
UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR
DE INGENIEROS DE TELECOMUNICACIÓN

GRADO EN INGENIERÍA DE TECNOLOGÍAS Y
SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND IMPLEMENTATION OF AN HVAC

CONSUMPTION PREDICTION SYSTEM BASED ON

LSTM NEURAL NETWORKS

Tutor: Álvaro Gutiérrez Mart́ın

Author: Rafael Sendra Arranz

2018

Abstract

This Thesis designs and implements an artificial neural network based predictor to

forecast the power consumption of an HVAC system. The featured HVAC system

is situated at the MagicBox. The MagicBox is a self-sufficient solar house with

a monitoring system located at the Escuela Técnica Superior de Ingenieros de

Telecomunicación (ETSIT) of the Universidad Politécnica de Madrid (UPM). The

presented predictor makes short term predictions, more precisely it forecasts one

day ahead of the power consumption. In this Thesis, three multi step prediction

models, based on LSTM neural networks, are proposed. In addition, suitable data

preprocessing and arrangement techniques are set to adapt the raw dataset. The

models provide outstanding results in terms of errors and correlation between the

temporal behaviour of the predictions and targets.

Keywords: Energy consumption prediction, HVAC systems, short term forecast,

artificial neural networks, recurrent neural networks, LSTM layers, Mean squared

error, Pearson correlation coefficient.

Resumen

En este Trabajo Fin de Grado se ha diseñado e implementado un predictor

basado en redes neuronales artificiales para la predicción del consumo de potencia

de un sistema HVAC. El sistema HVAC en cuestión está situado en una casa solar

llamada MagicBox. La MagicBox es una casa solar autosuficiente equipada con un

sistema de monitorización y localizada en Escuela Técnica Superior de Ingenieros

de Telecomunicación (ETSIT) de la Universidad Politécnica de Madrid (UPM). El

predictor presentado realiza estimaciones a corto plazo de la potencia consumida,

concretamente predice el d́ıa siguiente de consumo. En este Trabajo Fin de Grado tres

modelos de predicción de múltiples instantes de tiempo son presentados. Además, se

exponen diversas técnicas de preprocesado de los datos con el fin de adaptar el dataset

original. Los modelos presentan resultados destacables en referencia al computo de

errores y medidas de la correlación entre las series temporales de las predicciones y

los datos reales.

Palabras clave: Predicción del consumo de enerǵıa, sistemas HVAC, predicción a

corto plazo, redes neuronales artificiales, redes neuronales recurrentes, capas LSTM,

error cuadrático medio, coeficiente de correlación de Pearson.

http://www.magicbox.etsit.upm.es/
http://www.magicbox.etsit.upm.es/

Agradecimientos

En primer lugar, quiero mostrar mi agradecimiento a mi tutor, Dr. Álvaro

Gutiérrez, por toda la ayuda y asesoramiento prestado durante el desarrollo de este

Trabajo Fin de Grado aśı como por haber créıdo en mi todo momento.

También quisiera agradecer a mis padres y hermanos por todo el apoyo y paciencia

que siempre me han proporcionado.

vi

Contents

General Index vi

Index of Figures ix

Index of Tables xi

List of Acronyms xii

1 Introduction and objectives 1

1.1 Context . 1

1.2 Objectives and contribution . 3

1.3 Document layout . 3

2 Theory 5

2.1 Perceptron and Recurrent neural networks 5

2.2 Machine learning algorithm . 7

2.3 LSTM neural networks . 10

3 Design Process 13

3.1 Data acquisition system . 13

3.2 Data preprocessing . 16

3.2.1 Normalization . 17

3.2.2 Data sampling . 17

3.3 Data arrangement . 18

3.4 Neural architecture . 19

3.5 Prediction techniques . 21

3.5.1 Single step ahead prediction architecture 21

3.5.2 Multi step ahead prediction architectures 22

4 Implementation and Verification 27

4.1 Implementation environment and tools 27

4.2 Metrics . 29

4.3 Parameter optimization . 30

4.3.1 Number of LSTM layers and units 30

4.3.2 Learning algorithm optimizer and learning rate 32

4.4 Results . 34

viii CONTENTS

5 Conclusion and future lines: 41

5.1 Conclusions . 41

5.2 Future research lines . 42

Bibliography 44

A Impact 49

B Budget 51

List of Figures

2.1 Plot of the sigmoid (a) and hyperbolic tangent (b) functions. 6

2.2 (a) Computational graph of a multilayer perceptron. (b) Computa-

tional graph of a multilayer RNN. 7

2.3 Illustration of the unfolding process described in Eq. 2.2.8 10

2.4 Computational graph of an LSTM layer. 11

3.1 Frontal view of the MagicBox. 14

3.2 Representation of the different measured input features. 15

3.3 Representation of the power consumption of the HVAC system to be

forecasted. 16

3.4 Diagram of the design process. 19

3.5 Main structure of the proposed model. LSTM layers are building blocks

containing LSTM neural networks and dense layer represents a single

layer perceptron. 20

3.6 Unrolling of the single step prediction recurrent neural model in Fig.

3.5. 22

3.7 Unrolling of the MSPM-1 . 23

3.8 Unrolling of the MSPM-2 . 24

3.9 Unrolling of the MSPM-3. 25

4.1 Comparison of models: number of layers. Each boxplot comprises

observations ranging from the first to the third quartile. The median

is indicated by a horizontal bar, dividing the box into the upper and

lower parts. The whiskers extend to the farthest data points that are

within 1.5 times the interquartile range. Outliers are shown with a

plus symbol. 31

4.2 Comparison of models: number of units per layer 32

4.3 Comparison of learning algorithm optimizers 33

4.4 Comparison of the learning rate. 34

4.5 Assessment the single step ahead predictor when test data set is provided. 35

4.6 Assessment of MSPM-1 when test data set is provided 36

4.7 Assessment of MSPM-2 when test data set is provided 36

4.8 Assessment of MSPM-3 (Encoder–decoder) when test data set is provided 37

4.9 Representation of the correlation between the model’s predictions

and the target time series. (a) OSPM’s predictions. (b) MSPM-1’s

predictions. (c) MSPM-2’s predictions. (d) MSPM-3’s predictions. . . 38

x LIST OF FIGURES

4.10 (a) Comparison of the predictions made by the models when the

training data set is provided. (b) Comparison of the predictions made

by the models when the test data set is provided. 39

4.11 Predictions of the models in a window of 4 days. 40

Index of Tables

4.1 Summary of the selected parameters for the MSMPs. 34

4.2 Collection of all the model’s metrics for training and test data set. . . 37

B.1 Costs derived from human resources 51

B.2 Costs derived from software and technical equipment 51

List of Acronyms

PV: Photovoltaic.

BESS: Battery Energy Storage System.

HVAC: Heating, ventilation and air conditioning.

ANN: Artificial Neural Network.

RNN: Recurrent Neural Network.

LSTM: Long-Short Term Memory.

BBTT: Back-Propagation Through Time.

OSPM: One-Step Prediction Model.

MSPM: Multi-Step Prediction Model.

SGD: Stochastic Gradient Descent.

Chapter 1

Introduction and objectives

1.1 Context

Nowadays, there is an increasing concern in the society for the correct consumption

and use of energy. This phenomenon has motivated the development of new

technologies turning into real scientific challenges. One of the main problems in

this context is to find a suitable equilibrium between the energy consumption and its

generation. This is a complex task because of different reasons as for instance: the

consumption is not equally distributed within a day, due to the existence of peaks of

aggregated consumption in the activity hours, and valleys at inactivity periods (such

as the night); the consumption remarkably depends on the season of the year; it is

strongly altered by the human habits, etc.

To solve these problems Demand Side Management (DSM) techniques have been

studied and applied. DSM can be defined as the set of technologies and procedures

that modify the aggregated energy consumption in order to fulfill an imposed goal

such as the balance and flattening of the demand side energy consumption curve.

Furthermore, in the recent years, Smart Grids have emerged to aid the DSM

purposes among other utilities. Smart Grids can be seen as the combination of the

regular energy grid system, renewable energies, battery energy storage system (BESS),

and intelligent systems aiming to modify the use of the consumption elements in order

to enhance the energy efficiency. These intelligent grids allow not only the energy flow

but also the data flow to control the demand response.

Several authors have addressed the problem by means of these techniques. Asghar

et al. (2015) proposes a Generic DSM model based on a genetic algorithm for

residential users to reduce the Peak-to-Average Ratio, the total energy cost and the

waiting time of appliances. In addition, in Ullah et al. (2013) several residential load

controlling techniques are described. It is based on the scheduling and time shifting of

the operation of the loads in order to smooth the energy demand curve. It was shown

how those methods reduced the energy consumption cost and the Peak-to-Average

Ratio. Furthermore, in Castillo-Cagigal et al. (2011a) the authors present simulated

and real experiments integrating BESS and Photovoltaic(PV) generation along with

Active Demand side management (ADSM) in a grid connected self sufficient house to

maximize the PV energy self consumption.

The problem described above is too wide to be treated globally. One may consider

2 1. Introduction and objectives

the study for separate consumptions of different machines to be integrated jointly in a

later phase of the treatment of the problem. In this work we focus on the consumption

of heating, ventilation and air-conditioning (HVAC) systems. These systems represent

a great percentage of the energy consumption in residential buildings. Thus, its study

can be considered an important task to be developed. A second important issue of

the effective treatment of DSM techniques is to enable the prediction of the future

behaviour of the aggregated consumption. Thus, the energy consumption forecast of

HVAC systems could lead to an enhancement of the used DSM with controlling and

scheduling techniques.

To approach the prediction, different techniques have been utilized as, for in-

stance, linear regression models, Autoregressive, Moving Average and Autoregressive

Integrated Moving Average models, Support Vector Machines and Artificial Neural

Networks, among others.

In Solano et al. (2017), a predictor of the power consumption of an HVAC system

was implemented to aid the operation of two control strategies. These strategies

aim to increase the PV self-consumption and grid-peak shaving respectively and were

developed and assessed in the frame of a self-sufficient solar house, called MagicBox,

with integrated BESS, PV generation and monitoring systems. The HVAC predictor

was based on a linear regression model and, as stated by the authors, it was left as

future research the design of more accurate forecasting techniques. The current Thesis

can be seen as a continuation in that direction. Indeed, in this work, a more complex

prediction system of the HVAC power consumption is designed, implemented and

assessed under the same self sufficient house mentioned above. Below in this section,

a more extensive description of the contribution is presented.

In order to develop the design of a time series predictor, such as the power

consumption, several variables have to be taken into account. Firstly, one considers

the time series technique to make the forecast. In addition to the linear regression

model discussed above, Deng and Jirutitijaroen (2010) compared Autoregressive,

Moving Average and Autoregressive Integrated Moving Average for short term load

forecasting.

Alternatively, Support Vector Machines were utilized as the prediction technique

in Hou and Lian (2009) and Ceperic et al. (2013). Finally, Artificial Neural Networks

(ANN) have been considered in Beccali et al. (2008) and Park et al. (1991). Moreover,

the use of Recurrent Neural Networks (RNN) is strongly recommended because they

are able to retain and consider the temporal variations of the time series throughout

their feedback connections. González and Zamarreño (2005) takes advance of these

particular type of ANNs to develop a model to forecast hourly energy consumption.

