which the count will be restarted. This parameter is also known
as ARR (AutoReload Register).

3.3. Middleware 23

Finally, it is important to explain how the counters of these timers work in order
to understand how to set the timer’s counting period. A timer typically counts up
from zero to a specified value, which cannot be higher than the maximum unsigned
value for its resolution (for instance, a 16-bit timer overflows when the counter reaches
65535 and the counter is then reset) [37], but it can also count down. This value is
the ARR. As it can be seen in Figure 3.1, once the counter reaches the ARR value,
the timer interrupt is triggered resulting in an interrupt request (IRQ).

Figure 3.1: Timer callback representation [38].

In the next sections, with the aim of configuring the middleware implemented,
different timers have been chosen with specific configuration.

3.3.2. PWM

To generate the PWM signals, thanks to the development environment, it is possible
to carry out specific configurations for each peripheral according to the user’s needs.
Therefore, in order to simplify the complexities that this process may entail and
reduce the software development time for programmers, different libraries have been
implemented to configure the necessary parameters and call specific functions from an
intuitive interface.

The goal is to program both timers (one for each PWM signal) with a time base so that
the frequency of these signals will be 50 kHz. This choice is made because there are
several fundamental frequencies in the transfer function of the motor and it is intended
to eliminate the higher frequencies with a low-pass filter. It is important to note that
since it is impossible to implement an ideal low-pass filter, the D/A conversion of the
control signal and the continuous signal will not give an exact reconstruction of the
sampled signal [39].

The configuration of the timers included in the implemented middleware functions is

24 3. Software

as follows:

1. Two timers, TIM1 and TIM2, have been chosen to control the PWM signals of
BRIDGE A and BRIDGE B, respectively. These timers share their configuration
with the only exception that the channels chosen in the first case have been CH1
and CH2, and CH1 and CH4 in the second case, due to the availability of the
pins on the board. We configure these channels in the PWM generation option.

2. The next step is to configure the counter settings. First, the counter mode is
set to up. Then the value of the prescaler (PSC) will be 0 so that no clock
division is produced, using its maximum resolution. Finally, the value of ARR
is calculated as shown in Equation 3.2 [37]:

ARR =
fTIM

fPWM · (PSC + 1)
− 1 (3.1)

ARR =
216MHz

50kHz
− 1 = 4319 (3.2)

3. To generate the variable frequency signals, the output comparison mode of the
timers is used. Depending on the desired duty cycle (DC), a certain value for the
CCRx (Capture/compare register) is calculated for this function (see Equation
3.4 [37]). Thus, the CCRx value is set on one timer channel and on the other
channel it is set to 0, so that the movement is generated either forwards or
backwards.

Duty_cycle(%) =
CCRx

ARR
· 100 (3.3)

CCRx =
DC ·ARR

100
(3.4)

4. Finally, it is important to note that it is necessary to create a function to activate
the pins that match the enable pins of the bridge indefinitely.

All of the above configuration is simplified and abstracted into the functions shown
in Code 3.1 In all of them, the user must specify the jumper (A or B) as a parameter,
depending on which one is being configured. The headers of these functions are the
following:

1 /** This function starts the appropriate timers in PWM mode and set
enables to default.*/

2 void PWM_TIMn_Start (PWM_Bridge_t bridge);
3 /** This function enables the PWM mode in the bridge selected by the

user.*/
4 void PWM_Enable(PWM_Bridge_t bridge);
5 /** The function changes the duty ratio for Timer module in PWM mode.*/
6 void PWM_TIMn_Set_Duty (PWM_Bridge_t bridge , float duty_cycle);
7 /** The function gets the duty ratio for Timer module in PWM mode.*/
8 float PWM_TIMn_Get_Duty (PWM_Bridge_t bridge);
9 /** This function sets the PWM to 0.*/

10 void PWM_TIMn_Stop(PWM_Bridge_t bridge);

Code 3.1: PWM middleware headers.

The source code is implemented in the pwm.c and pwm.h files allocated in the source
and include folders.

3.3. Middleware 25

3.3.3. Encoders

In the same way as in the previous section, the goal pursued is to simplify the
configuration of the rotary encoders. The microcontroller chosen holds specific
peripherals to capture the incoming pulses on the input channel of the timer.

It is important to take into account the characteristics of the motors used, both the
reduction and the CPR (Counts Per Revolution), which are listed in their datasheet.

The configuration of the timers employed is as follows:

1. Two timers, TIM3 and TIM4, have been chosen to configure the encoder signals
of BRIDGE A and BRIDGE B, respectively. We configure these timers in the
Encoder mode option, which will combine CH1 and CH2 for their set up.

2. Next, the counter settings are configured. The counter mode is set to up and
the value of the PSC to 0.

3. The encoder mode is configured with the option Encoder Mode TI1 and TI2, to
set the X4 mode so that the TIMx_CNT register is updated on every edge of
both channels. This option doubles the capture frequency [8].

4. The ARR value is set to the number of pulses per lap, which is obtained from
Equation 3.5. By doing so, when the CNT register counts up to the value in
ARR, an entire revolution will have been completed and an update event triggers
an interrupt.

Pulses_per_revolution = CPR · reduction (3.5)

5. It is necessary to activate global interruptions for these timers. The timer
interrupt routine will update the number of revolutions made by the motor,
which will then be used to calculate its position (see Equation 3.6). The counter
of revolutions shall increase or decrease depending on the direction of movement
of the rotary encoder.

Position(rad) = revolutions +
CNT

ARR
· 2π (3.6)

As in the case of PWM, in all the implemented functions, the user must specify
the jumper (A or B) as a parameter, depending on which one is being configured. The
headers of these functions are shown in Code 3.2:

1 /** This function starts the appropriate timers in Encoder mode and
sets CNT.*/

2 void Encoder_TIMn_Start(PWM_Bridge_t bridge);
3 /** This function gives us the position of the motor ’s encoder.*/
4 float Encoder_GetPosition(PWM_Bridge_t bridge);
5 /** This function sets a reset state , to be able to know what is the

initial state of the encoder.*/
6 void Encoder_Set_Reset(PWM_Bridge_t bridge);
7 /** This function stops appropriate Timer module in Encoder mode.*/

26 3. Software

8 void Encoder_TIMn_Stop(PWM_Bridge_t bridge);

Code 3.2: Encoder middleware headers.

The source code is implemented in the encoder.c and encoder.h files allocated in the
source and include folders.

