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ABSTRACT

Essential Tremor (ET) and Parkinson’s disease (PD) are the two most common in-
voluntary movement disorders characterized by pathological tremor. Patients who
suffer from these conditions might be unable to perform even the simplest daily liv-
ing activities, leading to disabilities and poor quality of living. Today, most of the
state-of-the-art treatments consist in surgery and pharmacological planning, how-
ever, these approaches have several inconveniences including limited eligibility of
patients, highly variable efficacy and side-effects. In recent years, some studies have
proposed novel tremor management techniques based on minimum invasive elec-
trical stimulation of muscles. This kind of approaches can implement various stim-
ulation strategies, e.g.: out-of-phase, selective adaptive timely stimulation (SATS),
which analyse tremor activity and estimate future tremor periods. They are based
on traditional techniques of signal analysis and suffer from the lack of accurate and
reliable algorithms for long tremor prediction horizons. Consequently, there exists
an urgent demand of trustworthy methods for tremor signal prediction, in order to
create advanced tremor management systems. In this context, some studies have
presented machine learning (ML) and deep learning (DL) algorithms for tremor-
associated signals forecasting, aiming to tackle the limitations of current techniques.
However, the majority of them are focused on one disease, analyse a single type of
model or the obtained performance is still insufficient. Thus, there exists a wide
room for improvement in this field.

This Master thesis is an in-depth study on the feasibility to apply DL for pre-
diction of tremor-associated EMG signals with minimal preprocessing. Data from
twelve ET and fourteen PD patients were collected to create the working databases.
Then, five distinct models were designed and implemented, based on recurrent
(RNN), convolutional (CNN) and Transformer neural networks. Performance analy-
ses were conducted using different training windows (300, 600, 1000 ms) and predic-
tion horizons (100, 200, 300, 600, 1000 ms). Models were trained using signals from
ET and PD patients separately and, also, in a combined database. Then, for each
scenario, a global comparison between all models was conducted, based on Pear-
son’s correlation coefficient. Additionally, models trained only with ET or PD data
were tested on the other disease to analyse their generalization capabilities. Finally,
an experiment on the usage of joint kinematic and EMG signals was performed, in
order to assess the effects of employing both information.

Results show that a CNN-based architecture is the overall best performing model.
Mean correlations obtained by the best models for each combination of training win-
dow, prediction horizon and database were always between 0.7 and 1. Moreover, a
mean correlation over 0.8 for a prediction window of 1000 ms was obtained, using
a 1000 ms input length and the best model. Results also show that the models can
generalize the prediction of ET and PD tremor signals, with independence from the
training database. Finally, it was concluded that the addition of kinematic informa-
tion during training does not improve the results.

The work of this Master thesis serves as a reference in the designing of DL models
for tremor signal prediction and provides a baseline to create novel tremor suppres-
sion devices.

Keywords: tremor, essential tremor, Parkinson’s disease, electrical stimulation,
tremor prediction, deep learning, EMG signals, kinematic signals.
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Chapter 1

Introduction

Tremor is part of a group of involuntary movements, in which tics, myoclonic jerks,

chorea, athetosis, dystonia and hemiballism are also included. Namely, tremor is

usually defined as involuntary, oscillatory and rhythmic movements which can af-

fect to one or more parts of the body, including upper and lower limbs [1]. It is

classified into two main categories: physiological and pathological. The first type

corresponds to uncontrolled movements of body parts that are naturally present

and arise in situations of anxiety, fear, physical exhaustion, hypoglycemia, hyper-

thyroidism or alcohol withdrawal, among others [2]. On the other hand, the main

criterion to consider tremor as pathological is that it appears as the primary or most

acute manifestation of a certain disease. However, the complete classification pro-

cedure for tremor types involves the analysis of the frequency, amplitude, the con-

ditions in which tremor starts, the medical and family history, and a neurologic ex-

amination [3]. For instance, a critical factor is the amplitude, which is substantially

lower for the case of physiological tremor. In clinical practice, pathological tremor is

one of the most common involuntary movement disorders evaluated [1].

Due to the ageing of the nervous and motor systems, pathological tremor is

prevalent in middle-aged and older adults. However, it can be experienced at any

age. Major causes include: neurodegenerative diseases, stroke, head injury, drugs

and toxins, demyelinating diseases, systemic diseases or metabolic disorders [4]. In

the context of involuntary movement disorders, the two main diseases characterized

by the presence of tremor are: essential tremor (ET) and Parkinson’s disease (PD) [5].