In the research presented here, Long-Short Term Memory (LSTM) neural networks

(see Section 2.3) are utilized. LSTM neural networks are a type of RNNs presented

in Hochreiter and Schmidhuber (1997) to solve the vanishing gradient issue of regular

RNNs.

The second aspect to be considered during the design of a time series predictor is

the horizon of the desired forecasts. Normally, short and long term forecasts are the

most known time horizons. As said above, the predictor designed here is thought

http://www.magicbox.etsit.upm.es/

1.2. Objectives and contribution 3

to aid the DSM techniques such as the task scheduling of the consuming loads.

Therefore short term forecasting is the desirable time horizon for this application.

More precisely, a day ahead prediction is discussed (see Section 3.5.2). Lusis et al.

(2017) and Gajowniczek and Zabkowski (2014) compare different prediction models

to forecast short term load consumption. On the other hand, long term forecasting

is studied in Rahman et al. (2018) with the use of an encoder–decoder based LTSM

ANN. However, although the techniques used in the paper are similar to those of this

Thesis, it is important to take into account that long term horizon forecast essentially

corresponds a different problem to the one consider in this Thesis.

1.2 Objectives and contribution

After the study of the state of the art in the frame of the problem to solve, the

objectives of this Thesis are described. The main goal is to design and implement

a predictor with the aim of performing the forecast of the energy consumed by the

HVAC system of a self-sufficient solar house, MagicBox, located at the ETSIT-UPM.

Furthermore, the designed predictor should make forecasts of the next day in order

to have the potential to be integrated in a real application. Morevoer, the system’s

predictions should provide sufficiently low errors and correlation with the targeted

time series.

In the following, the contributions of this Thesis are stated. A set of models

to perform short term forecasts of the power consumption of an HVAC system

are proposed. The predictor model consists of an stacked LSTM ANN trained by

several data obtained from the aforementioned MagicBox. Firstly, a single step

ahead predictor is stated as an introductory approach. Subsequently, three models

are designed and implemented with the aim to forecast short term multiple steps

ahead. More precisely, the RNNs will output the next day when the previous day’s

sequence is provided. The multiple steps ahead predictors show a high performance

results, highlighting test pearson correlation coefficients around 0.97 and normalized

root mean square error (NRMSE) of 0.049 for the most accurate model (see Section

4.2 for an explanation of those metrics).

1.3 Document layout

Chapter 1 has briefly described the structure of the overall document, commenting

the most important aspects treated in each of the chapters.

• Chapter 2 provides a basic description of the theoretical concepts and techniques

that will be relevant and used throughout this work. More precisely, it gives

an insight of the concept and mathematics behind artificial neural networks,

focusing on recurrent neural networks. In addition, an introduction of one of

the most known and utilized algorithms for performing the training of ANNs,

namely the backpropagation algorithm, is provided. Finally, LSTM neural

networks are explained, describing its behaviour, basic concepts behind its units

and exposing the main reasons of its creation.

http://www.magicbox.etsit.upm.es/
http://www.etsit.upm.es/

4 1. Introduction and objectives

• Chapter 3 starts presenting the nature of the utilized dataset, and introduce the

aforementioned self-sufficient house where the data was measured. Afterwards,

the preprocessing and arrangement techniques for the data set, selected with the

aim of adapting the data to suitably feed the RNN, is described. In addition,

the main architecture of the RNN models is stated. This architecture will

be inherited with all the subsequent models with the proper modification to

perform the single or multiple step ahead predictions. Finally, the single step

model and the three multi step architectures are presented and analysed.

• Chapter 4 is devoted to the assessment of the designed models in Chapter 3.

It started by introducing the utilized tools and the programming environment

in which the RNNs where implemented and verified. Secondly, the metrics

used to measure the performance of the models are arranged and explained.

Afterwards, a selection of some of the most relevant parameters and algorithms

used to complete the RNN structure and the training process is performed. The

followed method to choose this parameters is based on an empirical procedure.

To conclude the chapter, the verification of the models with the selected

parameters is accomplished. In addition, in this chapter, the reader can consult

a comparison between the models a summary of the metrics measuring the

effectiveness of the designed systems.

• Chapter 5 ends the Thesis with the conclusions on the results, that can be

observed throughout the whole document. In addition, possible future research

lines, in the frame of the treated problem, are exposed.

Chapter 2

Theory

This section is devoted to summarize the main ideas from the existing theory that

will be used throughout this document. For further details we refer to Haykin (2009),

Goodfellow et al. (2016) and Demuth et al. (2014).

Firstly a brief insight of the concepts and computations made by the most basic

artificial neural network, namely the perceptron neural network (and it’s multilayer

variation), is provided. This network will lead to the basic recurrent neural network

which is described as well.

In addition, the backpropagation algorithm, which is one of the most known

machine learning algorithms in the frame of training artificial neural networks, is

explained and analysed. Moreover, to support the application of this algorithm to

the recurrent neural networks, the Backpropagation Through Time (BPTT) variation

is compactly introduced. This variation of the backpropagation method exposes one

of the main reasons of utilizing Long-Short Term Memory (LSTM) neural networks.

LSTM neural networks are the last sort of ANN’s described in this chapter.

2.1 Perceptron and Recurrent neural networks

Recurrent neural networks (RNN) are a type of artificial neural networks with a

feedback connection between the output and the input with unit delays. This feedback

connection permits the RNN to maintain the temporal dependencies. These sort of

artificial neural networks excel when the treated problem involves input and output

data with sequential nature. Some examples of the application of recurrent neural

networks are the machine translation (Cho et al. (2014a)), time series forecast (Giles

et al. (2001)) or speech recognition (Graves et al. (2013)). In this document a time

series prediction problem is stated. Thus a recurrent neural network, more precisely

an LSTM based architecture, will be proposed to deal with our problem.

We start introducing the mathematical notation for describing the basic theory

of the ANNs while they will be appearing in the text. First, let ϕ(·) denote the

arbitrary activation function of the recurrent neural network. Then Φ(v), where

v = (v1, . . . , vJ), is defined as:

6 2. Theory

Φ(v) =


ϕ(v1)

ϕ(v2)
...

ϕ(vJ)

 (2.1.1)

This function, known as the activation vector function of a neural network’s layer, is

usually set to a sigmoid or a hyperbolic tangent (see Figs. 2.1(a) and 2.1(b)) in order

to fix non linear decision boundaries.

(a) (b)

Figure 2.1: Plot of the sigmoid (a) and hyperbolic tangent (b) functions.

Thus, with the previous definitions in mind, we may introduce the simplest neural

network, namely the perceptron, as follows

yk = Φ(Wxk + b). (2.1.2)

where xk and yk are the input and output vectors at the time step k. In addition,

let W be the weight matrix that apply a linear transformation to xk and let b be

a vector, called the bias, that will be used to apply an affine transformation to the

linear transformation W.

This network only has a layer and it is obviously non-recursive. Similarly, Eq.

2.1.3 describes de behaviour of a single layer recurrent neural network

hk = Φ(Wxk + Uhk−1 + b) (2.1.3)

where hk and hk−1 are the RNN’s output at the current and previous time step.

Let U be the weight matrix that applies the linear transformation to hk−1.

It can be observed how the previous output of the network is fed back as an input

of the layer.

2.2. Machine learning algorithm 7

xk W(1) + Φ(1)(·)

b(1)

· · · W(m) + Φ(m)(·)

b(m)

· · · W(M) + Φ(M)(·)

b(M)

y
(M)
k

xk W(1) + + Φ(1)(·)

b(1)

· · ·

z−1U(1)

W(m) + + Φ(m)(·)

b(m)

· · ·

z−1U(m)

W(M) + + Φ(M)(·)

b(M)

h
(M)
k

z−1U(M)

(a)

(b)

Figure 2.2: (a) Computational graph of a multilayer perceptron. (b) Computational

graph of a multilayer RNN.

The networks in Eq. 2.1.2 and Eq. 2.1.3 can be extended to the case of multi

layers. Let M be the number of layers and U(m),W(m),b(m) the weight matrices and

biases at the m-th layer. Moreover, let Φ(m) be the activation vector function at the

m-th layer. Also, let h
(m)
k be the output vector at the m-layer. Then, the multilayer

perceptron is described as (see Fig. 2.2 a){
y
(m)
k = Φ(m)

(
W(m)y

(m−1)
k + b(m)

)
with m ∈ {2, . . . ,M}

y
(1)
k = Φ(1)

(
W(1)xk + b(1)

) (2.1.4)

It can be noticed how in the multilayer perceptron, the time indexing variable k could

be omitted due to the absence of a feedback connection. Finally, the multilayer RNN

works as follows (see also Fig. 2.2 b) h
(m)
k = Φ(m)

(
W(m)h

(m−1)
k + U(m)h

(m)
k−1 + b(m)

)
with m ∈ {2, . . . ,M}

h
(1)
k = Φ(1)

(
W(1)xk + U(1)h

(1)
k−1 + b(1)

)
(2.1.5)

2.2 Machine learning algorithm

The machine learning techniques focus on training artificial neural networks by

minimizing certain error or loss function L. For this purpose, in a supervised learning,

a collection of inputs I and outputs or targets T is required (see Chapter 3.1). Then,

the error function measures the distance between the elements of T and the predictions

generated by the network when receives inputs from I.

The back-propagation algorithm Rumelhart et al. (1988) is the most utilized

supervised machine learning algorithm to train artificial neural networks, under the

assumption that the activation functions are differentiable enough. This method is

based on the gradient descent algorithm, aiming to adjust the weights and biases of

the ANN to minimize L.

8 2. Theory

In order to describe the method, we treat first the perceptron case to afterwards

extend the method to the recurrent case. The gradient descent algorithm iteratively

reaches a local minimum of the loss function L with respect to the artificial neural

network parameters. The parameters of the ANN are the entries of all the weight

matrices W(m) and all the biases b(m) (see Eq. 2.1.4). Nevertheless, the precise

definition of the real function L is postponed till Eq. 2.2.3. Firstly, the main iteration

of the method, assuming that L is sufficiently differentiable, is presented. This process

is performed by computing the gradient of L to minimize and update the network

parameters with a proportion of that gradient.

Let Θ(m) be the parameters involved in the m-th layer of the ANN, where m ∈
{1, ...,M}. The gradient descent algorithm uses the following equation to update the

parameters Θ(m),

Θ(m)(r + 1) = Θ(m)(r) + α∇Θ(m)L(Θ(m)(r)) (2.2.1)

where r represents the index of the iteration process, ∇Θ(m) represents the gradient

with respect to the variables Θ(m), and α is the learning rate constant that establishes

the proportion of the gradient used to update the parameters. A wise selection of the

learning rate is crucial to perform the training successfully.