3.3.4. Controller

As previously explained in Section 1.1.4., a controller is a component that is used to
control the behaviour of a system. The objective to be achieved is to drive the motor
to a desired position, for which a position controller will be required.

The control architecture adopted is a PID (Proportional Integral Derivative) con-
troller. It is a third order controller with a proportional, integral and derivative block
in direct loop (see Figure 3.2).

Figure 3.2: PID feedback control scheme [40].

An analysis for a position control system is performed for a motor modelled as an
order 2 system [41], whereby G(s), which corresponds to its transfer function, would
be as follows (see Equation 3.7):

G (s) =
K

s(s+ p)
(3.7)

This controller calculates an output signal based on its three terms: a proportional
term (KP), which provides an output proportional to the error signal, an integral term
(τI), that integrates the error and takes into account the accumulated error over time
and a derivative one (τD), which delivers an output proportional to the rate of change
of the error with respect to time [33]. These three terms relate to error, accumulation
of error and change in the error respectively. Its corresponding transfer function and
error function are as follows [40]:

HPID (s) =
KKP τD

(
s2 + s

τD
+ 1

τDτI

)
s2(s+ p) +KKP τD

(
s2 + s

τD
+ 1

τDτI

) (3.8)

3.3. Middleware 27

He,PID (s) =
s2(s+ p)

s2(s+ p) +KKP τD
(
s2 + s

τD
+ 1

τDτI

) (3.9)

The aim of implementing this controller is to be able to control the position of
the motor so that by setting an angle, it will rotate to that position. In addition,
the motor must offer resistance to being rotated manually, so that if it is moved
from the set position, it will be able to return to it. To this end, functions are
implemented that will simplify this configuration process. Functions are created to
determine the PID parameters as well as to calculate the error signal generated by
the system (see Equation 3.10). The block diagram in Figure 3.3 shows the action
loop of the controller, where the input is the desired position and the output is the
duty cycle that will be applied to the PWM signals to achieve the movement of the
motor. The error signal is calculated as the difference between the desired position
(set point) and the input received by the controller.

Figure 3.3: PID controller block diagram [42].

u[k] = KP

(
e[k] + τD · (e[k]− e[k − 1])

T
+

T

τI
·

k∑
i=0

e[i]

)
(3.10)

Occasionally, control systems experience a situation where the controller’s output
keeps accumulating, even when the system is not able to respond due to saturation
or constraints [43]. This typically involves the integral term, which may continue to
integrate and accumulate the error signal over time. This produces an abrupt jump
that will break the feedback loop, causing instability, which is called windup [44]. The
idea is to implement a method that prevents the integral action of the system from
continuing to grow once it is in the saturation limits, so that the controller is able to
act directly without having to wait for the accumulated error to be fully discharged.

The headers of the functions implemented are shown in Code 3.3:

1 /** This function sets the parameters for the PID controllers.*/
2 void PID_set_parameters (PWM_Bridge_t bridge , float kp, float kd , float

ki, float windup_limit);
3 /** This function establishes the initial setpoint that the PID will

try to achieve.*/

28 3. Software

4 void PID_setPoint (PWM_Bridge_t bridge , float position);
5 /** This function executes the PID controller.*/
6 float PID_apply(PWM_Bridge_t bridge , float input);
7 /** This function sets the period of the controller in ms.*/
8 void PID_set_period(PWM_Bridge_t bridge , float period);
9 /** This function resets the parameters for the PID controllers.*/

10 void PID_reset(PWM_Bridge_t bridge);

Code 3.3: PID controller middleware headers.

The source code is implemented in the pid_controller.c and pid_controller.h files
allocated in the source and include folders.

3.3.5. Third party middlewares

3.3.5.1. FreeRTOS

FreeRTOS is an open source real-time operating system (RTOS) designed to perform
multiple tasks at the same time for time-critical applications on microcontrollers,
meeting certain deadlines [34]. It is under a MIT license, which is a software license
that gives permission for users to reuse code for any purpose, and it is available for
more than 40 architectures [34].

The scheduler used in FreeRTOS must guarantee meeting hard real-time constraints,
which means that its behaviour must be predictable. This is achieved by allowing the
user to assign a priority to each thread of execution, commonly known as a task, so
that the scheduler knows which thread to execute first [45]. Its main features include,
among others, interrupt handling, synchronisation (via mutex, semaphores and so on)
and high portability.

To implement FreeRTOS in this BSc Thesis, the option provided by the CubeIDE
environment has been enabled. Then, two tasks have been created, one for each
motor, which have been assigned the same priority, and another task related to LwIP,
which will be explained in the next section, with a higher priority.

In these tasks, the motor peripherals are activated and the parameters of the PID
controller are configured for the first time. It is important to understand that for the
proper functioning of the system, the controller input must be the position sampled
with the motor encoder and the output, the duty cycle applied to the PWM. The
middleware functions implemented to carry out the PID controller tasks are contained
in PID_tasks.c and PID_tasks.h and their headers are as follows:

1 /** This function enables the PID tasks.*/
2 void PIDtask_enable(PWM_Bridge_t bridge);
3 /** This function disables the PID tasks.*/
4 void PIDtask_disable(PWM_Bridge_t bridge);
5 /** This function returns true if the PID tasks are enabled or false if

not.*/
6 bool PIDtask_isEnabled(PWM_Bridge_t bridge);

3.4. ROS2 29

7 /** This function defines the PID task for PWM_BRIDGE_A.*/
8 void PID1task ();
9 /** This function defines the PID task for PWM_BRIDGE_B.*/

10 void PID2task ();

Code 3.4: PID tasks (FreeRTOS) middleware headers.

3.3.5.2. LwIP

LwIP is a Lightweight Internet Protocol which offers a simple and open-source
implementation of the TCP/IP (Transmission Control Protocol/Internet Protocol)
stack for embedded systems [35]. It consumes minimal system resources and memory,
making it suitable for microcontroller-based systems with tens of kilobytes of free
RAM and room for around 40 kB of ROM/flash memory [35]. Otherwise, internet
connectivity would not be an option as the typical TCP/IP stack is too resource-
intensive. Its main characteristics are [46]:

• Implement several TCP/IP protocols such as: IPv4, IPv6, ICMP (Internet
Control Message Protocol), UDP (User Datagram Protocol), TCP y ARP
(Address Resolution Protocol), among others.

• Includes support for the DHCP (Dynamic Host Configuration Protocol) and
DNS (Domain Name System) clients.

