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ESCUELA TÉCNICA SUPERIOR
DE INGENIEROS DE TELECOMUNICACIÓN
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2021





UNIVERSIDAD POLITÉCNICA DE MADRID
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Abstract

Modern machine learning (ML) based on artificial neural networks (ANNs) is one

of the research disciplines that has grown the fastest in the history of science. However,

even though the results obtained keep getting better, most of the progress that is being

made is not providing any significant insights on the cognitive process behind artificial

neural networks nor how to eventually achieve artificial general intelligence (AGI).

In order to gain insights about the performance of three mainstream ANN-powered

ML techniques on biologically plausible challenges, an experimental setup has been

designed for this BEng Thesis around the inverse kinematics (IK) problem. IK is

often applied in robotics and computer graphics to define how should an articulated

entity position itself to reach a certain target with an actuator, and it is similar to

how us humans control our bodies at a low level.

The three methods analysed here have been supervised learning, black-box

optimisation and reinforcement learning. After defining a set of robust benchmarks

that can be shared between them, they have all been applied to perform IK on a

simulated robot arm with different degrees of freedom.

The results showcase the advantages of each particular method and highlight the

flexibility that reinforcement learning offers over the alternatives, allowing for a better

generalisation capacity at the expense of a higher computational cost.

Keywords: machine learning, artificial neural networks, deep learning, motor

controller, inverse kinematics, robotics, supervised learning, black-box optimisation,

reinforcement learning, bio-inspired learning
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Resumen

El aprendizaje automático (ML) moderno basado en redes neuronales artificiales

(ANN) es una de las disciplinas de investigación que más rápido han crecido en la

historia de la Ciencia. Sin embargo, y a pesar de que los resultados obtenidos mejoran

cada vez más, la mayor parte del progreso que se está logrando no está proporcionando

ningún conocimiento significativo sobre el proceso cognitivo que hay tras las redes

neuronales artificiales, ni de cómo podemos conseguir inteligencia artificial general

(AGI).

Con el objetivo de aprender más sobre el rendimiento de tres técnicas de ML

populares basadas en ANN en retos biológicamente plausibles, una configuración

experimental se ha diseñado para este TFG en torno al problema de cinemática inversa

(IK). La cinemática inversa se aplica frecuentemente en robótica y en gráficos por

ordenador para definir cómo debe posicionarse una entidad articulada para alcanzar

un cierto objetivo con un actuador, y es similar a cómo controlamos los humanos

nuestros cuerpos a bajo nivel.

Los tres métodos analizados aqúı han sido aprendizaje supervisado, optimización

de cajas negras y aprendizaje por refuerzo. Tras definir un conjunto de criterios

robustos que pudiesen ser compartidos entre ellos, los tres han sido aplicados para

realizar cinemática inversa en un brazo robótico simulado con diferentes grados de

libertad.

Los resultados muestran las ventajas de cada método particular y resaltan la

flexibilidad que el aprendizaje por refuerzo ofrece sobre las alternativas, lo que permite

obtener mejor capacidad de generalización a cambio de un mayor coste computacional.

Palabras clave: aprendizaje automático, redes neuronales artificiales, apren-

dizaje profundo, controlador motor, cinemática inversa, robótica, aprendizaje su-

pervisado, optimización de caja negra, aprendizaje por refuerzo, aprendizaje bio-

inspirado
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Chapter 1

Introduction

Creating artificial machinery that is superior to the human being is arguably at the

core of most modern engineering disciplines. Even before the concept of engineering

was born, the Ancient Greek already fantasised with the idea of automatons inspired

by the human body: an example is Talos, the mythological man of bronze that was

responsible for protecting Europa by striding around the island of Creta, where she

was located [1].

Despite the outstanding progress that we have achieved throughout the past

millennia, we are still far from even being able to artificially reproduce the behaviour

of a complete human, let alone having something better. We have certainly been able

to build faster, stronger and overall more powerful machines, but there is a part that

is significantly lagging behind: cognition.

Our Greek ancestors did not know what we do now about neurobiology nor

anatomy, but we still lack of a complete picture of how the brain works its magic. As

a result, Computer Science and Artificial Intelligence (AI) resort to using partial or

alternative models that capture a set of its functionality.

Our growing computing capacity has led to the recent boom in AI, which does

not seem to have an end in the coming years. Better hardware, better software

and better mathematical tools are allowing research in the field to progress at an

unprecedented pace. But unfortunately, that does not make us any closer to the

original goal of solving cognition. We still do not know how do thoughts take

place in our minds, and we even struggle to explain the behaviours that emerge

in the nowadays widespread artificial neural networks. This, combined with other

issues related to the methodology applied, has started to raise concerns about the

scientific rigour of this “progress”: from research integrity malpractice [2] to even

being compared with alchemy [3], amongst others [4].

This BEng Thesis is focused on making a lower-level analysis of some modern

machine learning techniques in order to better understand their inner workings and

extrapolating them to human learning. It has been done within the context of solving

a biologically plausible task applied to robotic control, and with the greater goal of

finding out which of these machine learning methods are more compatible with our

biologic processes. Having this information could help in future development of more

complex AI systems that mimic human behaviour.

1



2 1. Introduction

1.1 Document structure

In this introductory chapter, an overview of neural networks (Section 1.2) and the

Semantic Pointer Architecture (1.3) is given before defining the challenge addressed

by the motor controllers in this BEng Thesis (1.4) and going through the state of the

art on the matter (1.5).

On Chapter 2, details are given on the experimental setup that is used throughout

the whole project, and Chapter 3 covers in depth the three different types of

experiments performed: supervised learning (3.1), black-box optimisation (3.2) and

reinforcement learning (3.3). Each of them include the methodology followed by a

discussion of the results obtained.

Finally, Chapter 4 summarises the analysis drawing the key conclusions of the

BEng Thesis (4.1) and the potential future lines of work (4.2).

1.2 Neural networks

1.2.1 Neurons

Neurons are the main cells in the nervous system, and they are therefore at the core

of the human cognitive capabilities. Even though their classification and functional

description are still under active research, the typical model of a neuron consists of the

parts in Figure 1.1. This “standard” neuron receives electric stimuli received by the

dendrites, performs some non-linear processing through the soma and the axon, and

delivers different electric stimuli on the synaptic terminals, which are connected to

other neurons. This highly simplified model works under the following assumptions,

which do not necessarily apply to all types of neurons:

• Information only flows in one direction (from dendrites to synaptic terminals).

• Dendrites only receive electric impulses and apply them a certain gain. This

means that they do not apply any non-linearities, although there are studies

that show the opposite [5].

• The overall neuron’s response to the input stimuli does not have to increase

with higher intensities in the dendrites: some of the responses might (thus

being excitatory) and others might do the opposite (i.e. inhibitory ones).

The stimuli is done with voltage spikes, which vary in frequency depending on

the intensity of the associated magnitude. This interesting behaviour makes neurons

intrinsically dynamic, meaning that the neuron’s evolution over time is the factor that

actually conveys the information (as opposed to its immediate state).

The computational power of a single neuron is relatively limited, but the high-

density aggregation of millions of neurons can lead to very intricate interconnectivity

from which complex behaviour can emerge.
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Figure 1.1: Diagram of a biological neuron. The branches on the left represent the

dendrites, which end in the cell’s soma. The branches on the right represent the

synaptic terminals, which are connected to the soma by a long “cable” called the

axon, Source: Wikimedia Commons (Dhp1080, SVG adaptation by Actam). CC

BY-SA 3.0.

x1

x2

...

xn

Σ f(x) y

Neuron

ω
1

ω2

ωn

x

Figure 1.2: Diagram of a neuron as implemented in an artificial neural network.