Now, we introduce the loss function. Let t(n) denote the target examples and

y(n) the predictions made by the system for the sample n. Then, we introduce the

vector `̀̀(n) as

`̀̀(n) = t(n)− y(n). (2.2.2)

In this situation, we introduce the loss function as

L =
1

N

N∑
n=1

‖`̀̀(n)‖22 (2.2.3)

where n ∈ {1, ..., N} denotes the sample n, and ‖ · ‖2 denotes the Euclidean 2-norm.

In addition, N represents the number of samples taken into account to compute the

next descent in the algorithm with Eq. 2.2.1. If an online training is performed, then

N = 1, because a parameter update is made with every sample provided. In contrast,

the batch training can be used. This mode adjusts the weights and biases after N > 1

samples are fed.

In this situation, the back-propagation algorithm consists of the following three

main steps:

1. The first stage of the algorithm is the forward-propagation. This process feeds

the input data into the ANN in order to compute the loss function L with the

system’s output.

2. Once the loss function is calculated, the back-propagation step is performed.

This stage aims to compute the gradient of L to update the ANN parameters as

established in Eq.2.2.1. Then the gradient ∇Θ(m)L(Θ(m)(r)) can be computed

as,

∇Θ(m)L(Θ(m)(r)) = δδδ(m)(r)y(m−1)(r) (2.2.4)

2.2. Machine learning algorithm 9

with y(m−1)(r) being the output of the (m− 1)-th layer at the iteration r (see

Eq. 2.1.4), and δδδ(m)(r) being the local gradient or sensibility of the m-th layer.

Moreover, δδδ(m) can be computed as follows: δδδ(M)(r) = −2(`̀̀(r) ◦ Φ̇(M)(v(M)(r)))

δδδ(m)(r) =
(
Φ̇(m)(v(m)(r)) ◦ (Θ(m+1)(r))

)T
δδδ(m+1)(r) ∀m 6= M

(2.2.5)

where ◦ denotes the Hadamard product of matrices (i.e. (Aij) ◦ (Bij) =

(AijBij)), Φ̇ is the derivative of Φ with respect to the variable of ϕ (see Eq.

2.1.1) and

v(m)(r) = W(m)(r)y(m−1)(r) + b(m)(r) (2.2.6)

with y(0)(r) = x(r). In addition, AT denotes the transpose of the matrix A.

3. The final stage simply applies the results obtained by the back-propagation

process to compute the next step in the gradient descent. The substitution of

Eq. 2.2.4 into Eq. 2.2.1 leads to the final equation of the back-propagation

algorithm

Θ(m)(r + 1) = Θ(m)(r) + αδδδ(m)(r)y(m−1)(r) (2.2.7)

The described back-propagation algorithm addresses the training process of

feedforward (non-recurrent) artificial neural networks. In order to train a recurrent

neural network, a variation of this algorithm is required. One of the possible solutions

is the back-propagation-through-time (BPTT) algorithm. To understand the BPTT

algorithm a brief insight of the unfolding of a recurrent neural network is needed.

An unfolding of a RNN consists of converting the recursive neural network into

a feedforward network along a finite number of time steps. Eq. 2.2.8 denotes the

unfolding of 3 time steps of a recurrent neural network described by the formula of

Eq. 2.1.3.

hk = Φ(Wxk + U(Φ(Wxk−1 + U(Φ(Wxk−2 + Uhk−3 + b)︸ ︷︷ ︸
hk−2

+b)

︸ ︷︷ ︸
hk−1

) + b) (2.2.8)

Fig. 2.3 depicts the unfolding process computed in Eq. 2.2.8. An analogous treatment

can be applied to the case of multi layers RNN. Chapter 3.5 harnesses this temporal

unrolling process in order to develop multiple step forecasting models.

Thus, BPTT is an extension of the back-propagation algorithm that performs

supervised machine learning of recurrent neural networks. The basic idea of this

variation is to unfold the RNN τ <∞ time steps to convert the recursion into a multi

layer perceptron. Therefore the regular back-propagation method can be applied to

the unfolded RNN.

There are few details that should be pointed out about BPTT. The first of them

is that along the unrolled RNN the same parameters (i.e. the entries of the weight

10 2. Theory

RNN RNN RNN

xk−2 xk−1 xk

hk−3

hk−2 hk−1

hk

Figure 2.3: Illustration of the unfolding process described in Eq. 2.2.8

matrices and biases of the RNN) are applied and optimized. In addition, the back-

propagation of the errors is just performed along the τ time steps. This leads to the

requirement of the arrangement of the samples in the shape of [τ , dim(xk)].

Let us finish this subsection commenting some of the disadvantages of the BPTT,

namely the fact that BPTT can trigger the vanishing of the gradient phenomenon.

The vanishing of the gradient means that during the computation of the gradient in

the back-propagation (see Eq. 2.2.4) it tends to an extremely small value. This causes

the learning process to be unfeasible. The vanishing of the gradient happens when

the number τ , of time steps, is too large. Then, the unfolded network is a multi layer

perceptron with τ + 1 layers. Moreover, there is a composition of τ + 1 activation

functions that strengthen the vanishing gradient, for instance when these functions

are either sigmoid or hyperbolic tangent functions. Therefore the regular recurrent

neural networks have strong limitation when long term dependencies are considered.

This is the motivation of Section 2.3 where a solution to this problem is described.

2.3 LSTM neural networks

The vanishing of the gradient problem described above motivates the use of a

particular type of RNN, namely LSTM neural network, that solves this issue. Long

short-term memory (LSTM) neural networks are recurrent neural networks able to

maintain both short and long time dependencies through its states. It is composed

by gates that control the information that is stored in the states by filtering the input

and output flows of data. These gates are called forget, input and output gates. An

LSTM unit contains two different states, the hidden state (hk) which is analogous to

the state of regular RNN described in Eq. 2.1.3. This state represents the output

value of the LSTM layer set by the output gate. In contrast, the cell state (ck) is the

actual memory that is controlled by the forget and input gates. The cell state is the

responsible of maintaining the temporal dependencies.

Eq. 2.3.1 states the set of computations performed by an LSTM layer with

multiple units. In addition, the computational graph of the formulas is depicted

in Fig. 2.4.

2.3. LSTM neural networks 11

fk = σ(Wfxk + Ufhk−1 + bf)

ik = σ(Wixk + Uihk−1 + bi)

ok = σ(Woxk + Uohk−1 + bo)

cik = ik ◦ tanh(Wcxk + Uchk−1 + bc)

ck = fk ◦ ck−1 + cik

hk = ok ◦ tanh(ck)



(2.3.1)

ck+

×

×

fk

z−1

ik

tanh(·)

ok

tanh(·) × hkxk

z−1

ck−1

hk−1

Figure 2.4: Computational graph of an LSTM layer.

In both, Eq. 2.3.1 and Fig. 2.4 fk, ik and ok are the forget, input and output gates

respectively. σ and tanh represent the sigmoid and the hyperbolic tangent activation

functions and ◦ denotes the Hadamard product.

It can be noticed how all the gates (fk, ik and ok) receive the input vector (xk) at

the current time step and the previous hidden state (hk−1). However each gate has its

particular set of parameter matrices (W and U) and its own bias vector (b). Thus,

the number of training parameters highly increases with respect to the normal RNN.

Firstly, fk denotes the forget gate. This gate represents the amount of information

that will be forgotten or vanished from the cell state at time step k. In addition, the

input gate controls the extent of new data that is added to the cell state. In Eq. 2.3.1

cik denotes the new update added to the cell state to acquire the new information at

time state k. Finally, ck is updated by the elimination of old memory, by multiplying

the forget gate vector and the previous cell state, and the addition of the new insights

acquired in cik .

12 2. Theory

The output gate is responsible of controlling the amount of data that is forwarded

to the hidden state and thus the output value of the layer.

Chapter 3

Design Process

The aim of this chapter is the description of the steps followed in the design process

of an ANN for the prediction of the power consumption of a heating, ventilation and

air conditioning (HVAC) in a real and self sufficient solar house. Firstly, the different

features contained in the data set will be described and visualized. In addition, the

real house from where the data was measured will be introduced and referenced.

Secondly, a set of suitable data preprocessing and arrangement techniques will be

proposed. The adaptation of the data set to feed a neural architecture is a crucial

design stage that can significantly improve the performance of the system.

Finally, several ANNs are designed to make power consumption forecasts. One

of the models will be designed in order to make single step predictions. In contrast,

three alternative models will be dedicated to the multiple step ahead predictions. All

the models are modification of a main neural architecture that generalizes all of them.

3.1 Data acquisition system

In order to develop the training process of the ANN through the back-propagation

algorithm, a dataset, containing the power consumption records, and several inputs

with a remarkable correlation with the consumption, is required. To assess this task,

a dataset was extracted from a real solar house called MagicBox.

MagicBox is a self-sufficient solar house (see Fig. 3.1) located at the Escuela

Técnica Superior de Ingenieros de Telecomunicación (ETSIT) of the Universidad

Politécnica de Madrid (UPM). The house integrates sustainable elements based

on renewable energies, self-sufficiency energetic methods, bioclimatic architecture

and recycled construction materials. In addition, it includes Information and

Communication Technologies to monitor and control the house power flow.

http://www.magicbox.etsit.upm.es/

14 3. Design Process

Figure 3.1: Frontal view of the MagicBox.

MagicBox was originally designed to participate in the Solar Decathlon 2005

contest, being the first house from an European university to take part in this event

(see Caamaño-mart́ın et al. (2005) and Calvo-Fernández et al. (2005)).

Multiple studies have been developed on the MagicBox. In Castillo-Cagigal

et al. (2011c) an heterogeneous collaborative sensor network designed to manage

the energy performance of the magicBox was described. In addition, Castillo-

Cagigal et al. (2011b) presents the operation of a semi-distributed electrical demand-

side management system with the PV generation in order to improve the self-

consumption. Moreover, the optimization of the self-consumption in a system with

the PV generation coupled to a battery energy storage system and connected to the

grid was studied and tested in Solano et al. (2017).

In this Thesis, only the HVAC system and the sensors that measure the different

variables were utilized. The consideration of other features of the MagicBox, such as

the ones mentioned above, in combination with the designed and implemented neural

predictor of the HVAC system’s consumption, is left as future research work.

Due to the nature of the problem, the input data set is strongly related to the

weather. On one hand, one considers outdoor measurement variables such as the

outdoor temperature [oC], the relative humidity [%], the irradiance [W
m2] and the C02

measure. These input variables will provide the machine learning system with an

insight of the physical behaviour of the weather. On the other hand, two indoor

variables are considered: the indoor temperature of the house, where the HVAC

system is located, and the reference temperature set by the user to fix the desired

indoor comfort temperature. In conclusion, the ANN will receive the 6 aforementioned

3.1. Data acquisition system 15

input variables and output the forecasted power consumption, which is contained in

the data set as well. This output variable will be provided to the ANN in the format

of target examples of the desired output values during the learning process, as stated

in Section 2.2.