• It offers a socket API (Application Programming Interface) for application
development, used in the POSIX (Portable Operating System Interface) sockets
specification. This improves the compatibility between different operating
systems and facilitates the development of software for programmers.

In the current final degree project it has been necessary to activate LwIP to establish
an Ethernet connection (TCP/IP) between the ST board and the computer from
which ROS is running. For this purpose, in the development environment, Ethernet is
first enabled in RMII mode with global interrupts. Next, LwIP is enabled and instead
of using the support code provided by CubeIDE, another configuration that better fits
our project needs will be used based on the source code of the NomadRehab project
available on GitHub [47]. In the settings, ICMP, DNS, UDP and TCP are activated
as protocols and an address is specified for the board, as well as a gateway for the
further connection to the computer.

3.4. ROS2

3.4.1. micro-ROS

The last step is to create an application in microROS which, by using all the generated
code libraries and thanks to the connection of the board to the computer, allows the
user to change the position of the motors.

30 3. Software

For this purpose, a topic and a subscriber have been generated for each motor and also,
a common timer for both. In this way, the subscriber listens to the position requests
received from the user, the publisher constantly publishes the current position of the
motor and the timer sends a signal to publish the new messages. The message type
used to set the position of the motor and to get it is Float_32. In addition, another
subscriber is generated for each motor to allow the user to enable or disable the desired
PID controller. To this end, a Boolean message is used.

Table 3.1: Communication topics.

Topic Data type Description
/motor1/set_pos std_msgs/msg/float32 Set motor position BRIDGE_A
/motor1/get_pos std_msgs/msg/float32 Get motor position BRIDGE_A
/motor2/set_pos std_msgs/msg/float32 Set motor position BRIDGE_B
/motor2/get_pos std_msgs/msg/float32 Get motor position BRIDGE_B
/motor1/enable std_msgs/msg/bool Enable PID task BRIDGE_A
/motor2/enable std_msgs/msg/bool Enable PID task BRIDGE_B

To configure the environment it will be necessary to change and include different
dependencies. MicroROS offers different transport options, but since in this project
the LwIP middleware has been implemented, which contains its own socket library, no
further configuration is required for UDP transport. MicroROS is a static library and
although the memory it needs is allocated at compilation time, it is also necessary
to allocate a heap of memory to the publisher and subscribers at runtime. This
memory is known as dynamic memory and the implemented functions come from the
NomadRehab project [47].

Finally, a microROS task is created and it will be executed in parallel with the
FreeRTOS tasks, explained in Section 3.3.5.1., which handle the PID controllers. The
functions created are located in microros_app.c and microros_app.h.

Chapter 4

Testing

Once the project configuration is finished, the next steps to be taken will focus on
testing that everything works correctly. The testing process is essential to detect
errors in the configuration and operation in order to develop a fully functional
project. Therefore, this section will be divided into different parts, testing that
each implemented software block works independently but also together and inserting
evidence that corroborates it.

The debugging tool used in the project has been the SEGGER J-LINK debugger,
which is available for installation on STM32 boards, and provides higher speed and
better software support than ST-LINK [48], which is the default debugger.

4.1. PWM middleware

Firstly, the PWM signals will be tested to ensure that they are generated correctly on
the pins configured for this purpose and that the middleware implemented works as
expected. In order to do this, the duty cycle values will be set for both motors and
the oscilloscope will be used to visualise these signals and check that the module is
working as expected.

Figure 4.1: PWM test on the oscilloscope.

31

32 4. Testing

When testing the pins configured as PWM, Figure 4.1, only one of the channels
is activated at 3.3 V, leaving the other one at 0 V. As explained in previous sections,
this configuration makes the motor capable of moving in one direction. In addition,
the function which sets the duty cycle also works correctly. This can be verified by
the fact that when the duty is set to 50%, the signal is activated for half of one period
and set to 0 for the other half. Furthermore, it is important to highlight that this
function has also been tested by changing the duty cycles.

4.2. Encoder middleware

The next step is to test that the encoder is working properly. To this end, the first
step is to check that the signals read on both output channels correspond to what
would be expected from a quadrature encoder. As it is depicted in Figure 4.2, square
signals are generated in both channels 90 degrees out of phase.

Figure 4.2: Encoder test on the oscilloscope.

Furthermore, thanks to the debug tool it has been verified that the different
middleware functions implemented work as expected in both motors. First, it was
checked that the respective CNT registers varied as the motor moved, increasing or
decreasing the counter value depending on the direction of rotation. It was then
verified that the IRQ defined in the code jumped when the ARR value was reached.
Finally, it was observed that the final calculated position value correspondes to the
rotation made by the motor.

4.3. PID middleware

Once the operation of the PWM and the encoder had been checked, the PID controller
was tested. It has been verified in both motors that once the controller is activated
it is difficult to move the encoder manually, and if it does move, it applies a rotating

4.4. LwIP middleware 33

force in the opposite direction to correct this displacement. In addition, it has been
proved using different input values that the output values generated are as expected.
Therefore, the motor moves correctly towards the indicated position thanks to the
implemented functions, generating a small error that is calculated at each iteration.

4.4. LwIP middleware

Once the hardware part has been tested, it will be checked that the interconnection of
the board with the computer via ethernet and the implementation of LwIP middleware
are correct. This has not been straightforward because the configuration generated
by CubeIDE was not the correct one. The problem was due to a misassigned pin and
it was noticed because the PHY was configured correctly but no network traffic was
detected in Wireshark. Wireshark is a network traffic analysis tool which can be used
to check that the connection with ethernet is successful and that data packets are
being exchanged.

The first test has consisted of obtaining an IP address through the DHCP protocol.
Once obtained, IP addresses for both the board and the computer have been assigned
and configured in the same range. The software creates a socket on port 8888,
which is the one chosen for the ethernet configuration, and it is possible to verify
with Wireshark that there is network traffic. Nevertheless, it can also be verified by
establishing the connection to the micro-ROS agent as will be explained in the next
section (see Figure 4.3).

4.5. ROS middleware

The last step is to test the micro-ROS application. It must be verified that the
connection between it, the XRCE-DDS agent and ROS2 is performed correctly. To
carry out this part of the test, it is necessary to have previously integrated micro-
ROS on the ST microcontroller, the necessary packages for its implementation and
the agent to which it will be connected to communicate within the ROS2 environment
(with anyone who subscribes to the published topics).