1.2.2 Artificial neural networks

Artificial neural networks are processing systems that try to mimic the biological

neural networks present in the brain of animals like humans. They use an even more

simplified model of the neuron (see Figure 1.2), in which the weighted sum of all

inputs is then passed to an activation function that returns the neuron’s response.

This activation function can be customised depending the problem at hand, but it is

often a non-linear one like a sigmoid (f(x) = σ(x) = 1
1+exp(−x)) or a rectified linear

unit (f(x) = max(0, x)).

Neurons are grouped in layers, which share the same inputs and produce an

output with the concatenation of all of the neuron’s outputs. Layers can be stacked,

connecting the output of each neuron with the inputs of all the neurons in the next

layer, creating what is called a multi-layer perceptron (MLP) as depicted in Figure

1.3. This basically emulates the high connection density of biological neural networks,

although vanilla MLPs do not take into account features like skip connections (neurons

directly connected to layers that are not the immediately next one) or recurrent

connections (neurons with a feedback loop between their output and their input).

The arrangement, size and amount of layers determines the architecture of a

neural network. A full model is defined by its architecture and the parameters of
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Figure 1.3: Network graph for a 3-layer perceptron, with 3, 6, 6 and 2 neurons in

each layer, respectively.

all of its neurons, namely the weights and any variable that influences the behaviour

of each neuron’s activation function. MLPs are the simplest architectures (yet very

widespread), although there are many others.

In spite of the high level of abstraction and simplification made in ANNs versus

biological neural networks, they have proven to give fascinating results in a lot of

advanced tasks, such as classifying images [6], playing complex games [7] and natural

language processing/generation [8].

1.3 The Semantic Pointer Architecture

Eliasmith introduced the concept of the Semantic Pointer Architecture (SPA) [9] as

a model to explain how the brain performs high-level cognitive functions that can

later be mapped to low-level information, in a similar way to how embeddings work

in machine learning.

This means that a semantic pointer has some synthesised information (the

shallow semantics) of a concept that is more complex (the deep semantics).

Having such a differentiation allows for faster processing when the use of shallow

semantics is sufficient, but of course implies that there is a loss of information in the

semantic pointer.

In the SPA, concepts are represented with high-dimensional vectors, and they

support two complementary operations called binding and unbinding. Conceptu-

ally speaking, binding two vectors (~v, ~w) creates a third one (~u) that is different

to the original ones, but that still preserves information about both of them.

Mathematically, it can be defined as the circular convolution of the two original

vectors:

~u = ~v ~ ~w = (u1, u2, . . . , ui) (1.1)

ui =
D∑
j=1

vjw(i−j) mod D, D = |~v| = |~w| (1.2)

This operator has the interesting particularity that it satisfies the following



1.4. The inverse kinematics problem 5

property:

~u~ ~w+ = ~v +
−−−→
noise ≈ ~v, ~w+ = (w1, wD, wD−1, . . . , w2)ᵀ (1.3)

which is (an approximation of) the inverse of the binding process, i.e. the definition

of the unbinding process.

Having these two operators allow aggregating information and doing computations

with it. For instance, if we denote each word as a vector representing that concept

in a D-dimensional vector, we can represent the sentence “He likes avocados” as a

single proposition P , and then easily query its subject:

P =
−→
he ~

−−−−→
subject +

−−→
likes ~

−−−→
action +

−−−−−−→
avocados ~

−−−−→
object (1.4)

P ~
−−−−→
subject =

−→
he +

−−−→
noise (1.5)

The SPA was the foundation for the SPA Unified Network (Spaun) [10], an

astonishingly competent model capable of learning how to perform multiple tasks

just by receiving visual inputs over a time series. Spaun made use of more complex

artificial neurons and a highly customised neural architecture that was much more

strongly inspired by biologically plausible neural networks.

These results are quite aligned with the motivation this BEng Thesis: giving

a biologically inspired approach to neural network models can lead to the creation

very effective models that are capable of performing hard tasks. Furthermore, the

binding operator in the SPA performs a very similar operation to the one done to

fully interconnect two layers in a MLP, which might be a hint that with the right

setup and proper time dynamics, mainstream neural networks are not that far away

from advanced models like Spaun.

1.4 The inverse kinematics problem

1.4.1 Overview

The problem that the motor controllers developed in this BEng Thesis pretend to

solve is a very fundamental yet complex need of robotic systems: identifying how to

map points in the three-dimensional Cartesian space to the motor range of a specific

robot, or in other words, how must a robot position itself to reach a certain point in

space. Such calculation of the joint positions for a specific point in space is known as

inverse kinematics (IK).

Using a Cartesian space for high-level computations allows for much more intuitive

systems that can also be reused across different robots, regardless of their morphology

or hardware specifications. This makes it a very appealing coordinate system in a

myriad of robotic applications, but adds the need of a middle system that transforms

these 3D Cartesian coordinates to the n-dimensional joint positions that are

compatible with the robot, also known as generalised coordinates. The motor

controller is the responsible for this translation that, in most real cases, is not trivial

at all.

Even though robotics is the most frequent application of IK, it can also be used

in other areas like computer graphics [11], where the methodology and mathematics

used are practically identical.
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1.4.2 Mathematical definition

The inverse kinematics situation can be mathematically formalised as the mapping

between the set of possible Cartesian coordinates C and the generalised coordinates

G ⊆ Rn, where n is the number of joints in the robot in question. Even though a

tuple of multiple Cartesian coordinates could be associated with multiple parts of a

robot, we will consider positioning a single end actuator for the sake of simplicity:

C ⊆ R3.

As it is exemplified in Section 3.1.4.2, this mapping is often one-to-many, meaning

that for a specific Cartesian coordinate there are multiple possible generalised

coordinates, all equally valid. This is the opposite of a surjective function, meaning

that the inverse of this mapping could be modelled by a function of such properties.

It is also possible to include in the IK map the orientation of the end actuator—

thus extending the dimensionality of C—but the controllers in this BEng Thesis are

limited to the mapping of positions, as the extra component is not especially relevant

for the global goal of the project.

1.4.3 Role in Biology

Inverse kinematics is not limited to robotics: it is actually a biologically plausible

need that naturally emerges for us humans. For instance, whenever we want to reach

an object with a hand we do not explicitly think how should our articulations be

placed to get there; we use visual feedback instead altogether with other signals to

identify the target in our surroundings, and then send the corresponding stimuli to

our muscles. The process it is very similar to the decompression of semantic pointers

as described by the SPA, where spatial coordinates are semantic pointers that are

linked to higher-dimensional information (the motor stimuli).

From a cognitive point of view it is an interesting challenge because it is a first

layer that could then be used as foundations for more complex motor behaviour,

and also because it is probably one of the first things that children learn after birth.

Having a good understanding of how IK works both in humans and in machines can

therefore help us grasp new details about learning.

1.5 Previous work

1.5.1 Analytical and numerical solutions

For rather simple robotic systems it is feasible to derive analytical equations that

can be used to calculate the inverse kinematics, which is very advantageous because

it provides stable and reliable values for the mappings. However, that approach

becomes unmanageable as soon as more degrees of freedom are added and multiple

solutions appear for the same sets of Cartesian points. There is software that can

help generating the equations of more complex systems [12], but it is still limited by

the maximum number of degrees of freedom that it can handle.

Another alternative is to use numerical or heuristic approaches, which find the

potential solutions iteratively by using differential equations that model the system
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or approximations thereof. Depending on the underlying algorithm, they can be quite

computationally expensive to compute.