0 20 40 60 80 100
days

0

20

T
o

u
t

[º
C

]

Outdoor temperature

0 20 40 60 80 100
days

10

20

T
in

 [
ºC

]

Indoor temperature

0 20 40 60 80 100
days

22.5

25.0

27.5

T
re

f
[º

C
]

Reference temperature

20 40 60 80 100
days

0

500

1000

G
h

rz
 [

w
/m

2
]

Irradiance

0 20 40 60 80 100
days

0

500

C
O

2
 [

p
p

m
]

CO2

0 20 40 60 80 100
days

20

40

H
u

m
 R

e
l
[%

]

Relative Humidity

Figure 3.2: Representation of the different measured input features.

An important issue regarding the data set variables is the time dependency. The

system will not explicitly receive any time variable. Due to the fact that RNNs are

utilized, the temporal behaviour will be implicitly inferred by the model. In order

to enable this insight to be acquired by the RNN, both input and targets should be

ordered with an equal time difference between samples. Fig. 3.2 shows the different

input time series. In contrast, the power consumption of the HVAC system can be

visualized in Fig. 3.3. The data was measured from December 2nd 2016 to August

8th 2017, with 1 minute time separation between samples. This makes 7 time series,

each with a total amount of 161281 samples.

16 3. Design Process

20 40 60 80 100
days

250

500

750

1000

1250

1500

1750

2000
P

ow
er

 [W
]

Power consumption

Figure 3.3: Representation of the power consumption of the HVAC system to be

forecasted.

Observing the power graphic in Fig. 3.3, different behaviours of the power

consumption can be noticed along the time axis depending on the season of the year.

In addition, the power consumption data was fixed into multiples of 60 W during the

measure process. This leads into a lost of resolution that cause a quantification error

of this variable and the actual consumption.

3.2 Data preprocessing

The data, as mentioned in Section 3.1, was obtained from several sensors by an

automated data acquisition system. This measured data is in a raw format. Thus,

in order to train the RNN, an appropriate set of preprocessing techniques should be

applied to the original data.

Data preprocessing consists of a selected set of transformations that provides a

suitable conditioning of the raw data set such that the feeding of the RNN improves

the training performance. In addition, the preprocessing transformations should be

wisely selected depending on the problem to be solved and the learning system to be

used.

In this section several preprocessing techniques are proposed and described in the

frame of preparing time series data to feed an RNN. For this purpose, in the sequel,

we will use the following notation. The RNN receives, as input, r time series (r = 7)

of data, and generates, as output, s time series (s = 1); each time series is a vector

of length ` (representing the number of samples). For i ∈ {1, . . . , r + s},

xi(k) =

 xi(1)
...

xi(`)

 (3.2.1)

represents the corresponding time series, and k denotes the discrete time variable,

with a sampling period of 1 minute. In Fig. 3.4 the reader may see a description

of the data preprocessing process together with the data arrangement process to be

described in the next section.

3.2. Data preprocessing 17

3.2.1 Normalization

The first considered preprocessing technique is the so called data normalization. Data

set normalization consists of transforming the original range of the time series into a

range between 0 and 1. More precisely, the preprocessing works as follows: let xmin
i

denote the minimal value that xi(k) takes when the time k moves from 1 to `. That

is,

xmin
i = min{xi(k) | k ∈ {1, . . . , `}}.

Similarly,

xmax
i = max{xi(k) | k ∈ {1, . . . , `}}.

In this situation, the time series xi(k) is normalized as

x̃i(k) =
xi(k)− xmin

i

xmax
i − xmin

i

(3.2.2)

Note that now the normalized time series has the interval [0, 1] as range.

The use of normalization techniques is crucial in ANNs. Clear examples of neural

networks using normalization are the LSTM. The underline intuitive reason for this is

the fact that, in general, LSTM cells contain sigmoid or hyperbolic tangents activation

functions (see Fig. 2.1) inside their multiple gates; see Section 2.3 for further details.

Note that ranges of these activation functions are the intervals (0, 1) and (−1, 1),

respectively. Furthermore, the interval (0, 1) is clearly contained in the part of the

corresponding function domains where the non-saturation behaviour occurs. On the

other side, focusing on the particular problem treated here, HVAC power consumption

data set original ranges, both of the features and targets, are very large compared

with the range of the activation function (Fig. 2.1). Therefore, normalization is

mandatory.

3.2.2 Data sampling

As described in Section 3.5, when making future predictions of multiple time steps,

the original 1 minute period of the data sampling becomes unfeasible for the resources

available. This is because with this original data time resolution, a one day (short

term) forecast will require about 1440 neurons in the output layer of the first multi

step model proposed in Section 3.5.2, and about 1440 input delays in the second

multi-step architecture.

To overtake this difficulty, and hence in order to preserve the information of the

data during the downsampling process, a data sampling technique is required. This

process will consist essentially in two steps. First an increase of the time separation

between samples, in the discrete time variable domain, is performed. Second, a

suitable value for the time series is proposed. In this Thesis, an increase of 15 minutes

is stated. The corresponding value of the new time series will be the mean of the values

of xi in the enlargement period, so that the information within the 15 minutes is not

lost. More precisely, the details are as follows. First of all, let us say that we will

consider the original discrete time variable k (see Eq. 3.2.1), which takes values from

1 to ` minutes, and a new time variable, namely k∗, which takes values from T to

18 3. Design Process

nT minutes, where nT is the greater multiple of T being smaller than `; in our case

T = 15 minutes. So, k = Tk∗. Then, the new time series is defined as

zi(k
∗) =

1

T

k=(k∗+1)T∑
k=k∗T

xi(k) (3.2.3)

The selected sampling period T in the multi step architectures was set to 15

minutes. This resolution allows to reduce the number of samples in the prediction of

a day, from 1440 to 96.

3.3 Data arrangement

In this section, a subdivision of the input data set into subsets that are used in the

performance and supervision of the machine learning process of the ANN is tackled.

Let us assume that the input data set Adata has already been preprocessed by means

of the techniques described in Section 3.2.

In the learning process two main parts can be distinguished: the training and the

certification, or test, on how the network has been trained. Based on this, the data

set Adata is decomposed into three subsets

Adata = (Atrain ∪ Aval) ∪ Atest,

where the first two subsets are devoted to the training and dynamical validation of

the training, while the third subset is used to test the final result of the training

process. In addition, due to the sequential nature of our problem, it is crucial that

the mentioned subsets contain ordered data to preserve the temporal behaviour of

the time series.

The training subset Atrain is used to train the artificial neural network. Thus, this

data set is provided to the back-propagation algorithm (see Section 2.2) to adjust

the weights of the model in order to minimize the featured error. Usually, this first

partition element has the largest proportion of data, among the three subsets, so that

process has enough examples to train accurately.

During the training process, overfitting may occur. In this case, the trained

system tends to learn and memorize only the samples provided during the training

process. This leads to a poor performance when new examples are assessed and, in

this situation, the ANN does not generalize properly. The aim of the subset Aval is

mainly to prevent this phenomenon. The main idea is to assess the samples in the

validation group during training to verify how the system behaves when non training

examples are provided. The validation subset does not interact at all with the back-

propagation algorithm, it only brings the designer an insight of the overfitting of the

network so that hyperparameters can be wisely adjusted.

Once the training process has concluded, and the weights have been set to their

final values, the system has to be tested. For this purpose, the test subset Atest

is used. This subset contains data elements that has not been utilized during the

training process of the ANN. In order to test the trained network, the elements in

3.4. Neural architecture 19

Atest are provided to the RNN, and the results are compared with the corresponding

known outputs.

In order to train and test the system, the size of the described subsets were fixed

to 75% for the training subset Atrain, 5% for the validation subset Aval, and 20%

for testing the system. In Fig. 3.4 one may see a description of the whole data

arrangement process.

Raw
data set Normalization Filter Sampling

Data Split

Backpropagation

ANN

Trained ANN

Metric’s evaluation

0 5 10 15 20 25 30
days

0

250

500

750

1000

1250

1500

1750

2000

P
ow

er
 [W

]

Test Predictions

Test targets
Test predictions

Training subset

Validation
subset

Test Subset

Weight
updates

Data preprocessing

Testing

Training

Figure 3.4: Diagram of the design process.

3.4 Neural architecture

This section is devoted to introduce the neural network used to forecast the

consumption of the HVAC system. All the subsequence models described throughout

this document are extensions, or modifications, of the architecture proposed here.

Furthermore, all of them consists of recurrent neural networks as their main processing

units.

In addition, initially the ANN was considered to forecast the consumption at

only one step ahead. Nevertheless, due to the practical limitations of this model,

an evolved architecture is also designed. This novel architecture exploits the single

step forecast ANN to enable the prediction of multiple future time steps of the power

20 3. Design Process

consumption. Section 3.5 extends the main model proposed here to implement the

different prediction structures.

The consumption of HVAC systems, as well as the input variables, are highly

influenced by multiple periodic behaviours. On one hand, outdoor temperature, solar

irradiance and humidity have a notorious periodic variation depending on both the

hour of the day and the month of the year. Thus, it can be seen as a daily periodicity

with lower frequency variations attached. On the other hand, the human behaviour

enforces temporal dependencies in other input variables such as the indoor reference

set point and the actual indoor temperature. All the periodic input mentioned above

make the output power consumption to behave periodically as well. Therefore, in

order to take into account these strong temporal dependencies of the time series to

be forecasted, a RNN is highly recommended.

LSTM Layer 1

LSTM Layer 2

Dense Layer

yk+1 · · · yk+H

xk

h
(1)
k

h
(2)
k

Figure 3.5: Main structure of the proposed model. LSTM layers are building blocks

containing LSTM neural networks and dense layer represents a single layer perceptron.

Fig. 3.5 shows the main RNN used throughout this document. This generic model

will be adapted and optimized along the remaining sections. Let H be the number of

predictions of the network with H = 1 or H = 96 that corresponds to 1 day prediction

after applying the data preprocessing techniques described above. It is formed by two

LSTM layers (described in Section 2.3), with N1 LSTM units in layer 1 and N2 in

layer 2 (the selection of a suitable value of N1 and N2 is studied in chapter 4), followed

by a perceptron layer to output the corresponding prediction. The internal layers 1

and 2 consist of the LSTM computational graph described in Section 2.3 (see Fig.

3.5. Prediction techniques 21

2.4).

To be more precise, let X denote the matrix

X = (x1(k), . . . ,x7(k)) =

 x1(1) · · · x7(1)
...

...

x1(`) · · · x7(`)

 (3.4.1)

where xi(k) is as in Eq. 3.2.1. Furthermore, let be denoted xk as the k-th row of X,

that is

xk =
[
x1(k), · · · , x7(k)

]
(3.4.2)

The first layer of the network receives xk as input to generate h
(1)
k as output (see

Eq. 2.3.1 and Fig. 2.4). h
(1)
k is a vector which length equals the number of units in

the layer (N1). This new vector h
(1)
k is then taken as input of the second layer. The

second layer, using again the computational graph in Fig. 2.4, generates a new vector,

h
(2)
k , which length is the number N2 of units of the second LSTM layer. Finally, the

non-recurrent single layer gets h
(2)
k to derive the prediction values yk+1, . . . , yk+H .