First of all, it is necessary to verify that the connection with the agent through port
8888, which is where the ethernet connection was configured, is working. It can be
observed in Figure 4.3 that the packets sent and received through ethernet between
the board and the computer are handled through UDP requests.

34 4. Testing

Figure 4.3: Agent connection log.

Additionally, it is verified that the session is established and the topics defined
in the middleware functions, as well as the publishers and subscribers, are created.
Finally, to verify the integration of the environment, a setup must be performed
from the terminal where the user is working. Then, it is necessary to check whether
the topics, whose functionalities were described in Section 3.4.1., have been correctly
registered (see Figure 4.4).

Figure 4.4: Application topic list.

From the rqt console provided by ROS2, which is a software framework that
implements several tools in a graphical user interface [49], it is possible to subscribe to
topics and set positions so that coordinated movements will be sent to both motors.

4.6. Functional application

Finally, once it has been verified that all the middleware modules work as expected
independently and also together, the testing process is taken a step further. For this
purpose, a structure where both motors can be mounted and connected to the ST
board and the control board, as explained in the hardware section (see Figure 2.6),
has been used. The platform used was part of a MSc thesis [50] and it has been
adapted for its use in this project, as shown below:

4.6. Functional application 35

Figure 4.5: Platform for functional application.

Once the hardware part is ready, a simple Python application was developed to
demonstrate that the project can be scalable in the future and can be implemented in
much more complex control applications. The aim of this application was to establish
one motor as the master and the other as the slave, so that if the master is moved by
hand, the other motor will follow it making the same movement. A diagram of the
application structure is shown in Figure 4.6.

Figure 4.6: Python application diagram.

To achieve this, the motor to be moved manually shall be the one subscribed to
obtain its position, and the slave shall be the one to publish this position through its

36 4. Testing

movement (see Figure 4.7). Only the PID controller of the motor acting as a slave
will be enabled.

Figure 4.7: Application workflow.

For instance, if the master motor is moved half a revolution, the terminal where
the application is running will show the new position plus its error, as shown in Figure
4.8:

Figure 4.8: Data received from the application.

Chapter 5

Conclusions

5.1. Conclusions

The aim of this BSc Thesis was to develop a standard software platform that would
facilitate the design process of control systems. In order to do this, it was necessary to
carry out an exhaustive analysis of the objectives that were expected to be achieved
during the development time available. This required a prior study of the requirements
and operation of the hardware and software implemented.

From a technical perspective and as a result of the decisions adopted during the
project, which have had a direct impact on the results, it has been possible to develop
and implement a fully functional motor control system based on microROS. The
project has been approached with a particular focus on its reusability and scalability,
trying to bring users and developers a solution that is user-friendly and adaptable to
the possible changes that might be required in future configurations.

Regarding the implementation of ROS, it has been noticed both analytically and
functionally that it provides multiple advantages, offering greater flexibility in terms
of interoperability with other systems and ease of integrating different components.
In addition to having a wide range of tools and libraries, ROS is an open source
framework, which means that it allows code reuse. These improvements reduce
development time, allowing several people to work simultaneously on the same project,
whilst fostering the creation of more scalable control systems.

Personally, the execution of this project has given me the opportunity to get deeper
into the field of control systems and to understand the great importance of their
implementation in applications that are part of our daily lives, such as medical systems
or plane controllers. It has also provided a broader vision of the development of a
complete engineering project, from the first ideas to the resolution of problems before
the project’s culmination.

37

38 5. Conclusions

5.2. Future improvements

The aim of this BSc Thesis was to achieve a motor control system that works under
ROS. During its development and subsequent testing process, several aspects for
improvement have been detected that could be included in future versions of this
project. Furthermore, as mentioned previously, embedded systems are part of a wide
range of electronic systems and devices that belong to our daily lives, so the future
lines of development are numerous. These improvements are listed below:

• Carry out an analysis of the motor’s behaviour, subsequently developing its
experimental modelling that will allow its configuration parameters to be
adjusted, aiming to achieve an approximation to an ideal behaviour that
guarantees its correct operation.

• Implement other types of more complex controllers, such as PID-D, which is a
PID with a derivative on the parallel branch. This would allow, among other
things, the elimination of step disturbances, achieving a much more stable and
precise control system.

• In terms of developing possible applications, there is a wide range of possibilities.
They could range from applications that control linear and rotational pendulums
to applications that control game tables such as air hockey or a table football.

• Create an application, with its corresponding graphical interface, from which
the system could be controlled in a user-friendly way. In addition, added
functionalities could be included, such as graphing the behaviour of the motor
in relation to how its parameters have been adjusted. This improvement would
bring the project closer to replicating a virtual control laboratory.

Bibliography

References

[1] Richard C. Dorf and Robert H. Bishop. Modern control systems. Pearson,
Hoboken, thirteenth edition edition, 2016.

[2] What is an Embedded System? Definition and FAQs | HEAVY.AI. URL: https:
//www.heavy.ai/technical-glossary/embedded-systems.

[3] Insup Lee, Joseph Y.-T. Leung, and Sang H. Son. Handbook of Real-Time and
Embedded Systems. CRC Press, July 2007.

[4] Hassen Dorrah, Walaa Gabr, and Mohamed Elsayed. Derivation of
Symbolic-based Embedded Feedback Control Stabilization Expressions with
Experimentation. 2018:427–441, 12 2018. doi:10.1016/j.jesit.2018.02.003.

[5] Ligo George. What is a Microcontroller ? How does it work ?, March 2020. URL:
https://electrosome.com/microcontroller/.

[6] Archil Avaliani. Quantum Computers, May 2004. arXiv:cs/0405004. URL: http:
//arxiv.org/abs/cs/0405004.

[7] Everything You Need to Know About Microcontrollers | RS. URL:
https://uk.rs-online.com/web/content/discovery/ideas-and-advice/
microcontrollers-guide.

[8] Carmine Noviello. Mastering STM32. Leanpub, 2018.

[9] Myo Maung Maung, Maung Maung Latt, and Chaw Myat Nwe. DC Motor
Angular Position Control using PID Controller with Friction Compensation.
International Journal of Scientific and Research Publications (IJSRP), 8(11),
November 2018. URL: http://www.ijsrp.org/research-paper-1118.php?rp=
P837923, doi:10.29322/IJSRP.8.11.2018.p8321.

[10] IEEE Standards Association. URL: https://standards.ieee.org0.