Thus, the research that was developed for this Master thesis is focused on these two

disorders.
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1.1 Medical context

ET is a chronic neurodegenerative disease [6] which has as primary manifestation

tremor at hands and arms, that could eventually spread to other parts of the body.

This tremor has typically frequency components between 4 and 12 Hz [7]. On the

other hand, PD is a progressive multisystem neurodegenerative disease that has a

wide range of motor and non-motor manifestations, in which orthostatic hypoten-

sion, constipation, urinary disturbances, sleep disorders, impaired motor function or

tremor are included [8]. In this case, patients who suffer from PD experience tremor

episodes whose frequency components are typically between 3 to 6 Hz [9].

Regarding the impact of these disorders, some studies made in different coun-

tries since 1960 to 2019 showed that the prevalence of ET in the population older than

60 years is between 2.3 % and 14.3 % (median: 6.3 %) and increases with age [10]. An-

other study from North America concludes that the prevalence of PD is less than 1 %

in men and women aged 45-54 years, while it rises to 4 % and 2 % in men and women

aged 85 years or older [11]. Furthermore, this type of disorders does not only lead

to motor dysfunction, but also to psychological issues, such as depression, which

are associated with difficulties in performing activities of daily living [12]. Finally,

it is known that the impact of motor dysfunctions caused by the aforementioned

diseases will continue to grow in the forthcoming years.

Today, there are several techniques aimed at suppressing pathological tremor to

a certain degree. They use different strategies to achieve the best possible results:

from medication to surgery or direct stimulation of brain structures and motor path-

ways. However, most treatments have several drawbacks and side-effects for the

patients, while the results are often uncertain and insufficient. Drugs are not wide-

applicable, being effective for about 50 % of patients [13]. Their side-effects lead to

withdrawal of treatment in 33 % of cases [14] and, also, patients can develop cogni-

tive disorders [15]. On the other hand, surgical procedures, such as thalamotomy,

High-Intensity Focused Ultrasounds (HIFU) and Deep Brain Stimulation (DBS), are

invasive and rely on the removal of certain brain structures or in the usage of elec-

tronic implants. These approaches have important inconveniences regarding: pa-

tient eligibility, surgery side-effects and adverse events [16]–[18]. Apart from these
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traditional techniques, in recent years, researchers have worked on other minimum

invasive approaches to overcome many of the implicit drawbacks of the aforemen-

tioned methods. Those with most promising results are: Functional Electrical Stim-

ulation (FES) using out-of-phase strategy and electrical stimulation of afferent path-

ways (ESAP) using out-of-phase or Selective Adaptive Timely Stimulation (SATS)

approach. FES is based on using peripheral or intramuscular electrodes to apply

low-intensity electrical pulses over muscles. Out-of-phase technique consists of us-

ing this kind of stimulation over a pair of antagonists muscles. During a recording

stage, tremor frequency and peak amplitude are computed and a prediction horizon

for the next peaks is estimated, so antagonists muscles could be stimulated accord-

ingly to reduce tremor amplitude [19].

FIGURE 1.1: Out-Of-Phase strategy for FES [19]. During a fixed
recording period, the EMG signal is analyzed and tremorgenic peaks
are detected. The next time steps where tremor bursts might appear
are estimated and the antagonists muscles are stimulated with a spec-

ified delay.

On the other hand, ESAP has shown a promising potential to reduce the am-

plitude of the electrical pulses applied and, still, achieving comparable results in

tremor reduction. As out-of-phase FES, its objective is to stimulate coordinately a

pair of antagonists muscles but, this time, via afferent pathways using spinal cord
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reflexes and interneurons [20]. One of the most promising strategies in this area is

SATS, which is based on alternating signal recording and electrical stimulation win-

dows, sequentially. This closed-loop strategy brings the possibility to overcome the

desynchronization issues from techniques like out-of-phase [21].

FIGURE 1.2: Control flow diagram for SATS strategy [21]. After
tremor activity is detected within a 1 s recording window, every
10 ms, the Root Mean Square (RMS) values of the EMG signals from
the antagonists muscles are computed and, if they are greater than
a certain threshold, the stimulation begins. After 2 s of stimulation

window, the recording stage is repeated.