In the next section, we will see different modifications of the main model to obtain

the predictions.

3.5 Prediction techniques

The main model, described in Section 3.4, predicts H future steps. When H = 1,

the prediction problem is addressed by means of an artificial neural network that

provides the next step in the time series. Experiments in Section 4.4 show that

this approach has high performance results. However, under a realistic point of

view, forecasting step by step, with short temporal sampling resolution, does not

provide enough information. In order to overtake this disadvantage, different modified

versions of the neural architecture for H > 1 are proposed. The main differences

between the aforementioned prediction methods are the system’s output shape, the

sampling resolution, and the data inputs and targets arrangement used to feed the

RNN during the training process.

More precisely, the next subsections describe how to extend the main model

proposed in Section 3.4 to deal with the prediction problem; in Subsection 3.5.1

we approach the single step prediction, and in Subsection 3.5.2 the multi step

architectures are presented. Both models are designed using unfolding techniques

of the RNN so that a deeper understanding of the temporal behaviour is achieved.

3.5.1 Single step ahead prediction architecture

In this subsection, H = 1 is considered, i.e. the RNN predicts only one step ahead. In

addition, let τ be the unfolding index used to unroll the recurrent part of the network

(see Subsection 2.2). Thus, the network predicts the power consumption at time step

k + 1 considering the τ previous instants. The number τ of past time steps depends

on the sampling resolution of the data set. That is, τ is taken as

τ =
1440

resolution
(3.5.1)

22 3. Design Process

where 1440 is the number of time steps in one day within the 1 minute original

resolution of the data set. Therefore, a single step ahead predictor may be represented

as (see Eq. 3.4.2):

yk+1 = f̂(xk,xk−1, . . . ,xk−τ) (3.5.2)

where f̂ denotes the execution of the designed RNN.

Fig. 3.6 represents the unfolding of the model explained before. On one hand, the

vertical arrows depict the data flow between layers at a fixed time step. On the other

hand, the horizontal arrows mean the recursion among time steps. This recurrence

is represented with the delivery of the hidden state and cell state to the next time

step. Every time step can be understood as a new instance of the model with the

corresponding hidden state (h
(j)
k), cell state (c

(j)
k), and input at that precise instant.

The size of the unfold is equal to the number of considered past time steps.

LSTM LSTM · · · LSTM LSTM

LSTM LSTM · · · LSTM LSTM

Dense

xk−τ xk−τ+1 xk−1 xk

yk+1

h
(1)
k−τ

c
(1)
k−τ

h
(1)
k−τ+1

c
(1)
k−τ+1

h
(1)
k−1

c
(1)
k−1

h
(2)
k−τ

c
(2)
k−τ

h
(2)
k−τ+1

c
(2)
k−τ+1

h
(2)
k−1

c
(2)
k−1

Figure 3.6: Unrolling of the single step prediction recurrent neural model in Fig. 3.5.

As a final comment, let us remark that, in the single prediction model, a new input

is provided to the architecture at every time step. However, the single prediction is

only made at the last time step (corresponding to the previous instant of the forecast).

This is an important issue and one of the main differences with the multi step forecast

treated in the Subsection 3.5.2.

3.5.2 Multi step ahead prediction architectures

The main aim of the ANN of this Thesis is to make short term multi step predictions

of the consumption. More precisely, the model will take the previous day in order to

forecast the next day. The following formula describes the main behaviour of multi

step prediction:

[yk+1, yk+2, . . . , yk+H] = f̂(x(k),x(k − 1), . . . ,x(k − τ)) (3.5.3)

3.5. Prediction techniques 23

This means that, in contrast with Eq. 3.5.2, the system’s output is a vector with the

predictions of the next day.

There are several techniques to achieve the multi step predictions. In this

document we propose three different methods.

First multi step prediction approach: MSPM-1

The first approach, refered to as Multi Step Prediction Model 1 (MSPM-1), is to

forecast the entire following day at once. All the predictions will be made at the last

time step by providing the output perceptron layer with enough neurons. This model

will requireH neurons in the output layer, whereH is the number of future predictions

to be forecasted. Thus each neuron in this non-recurrent layer is responsible of the

forecasting of a single time step prediction. The day ahead prediction is formed by

the union of all neuron’s output.

LSTM LSTM · · · LSTM LSTM

LSTM LSTM · · · LSTM LSTM

Dense

xk−τ xk−τ+1 xk−1 xk

yk+1 yk+2 · · · yk+H−1 yk+H

h
(1)
k−τ

c
(1)
k−τ

h
(1)
k−τ+1

c
(1)
k−τ+1

h
(1)
k−1

c
(1)
k−1

h
(2)
k−τ

c
(2)
k−τ

h
(2)
k−τ+1

c
(2)
k−τ+1

h
(2)
k−1

c
(2)
k−1

Figure 3.7: Unrolling of the MSPM-1

Fig. 3.7 shows the unrolling of the MSPM-1. This structure is highly similar to

the one displayed in Fig. 3.6. The main difference is the manner in which the model

makes the predictions. In both figures the predictions are made at the last time

step, once all the input sequence has been provided. In the former, the input of the

perceptron layer is only the hidden state of the second LSTM layer at the last time

step, fixing all the sequence information in a single vector. However, in MSPM-1, the

perceptron layer is fed with the hidden states of all the past time steps providing the

forecast of the next day on the same instant. A last remark on this first multiple step

prediction approach is that it does not impose the length τ of the input sequence,

and the length H of the output sequence, or number of time steps to forecast, to be

equal.

24 3. Design Process

Second multi step prediction approach: MSPM-2

The second model, proposed makes the short term predictions with a noticeable

different method. This approach does not wait for the whole input sequence to be

provided in order to make the predictions. It outputs the estimations of the consumed

power in a continuous data flow at the same time the new inputs are fed.

LSTM LSTM · · · LSTM LSTM

LSTM LSTM · · · LSTM LSTM

Dense Dense Dense Dense

xk−τ xk−τ+1 xk−1 xk

yk+1 yk+2 yk+H−1 yk+H

h
(1)
k−τ

c
(1)
k−τ

h
(1)
k−τ+1

c
(1)
k−τ+1

h
(1)
k−1

c
(1)
k−1

h
(2)
k−τ

c
(2)
k−τ

h
(2)
k−τ+1

c
(2)
k−τ+1

h
(2)
k−1

c
(2)
k−1

Figure 3.8: Unrolling of the MSPM-2

Fig. 3.8 illustrates the MSPM-2. In this architecture the output perceptron layer

consists of a single neuron. The contrast with the former structures resides in the

fact that the model makes a prediction per time step starting when the first input

individual at time t− τ is provided. At the last instant, when the last element of the

input sequence is fed, all the predictions of the next day are made. In addition, the

same perceptron layer (with the same weights) is applied at every time step being

provided with the corresponding outputs of the LSTM layer.

This second approach has some limitations that will be mostly overtaken in the

last proposed multiple step prediction method. The first constraint of this structure

is, as mention above, that the input sequence length (τ) and the forecasted sequence

(H) must be the same. This is caused by the continuous flow of the output data. In

addition, because predictions are made at the same time that inputs are provided,

the outputs only take into account the input at previous instants. This causes a

worse performance in early time steps due to the lack of enough input elements of the

sequence to process. This issue leads to the second constraint of the MSPM-2.

Third multi step prediction approach: MSPM-3

Finally, in order to solve the problem described above, MSPM-3 is proposed.

This new approach is based on the artificial neural network called encoder–decoder

3.5. Prediction techniques 25

neural network proposed in Cho et al. (2014b), as well as on the sequence–to–sequence

neural network described in Sutskever et al. (2014). The architecture contains two

basic recurrent layers: the encoder or reader and the decoder or writer. The encoder

is responsible of transforming an input sequence of data into a fixed-length vector

representing the whole sequence, namely the context(c). In contrast, the decoder

receives the context produced by the encoder and converts it into the decoded

sequence, which is indeed the output sequence.

LSTM LSTM · · · LSTM LSTM

LSTM LSTM · · · LSTM LSTM

xt−τ xt−τ+1 xt−1 xt

Dense Dense Dense Dense

yk+1 yk+2 yk+H−1 yk+H

h
(1)
t−τ

c
(1)
t−τ

h
(1)
t−τ+1

c
(1)
t−τ+1

h
(1)
t−1

c
(1)
t−1

h
(2)
t+1

c
(2)
t+1

h
(2)
t+2

c
(2)
t+2

h
(2)
t+H−1

c
(2)
t+H−1

Encoder

Decoder

Figure 3.9: Unrolling of the MSPM-3.

Fig. 3.9 represents the architecture of the unfolded encoder–decoder neural

network. It can be noticed that in the proposed MSPM-3 both encoder and decoder

are LSTM layers. The feedforward dense layer adapts the decoded sequence to

generate the actual prediction. In addition, the MSPM-3 can be understood as a

hybrid architecture of the single step prediction model and MSPM-2.

The encoder–decoder architecture is mainly applied to the field of machine

translation, such as in Cho et al. (2014a), where the encoder receives a sequence of

words in a language A and the decoder returns the translated sequence from language

A to a second language. However, in order to solve multi step ahead time series

prediction problem, the model has to be adapted and some modifications need to

be made. Firstly, for the data set treated in this project, the context vector does

not provide enough resolution to maintain the relations between the input features

and the power predictions. Aiming to solve this issue, in this Thesis, the feeding of

the input sequence to the decoder as well (jointly with the context) is considered.

This modification was proposed in Rahman et al. (2018) when applied to an energy

prediction problem.

26 3. Design Process

Chapter 4

Implementation and Verification

This chapter is devoted to describe the different steps followed in the implementation

of the models designed in Chapter 3. In addition, the assessment of the architectures

is developed, comparing the performance provided by each of them.

Firstly, the utilized implementation tools and programming environment is

introduced. Moreover, the reader can consult the corresponding section in order

to acquire some basic insights of the operation and characteristics of the libraries

used.

Afterwards, several metrics, aiming to measure the performance of the models, are

stated. Those metrics are used in the last section of the chapter to verify the proper

behaviour of the final systems. Before the models are finally assessed, an empirical

procedure to select the most suitable parameters of the MSPMs is carried out. This

process will be applied to the number of layers, the number of units, the learning rate

parameters, and the learning optimizer to be used.

To conclude, the final models with the previously selected parameters are tested

in the frame of visualizing its time series predictions and computing the metrics of

those output forecasts. The MSPMs’ output values are compared concluding the most

suitable ones in a real application.

4.1 Implementation environment and tools

In this section we introduce the tools used during the implementation and verification

of the RNNs described in Chapter 3. The models were mainly implemented and

assessed in the python framework called Keras. Although Keras was mostly used,

a lower level Python’s framework called Tensorflow, was studied and analysed as

a complementary implementation tool. These libraries enable the possibility to

run their programs on Graphical Processing Units (GPU) with the CUDA parallel

computing. Indeed, all the code developed during this research was run on a GPU,

providing a huge enhancement of the execution time. More precisely, both Keras and

TensorFlow are open source Python’s machine learning frameworks for the building,

training and testing of ANNs.