All these methods are by default ignorant of the rest of the limitations of the

environment, which makes them prone to causing collisions with other elements in

the robot’s surroundings. That is why many applications require adding constraints,

which a difficult and cumbersome process that often has to be manually integrated

with the solving system. But most importantly, all these approaches rely on

mathematical models that are not really relevant for the emergence of cognition.

1.5.2 Modelling with machine learning

The main difference between the aforementioned methods that are nowadays used to

solve inverse kinematics and the ones applied in this BEng Thesis is the underlying

technology. The controllers developed in this project are based on artificial neural

networks (ANNs), instead of the traditional mathematical tools.

Other works have also tried to approach the IK problem with ANNs, but they

used oversimplified versions of a robotic arm [13] or lack transparency on the neural

architecture and general methodology used [14].



8 1. Introduction



Chapter 2

The simulation environment

As explained in detail in Chapter 3, all the motor control systems developed in this

BEng Thesis are strictly based on machine learning techniques. This implies that

actual learning experiences have to be fed to the systems for them to capture the

environment’s dynamics.

To achieve this, an open-source simulation framework has been built on top of the

Bullet physics engine 1. This framework constitutes a performant and cost-effective

solution, which is especially critical in this type of scenarios that would otherwise

require very expensive hardware to reproduce in a real environment. Furthermore, it

allows for much better reproducibility, as discussed later in this chapter.

2.1 Physical environment

2.1.1 PyBullet

PyBullet [15] is a Python module that acts as bindings for the Bullet physics engine2.

PyBullet is arguably the most popular open-source alternative to other propietary

simulation frameworks like MuJoCo [16] or CoppeliaSim [17].

Even though MuJoCo is probably more widespread in the machine learning

research community, each of its personal licenses are bound to a specific device,

making them unusable across different hosts. This is important because it makes

it hard running simulations in cloud services (which might be hosted in different

machines), and hinders the reproducibility of the results.

PyBullet was therefore chosen in order to keep this BEng Thesis as reproducible

as possible, and to overall contribute to the model of completely open research. This

philosophy has also been reflected by favouring free software3 over other alternatives

for the whole BEng Thesis.

The internals of PyBullet work over a client-server model, in which a physics

server does the computations and then returns the status for commands sent by a

client. The server is automatically spawned by PyBullet, and it can also perform a

1https://github.com/YagoGG/beng-thesis
2https://github.com/bulletphysics/bullet3
3It is worth highlighting that “free” here does not make reference to the costs of the software, but

to the licensing and general philosophy behind it, in accordance to what the GNU project defines as

the four essential freedoms: https://www.gnu.org/philosophy/free-sw.en.html.

9

https://github.com/YagoGG/beng-thesis
https://github.com/bulletphysics/bullet3
https://www.gnu.org/philosophy/free-sw.en.html
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real time visualisation of the environment from a graphical user interface powered by

OpenGL.

The fact that all interactions are made through the client make the simulator’s

code very centred around the BulletClient objects, which handle the connection

between both parts of the system. As such, it is the basic building block for all the

simulations in this BEng Thesis, as it is explained in more detail in Section 2.1.4.

2.1.2 Action-observation environments

This BEng Thesis’s environments consist of a scenario where an agent is placed. As

summarised in Figure 2.1, agents can gather information describing the environment’s

state (s) in what is called an observation (o), and can interact with the environment

by taking an action (a). The information conveyed by observations might or might

not fully describe the full state of the environment, leaving room for some entropy

that could potentially be out of the agent’s reach. The simulation environments also

introduce an additional variable called the reward (r), which is a benchmark of the

agent’s performance on the task at hand.

Time is discretised in timesteps, so that the environment’s state is frozen at each

frame until the next step is executed. The variables for a specific timestep t are

denoted with a subscript (e.g. the state at a time t would be written as st), and

the sequence of steps until the task is accomplished or failed is often called in ML

literature an episode.

States: st ∈ S ⊆ Rds

Observations: ot ∈ O ⊆ Rdo

Actions: at ∈ A ⊆ Rda

Rewards: rt ∈ R

 ∀ t, ds ≥ do (2.1)

Algorithm 2.1 describes the flow followed by any implementation of these

environments for each episode.

Algorithm 2.1 Episode of a simulation environment

1: t = 0

2: Start the environment from an initial state

3: while state 6= “terminal” do

4: for agent = 1, 2, . . . , N do

5: Fetch the agent’s reward rt
6: Take an observation ot
7: Compute an action at
8: Execute the action in the environment

9: end for

10: Update the environment’s state, based on the actions taken

11: t← t+ 1

12: end while
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Agent

Environment

st+1

Action atObservation ot+1 Reward rt+1

Figure 2.1: Diagram of a simulation environment.

This design choice follows practices that are very well-established in the reinforce-

ment learning research community, and has been chosen for its flexibility and fitness

for the problem at hand.

2.1.3 OpenAI Gym

OpenAI Gym [18] is a toolkit that was originally focused on the development of

reinforcement learning algorithms. Its core interface, named by its creators the unified

environment interface, has now become the de facto way to implement simulated

environments for reinforcement learning research. The main advantage of OpenAI’s

environments is that they expose a consistent application programming interface

(API), allowing for out-of-the-box intercompatibility with other software.

The contract behind these environments —which are modelled just as described

in Subsection 2.1.2— is given by the gym.Env abstract class, and it can be synthesised

as follows:

• Methods

– reset(): restores the environment to an initial state, and returns the

corresponding observation.

– step(action): runs one timestep of the environment’s dynamics after

the agent has taken at = action. It should return a tuple with ot+1,

rt+1, whether the environment reached a terminal state, and a dict with

additional information.

– render(mode): creates a render of the environment, which can be used to

debug its state or as a component of the observations. The mode indicates

whether the returned output should be adapted for humans, or if it should

be an RGB/text representation.

– close(): destroys the environment and performs any necessary clean-ups.

– seed(seed): sets the seed for any pseudo-random number generator that

might be used in stochastic processes within the environment.

• Attributes

– action space: an object describing the set of possible actions that can be

taken by the agent (A).

https://github.com/openai/gym/blob/ee5ee3a4a5b9d09219ff4c932a45c4a661778cd7/gym/core.py
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– observation space: same, for the observations of the environment (O).

– reward range: tuple describing the minimum and maximum possible

values of the reward.

2.1.4 Architecture

As the foundations for the environments used in this BEng Thesis, a set of base

classes have been created to make the overall codebase more extensible, all of which

are located in the brain/environments/ directory:

• World: this class represents a simulated scenario. It configures the basic

parameters of the simulation like the gravity and the duration of each timestep.

• Scene: a World containing a solid plane in Z = 0 that acts as the ground.

• Body: an abstraction of an object (also known as body) in a PyBullet simulation.

It has a unique identifier given by the Bullet server, and a set of associated

attributes like a visual shape, a collision box, a position and an orientation.

• BaseBulletEnv: it is responsible for instantiating PyBullet’s client-server

connection and setting up the rendering parameters (viewport size, camera

rotation, etc.). It is an actual child of the gym.Env class, so this class and all of

its children conform to the unified environment interface. It is an abstract class,

thus requiring to implement certain methods to create a usable environment (see

Section 2.3).

2.2 Franka Emika Panda� 2 robot arm

Developing a robotic motor control system that is capable of solving challenging

problems is no easy task at all, especially when aiming at a generic methodology that

can be applied to different robot morphologies. To make the task more manageable,

this BEng Thesis has been focused on the control of robotic arms.

These highly versatile devices mimic the functionalities of a human arm by having

multiple segments or links united by joints, in the same way that a human arm has

bones connected by articulations. These joints are often actionable, allowing to move

parts of the arm in different axis and directions; and the state of the arm can be

described by the positions of its joints. These are commonly known as a degrees of

freedom.