[11] MII and RMII Routing Guidelines for Ethernet, July
2019. URL: https://resources.pcb.cadence.com/blog/
2019-mii-and-rmii-routing-guidelines-for-ethernet.

39

https://www.heavy.ai/technical-glossary/embedded-systems
https://www.heavy.ai/technical-glossary/embedded-systems
https://doi.org/10.1016/j.jesit.2018.02.003
https://electrosome.com/microcontroller/
http://arxiv.org/abs/cs/0405004
http://arxiv.org/abs/cs/0405004
https://uk.rs-online.com/web/content/discovery/ideas-and-advice/microcontrollers-guide
https://uk.rs-online.com/web/content/discovery/ideas-and-advice/microcontrollers-guide
http://www.ijsrp.org/research-paper-1118.php?rp=P837923
http://www.ijsrp.org/research-paper-1118.php?rp=P837923
https://doi.org/10.29322/IJSRP.8.11.2018.p8321
https://standards.ieee.org0
https://resources.pcb.cadence.com/blog/2019-mii-and-rmii-routing-guidelines-for-ethernet
https://resources.pcb.cadence.com/blog/2019-mii-and-rmii-routing-guidelines-for-ethernet

40 Bibliography

[12] Essential Electronics - The H-bridge Motor Controller | Toshiba Electronic
Devices & Storage Corporation | Europe(EMEA). URL: https:
//toshiba.semicon-storage.com/eu/semiconductor/design-development/
innovationcentre/articles/tcm0587_TB67H450.html.

[13] L6206 - DMOS dual full bridge driver - STMicroelectronics. URL: https://www.
st.com/en/motor-drivers/l6206.html.

[14] Walid Isaed. Close loop speed control of DC Motor with SCADA system by using
arduino and labVIEW. 05 2018.

[15] ROS: Home. URL: https://www.ros.org/.

[16] M. A. B. Robotics. Legged robots: ROS2, March 2022. URL: https://
mab-robotics.medium.com/legged-robots-ros2-6051f9c907cd.

[17] ROS: The ROS Ecosystem. URL: https://www.ros.org/blog/ecosystem/.

[18] Understanding nodes — ROS 2 Documentation: Foxy documentation.
URL: https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/
Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html.

[19] Getting Started with micro-ROS: Core and Advanced Tutorials – FIWARE,
June 2020. Section: Tech. URL: https://www.fiware.org/2020/06/16/
getting-started-with-micro-ros-core-and-advanced-tutorials/.

[20] Introduction to Client Library, June 2023. URL: https://micro.ros.org/docs/
concepts/client_library/introduction/.

[21] micro-ROS on FreeRTOS, September 2020. URL: https://www.freertos.org/
2020/09/micro-ros-on-freertos.html.

[22] micro-ROS. URL: http://www.ofera.eu/index.php/micro-ros.

[23] Hardware, November 2020. URL: https://www.techopedia.com/definition/
2210/hardware-hw.

[24] ST. ARM®-based Cortex®-M7 32b MCU+FPU, 462DMIPS, up to 1MB
Flash/320+16+ 4KB RAM, USB OTG HS/FS, ethernet, 18 TIMs, 3 ADCs,
25 com itf, cam & LCD-speed CAN transceiver, 2016. Rev 4.

[25] ST. Dual brush DC motor driver expansion board based on L6206 for STM32
Nucleo, 2015. Rev 1.

[26] ST. DMOS dual full bridge driver, 2014. Rev 2.

[27] Everything You Need To Know About DC Motors | RS. URL: https:
//ie.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/
dc-motors-guide.

[28] How do brushed DC motors work? The need for regular maintenance explained |
ASPINA. URL: https://us.aspina-group.com/en/learning-zone/columns/
what-is/013/.

https://toshiba.semicon-storage.com/eu/semiconductor/design-development/innovationcentre/articles/tcm0587_TB67H450.html
https://toshiba.semicon-storage.com/eu/semiconductor/design-development/innovationcentre/articles/tcm0587_TB67H450.html
https://toshiba.semicon-storage.com/eu/semiconductor/design-development/innovationcentre/articles/tcm0587_TB67H450.html
https://www.st.com/en/motor-drivers/l6206.html
https://www.st.com/en/motor-drivers/l6206.html
https://www.ros.org/
https://mab-robotics.medium.com/legged-robots-ros2-6051f9c907cd
https://mab-robotics.medium.com/legged-robots-ros2-6051f9c907cd
https://www.ros.org/blog/ecosystem/
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://www.fiware.org/2020/06/16/getting-started-with-micro-ros-core-and-advanced-tutorials/
https://www.fiware.org/2020/06/16/getting-started-with-micro-ros-core-and-advanced-tutorials/
https://micro.ros.org/docs/concepts/client_library/introduction/
https://micro.ros.org/docs/concepts/client_library/introduction/
https://www.freertos.org/2020/09/micro-ros-on-freertos.html
https://www.freertos.org/2020/09/micro-ros-on-freertos.html
http://www.ofera.eu/index.php/micro-ros
https://www.techopedia.com/definition/2210/hardware-hw
https://www.techopedia.com/definition/2210/hardware-hw
https://ie.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dc-motors-guide
https://ie.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dc-motors-guide
https://ie.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dc-motors-guide
https://us.aspina-group.com/en/learning-zone/columns/what-is/013/
https://us.aspina-group.com/en/learning-zone/columns/what-is/013/

Bibliography 41

[29] Mat Dirjish. What’s The Difference Between Brush DC And Brushless
DC Motors?, February 2012. URL: https://www.electronicdesign.
com/technologies/components/electromechanical/article/21796048/
electronic-design-whats-the-difference-between-brush-dc-and-brushless-dc-motors.

[30] Pololu - 9.7:1 Metal Gearmotor 25Dx63L mm HP 12V with 48 CPR Encoder.
URL: https://www.pololu.com/product/4842.

[31] L.J. Osterweil. What is software? pages 261–273, 09 2008. doi:https://doi.
org/10.1007/s10515-008-0031-y.

[32] What is Software? Definition, Types and Examples. URL: https://www.
techtarget.com/searchapparchitecture/definition/software.

[33] Tarun Agarwal. PID Controller : Working, Types, Advantages &
Its Applications, December 2013. URL: https://www.elprocus.com/
the-working-of-a-pid-controller/.

[34] Nikhil Agnihotri. What is FreeRTOS? URL: https://www.engineersgarage.
com/what-is-freertos/.