On one hand, TensorFlow uses the programming paradigm of computational

graphs. A computational graph is the set of nodes, inputs and outputs and data flow

https://keras.io/
https://www.tensorflow.org

28 4. Implementation and Verification

that describe the behaviour of an algorithm. The nodes represent the mathematical

operations to be computed, inputs are the input values of the algorithm or expression,

and outputs are the result of applying the corresponding computations. TensorFlow’s

computational graphs are created in an static way (in contrast with the dynamic

computational graphs) where the nodes and data flow are generated with generic

inputs called placeholders. Then, the user can execute the computational graph by

creating a session and running the graph with an assignation of the defined input

placeholders. This approach enables the running of the same graph with different

inputs in the same session.

On the other hand, Keras is a higher level library that can run on top of the lower

lever frameworks TensorFlow, Theano or CNTK (being TensorFlow the one used in

this Thesis). Keras enables a programming environment with a friendly, modular

and scalable creation of ANNs. The Keras’s models can be generated in two different

approaches: the sequential or the functional models. The two of them facilitate an

alternative manner to build the systems before they are compiled and trained. The

sequential one stands out for the simplicity of the models. In contrast, the functional

approach can be used for the creation of more complex ANNs unreachable with the

sequential model. Both possibilities are briefly analysed below:

• Sequential models. They provide to the designer an intuitive implementation

tool of the ANNs. The models are created by adding layers sequentially to

the structure and compiling it when the architecture is completed. Listing 4.1

shows the implementation of a multilayer perceptron with 2 layers, 10 inputs

and 4 outputs. One can observe that the compilation method also establishes

the loss metric (see Eq. 2.2.3) and the backpropagation optimizer to be used

(optimizers will be described in Section 4.3.2). The fit method is utilized to

perform the training of the ANN with the specified training parameters.

Listing 4.1: Sequential model example of a MLP with Keras

model.Sequential ()

model.add(Dense(8, input_shape =(10 ,)))

model.add(Activation(’tanh’))

model.add(Dense (4))

model.add(Activation(’tanh’))

model.compile(loss = ’mse’, optimizer = ’adam’)

model.fit(X_train , Y_train , nb_epoch =50, batch_size =16)

• Functional models. They enable the creation of more complex ANNs. Some

examples of features allowed by the functional model are for instance the multi

input and multi output neural networks, parallel layers that can be merged

and shared layers. In contrast with the sequential model each layer receives as

argument the output of the previous layers (the input is considered a layer in

this approach). Finally the inputs and outputs of the system that will be used

in the machine learning algorithm must be specified. The implementation of a

MLP neural network can be checked in Listing 4.2.

4.2. Metrics 29

Listing 4.2: Functional model example of a MLP with Keras

mlp_input = Input(shape = (10,))

layer1 = Dense(8, activation=’tanh’)(mlp_input)

layer2 = Dense(4, activation=’tanh’)(layer1)

model = Model(inputs =[mlp_input], outputs =[layer2])

model.compile(loss = ’mse’, optimizer = ’adam’)

model.fit(X_train , Y_train , nb_epoch =50, batch_size =16)

4.2 Metrics

In order to evaluate the performance of the model after the training process is applied,

several metrics should be selected. However, the suitable metrics vary depending on

the application. Due to the fact that time series prediction is the aim of this research,

metrics based on the numerical error and correlation computation are applied. Thus,

this section describes the metrics used to assess the fitness of the model in Section

4.4.

The first metric considered is the mean square error (MSE). Equation 4.2.1 shows

the formula for computing this metric,

MSE =
1

N

N∑
i=1

(ŷi − yi)2 (4.2.1)

where y and ŷ denote the original and forecasted time series respectively, and N

stands for the number of samples used for the computation. In addition, the MSE

metric is also used as the error metric in the backpropagation algorithm in order to

update the weights.

The next error metric is the root mean square error (RMSE) which is represented

by Equation (4.2.2).

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (4.2.2)

The former metrics are displayed in the same units as the time series to be

evaluated. In order to measure the performance independently of the time series

units, the NRMSE metric is proposed. The NRMSE is described in Eq. 4.2.3, where

ymax is the maximum value of the target time series along the temporal axis (k).

NRMSE =

√√√√ 1

N

N∑
i=1

(
ŷi − yi
ymax

)2

(4.2.3)

Finally, a metric that aims to compute the correlation between the two time

series is proposed. This task is performed by the Pearson correlation coefficient (ρy,ŷ)

between the target and predicted time series. Eq. 4.2.4 shows the computation of

ρy,ŷ.

ρy,ŷ =
E[(y − µy)(ŷ − µŷ)]

σyσŷ
(4.2.4)

30 4. Implementation and Verification

In this formula, E[(y− µy)(ŷ− µŷ)] is the covariance between y and ŷ and σy, σŷ are

the standard deviations of y and ŷ respectively.

4.3 Parameter optimization

This section deals with the justification, by means of an empirical analysis and

comparison, of the selection of some of the most relevant parameters involved in the

design of the ANN and the machine learning algorithm. The strategy to achieve this

goal is as follows: for different values of the parameter under analysis, one iterates,

builds and trains the corresponding model as well as assesses its performance. One

may consider a more automated mechanism to successfully perform the parameter

tuning, for instance by means of another ANN. Nevertheless, this is left as future

research.

The parameters that are analyzed in this section are the number of LSTM layers,

the number of units in those layers in the frame of the neural structure. In addition,

the learning optimizer and the learning rate α (see Equation 2.2.1) are analysed.

As a comparing tool, a boxplot representation is used. For this purpose, the

parameter to be optimized is depicted along the x axis, while the distribution of the

error vector

e = (|y1 − ŷ1| , . . . , |y` − ŷ`|) (4.3.1)

is represented in the y axis.

4.3.1 Number of LSTM layers and units

The first sort of parameters involved in the tuning are those related with the structure

of the model. More precisely, the number of layers and the number of units per layer

in the MSPMs. These two variables define the structure and computational capacity

of the architecture. Selecting an insufficient number of layers or units leads to a

poor performance. However, a large number of those parameters could produce an

overfitted trained system. In addition, the more layers and units the model has the

larger the execution time is.

We start analyzing the number of layers. For this purpose, the remaining

parameters have been fixed to 50 epochs, adam optimizer (treated further in this

section) and α = 0.001. In addition, it should be noticed that MSPM-3 needs a

minimum of 2 LSTM layers, and hence for one layer the method is not considered.

4.3. Parameter optimization 31

1 2 3
Layers

0

100

200

300

400

500

Er
ro

r [
W

]

MSPM-1
MSPM-2
MSPM-3

Figure 4.1: Comparison of models: number of layers. Each boxplot comprises

observations ranging from the first to the third quartile. The median is indicated

by a horizontal bar, dividing the box into the upper and lower parts. The whiskers

extend to the farthest data points that are within 1.5 times the interquartile range.

Outliers are shown with a plus symbol.

Fig. 4.1 compares the impact that the number of layers produces when using the

different MSPMs. From the empirical results shown in the figure, one observes that

all treated models’ behaviour with 2 and 3 layers is similar, and therefore we conclude

that, for simplicity, 2 layers is the best selection.

In order to analyze the number of units per layer, the models were built with

two LSTM layers, and the same training parameters as in the previous study of the

number of layers. Note that in the MSPM-3, the number of units is equal for all

layers, since the the encoder and decoder hidden states and cell states must have the

same length. Therefore, in the analysis performed here the same number of units for

all the layers is considered. The results of the experiment appears in Fig. 4.2.

One can observe, in Fig. 4.2, that for MSPM-1 at least 20 units are needed in

order to provide the RNN with enough computational power. In addition, for large

number of units, the performance starts to decrease. This issue is probably caused

by the overfitting phenomenon. The best choice of the number of units for MSPM-1

seems to be 32 units, giving the smallest error among the depicted experiments. In

the case of MSPM-2 and MSPM-3 a general improvement in performance can be

observed, being superior in the case of MSPM-3. It is also noticeable that these two

models saturate their performance instead of decreasing it for large number of units.

The best performance among the represented experiments of MSPM-2 is 50 units.

Finally, the number of units for MSPM-3 will be fixed to 25 despite of the similar

performance for higher values. This criterion provides the less expensive model in

terms of computational power and GPU memory consumption.

32 4. Implementation and Verification

2 4 8 16 20 25 28 32 40 50
Units

0

200

400

600

800

1000

E
rr

or
 [W

]
MSPM-1
MSPM-2
MSPM-3

Figure 4.2: Comparison of models: number of units per layer

4.3.2 Learning algorithm optimizer and learning rate

Learning algorithm optimizers are variations of the original backpropagation algo-

rithm (see Chapter 2). In this Thesis, the considered optimizers are the Stochastic

gradient descent (SGD), the RMSprop optimizer and the Adam optimizer.

The SGD optimizer is a basic form of the backpropagation algorithm in which a

gradient descent is performed with every sample of the data set. Thus, SGD optimizer

can provide an online training of the ANN by updating the weights with every training

example. This algorithm has many limitations and is exceeded by other optimizers

in many applications. Some of the disadvantages of this optimizer are its noticeable

fluctuations and the excessive training time to reach the minimum.

The RMSprop optimizer Hinton (2012) proposes a variation of the mini–batch

backpropagation method with an adaptive learning rate. The basic idea is the

modification of Equation 2.2.1 as follows, where for simplicity the gradient is denoted

as Gθ(r) = ∇ΘL(Θ(r)),

v(r) = β · v(r − 1) + (1− β) · (Gθ(r)� Gθ(r))
Θ(r + 1) = Θ(r) +

α√
v(r) + ε

Gθ(r)

 . (4.3.2)

Usually β is taken as 0.9 as stated by the author.

Finally, the last optimizer taken into account is the Adam optimizer proposed in

Kingma and Ba (2014). Adam algorithm also consists in a modification of Equation

2.2.1 with an adaptive learning rate. It introduces the following adaptive α:

Θ(r + 1) = Θ(r)− α m̂(r)√
v̂(r) + ε

(4.3.3)

where m̂(r) and v̂(r) are the bias-corrected first and second moment estimates. m̂(r)

4.3. Parameter optimization 33

and v̂(r) are computed as

m̂(r) =
m(r)

1− βr1
v̂(r) =

v(r)

1− βr2
m(r) = β1 ·m(r − 1) + (1− β1) · Gθ(r)
v(r) = β2 · v(r − 1) + (1− β2) · (Gθ(r)� Gθ(r))


(4.3.4)

The decaying value of m̂(r) and v̂(r) with the increase of the iteration index r can be

observed. In addition, the values of β1 and β2 were fixed to 0.9 and 0.999 respectively

as proposed in the paper.

Fig. 4.3 depicts the boxplot graphs of the error between the different models

and the mentioned optimizers. The performance of the models is quite dependent on

the optimizer used. The SGD optimizer behaves poorly for MSPM-1 and MSPM-2.

However, this optimizer fits remarkably better with MSPM-3. It can be observed how

the Adam method provides the best performance for all the models. Thus it has been

chosen as optimizer for the architectures.