In order to assess the performance of the controllers developed in this project, the

Franka Emika Panda� 2 robot arm has been chosen as the device of study. This

robot has 7 degrees of freedom, which have been named as described in Figure 2.2 and

allow reaching a workspace like the one depicted in Figure 2.3. The specific model

used for the experiments also features a two-finger gripper (see Figure 2.4), which

provides two additional degrees of freedom (one per finger) to the overall system. All

the joints with their action ranges are listed in Table 2.1.

Franka Emika provides the assets required to simulate the arm in the main robotics

platform, including the files that indicate the geometry, action ranges and other
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WRIST ROT.
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FINGER 2

Figure 2.2: Render of the simulated Franka Emika Panda� 2 robot with the name

of all of its 9 degrees of freedom.

parameters of the arm. The original files are provided in the Xacro format, which is

a variation of the Extensible Markup Language (XML) that allows for macros that

expand certain expressions to larger XML blocks. Xacro4 is widely used across the

robotics community as it is part of the Robot Operating System (ROS), a popular

framework for robotic software. By using a tool built into ROS, the Xacro definitions

can be transformed into the Unified Robot Description Format (URDF)5, which is

also based in XML and is partially supported by PyBullet.

The brain.robots.Panda class handles the creation of the robot’s entity in the

simulator, defines the initial position of all of the robot’s joints, and provides a myriad

of auxiliary methods to ease the control of the robot.

2.3 Available environments

To simulate and study the motor tasks in this BEng Thesis with the Panda� 2 robot

arm, two environments have been developed by leveraging the architecture outlined

in Subsection 2.1.4.

The first one, PandaEnv, is an environment in which there is only a ground plane

and a Panda� 2 robot arm fixed to the Cartesian coordinate origin.

• Initial state: it is given by the arm’s resting position as defined in the

brain.robots.Panda class, therefore being always the same for all episodes.

4http://wiki.ros.org/xacro
5http://wiki.ros.org/urdf

http://wiki.ros.org/xacro
http://wiki.ros.org/urdf
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(a) Lateral view. (b) Zenithal view.

Figure 2.3: Illustrations of the Franka Emika Panda� 2 robot arm’s workspace. All

dimensions are in mm. Source: Franka Emika.

Figure 2.4: Franka Emika Hand, the gripper used as the end effector in the simulated

robot arm. Source: WiredWorkers.

• Observation space: a flattened vector with the current positions of each

actionable joint, as well as the torque being currently applied:

θt = (θjoint1−t, θjoint2−t, . . .)

τt = (τjoint1−t, τjoint2−t, . . .)

}
∀ joint in actionable joints (2.2)

ot = (θt, τt) (2.3)

• Action space: the action range of the 9 actionable joints (see Table 2.1).

• Termination criterion: the episode is considered as finished only if the arm

crashes with the floor or with itself (i.e. collisions between parts of the arm).

The second one, PandaTargetEnv, is an extension of the previous environment

that also includes the concept of a target. Targets are locations that act as goals for

the motor controller. They are represented by a translucent red sphere and they do

not have a collision box, which means they can be pierced through without interfering

with the arm’s movement.
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Position Velocity

Joint Type Minimum Maximum Max. magnitude

Shoulder rot. Revolute -2.9671 rad 2.9671 rad 2.175 rad/s

Shoulder Revolute -1.8326 rad 1.8326 rad 2.175 rad/s

Elbow start rot. Revolute -2.9671 rad 2.9671rad 2.175 rad/s

Elbow Revolute -3.1416 rad 0 rad 2.175 rad/s

Elbow end rot. Revolute -2.9671 rad 2.9671 rad 2.610 rad/s

Wrist Revolute -0.0873 rad 3.8223 rad 2.610 rad/s

Wrist rot. Revolute -2.9671 rad 2.9671 rad 2.610 rad/s

Finger 1 Prismatic 0 mm 40 mm 20 mm/s

Finger 2 Prismatic 0 mm 40 mm 20 mm/s

Table 2.1: List of actionable joints in the simulated Franka Emika Panda� 2 robot,

with their type and movement constraints as defined in the simulation’s URDF file.

Revolute joints allow rotation along an axis, whereas prismatic joints provide linear

sliding movement.

PandaTargetEnv environments behave just like PandaEnv ones, with the exception

that targets are randomly sampled by default from a space reachable for the arm:

T = (xtarget, xtarget, ztarget)


−0.5 ≤ xtarget < 0.5

−0.5 ≤ ytarget < 0.5

0 ≤ ztarget < 0.5

(2.4)

And that the observation space includes not only the contents described in

Equation 2.3, but also the target’s location in Cartesian coordinates:

ot = (θt, τt, xtarget, ytarget, ztarget) (2.5)

It is important to note that PandaEnv (and therefore PandaTargetEnv) allows

controlling the Panda� arm with two kinds of settings either the target position

(the angle where each joint should be), or the target velocity (how fast should each

joint move). Even though both are relatively similar concepts, one option might be

better than the other when building the intelligent motor controllers. The right choice

depends on the controller’s inner workings, and whether it is aware of the state of the

environment over time.

This is because position control can potentially be used without the need of

simulation in the domain of time, whereas velocity control is intrinsically dependent

on the temporal axis. Reaching a static target location can therefore be done with

a single command in position control, whereas velocity control has to progressively

adapt its outputs until the target is reached (leading to an equilibrium with null

velocity in all joints).
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Figure 2.5: Example of a PandaTargetEnv. The red sphere represents the randomly

chosen location for the target in the episode displayed.

2.4 Reproducibility

Randomness can create reproducibility issues, because running the same experiment

in two different machines or points in time can lead to inconsistent results.

PandaTargetEnv is the only environment that has a random component, as the targets

are randomly selected by default from a constrained space.

To avoid this, the locations of the targets are generated using the Mersenne

Twister [19] general-purpose pseudo-random number generator (PRNG). The values

produced depend on a initial seed value that is fixed across experiments, making the

sequence of randomly generated values equal across different executions.

All the seeds used in this environment are explicitly set and documented in the

project, allowing for third-party researchers to identically reproduce the samples used

for this BEng Thesis, as well as to generate new ones in a deterministic manner.

During the development of this Thesis it has also been noted that PyBullet itself

can introduce some noise when performing dynamic simulations, especially when

collisions take place. However, the corresponding noise is relatively insignificant

and completely deterministic across runs, so it should not constitute an issue for

reproducibility.

Lastly, project dependencies are as well a frequent source of issues when running

third-party code. To prevent this, the Thesis’s code makes use of Poetry [20], a

dependency management tool for Python that creates a lock file with a record of

all the installed dependencies, their versions, and a hash of their original binaries.

This ensures that other people installing the project will be able to have a virtually
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Figure 2.6: UML diagram of the Thesis’s environment framework.

identical development environment as the author’s.

2.5 Time-invariant environments

Although the simulation environments used in this BEng Thesis are intrinsically

dynamic, there might be some experiments in which the time component can be

dismissed. This means that the environment state that is relevant for the analysis

can be obtained by taking a single action, and then evaluating it to produce one single

final output.

Such a situation can happen for instance when studying the performance of an

inverse kinematics controller that uses position control, as the benchmark of interest

(the final position of the arm’s actuator) can be computed directly just with the target

position of the joints.

PyBullet offers for these situations the possibility of obtaining the final state

of the environment without the need of computing the middle states, significantly

decreasing the computation power required to perform the simulation and therefore

reducing the execution time. This technique —which the author has named Reset-

Based Simulation (RBS)— has been able to make certain simulations up to 10 times

faster, and can be used directly over the already existing environments described in
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Section 2.3.