[35] Nikhil Agnihotri. What is Lightweight Internet Protocol
(LwIP)? URL: https://www.engineersgarage.com/
light-weight-internet-protocol-arduino-esp-embedded-controllers/.

[36] What is Middleware? (And How Does it Work?). URL: https://www.talend.
com/resources/what-is-middleware/.

[37] ST. STM32L4 timers. URL: https://www.st.com/content/ccc/resource/
training/technical/product_training/c4/1b/56/83/3a/a1/47/64/
STM32L4_WDG_TIMERS_GPTIM.pdf/files/STM32L4_WDG_TIMERS_GPTIM.pdf/
jcr:content/translations/en.STM32L4_WDG_TIMERS_GPTIM.pdf.

[38] Getting Started with STM32 - Timers and Timer Interrupts. URL: https://
www.digikey.com/en/maker/projects/d08e6493cefa486fb1e79c43c0b08cc6.

[39] Félix Monasterio-Huelin, Álvaro Gutiérrez, and Blanca Larraga. Modelado de
un motor DC, 2023. URL: http://www.robolabo.etsit.upm.es/asignaturas/
seco/apuntes/modelado.pdf.

[40] Blanca Larraga. Diseño, 2023. URL: http://www.robolabo.etsit.upm.es/
asignaturas/seco/transparencias/disenno.pdf.

[41] Félix Monasterio-Huelin, Álvaro Gutiérrez, and Blanca Larraga. Dis-
eño, 2023. URL: http://www.robolabo.etsit.upm.es/asignaturas/seco/
apuntes/design.pdf.

[42] The Engineering Concepts. PID Controller - What-is-PID-controller-How-it-
works?, November 2018. URL: https://www.theengineeringconcepts.com/
pid-controller/.

https://www.electronicdesign.com/technologies/components/electromechanical/article/21796048/electronic-design-whats-the-difference-between-brush-dc-and-brushless-dc-motors
https://www.electronicdesign.com/technologies/components/electromechanical/article/21796048/electronic-design-whats-the-difference-between-brush-dc-and-brushless-dc-motors
https://www.electronicdesign.com/technologies/components/electromechanical/article/21796048/electronic-design-whats-the-difference-between-brush-dc-and-brushless-dc-motors
https://www.pololu.com/product/4842
https://doi.org/https://doi.org/10.1007/s10515-008-0031-y
https://doi.org/https://doi.org/10.1007/s10515-008-0031-y
https://www.techtarget.com/searchapparchitecture/definition/software
https://www.techtarget.com/searchapparchitecture/definition/software
https://www.elprocus.com/the-working-of-a-pid-controller/
https://www.elprocus.com/the-working-of-a-pid-controller/
https://www.engineersgarage.com/what-is-freertos/
https://www.engineersgarage.com/what-is-freertos/
https://www.engineersgarage.com/light-weight-internet-protocol-arduino-esp-embedded-controllers/
https://www.engineersgarage.com/light-weight-internet-protocol-arduino-esp-embedded-controllers/
https://www.talend.com/resources/what-is-middleware/
https://www.talend.com/resources/what-is-middleware/
https://www.st.com/content/ccc/resource/training/technical/product_training/c4/1b/56/83/3a/a1/47/64/STM32L4_WDG_TIMERS_GPTIM.pdf/files/STM32L4_WDG_TIMERS_GPTIM.pdf/jcr:content/translations/en.STM32L4_WDG_TIMERS_GPTIM.pdf
https://www.st.com/content/ccc/resource/training/technical/product_training/c4/1b/56/83/3a/a1/47/64/STM32L4_WDG_TIMERS_GPTIM.pdf/files/STM32L4_WDG_TIMERS_GPTIM.pdf/jcr:content/translations/en.STM32L4_WDG_TIMERS_GPTIM.pdf
https://www.st.com/content/ccc/resource/training/technical/product_training/c4/1b/56/83/3a/a1/47/64/STM32L4_WDG_TIMERS_GPTIM.pdf/files/STM32L4_WDG_TIMERS_GPTIM.pdf/jcr:content/translations/en.STM32L4_WDG_TIMERS_GPTIM.pdf
https://www.st.com/content/ccc/resource/training/technical/product_training/c4/1b/56/83/3a/a1/47/64/STM32L4_WDG_TIMERS_GPTIM.pdf/files/STM32L4_WDG_TIMERS_GPTIM.pdf/jcr:content/translations/en.STM32L4_WDG_TIMERS_GPTIM.pdf
https://www.digikey.com/en/maker/projects/d08e6493cefa486fb1e79c43c0b08cc6
https://www.digikey.com/en/maker/projects/d08e6493cefa486fb1e79c43c0b08cc6
http://www.robolabo.etsit.upm.es/asignaturas/seco/apuntes/modelado.pdf
http://www.robolabo.etsit.upm.es/asignaturas/seco/apuntes/modelado.pdf
http://www.robolabo.etsit.upm.es/asignaturas/seco/transparencias/disenno.pdf
http://www.robolabo.etsit.upm.es/asignaturas/seco/transparencias/disenno.pdf
http://www.robolabo.etsit.upm.es/asignaturas/seco/apuntes/design.pdf
http://www.robolabo.etsit.upm.es/asignaturas/seco/apuntes/design.pdf
https://www.theengineeringconcepts.com/pid-controller/
https://www.theengineeringconcepts.com/pid-controller/

42 Bibliography

[43] Muniru Olajide Okelola, David Oluwagbemiga Aborisade, and Philip Adesola
Adewuyi. Performance and Configuration Analysis of Tracking Time Anti-
Windup PID Controllers. Jurnal Ilmiah Teknik Elektro Komputer dan
Informatika, 6(2):20–29, January 2021. URL: http://journal.uad.ac.id/
index.php/JITEKI/article/view/18867, doi:10.26555/jiteki.v6i2.18867.

[44] Félix Monasterio-Huelin. Estudio del controlador PID., 2010. URL: http:
//www.robolabo.etsit.upm.es/asignaturas/seco/apuntes/2015-2019/
controlador_pid.pdf.

[45] Why RTOS and What is RTOS? URL: https://www.freertos.org/
about-RTOS.html.

[46] lwIP: Overview. URL: https://www.nongnu.org/lwip/2_1_x/index.html.

[47] Alejandro Gómez Molina. Nomadrehab. URL: https://github.com/Robolabo/
NomadRehab/tree/main/Software.