SGD RMSprop Adam
Optimizer

0

200

400

600

800

1000

Er
ro

r [
W

]

MSPM-1
MSPM-2
MSPM-3

Figure 4.3: Comparison of learning algorithm optimizers

The last part of this section deals with the analysis of the learning rate α. As

explained in Chapter 2, the learning rate establishes the proportion of the gradient’s

module that is utilized to perform the gradient descent. Thus, a low learning rate

could produce a slow learning with small steps in the gradient descent, and hence a

longer execution time would be needed. In contrast, if a large value of α is fixed, then

the algorithm would probably diverge from the solution. However, one can not totally

depend on this knowledge because of the fact that the treated problem has a great

impact on the behaviour of the system. For this reason, an empirical verification is

needed.

Fig. 4.4 represents the comparison between the models with different learning

rates variations. It is appreciated how low learning rates produce a poor performance

34 4. Implementation and Verification

0.0001 0.0005 0.001 0.005 0.01 0.05 0.1
Learning Rate

0

200

400

600

800

1000
E

rr
or

 [W
]

MSPM-1
MSPM-2
MSPM-3

Figure 4.4: Comparison of the learning rate.

in the models. However the results are improved with the increment of α, highlighting

the values of α=0.005 for MSPM-1, α=0.01 in the case of MSPM-2 and MSPM-

3 (with most of the individuals with remarkably low error). For large values, the

model’s errors become unfeasible with very large errors. In the case of MSPM-1 this

decline can be observed in the figure and for MSPM-2 and MSPM-3 it starts to occur

for values of α around 0.5. However it was not represented due to the fact that the

boxes would be mess the figure’s visualization.

To sum up the selections carried out in this Section, Table 4.1 collects the chosen

parameters and optimizer for the MSPMs.

Table 4.1: Summary of the selected parameters for the MSMPs.

Model Layers Units Optimizer α

MSPM-1 2 32 Adam 0.005

MSPM-2 2 50 Adam 0.01

MSPM-3 2 25 Adam 0.01

4.4 Results

For each of the models, several figures will be displayed to illustrate the behaviour

of the model’s predictions. In addition, the correlation between the actual and the

4.4. Results 35

predicted time series will be also shown for each of the architectures. The evaluation of

the metrics, described in Section 4.2, applied to all the models is arranged in Table 4.2.

In this table, the values of the MSE metric are displayed in their normalized version.

This is because this metric is mainly applied after the normalization preprocessing

is done. Moreover it is the metric used as the loss function because it needs the

data between 0 and 1. In addition to the MSE, the RMSE, NRMSE and Pearson

correlation coefficient are exposed. These metrics are applied to the different models

and under the training and test datasets.

0 5 10 15 20 25 30
days

0

250

500

750

1000

1250

1500

1750

P
o

w
e

r
[W

]

Test targets
Test predictions

Figure 4.5: Assessment the single step ahead predictor when test data set is provided.

Firstly, the single step ahead predictor is assessed. Fig. 4.5 graphically shows

the behaviour of this model’s output values when the test subset is provided: the

black time series represents the targets or measured power consumption, and the

red time series depicts the model’s predictions. In this figure, the strong fitting of

the prediction with the real time series can be appreciated, resulting to be a high

performance solution. The result of applying the metrics to this model is shown in

Table 4.2. It can be observed that the NRMSE values are very low in the training

as well as in test, indeed they are the lowest. Furthermore the Pearson correlation

coefficient is almost, again for both cases, maximal.

As introduced in Section 3.5, the architecture designed to forecast the next

time step proves to have a high performance. However, this model should just be

understood as a first approach of the problem because of the lack of practical use in

real time forecasting. This leads us to the multiple step forecast architectures. The

plotting of the temporal response of these models is displayed below. Moreover these

models have been built and trained with the parameters and optimizer selected in

Section 4.3 and displayed in Table 4.1.

36 4. Implementation and Verification

5 10 15 20 25 30
days

0

250

500

750

1000

1250

1500

1750
P

ow
er

 [W
]

Test targets
Test predictions

Figure 4.6: Assessment of MSPM-1 when test data set is provided

Fig. 4.6 introduces the response of MSPM-1 when the test data set is provided.

One can highlight the decrease in performance of this model by observing Table

4.2. More precisely, although the errors and the correlation coefficients of MSPM-1

are good, in comparison to the other considered models, they are in a second level

of optimality. Indeed, NRMSE is around 0.054 and 0.075 respectively, and ρy,ŷ is

around 0.9, which is closed to the upper bound.

However, it should be noticed that the MSPMs forecast the whole next day of

power consumption, which leads into a much more complex task to solve. Thus, with

perspective, this model excels in making the forecasts. Although this first approach

to forecast multiple steps successfully accomplishes its prediction task, the remaining

models remarkably overpass its performance.

0 5 10 15 20 25 30
days

0

250

500

750

1000

1250

1500

1750

2000

P
ow

er
 [W

]

Test targets
Test predictions

Figure 4.7: Assessment of MSPM-2 when test data set is provided

4.4. Results 37

In addition to the MSPM-1, the output time series of the predictions made by the

MSPM-2 are depicted in Fig. 4.7. One can easily appreciate the enhancement in terms

of fitting between the time series. Although its output seems to have more attached

noise than the previous model, it is able to adapt to higher frequency variations of

the target time series.

Finally, Fig. 4.8 represents the test predictions made by the MSPM-3 and the

test targets.

5 10 15 20 25 30
days

0

250

500

750

1000

1250

1500

1750

P
ow

er
 [W

]

Test targets
Test predictions

Figure 4.8: Assessment of MSPM-3 (Encoder–decoder) when test data set is provided

In addition, the resulting metrics of this MSPM-2 and MSPM-3 can be consulted

in the corresponding entries of Table 4.2. These models obtain lower values of the

errors compared with MSMP-1. However the single step ahead predictor reaches

better metrics. As a comparison between MSPM-2 and MSPM-3, the latter presents

a slightly improvement compared with MSPM-2. However, because the difference

would be minimum, in a real application it would be preferable to implement MSPM-

2 because of its shorter processing time of a sequence (see Chapter 3).

Training Test

Model MSE RMSE[W] NRMSE ρy,ŷ MSE RMSE[W] NRMSE ρy,ŷ

OSPM 3.61 · 10−4 33.25 0.019 0.99 8.41 · 10−4 50.75 0.029 0.98

MSPM-1 2.9 · 10−3 94.5 0.0539 0.92 5.56 · 10−3 131 0.0747 0.89

MSPM-2 2.26 · 10−3 84 0.048 0.94 2.7 · 10−3 91 0.051 0.97

MSPM-3 2.12 · 10−3 78.75 0.045 0.94 2.51 · 10−3 85.75 0.049 0.97

Table 4.2: Collection of all the model’s metrics for training and test data set.

38 4. Implementation and Verification

To conclude with the verification of the models, a comparison between the

aforementioned output time series is described. Fig. 4.9 depicts the correlation

between the predicted and the real time series for all the treated models. At the

top of the figures it can be observed the power consumption distribution of the target

time series and on the right side the distribution of the predicted power consumption.

Moreover, the figures show the value of ρy,ŷ that equals the ones stated in Table 4.2.

It can be pointed out the high correlation between the model’s predictions and the

targets. Although the OSPM showed a higher performance above in this section,

it does not noticeably stand out from the MSPM-2 and 3 in terms of correlation.

Furthermore, there is a high linearity of the depicted graphs.

200 0 200 400 600 800 1000 1200 1400
Targets [W]

200

0

200

400

600

800

1000

1200

Pr
ed

ic
tio

ns
 [W

]

pearsonr = 0.98; p = 0

250 0 250 500 750 1000 1250 1500
Targets [W]

0

200

400

600

800

1000

1200

Pr
ed

ic
tio

ns
 [W

]

pearson = 0.9

(a) (b)

0 250 500 750 1000 1250 1500
Targets [W]

0

200

400

600

800

1000

Pr
ed

ic
tio

ns
 [W

]

pearson = 0.97

250 0 250 500 750 1000 1250 1500
Targets [W]

0

200

400

600

800

1000

Pr
ed

ic
tio

ns
 [W

]

pearson = 0.97

(c) (d)

Figure 4.9: Representation of the correlation between the model’s predictions and the

target time series. (a) OSPM’s predictions. (b) MSPM-1’s predictions. (c) MSPM-2’s

predictions. (d) MSPM-3’s predictions.

Fig. 4.10 a represents the output predictions of all the multi step models and Fig.

4.10 b the target time series for training and testing data sets respectively in a single

graph.

4.4. Results 39

0 10 20 30 40 50 60 70
days

200

400

600

800

1000

1200

1400

1600

Po
w

er
 [W

]

Train targets
MSPM-1 predictions
MSPM-2 predictions
MSPM-3 predictions

(a)

5 10 15 20 25 30
days

200

400

600

800

1000

1200

1400

1600

Po
we

r [
W

]

Test targets
MSPM-1 predictions
MSPM-2 predictions
MSPM-3 predictions

(b)

Figure 4.10: (a) Comparison of the predictions made by the models when the training

data set is provided. (b) Comparison of the predictions made by the models when

the test data set is provided.

It can be observed how MSPM-2 and MSPM-3 provides, in general, a similar

output in terms of fitting during the test experiment. However, when the train subset

is utilized, the MSPM-2 decreased the performance in some intervals. In addition,

the models significantly reduce their efficiency when a sequence of zero values are

provided.

As a final comparison, it can be observed in Fig. 4.11 the predictions of the

models paying attention to a 4 day window to deeply appreciate the fitting of the

time series. As an observation to point out, the time series of the figure shows

some discontinuities along their predictions. This issue was intentionally produced to

reinforce the fact that the models predict the whole next day (depicted within the

mentioned discontinuities).

40 4. Implementation and Verification

120 130 140 150 160
hours

200

400

600

800

1000
Po

w
er

 [W
]

MSPM-1 predictions
MSPM-2 predictions
MSPM-3 predictions
Test targets

Figure 4.11: Predictions of the models in a window of 4 days.

The designed and implemented models have a high performance in terms of a low

error and a remarkably proficient fitting of the time series to be predicted. MSPM-2

and MSPM-3 exceeded the results of MSPM-1 with a appreciable difference. However,

the general fitness of these two models is greatly similar. Thus, MSPM-2 could be

desirable due to the lower processing time of the sequence.

Chapter 5

Conclusion and future lines:

This chapter is devoted to summarize the most relevant conclusions and results of this

Thesis, as well as to propose some of the main open problems left as future research

lines.

5.1 Conclusions

The forecast of the power consumed by an HVAC system located in a self sufficient

solar house was the addressed problem. The house, called MagicBox and located

at the Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT) of the

Universidad Politécnica de Madrid (UPM), is equipped with a monitoring system to

acquire the data. The main goal was to predict the next day (short term forecasting)

of the power time series given the previous day as an input sequence. To accomplish

this task three prediction models were proposed. These models are RNNs based on

LSTM layers to capture the sequential nature of the time series. The designed RNNs

were implemented with the ANN Python’s library Keras.