The motor control systems that perform inverse dynamics need to know the

evolution of the environment over time, and therefore are not compatible with RBS.



Chapter 3

Experiments

The versatility of artificial neural networks has given birth to plenty of new

approaches to machine learning problems, each with different features and a particular

adequateness. Three different ones have been selected for this BEng Thesis:

supervised learning, black box optimisation, and reinforcement learning.

An experimental set-up has been created for each one of them, with the shared

goal of reaching randomly located targets in a three-dimensional space. Having a

common challenge and similar characteristics allow easily comparing the experiments

by using three benchmarks:

• Resource efficiency: the amount of computing resources that are required to

train the motor controller, and how performant is the model once trained.

• Accuracy: the average error tolerance of the resulting model, i.e. the difference

between the position of the target T and the arm’s position after following the

controller’s commands T̂ . This has been quantified with the mean squared error,

which is defined as follows for a set of (T, T̂ ) pairs with cardinality n:

MSE =
1

n

n∑
i=1

(Ti − T̂i)2 (3.1)

• Morphology generalisation: the maximum number of degrees of freedom

that can be handled by the model.

To assess the morphology benchmark and to keep the development of the motor

controllers’ incremental, only a subset of the 11 degrees of freedom available in the

simulated robot arm have been enabled throughout these experiments. This was

achieved in a progressive fashion by enabling a single degree of freedom while keeping

the remaining ones locked in their initial position, and then adding more DoFs until

the performance was noticeably diminished.

3.1 Supervised learning approach

3.1.1 Context

Supervised learning is a machine learning technique that allows generalising the

mapping between a series of inputs and outputs that are already matched. It is

19
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commonly used nowadays in problems such as regression, image classification and

time series forecasting, amongst others.

From a formal perspective, it is assumed that the dataset under study has its

outputs or labels correlated with the corresponding inputs by an unknown function

f , such that f : X → Y , where X ⊆ Rm and Y ⊆ Rn, m,n ≥ 1 are the input and

output spaces, respectively. The goal of the supervised learning system is to obtain

another function f̂ : X → Y that behaves as close as possible to the original f . This

concept of “closeness” is defined by what is commonly known as a loss function `:

f(x) = y

f̂(x) = ŷ

}
`(y, ŷ) (3.2)

x ∈ X, y ∈ Y (3.3)

where ` frequently maps to a real number and ŷ is called the “predicted value” for

an input x.

Supervised learning algorithms attempt to find f̂ by using samples of the mapping

made by the actual f . These samples constitute what is often called a dataset:

D = {(x, y), y = f(x) ∀ x ∈ Xdataset ⊆ X} (3.4)

3.1.2 Regression with artificial neural networks

There are many approaches to find f̂ within the context of supervised learning, with

some significant differences depending on whether Y is a continuous space (making

the problem a regression one) or a discrete space (making the problem a classification

one). Here we will focus on regression.

One of the most basic solutions is linear regression, but there are more

complex alternatives like Bayesian regression or the nowadays widespread deep neural

networks. This experiment is focused on the latter because of their power, robustness

and ease of implementation.

To achieve this type of regression, the whole neural network’s transfer function

acts like f̂ , and the network’s parameters are adjusted to minimise the loss function.

This is performed by taking a set of samples of the dataset (called a batch) and

evaluating the network’s average performance using `. The network’s parameters are

then tuned using the gradient of this averaged loss. Unsurprisingly, the choice of `

and the definition of how should the network’s parameters evolve with the gradient

are two important factors that can heavily impact the performance of the resulting

model.

3.1.3 Definition

A certain resemblance can be found between the supervised learning scenario and the

one that is tried to be solved with inverse kinematics: if we assume that each Cartesian

coordinate maps to a single robotic generalised coordinate, the robot’s behaviour

could be given by a function like f . In that case, the Cartesian coordinate space

would be equivalent to X, and the generalised coordinate space would be equivalent

to Y .
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Figure 3.1: Producer-consumer model followed by the dataset generator.

Even though this premise does not usually hold for complex robot arms with

several degrees of freedom like the Panda� 2, a proposal is made in 3.1.4.2 on how to

address this issue, allowing to get unique values when a single Cartesian coordinate

has more than one generalised solution.

3.1.4 Methodology

3.1.4.1 Dataset generation

There is an initial dissonance when applying supervised learning to the inverse

kinematics problem, created by the lack of the initial dataset that is critical for

supervised learning. However, there is a particularity in the IK problem, and it

is the fact that the function f−1 can be evaluated easily: it is the equivalent of

transforming generalised coordinates to Cartesian coordinates, or in other words,

choosing a position for the arm’s joints and measuring where the actuator is placed.

This is commonly known as forward kinematics.

It is therefore very simple to create a dataset D like the one depicted in Equation

3.4, by transforming it as follows:

D = {(x, y), x = f−1(y) ∀ y ∈ Ydataset ⊆ Y } (3.5)

where Ydataset can be randomly sampled from Y .

As it always happens with supervised learning, it is important that the dataset

has enough samples so that it captures sufficient information about the system’s

kinematics: the larger |Ydataset| is, the better generalisation capabilities the model

will have.

A parallelised simulation tool has been designed to create these datasets, allowing

to generate a big amount of samples in little time. This tool spawns multiple workers,

each one with its own process and seed, and starts creating (x, y) tuples with pseudo

randomly selected values of y. It implements a producer-consumer model: the tuples

get pushed to a queue that is shared by all the processes, and they are collected by a

separate process that is responsible for storing them in the disk using the HDF5® [21]

data format (see Figure 3.1). The main advantage of such a design is that multiple

simulations can be executed at the same time, which makes an extremely noticeable

difference in hosts with multi-core CPUs. This, combined with the fact that it allows

using RBS as explained in Section 2.5, yields a high sample production throughput.

With a large enough number of samples, the resulting datasets are well balanced

and they fully cover the arm’s action space, as displayed in figures 3.2 and 3.3.
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Figure 3.2: Histogram of the joint positions sampled in a randomly generated dataset

of 106 samples and the gripper’s fingers locked. The original dataset (in purple)

contained samples where the gripper’s position was under the X-Y plane because of

PyBullet ignoring physics simulations (a side effect of RBS). The orange bars represent

the dataset after discarding those entries, which constitute approximately 6% of the

total. As expected, all the DoFs enabled have a uniform distribution in the original

dataset, and they remain relatively balanced in the pruned one.
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Figure 3.3: Orthogonal projections of the gripper positions in a randomly generated

dataset of 106 samples with all the degrees of freedom but the fingers unlocked.

Subsampled to 104 data points for enhanced visibility.

Figure 3.4: Example of the arm’s gripper reaching the same location (red ball) with

two different sets of joint positions.

3.1.4.2 Achieving univocity

Preliminary results of this experiment created a model that barely moved the arm.

In fact, it produced almost the same output for all inputs, which was keeping the arm

in close alignment with the Z (vertical) axis. However, upon reducing the enabled

degrees of freedom to e.g. SHOULDER and ELBOW, the model behaved correctly.

The issue was not a matter of the model’s generalisation capabilities or the

architecture’s size, but something more fundamental: when many degrees of freedom

were enabled, it was possible to reach the same point in space with multiple sets

of generalised coordinates (like the example in Figure 3.4). This breaks the initial

premise of supervised learning that we are performing, because that behaviour no

longer fits the definition of a mathematical function.

The author’s hypothesis for these results is that data points of incoherent

solutions—like the example before—were producing gradients that cancelled each

other when the neural network performed the backpropagation to update its weights.
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Figure 3.5: Mapping diagram of the inverse kinematics before and after considering

energy limitation.