[48] Reemplazando el firmware ST-Link por J-Link en las placas de desarrollo
de ST | B105 lab, November 2017. URL: https://elb105.com/
reemplazando-el-firmware-st-link-por-j-link-en-las-placas-de-desarrollo-de-st/.

[49] rqt - ROS Wiki. URL: http://wiki.ros.org/rqt.

[50] Alejandro Gómez Molina. Design and implementation of a high-
performance hardware platform for driving motor control systems., 2022.
URL: http://www.robolabo.etsit.upm.es/publications/TFM/TFM_
AlejandroGomezMolina2.pdf.

[51] María García Perote. Controlmotorros. URL: https://github.com/Robolabo/
ControlMotorROS.git.

http://journal.uad.ac.id/index.php/JITEKI/article/view/18867
http://journal.uad.ac.id/index.php/JITEKI/article/view/18867
https://doi.org/10.26555/jiteki.v6i2.18867
http://www.robolabo.etsit.upm.es/asignaturas/seco/apuntes/2015-2019/controlador_pid.pdf
http://www.robolabo.etsit.upm.es/asignaturas/seco/apuntes/2015-2019/controlador_pid.pdf
http://www.robolabo.etsit.upm.es/asignaturas/seco/apuntes/2015-2019/controlador_pid.pdf
https://www.freertos.org/about-RTOS.html
https://www.freertos.org/about-RTOS.html
https://www.nongnu.org/lwip/2_1_x/index.html
https://github.com/Robolabo/NomadRehab/tree/main/Software
https://github.com/Robolabo/NomadRehab/tree/main/Software
https://elb105.com/reemplazando-el-firmware-st-link-por-j-link-en-las-placas-de-desarrollo-de-st/
https://elb105.com/reemplazando-el-firmware-st-link-por-j-link-en-las-placas-de-desarrollo-de-st/
http://wiki.ros.org/rqt
http://www.robolabo.etsit.upm.es/publications/TFM/TFM_AlejandroGomezMolina2.pdf
http://www.robolabo.etsit.upm.es/publications/TFM/TFM_AlejandroGomezMolina2.pdf
https://github.com/Robolabo/ControlMotorROS.git
https://github.com/Robolabo/ControlMotorROS.git

Appendix A

Ethical, social, economic and
environmental aspects

A.1. Introduction

When developing an engineering project, it is of vital importance to take into
consideration different ethical, social, economic and environmental aspects. This
ensures that the regulations for the practical application of engineering are complied
with and that engineers are aware of the impact that their projects can cause, as
well as taking responsibility when it comes to mitigating the damage caused by them.
Therefore, an analysis of the main impacts will be carried out.

A.2. Description of relevant impacts related to the project

A.2.1. Ethical impact

The pace of growth in digitisation and the implementation of robotic systems has
gone from gradual to abrupt, raising social and ethical concerns. These doubts are
based on users’ mistrust of the security and efficiency of the developed systems. As
explained, this project is intended to free up the workload of developers so that they
can focus on improving the efficiency and performance of the systems. In addition,
all the software developed is based on and supported by other open source resources,
respecting intellectual property rights above all.

A.2.2. Social impact

As mentioned before, control systems form a very important part of our lives as they
appear in a wide range of devices and applications, from washing machines to medical
systems. This implies that the social impact of the project will be particularly relevant
in this analysis.

43

44 A. Ethical, social, economic and environmental aspects

This BSc Thesis focuses on the development of a standard software platform that
facilitates the design of control systems for developers. The aim is to reduce the long
development time involved in creating these systems so that developers can invest
more time in improving their performance and efficiency, which is of high importance
to contribute to the well-being and safety of people and to enhance user satisfaction.
Furthermore, by integrating it with a ROS architecture, the developed middleware
will be open source.

A.2.3. Economic impact

There is an increasing demand for more agile systems that are able to adapt to constant
changes in the environment and to regulate the behaviour of other devices. In terms
of economic impact, due to the far-reaching impact that robotics and digitalisation
are having on all sectors, the subject of this project could be targeted for investment
in the technology and industrial sector. Because it is mainly software development,
the costs of the project are not limiting in terms of feasibility and scalability for future
enhancements.

A.2.4. Environmental impact

The creation of electronic devices generally has a negative environmental impact,
both in terms of energy consumption and greenhouse gas emissions. However, as this
is a project that focuses on software development, the ecological impact that can be
derived from it is minimal. In addition, the idea is that it is scalable, both at software
as well as hardware level, and the electronic devices can be reused in future lines of
development, thus reducing the carbon footprint.

Appendix B

Project budget

• Personal: To determine the hourly cost of employees, the average salary of
a junior engineer (who could be a telecommunications or electronics engineer)
and a project manager (who, in this case, is an engineer) has been taken into
consideration. The estimations presented in Table B.1 are based on a gross
annual salary of 28,000 € for the junior engineer and 38,000 € for the project
manager, the social security costs paid by the company (which are around 35%)
and the hours spent on the project. It has also been taken into account that, as
the maximum working day in Spain is 40 hours per week, the average monthly
working hours are 160 hours.

Table B.1: Human resources costs.

Hourly rate (e) Hours Total (e)
Project manager 26.72 30 801.56
Engineering student 19.69 360 7,087.50
TOTAL 7,889.06

• Costs of material resources: For material resources, the price is calculated
taking into account the depreciation, calculated as the price of the product
divided by the months of useful life (see Table B.2).

45

46 B. Project budget

Table B.2: Costs of materials.

Lifetime Uds. Cost Depreciation Time of use Total
(years) (e) (e/month) (months) (e)

Personal computer 5 1 800.00 13.33 9 120.00
STM32F746ZG 6 2 53.33 0.74 9 6.66
X-NUCLEO-IHM04A1 6 2 31.60 0.44 9 3.95
Motor with encoder 8 2 50.00 1.04 6 6.25
Oscilloscope 7 1 2,000.00 23.81 3 71.43
Digital multimeter 7 1 50.00 0.60 2 1.19
Laboratory equipment 3 1 25.00 0.69 9 6.25
TOTAL 215.73

Finally, the project costs are summed up and the total cost of the project is
calculated after taxes, with the addition of 21% IVA. Moreover, an estimation has
been made to obtain a 20% profit from the project.

Cost
Human resources costs 7,889.06 e
Material costs 215.73 e
Subtotal costs 8,104.79 e
Benefits 1,620.96 e
Subtotal 9,725.75 e
IVA 2,042.41 e
Total 11,768.16 e

Table B.3: Total cost.