Reference Patients Strategy % Suppression

Javidan et al., 1992 [22] 3 ET, 4 PD FES-Out-of-Phase 53±25 %

Gilard et al., 1999 [23] 3 PD FES-Out-of-Phase 83±2 %

Popovic Maneski et al., 2011 [24] 3 ET, 4 PD FES-Out-of-Phase 67±13 %

Dosen et al., 2015 [19] 2 ET, 4 PD ESAP-Out-of-Phase 60±14 %

Dideriksen et al., 2017 [25] 5 ET, 4 PD ESAP-Out-of-Phase 52 %

Pascual-Valdunciel et al., 2020 [20] 9 ET ESAP-SATS 32 %

TABLE 1.1: Example studies using FES-Out-of-phase and ESAP-SATS
strategies in ET and PD patients.

While the results obtained in recent studies by this modern techniques are promis-

ing, there exists still a large margin for improvement and various limitations due to

physiological characteristics of pathological tremor and other factors. First of all,

the systems need to deal with variations in tremor amplitude, frequency and pat-

terns between different patients. Moreover, those features can vary for the same
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patient during the day, due to medication and hormone levels, and tremor patterns

can also change with aging, since most tremor disorders are neurodegenerative dis-

eases. Last but not least, those techniques should be able to handle variations due to

voluntary movements, which may affect tremor recognition and complicate correct

stimulation.

Tremor suppression wearable devices

Another important area of investigation in the fields of ET and PD is the design of

tremor suppression devices. This kind of technology can help patients who suffer

from pathological tremor to be able to perform daily living activities, without the

inconveniences of traditional surgical treatments or drugs. For that reason, the most

relevant feature of those devices is to be wearable and comfortable. In this line,

previously presented strategies for tremor management become interesting, as they

aim to be minimum invasive, because the goal is to create an accurate sensing system

to detect and quantify the tremor, and a control algorithm to perform the stimulation

accordingly.

The integration of surface EMG (sEMG) in tremor suppression devices is limited

due to the inconveniences that it presents in this case: the electrodes locations is

patient dependent and there exists interference between recording and stimulation

signals [26]. Instead, other studies relied on the usage of accelerometers and gyro-

scopes. However, in order to get accurate results, it is common to use more than 2

or 3 of this type of sensors, which can be very cumbersome for the patient [27]. An-

other possible approach is to combine both kinematic and sEMG signals to increase

the prediction accuracy, while avoiding the aforementioned problems of employ-

ing just sEMG. In 2013, Basu et al. [28] developed an ON-OFF DBS system based

on non-invasive measurements from sEMG and accelerometers which was able to

achieve 85.7 % of tremor prediction accuracy for ET patients and 80.2 % for PD pa-

tients. They used spectral, entropy and recurrence quantification parameters to cre-

ate an algorithm that was able to predict tremor onset, after a cycle of stimulation

with DBS.

However, despite the results were promising, this algorithm was developed and
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FIGURE 1.3: Signal flow diagram employed by Basu et al. [28] for
tremor prediction. Authors designed different signal processing for
ET and PD patients. After filtering the sEMG, spectral and non-linear
time series parameters are used by the prediction algorithm to turn

on the stimulation.

optimized assuming that their exists a DBS system that performs ON-OFF stimula-

tion, so the goal was to predict future tremor episodes after a period of stimulation.

Therefore, it is only applicable for those patients that already have a DBS device im-

planted, so the drawbacks and limitations of this method are still present. Finally,

signal treatment was designed differently for ET and PD patients, which means that

the system cannot be implemented directly to any patient and some variables have

to be defined first.

1.2 Related studies

In recent years, taking advantage of the increasing progress in artificial intelligence

(AI) applications, more specifically, Machine Learning (ML) and Deep Learning (DL),

new studies on tremor classification and prediction using these novel methods have

emerged as promising approaches to the management of involuntary movements.

Most of the studies regarding this topic make use of tremor signals to various objec-

tives: to identify tremor and non-tremor periods, classify tremor into unified types

or to evaluate improvements after surgery. Those that are of interest for the research

in this thesis are the ones related to tremor detection and tremor signal forecasting.
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1.2.1 Detection of tremor episodes

In 2017, Jeon et al. [29] studied the application of ML algorithms to predict the sever-

ity of tremor in PD patients, following the Unified Parkinson’s Disease Rating Scale

(UPDRS), which is similar to how neurologists evaluate tremor in clinical practice.