This theory is reinforced by the fact that limiting the arm’s movement to non-

overlapping degrees of freedom removes the problem entirely.

To address this conflict without limiting the degrees of freedom, an algorithm has

been designed to guarantee that each Cartesian-space coordinate maps to a single

point in the generalised space. This technique works by taking the option that requires

the least energy to execute, as depicted in Figure 3.5. Energy is calculated in each

joint by taking the work W done by some torque τ :

W =

∫
τ(t) · dθ (3.6)

θ=ωt
=

∫
τ(t) · ω(t) · dt (3.7)

Since time is discretised in the simulations and the torque can only be measured within

timesteps, both torque τ(t) and angular velocity ω(t) are assumed to be constant for

each timestep ∆t:

W
∆t≈0≈

∑
N

τ(N ·∆t) · ω(N ·∆t) ·∆t (3.8)

=
∑

τ [t] · ω[t] ·∆t (3.9)

By knowing the energy required to reach a certain set of joint positions from the

resting position, it is now possible to choose the most efficient generalised coordinates

to get to a specific Cartesian point. This has been named the efficient dataset.

We can express the process in a more mathematically formal way. Let k : G→ C

be the forward kinematics function, where G ⊂ Rj is the generalised coordinate space

(with j = 11 for the simulated Panda�), and C ⊂ R3 is the 3D space reachable by the

arm’s gripper. By using the original definition of the dataset given in Equation 3.5,

we can define a new dataset Denergy that also includes the energy required to reach

each data point:

Denergy = {(c, θ,Wθ), c = k(θ) ∀ θ ∈ Gdataset ⊆ G} (3.10)
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Where Wθ is the work required to reach the joint positions θ from the arm’s resting

state as per Equation 3.9. In the efficient dataset, out of all the n possible generalised

coordinates θ1, . . . , θn that lead to each cartesian point c, it is only preserved each

tuple that satisfies:

(c, θ) : Wθ = min(Wθ1 , . . . ,Wθn) (3.11)

Recall that Gdataset in Equation 3.10 is a finite set of random samples of G, which

is a side effect of not being able to work with the latter in the actual implementation

due to its infiniteness. This means that neither D nor Denergy include all possible

θ1, . . . , θn for a certain c.

This can lead to inconsistent behaviour, since two very close points could have

radically different values of θ in the efficient dataset. To solve it, the implementation

groups all entries in Denergy that are very near each other in the Cartesian space, and

considers them as the same point c. The full procedure is described in Algorithm

3.1, and a visual example is showcased in Figure 3.6. As depicted in Figure 3.7, the

result matches the expectations: a dataset that is quite uniform in the use of energy

throughout all of its points.

Algorithm 3.1 Generation of an efficient dataset

1: Take a dataset Denergy

2: Defficient = ∅
3: while Denergy 6= ∅ do

4: Draw a random sample (c, θ,Wθ) from Denergy

5: Take all the entries in Denergy such that |ci − c| < ε

6: Add to Defficient the entry with the minimum Wθ

7: Remove all the entries selected in this iteration from Denergy

8: end while

3.1.4.3 Network architecture

The neural network architecture used for this experiment was a multi-layer perceptron

with 3 inputs (the Cartesian coordinates of the target), two hidden layers of 256 and

128 neurons respectively, and a final layer with as many neurons as degrees of freedom

were enabled, as depicted in Figure 3.8.

The activation function each neuron in the input and output layers is a linear

one (f(x) = Ax + B), whereas the hidden layers use the sigmoid function (f(x) =

σ(x) = 1
1+exp(−x)). The output layer is then connected to the motor controller, which

denormalises the output values and sends them to the actor’s actuators.

Even though multiple other architectures were studied in this experiment, they

did not show a significant performance enhancement. The architecture proposed here

offers a good balance between network capacity and adequate use of computation

resources.
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Figure 3.6: Steps taken in a example pruning batch of the many that transform

Denergy into Defficient. All original points in Denergy are displayed with low opacity in

the background as a reference.
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Figure 3.7: Distribution of the data points in the Cartesian space before and after

optimisation for an example dataset.
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3.1.5 Training and results

After implementing the architecture in PyTorch [22], an initial training was made

with a plain dataset D. The training was executed with batches of 105 samples using

datasets of 106 entries with different degrees of freedom enabled. The Adam optimiser

[23] was used with an initial learning rate of 0.01, and it was progressively reduced

an order of magnitude every time the loss stagnated (i.e. changed less than 10−4 for

1000 epochs). Training for 10k epochs took about 2 minutes per model, and it was

more than enough to reach convergence as showcased in Figure 3.9.

As it was mentioned in Section 3.1.4.2, the results with this dataset were very

good when the number of degrees of freedom did not overlap in the Cartesian space,

but they became much worse when adding extra DoFs. This is also visible in Figure

3.9 and when running the models in inference: the one capable of using SHOULDER

and ELBOW still works well, but as soon as the rotation component is added the errors

start being quite noticeable. These errors were not reduced by increasing the ANN’s

architecture size, which suggested that the problem was indeed in the dataset.

The same experiment was then repeated using this time the efficient dataset,

resulting in the training curves in Figure 3.10. Unfortunately, the models trained

with this dataset did not perform better: in fact, even the simplest cases (e.g. only

SHOULDER enabled) performed worse than with the normal dataset D. Since the

algorithm that generates the efficient dataset does not alter the original samples but

drops some of them, it might be caused by too much information getting lost along the

process. It is however interesting to note that reducing the radius ε (which therefore

increases the size of the resulting Defficient) did not improve the results but quite the

opposite.
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g(f̂(x, y, z)) = (g ◦ f̂)(x, y, z) = b(x, y, z)

Figure 3.11: Model of the inverse kinematics problem as a chain of functions.

3.2 Black box approach

3.2.1 Definition

If we model the whole inverse kinematics system as a set of chained functions like in

Figure 3.11, we see that the problem we are trying to solve can also be seen as finding

a function f̂ such that (g ◦ f̂)(x, y, z) = (x, y, z). Or, more simply put, an f = g−1,

where g is a black box function: we only know its output for a given input (by

simulating it), but we do not have an analytical expression for it. Solutions like the

ones presented in Section 1.5.1 attempt to find it by using differential equations that

are very complex, but as it was explained in Section 3.1.2, artificial neural networks

can also be used to approximate the function f in a way that the resulting estimate

function (f̂) is defined by the network’s architecture and the parameters obtained

during training.

However, training in mainstream ANN programming frameworks is based on

automatic differentiation (AD) [24] to perform backpropagation. This technique

works by generating a computation graph with the definitions of all functions involved

in the training process and their derivatives, which allows calculating the training

gradients very easily without the precision loss and subsequent error propagation

that is often associated with numerical differentiation.

AD offers many advantages and is compatible with most of machine learning

applications, but it has the inconvenient that black box functions are not supported

in the computation graph (as nor their analytical definitions nor their derivatives are

available). The previous experiment tried to overcome this issue by sampling the

function and using a dataset to capture its mappings, but as we have seen, the results

still have room for improvement.

An alternative approach is to replace the AD engine with an alternative algorithm

that adjusts the parameters that define f̂ . Random parameter search can be an

option, but as soon as the number of parameters start growing, it becomes a totally

impracticable path. Nonetheless, there are other strategies for black box optimisation

problems that can be applied here, such as particle swarm optimisation [25] or natural

evolution strategies [26]. Even though these techniques are not as widespread in the

machine learning community as those based in AD, they can provide better training

speeds on multi-core machines because they are compatible with parallelisation [27].
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3.2.2 Methodology

3.2.2.1 Parameter optimisation

The same neural architecture as in Figure 3.8 was used in this experiment, but in this

case the network’s 34,178 parameters were externally adjusted using other Python

modules and then re-loaded into the model. The parameter adjustment part was

implemented using with two different third-party modules, each of them using a

different optimisation technique:

• SciPy [28]: this popular scientific computing package has an optimisation

submodule that supports a wide array of algorithms. The one used here

(scipy.optimize.differential evolution uses differential evolution [29]).