Appendix C

User manual

This manual is dedicated to the user in order to facilitate the understanding of the
steps to be followed to make use of the system.

C.1. Requirements

There are a number of software requirements that must be met in order to make use
of the developed control system:

• Download the GitHub repository where the project is hosted [51].

• Linux Operating System (OS) on the computer, preferably Ubuntu 20.04, which
is the version used for the development of the project.

• CubeIDE software installed, preferably version 1.10.1 to avoid bugs.

• Make a setup of the environment to support the use of ROS2 in the project.

• Python installed to run the example application that controls the system.

C.2. Install dependecies

The project repository is located on Github and can be downloaded using the following
command at the terminal:

1 git clone https :// github.com/Robolabo/ControlMotorROS.git

First, it is necessary to move to the micro-ROS folder of the downloaded project
and once the .sh files are given execution permissions, run the create_firmware.sh
script as follows:

1 cd ControlMotorROS/software/firmware/ControlMotorTFG_uros/Middlewares/
Third_Party/microROS

2 chmod +x *.sh
3 ./ create_firmware.sh

Next, in the same folder there is an executable script, setup_uros.sh, that
automates the download of ROS2, the agent used and the necessary dependencies.
It is executed thus:

47

48 C. User manual

1 sudo -s source setup_uros.sh

The ROS distribution installed and with which all the configurations of the project
have been made was foxy, but it could be changed to another one in case of using
another version of Ubuntu. This configuration is hosted in the setup_uros.sh script.

1 export ROS_DISTRO=foxy

On each new terminal that is opened, it will be necessary to setup the ROS2
environment in order to be able to use its packages. The necessary commands are the
following, but the script setup_uros.sh and create_firmware.sh have been modified so
that they are configured and it is only necessary to execute the second command:

1 export ROS_DISTRO=foxy
2 source /opt/ros/foxy/setup.bash
3 source /opt/microros_ws/install/setup.bash

C.3. Starting XRCE-DDS agent

The first step to start the agent is to move to the micro-ROS folder and modify the
colcon.meta files to configure the IP field (see Figure C.1). This is done in order to set
a fixed IP of the computer to establish UDP communication when connecting the ST
board. The IP set must correspond to the IP of the computer from which the agent
is running.

1 cd ControlMotorROS/software/firmware/ControlMotorTFG_uros/Middlewares/
Third_Party/microROS

Figure C.1: Capture of the IP configuration that needs to be modified.

Alternatively, the following command can be run from the terminal:

1 ./ configure_firmware.sh -t udp -i 192.168.2.155 -p 8888 #The project
has been configured on that IP and on port 8888

After this step, it is necessary to run a command again to compile the ROS2
environment but with the computer’s IP set this time.

1 ./build.sh -f -o ../

C.4. Compiling the project and running the application in Python 49

To start the communication with the board it is necessary to start the XRCE-DDS
agent, which will act as a bridge between ROS2 and micro-ROS. The package that
enables its launch is found with the dependencies downloaded from the repository.
As the communication protocol used in the project is UDP to allow the ethernet
connection, the agent is launched as follows on port 8888:

1 MicroXRCEAgent udp4 --port 8888 -v6

Once this is done, by executing the above command it is possible to see that the
communication is done correctly by connecting the board and the ethernet cable (see
Figure 4.3).

In addition, once the main program is running, you can test if the configured topics
are registered correctly and if the name of the topic is known, you can listen directly
to what it publishes from the terminal.

1 ros2 topic list #List registerd topics
2 ros2 topic echo /topic_name #Command to listen the topic selected

In this project, the IP has been configured as static for simplicity but it could also
work with DHCP by changing the LwIP settings to implement automatic IP address
configuration.

C.4. Compiling the project and running the application in Python

The development of the project has been carried out using the CubeIDE software
version 1.10.1, which must be downloaded from their website.

As shown in the pictures, it is necessary to import the project into the programme
and then change the debug settings used. First, the downloaded project is opened
(see Figure C.2) and imported into the CubeIDE environment (see Figure C.3).

50 C. User manual

Figure C.2: Step 1: Open the downloaded project.

Figure C.3: Step 2: Import the project.

The debug probe configuration is then changed in the debug settings (see Figure
C.4).

C.4. Compiling the project and running the application in Python 51

Figure C.4: Step 3: Change in debugger configuration.

As shown in Figure C.5, there are different options for compiling and debugging
the project.

Figure C.5: Step 4: Compiling and debugging options.

From the rqt console (which, as mentioned before, is provided by ROS2 [49]) it is

52 C. User manual

possible to manually change the data sent to both motors, either the enable to allow
activation of the PID controller or the position to which it shall move (see Figure C.6).
The rqt console is launched with the following command:

1 rqt&

Figure C.6: Capture of the rqt console.

Finally, to run the developed python application, where one motor acts as master
and the other as slave, the following command must be executed once the python3
dependencies have been installed:

1 cd ControlMotorROS/software/firmware/ControlMotorTFG_uros
2 python3 uros_app/uros_app/uros_app.py

The screen display once it is executed can be seen in Figure 4.8.

	Abstract
	Resumen
	Acknowledgements
	Contents
	Figure Index
	Table Index
	List of acronyms
	Introduction and goals
	State of the art
	Embedded systems
	Microcontroller
	Peripherals

	Timers
	PWM
	Rotary encoder
	Ethernet
	H-bridge
	Controllers
	ROS
	micro-ROS

	Motivations and goals
	Document structure

	Hardware architecture
	Introduction
	Requirements
	Hardware selection
	Microcontroller
	Motor control board
	H-bridge

	Motor

	Complete hardware system diagram

	Software
	Introduction
	Requirements
	Middleware
	Timers
	PWM
	Encoders
	Controller
	Third party middlewares
	FreeRTOS
	LwIP

	ROS2
	micro-ROS

	Testing
	PWM middleware
	Encoder middleware
	PID middleware
	LwIP middleware
	ROS middleware
	Functional application

	Conclusions
	Conclusions
	Future improvements

	Bibliography
	Ethical, social, economic and environmental aspects
	Introduction
	Description of relevant impacts related to the project
	Ethical impact
	Social impact
	Economic impact
	Environmental impact

	Project budget
	User manual
	Requirements
	Install dependecies
	Starting XRCE-DDS agent
	Compiling the project and running the application in Python