More precisely, for this purpose, a main neural architecture was presented that

yields, as generalizations, one single step ahead prediction architecture (that can be

seen as a first step towards the solution of the problem), as well as three multi step

ahead predictor architectures which main features are

• The first multi step model (MSPM-1) is designed to forecast the entire following

day at once. Its main characteristic is that all the predictions are made at the

last time step by providing the output perceptron layer with enough neurons.

• The second proposed multi step model (MSPM-2) does not wait for the whole

input sequence to be provided in order to make the predictions. It outputs the

estimations of the consumed power in a continuous data flow at the same time

the new inputs are fed.

• The last developed multi step model (MSPM-3) is based on the artificial neural

network called encoder–decoder, and it can be considered a hybrid architecture

of the single step prediction model and the previous model.

After an empirical tuning of the model’s parameters, the architectures were

assessed in the frame of computing their performance metrics and visualizing their

http://www.magicbox.etsit.upm.es/

42 5. Conclusion and future lines:

prediction’s values. The model proved to provide excellent results, fitting the targeted

real measures in a remarkably accurate way. Some of the featured metric obtained

from the most effective model, among the designed ones, were:

• A correlation between the target time series and the predictions of 0.97. This

correlation was computed by the Pearson correlation coefficient.

• A Normalized Root Mean Squared Error of 0.049. This metric allows the

comparing with other system’s due to its normalized value.

As a very final conclusion, the designed and implemented models have a high

performance in terms of a low error and a remarkably proficient fitting of the time

series to be predicted. To be more precise, models MSPM-2 and MSPM-3 exceeded

the results of MSPM-1 with an appreciable difference. However, the general fitness of

these two models is greatly similar. Thus, MSPM-2 could be chosen because of the

lower processing time of the sequence.

5.2 Future research lines

The scientific context, where the treated problem in this Thesis is framed, is an

active research field. A proof of this claim is that, during the development of this

work, different new challenging questions have appear. In the following, some of them

are briefly described.

• To refine the designed predictors, some novel ideas could be applied to the

models. Some options of these modifications could be the integration of a

Convolutional Neural Network jointly with the current recurrent architecture,

the use of LSTM layer’s variations (i.e. the Peephole LSTM layer). In addition,

a deeper learning could be performed by means of more powerful computational

processing units.

• Another question is the integration of the developed predictor into a distributed

DSM system to control as a deferable load. This would allow the operation

scheduling in order to flatten the aggregated demand response.

• In addition to the previous line, other deferable consuming machines could be

studied to enhance the overall distributed system.

• Finally, a more automated procedure to perform the parameter tuning of Section

4.3 can be analysed. Some ideas to overcome this task are the design of another

ANN or a genetic algorithm.

5.2. Future research lines 43

44 5. Conclusion and future lines:

Bibliography

Asghar, K. M., Nadeem, J., Anzar, M., Ali, K. Z., and Nabil, A. (2015). A generic

demand side management model for smart grid. International Journal of Energy

Research, 39(7):954–964.

Beccali, M., Cellura, M., Brano, V. L., and Marvuglia, A. (2008). Short-term

prediction of household electricity consumption: Assessing weather sensitivity in

a mediterranean area. Renewable and Sustainable Energy Reviews, 12(8):2040 –

2065.

Caamaño-mart́ın, E., Egido, M. A., Neila, J., Bedoya, C., Santos, A. G., Jiménez,

F. J., and Magdalena, L. (2005). Spanish participation in the “solar decathlon

2005” competition: New proposals for zero-energy houses. In Proceedings of the

20th European Photovoltaic Solar Energy Conference, pages 2587–2590, 6-10 June

2005, Barcelona, Spain.

Calvo-Fernández, M., E. Vega, J., A. Egido, M., and Caamaño-Mart́ın, E. (2005).

Spanish participation in the ”solar decathlon 2005”: Design and simulation of the

photovoltaic system. pages 1958–1963.

Castillo-Cagigal, M., Caamaño-Mart́ın, E., Matallanas, E., Masa-Bote, D., Gutiérrez,

A., Monasterio-Huelin, F., and Jiménez-Leube, J. (2011a). Pv self-consumption

optimization with storage and active dsm for the residential sector. Solar Energy,

85(9):2338 – 2348.

Castillo-Cagigal, M., Gutiérrez, A., Monasterio-Huelin, F., Caamaño-Mart́ın, E.,

Masa, D., and Jiménez-Leube, J. (2011b). A semi-distributed electric demand-

side management system with pv generation for self-consumption enhancement.

Energy Conversion and Management, 52(7):2659 – 2666.

Castillo-Cagigal, M., Matallanas, E., Gutiérrez, l., Monasterio-Huelin, F., Caamaño-

Mart́ın, E., Masa-Bote, D., and Jiménez-Leube, J. (2011c). Heterogeneous

collaborative sensor network for electrical management of an automated house with

pv energy. Sensors, 11(12):11544–11559.

Ceperic, E., Ceperic, V., and Baric, A. (2013). A strategy for short-term load

forecasting by support vector regression machines. IEEE Transactions on Power

Systems, 28(4):4356–4364.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014a). On

the properties of neural machine translation: Encoder-decoder approaches.

arXiv:1409.1259.

46 BIBLIOGRAPHY

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., and Bengio,

Y. (2014b). Learning phrase representations using RNN encoder-decoder for

statistical machine translation. CoRR, abs/1406.1078.

Demuth, H. B., Beale, M. H., De Jess, O., and Hagan, M. T. (2014). Neural Network

Design. Martin Hagan, USA, 2nd edition.

Deng, J. and Jirutitijaroen, P. (2010). Short-term load forecasting using time series

analysis: A case study for singapore. In 2010 IEEE Conference on Cybernetics and

Intelligent Systems, pages 231–236.

Gajowniczek, K. and Zabkowski, T. (2014). Short term electricity forecasting using

individual smart meter data. Procedia Computer Science, 35:589 – 597.

Giles, C. L., Lawrence, S., and Tsoi, A. C. (2001). Noisy time series prediction

using recurrent neural networks and grammatical inference. Machine Learning,

44(1):161–183.

González, P. A. and Zamarreño, J. M. (2005). Prediction of hourly energy

consumption in buildings based on a feedback artificial neural network. Energy

and Buildings, 37(6):595 – 601.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

http://www.deeplearningbook.org.

Graves, A., Mohamed, A., and Hinton, G. E. (2013). Speech recognition with deep

recurrent neural networks. CoRR, abs/1303.5778.

Haykin, S. S. (2009). Neural networks and learning machines. Pearson Education,

Upper Saddle River, NJ, third edition.

Hinton, G. (2012). Neural networks for machine learning. Coursera, video lectures.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Comput.,

9(8):1735–1780.

Hou, Z. and Lian, Z. (2009). An application of support vector machines in cooling

load prediction. In 2009 International Workshop on Intelligent Systems and

Applications, Wuhan, China.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Lusis, P., Khalilpour, K. R., Andrew, L., and Liebman, A. (2017). Short-term

residential load forecasting: Impact of calendar effects and forecast granularity.

Applied Energy, 205:654 – 669.

Park, D. C., El-Sharkawi, M. A., Marks, R. J., Atlas, L. E., and Damborg,

M. J. (1991). Electric load forecasting using an artificial neural network. IEEE

Transactions on Power Systems, 6(2):442–449.

http://www.deeplearningbook.org

BIBLIOGRAPHY 47

Rahman, A., Srikumar, V., and Smith, A. D. (2018). Predicting electricity

consumption for commercial and residential buildings using deep recurrent neural

networks. Applied Energy, 212:372 – 385.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Neurocomputing:

Foundations of research. chapter Learning Representations by Back-propagating

Errors, pages 696–699. MIT Press, Cambridge, MA, USA.

Solano, J., Olivieri, L., and Caamaño-Mart́ın, E. (2017). Assessing the potential of pv

hybrid systems to cover hvac loads in a grid-connected residential building through

intelligent control. Applied Energy, 206:249 – 266.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with

neural networks. CoRR, abs/1409.3215.

Ullah, M. N., Javaid, N., Khan, I., Mahmood, A., and Farooq, M. U. (2013).

Residential energy consumption controlling techniques to enable autonomous

demand side management in future smart grid communications. 2013 Eighth

International Conference on Broadband and Wireless Computing, Communication

and Applications, pages 545–550.

48 BIBLIOGRAPHY

Appendix A

Impact

This appendix is devoted to describe the impact of this project in different aspects.

Social, economical and environmental points of view are considered.

• Social impact: this project will have a direct impact on people who are interested

in the integration of intelligent systems in their properties. These systems

will enhance the energy management of their housings with an economical

improvement.

• Economical impact: this project will have an impact in the economic field with

the incorporation of the predictor in energy management techniques. These

techniques’ aim is to flatten the energy demand curve, resulting in a more

efficient use of the the energy under an economical point of view.

• Environmental impact: this project will have a direct environmental impact

because the designed predictor is intended to be integrated in energy manage-

ment systems that control that energy consumption is performed efficiently.

In addition, these systems promote the use of renewable energies, such as the

photovoltaic energy production.

50 A. Impact

Appendix B

Budget

This project has been developed during 6 months in the laboratory of robotics and

control of the Escuela Técnica Superior de Ingenieros de Telecomunicación using some

of its resources. An approximate budget is estimated taking into account human

resources, software, technical equipment and some laboratory material used during

the project.

• Costs derived from human resources: This item should consider the salary of

all the people involved in the project: project manager (engineer) and the

engineering student, author of this Thesis as shown on Table B.1.

Cost per hour

(e)
Working hours

Total cost

(e)

Project manager 22 75 1650

Engineering student 10 1250 12500

TOTAL 14150

Table B.1: Costs derived from human resources

• Costs derived from software and technical equipment: For this Thesis, the

software and technical equipment listed on Table B.2 has been used. The total

costs are computed by the product of the depreciation cost per month and the

time of use.

Lifetime

(years)
Units

Cost

(e)

Depreciation

(e/month)

Time used

(months)

Total cost

(e)

GTX 1080 Ti 5 1 1000 16.66 6 99.96

Personal computer 4 1 1000 20.83 6 124.98

MATLAB License 1 1 2000 166.66 6 999.96

TOTAL 1224.9

Table B.2: Costs derived from software and technical equipment

	General Index
	Index of Figures
	Index of Tables
	List of Acronyms
	Introduction and objectives
	Context
	Objectives and contribution
	Document layout

	Theory
	Perceptron and Recurrent neural networks
	Machine learning algorithm
	LSTM neural networks

	Design Process
	Data acquisition system
	Data preprocessing
	Normalization
	Data sampling

	Data arrangement
	Neural architecture
	Prediction techniques
	Single step ahead prediction architecture
	Multi step ahead prediction architectures

	Implementation and Verification
	Implementation environment and tools
	Metrics
	Parameter optimization
	Number of LSTM layers and units
	Learning algorithm optimizer and learning rate

	Results

	Conclusion and future lines:
	Conclusions
	Future research lines

	Bibliography
	Impact
	Budget