• blackbox [30]: an optimisation module that also supports parallelisation.

3.2.3 Training and results

The training for this experiment follows the steps described in Algorithm 3.2, where

the optimiser(L, ω1, . . . , ωn) function is given by SciPy/blackbox and it progressively

adjusts the ω parameters so that L is minimised. Unfortunately, after approximately

30h of execution in a 20-core machine, the results with both optimisation modules

were very poor: there was not a noticeable difference between the model’s control

logic and a totally random one.

Algorithm 3.2 Adjustment of the inverse kinematics neural network with black box

optimisation

1: Initialise the neural network with some arbitrary parameters ω1, . . . , ωn
2: for episode ← 1 to 2000 do

3: Lepisode ← 0

4: for batch ← 1 to 10 do

5: Generate a random target point in the Cartesian space (x, y, z)

6: Compute (θ1, . . . , θn) = f̂(x, y, z) with the neural network

7: Get (x̂, ŷ, ẑ) by simulating the robot arm with those joint positions

8: if arm crashed then

9: Lepisode ← Lepisode+ crash penalty

10: else

11: Lepisode ← Lepisode + |(x, y, z)− (x̂, ŷ, ẑ)|
12: end if

13: end for

14: ω1, . . . , ωn ← optimiser(L, ω1, . . . , ωn)

15: end for

It is reasonable to expect that, given more time and computational resources, the

neural network would eventually converge to a model that fulfils the motor controller’s

requirements: after all, it is more than 30k parameters that have to be adjusted in a
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very wide search space. However, considering the relatively small size of the problem,

such a need of computational resources suggests that this is probably not the optimal

approach.

3.3 Reinforcement learning approach

3.3.1 Definition

Just like the simulations in this BEng Thesis, reinforcement learning (RL) is based

on the concept of an environment that can be observed and acted upon by an agent.

RL’s goal is to define which actions are the best to maximise the reward obtained by

the agent when the environment has a certain state, in what is commonly known as

a policy).

Finding good policies is quite a hard task, and it is a topic under very active

development in the RL research community. Out of the many different algorithms

to elaborate the policies, this experiment is focused in one called Proximal Policy

Optimisation (PPO) [32]. PPO is compatible with continuous action spaces and it

has shown a good performance in other robotic manipulation tasks [33, 34], making

it a very appealing candidate for the motor control system in this BEng Thesis.

Just like most of RL optimisation algorithms, PPO models the environment as a

Markov Decision Process (MDP). In this kind of processes the time is discretised,

so the system’s state changes in steps. The evolution of the state over time is

stochastic and it follows the Markov property, which means that the probabilities

of each possible transition depend exclusively on the current state and the last action

taken. As a result, it is not necessary to know the environment’s history to determine

the probabilities of each potential transition. It is up to the agent to decide what

action to take, but the outcome of that specific action has some uncertainty because

of the stochastic nature of process. It is also worth highlighting that, because of the

temporal awareness of MDPs, the problem solved with the RL approach is not strictly

inverse kinematics but inverse dynamics, since the output of the motor controller are

the velocities of each joint (instead of the static target joint positions).

PPO works by exploring the environment from time to time. Exploration is

achieved by taking random actions (instead of the one that would predictably yield the

highest reward), in the hopes that it discovers a new course of action that eventually

gives an even better reward. This is an interesting aspect of PPO because that means

that there is not a distinction between “learning” and “predicting”, unlike with other

ML techniques that have training and inference as two clearly separate stages.

Consequently, the policy is not deterministic, and therefore has a probability

distribution that we denote as:

at ∼ πθ(·|st) (3.12)

where st is the environment’s state and at the action to be taken, both at a time t.

The parameters that govern the policy (θ) are determined by a neural network, as it

will be explained later on in this section.

The environment’s initial state s0 is sample from a distribution of all possible start

states (ρ0), which in the case of this experiment is given by the PandaTargetEnv
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conditions outlined in Section 2.3. The sequence of actions taken and subsequent

states within an episode is called a trajectory, and is denoted as:

τ = (s0, a0, s1, a1, . . .), s0 ∼ ρ0(·) (3.13)

We can therefore express the probability of a specific trajectory of T steps

taking place as:

P (τ |π) = ρ0(s0) ·
T−1∏
t=0

P (st+1|st, at) · π(at|st) (3.14)

And if we define R(τ) as the reward produced by a trajectory τ , we can denote the

goal of the RL system as finding the optimal policy π∗ such that:

π∗ = arg max
π

E
τ∼π

[R(τ)] (3.15)

In the case of PPO, like the Soft Actor-Critic [35] and other algorithms based in

the actor-critic model, the agent has two different estimators, both parametrised by

neural networks:

• The critic, which is responsible for estimating the expected reward that is going

to be obtained. It can be seen as an assessment of how good or bad the current

state is for future reward.

• The actor, which determines the probability distribution of the next move.

3.3.1.1 Biological parallelism in humans

Actor-critic models are not an exclusively synthetic artefact, purpose-built for RL

problems. The human brain, which we can probably consider the ultimate idol for

artificial general intelligence tool, also follows a similar principle in the basal ganglia.

Even though there is still a limited knowledge regarding the functionality of this

part of the brain, is has been associated with the control of psychomotor behaviour

[36] in a similar way to what the motor controllers in this BEng Thesis attempt to

behave.

Furthermore, the cortico-basal ganglia-thalamo-cortical loop (also known as the

CBGTC loop) is a set of neural circuitry that connects the basal ganglia to other

parts of the brain. Some of these circuits are considered to work independently from

each other, producing an equilibrium similar to the one achieved by actor-critic RL

models.

Lastly, there is a significant difference in RL systems like PPO, caused by the fact

that they do not distinguish between training and inference: it is much closer to the

learning process humans follow. We interact with the environment as we try to solve

some problem, and throughout repetition and the attempt of different (sometimes

random) approaches we end up identifying valuable information about the dynamics

of our surroundings.
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3.3.2 Methodology

These experiments makes use of the PyTorch implementation of PPO from Stable

Baselines 3 [37]. It is parallelised, allowing to run multiple simulations in different

CPUs for a much higher training throughput.

The generality of reinforcement learning allows for a great flexibility when

designing environment: there are plenty of orthogonal changes that can be made

to the experiments, all of them with a significant potential impact in the results. In

this series of trials, a focus has been put mainly in the action space (i.e. available

degrees of freedom) and the reward function.

The first trials were made with the goal of lifting the gripper as much as possible,

to verify that the RL agent was being properly stimulated by the reward. The reward

function also included a penalty for the use of energy, so that the agent tries to avoid

oscillatory behaviour and useless movements overall:

rt = zgripper −
clip(log 10(Wt), 0,Wmax)

Wmax
· k (3.16)

where Wt is the energy consumption during the t-th timestep as defined in in Equation

3.9, Wmax the maximum energy consumed under normal operation conditions, k is a

constant, and the “clip” function is defined as:

clip(x,min,max) =


min, if x < min

x, if min ≤ x ≤ max

max, if max < x

(3.17)

For trials that involved reaching random targets, two different reward functions

were used: one of them with energy penalty and another one without it:

rt = 1− |(xtarget, ytarget, ztarget)− (xgripper, ygripper, zgripper)|

− clip(log 10(Wt), 0,Wmax)

Wmax
· k

(3.18)

rt = 1− |(xtarget, ytarget, ztarget)− (xgripper, ygripper, zgripper)| (3.19)

All the trials described here make use of Adam [23] optimiser and the hy-

perparameters listed in Table 3.1. Additionally, it is important to highlight that

PandaTargetEnv’s random target generation was constrained in certain cases in which

the degrees of freedom were limited. This was done to keep all the targets within reach,

e.g. in the Y = 0 plane when no horizontal rotation was possible.

3.3.2.1 Network architecture

The experimental setup has two different MLPs of 128× 256× 256 neurons each for

the respective parametrisations of the actor and the critic.
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Hyperparameter Value

Learning rate 0.0003

Batch size 64

Discount factor (γ) 0.95

GAE (λ) 0.95

Clip range (ε) 0.2

Value coefficient (c1) 0.5

Entropy coefficient (c2) 0.0

Max. gradient clipping 0.5

Initial log. standard deviation 0.0

Table 3.1: Hyperparameters for the PPO models used in the RL experiment.

Trial ID Degrees of freedom Reward eq. Comments

62 All 3.16
Very good. Does not depend on the

observations (all runs are the same).

73 SHOULDER 3.18
Good. There is a significant oscillation

once targets are reached.

74 SHOULDER 3.19
Good. The oscillation is slightly minor,

but more violent.

75
SHOULDER, WRIST,

ELBOW
3.19

Moderately adequate. The arm identifies

correctly where the targets are, but struggles

to reach them in some cases.

Table 3.2: Description of the most significant trials in this experiment.

3.3.3 Training and results

As it has already been mentioned, PPO does not differentiate between training and

inference: it simply keeps interacting with the environment and learns the dynamics

as it goes.

Multiple trials have been run, combining different reward functions and degrees of

freedom. Each trial has been executed for 10 million timesteps, allowing the agent to

get enough experiences to extract insights from the environment. Some of the most

significant trials are detailed in Table 3.2, and the main evolution metrics are plotted

in Figure 3.12.

As it could be seen comparing trials with and without energy penalties, it was clear

that the energy penalty favoured smoother movements (making a more conservative

use of energy), but it sometimes hindered exploration and could therefore impact the

correct learning of the environment’s dynamics.

The results show that PPO is indeed very powerful, as it is relatively capable of

controlling 3 degrees of freedom with a modest architecture. However, it is also a

technique that requires a very large amount of computational resources: the number

of simulations that have to be executed is so huge that it dwarfs the time spent in the

training of the underlying neural networks. This is also a problem when developing
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the models, because the iteration frequency is much lower: it is less feasible to try

different hyperparameters and experimental settings.



Chapter 4

Conclusion

4.1 Conclusion

This BEng Thesis has covered three of the main modern machine learning techniques

based on artificial neural networks to design various motor controllers.

It has been shown that systems trained end-to-end, like supervised learning ones,

are much faster to train and are very robust, but their performance drops drastically

as soon as there are overlapping degrees of freedom. Black box optimisation has

proven to be extremely resource-consuming, showcasing how valuable are techniques

like automatic differentiation for the speedy and efficient training of neural networks.

Finally, reinforcement learning has provided the best performance, but also at a very

noticeable cost. Methods with a higher sample efficiency would be able to extract

more information per sample of the environment, and therefore reduce the resources

spent on training.

It has also been discussed how, out of the three methods, reinforcement learning

is the most biologically plausible one and the only one that natively considers a time

component, although in a highly restrictive manner since it models the environment

as an MDP.

4.2 Future lines of work

Considering the insights obtained throughout this project, there are multiple potential

lines of work that could be followed for further analysis:

• Studying if alternative clustering methodology could lead to the generation of

a functional efficient dataset that would make the supervised learning system

compatible with several degrees of freedom.

• Use temporal encoding for inputs and outputs in the supervised learning model,

so that both the Cartesian and generalised coordinates can be represented as

time series and can therefore be analysed with more biologically inspired neural

networks [38].

• Performing the reinforcement learning process with a wider matrix of hyper-

parameters, especially with different learning rates and/or learning rates that

evolve throughout time (e.g. via scheduling).

37
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• Trying to use reinforcement learning with an increasingly harder set of examples

(curriculum learning) [39], or using a generative adversarial network to create

examples that optimise learning [40, 33].
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Appendix A

Ethical, economical, social and

environmental aspects

A.1 Ethical & social impact

The recently acquired capabilities of AI to perform critical tasks like driving has put

the focus on the regulation that this kind of technologies should have, and where

should we draw the line that defines what is not okay for AI to address.

One of the main ethical concerns is the lack of traceability for the outputs given

by most AI systems, which raises questions about whether a certain recommendation

is properly founded or if it might be the result of a technical issue. Moreover, the

dependency of these systems on experience and pre-existing data can lead to the

transmission of biases that were originally in the source. For instance, certain text

generators trained on web data have displayed racist or misogynistic behaviours,

which are clearly unacceptable.

Besides that, focusing specifically on research, that has also been reflected on the

diminishing of the quality of certain research to unprecedented levels. This has also

led to some researchers acting in unethical ways, in what could even be considered as

committing academic fraud [2].

Even though a big part of these issues are not caused by the technology itself, just

like with other technological breakthroughs in the past (e.g. the Internet) we need to

make sure as a society to have sufficient regulation and make a responsible use of all

that AI has to offer.

A.2 Economical impact

Since this BEng Thesis is heavily research-oriented, the potential economical impact

it might have in the short to mid term is quite limited. However, it contributes to

the major effort of obtaining better AI systems and move closer to AGI, which could

be a significant change in the lifestyle of humanity as a whole.

Having a potentially unlimited source of automated intelligent workers could

radically alter the way we conceive economics and our lives overall, but that point is

still probably too far away to even speculate about it.
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A.3 Environmental impact

Another problem associated with deep learning is the big amount of computing

resources that it requires to train and iterate in the design of models. Some members

of the AI community have already expressed their concerns [41] regarding the energy

consumption associated to all this processing, and the fact that we should eventually

move to technologies that are less demanding or to computing resources that are

sustainable.



Appendix B

Budget

The development of this BEng Thesis has involved two main components resource-

wise:

• Labour: qualified personnel with a background in engineering, and more

specifically, in machine learning. Two people have been involved:

– A supervisor with a PhD in Telecommunication Engineering who has been

responsible of overseeing the progress of the project and providing guidance

on the approach to follow along the way.

– A BEng student who has been responsible for the design of the experi-

ments, the development of the underlying code platform, the analysis of

experimental results and writing this report.

• Computational power: a cloud host capable of handling the training of the

models. The host kindly provided by Robolabo for this BEng Thesis had an

Intel® Core� i7-8700K CPU with two NVIDIA® GeForce® RTX 2080 Ti GPUs

and 32 GB of RAM, that was shared with other 2 researchers and a sporadic

additional one.

Using fair per-hour salaries for both people and the costs of a similar host using

Google Compute Engine1 (a2-highgpu-1g), a budget for the whole BEng Thesis has

been created (see Table B.1).

1https://cloud.google.com/compute
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46 B. Budget

Cost of labour

Hours Cost/hour (e) Total (e)

Thesis supervisor 40 60 2,400

Social security 792

Engineering student 500 30 15,000

Social security 4950

Cost of materials

Hours Cost/hour (e) Total (e)

Cloud computing 600 3.10 1,860

VAT (21%) 391

Total costs

TOTAL 25,393

Table B.1: Summary of the estimated budget.
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