Authors designed a wearable device conformed by an accelerometer and a gyro-

scope, and recorded acceleration, angular velocity, displacement, and angle signals

from 85 PD patients. Subsequently, they extracted nineteen features from each sig-

nal, applied dimensionality reduction and tested several ML algorithms for auto-

matic scoring, namely: decision tree, random forest, support vector machine, dis-

criminant analysis and k-nearest neighbors. All algorithms achieved over 80 % of

accuracy in testing, being the decision tree the best performing one. Similar other

studies have been conducted with alike results, extending the objectives to not only

assessing tremor severity but, also, to identify tremor and non-tremor episodes or

to classify signals from healthy and ET/PD patients [30]–[32]. All this research pro-

vides evidence to the helpfulness of ML algorithms in the problem of tremor detec-

tion.

Similarly, other investigations have tried to implement DL models in the same

line. In 2021, Sriraam [33] developed a Recurrent Neural Network (RNN) capable

of achieving a 99.81 % of accuracy on identifying presence of ET in EMG signals,

by means of spectral features. The author experimented with a set of different esti-

mation methods to compute Power Spectral Density (PSD) features from the EMG.

Best results were obtained using Multiple Signal Classification (MUSIC) for feature

extraction and a Recurrent Feedback Elman Neural Network (RFBEN) as a classifier.

Nevertheless, with other methods such as Welch, Yule-Walker, covariance, modi-

fied covariance, accuracy results were above 90 %. More recently, in 2023, a research

conducted by Pascual-Valdunciel et al. [34] provided promising results for tremor

vs. no-tremor signal classification using both ML and DL algorithms. Authors em-

ployed minimally processed kinematic and EMG signals from ET patients, along

with traditional ML models (K-Nearest Neighbors, Random Forest, Support Vector

Machine) and a 2-layer Long Short-Term Memory (LSTM) architecture. Moreover,

they assessed the capability of the algorithms to classify raw EMG recordings. All
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models provided f1-scores over 0.8 in classification and, for the case of raw EMG se-

quences, the 2-layer LSTM achieved 0.98 of f1-score. Consequently, the feasibility of

employing DL models for tremor detection has been demonstrated in some studies.

1.2.2 Prediction of tremor-associated signals

As well as detection and classification of tremor signals are crucial for the develop-

ment of tremor management techniques, the capability of predicting next episodes

of tremor, in order to apply appropriate stimulation, is at the same time a core fea-

ture for those systems. Some interesting studies have been conducted in this line of

investigation.

FIGURE 1.4: MLP Encoder for raw EMG encoding and prediction
used in [35]. (a) shows the compression of a raw EMG sequence into a
lower dimensional space by the encoder. (b) corresponds to a predic-
tion example by the decoder, using as input the compressed signal.

Zanini et al. [35] performed a study using raw and envelope EMG signals from

PD patients, whose objective was to experiment with a set of different DL architec-

tures for prediction. Signals were acquired at a sample rate of 2000 Hz and split

into 60 s sequences (120.000 samples per sequence). After removing high frequency

noise and power line component, they created a dataset composed by raw EMG

signals and another dataset with envelope EMG obtained using a moving-average

filter. Then, they established a prediction window of 400 samples (200 ms), since that

corresponds to the typical frequency at which tremor appears in PD. The key idea at

this point is that they used an input window of 2 s (4000 samples) to predict the next

200 ms. They noted that it is possible to use smaller input sizes but the performance

decreased considerably. Regarding the models they used, a Multilayer Perceptron
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(MLP), multilayer LSTM, MLP Autoencoder and LSTM Autoencoder were included

in the study. The reason to experiment with autoencoder architecture was that com-

pressing the input data might ease the prediction task for the models, as well as

provide useful insights about the signals. All models were trained and tested using

both datasets and the results showed that MLP Autoencoder was the best perform-

ing one, in both cases, while the results were worse for raw signals than for the en-

velope. Consequently, authors concluded that data compression using autoencoder

architecture can be beneficial for forecasting models, even more when they are fed

with raw EMG sequences.

Other investigations have searched the same objective but using kinematic infor-

mation instead of EMG signals. Ibrahim et al. [36] a hybrid DL architecture based

on a Convolutional Neural Network (CNN) and a MLP. They acquired kinematic

signals associated to specific parts of the hand and the wrist using IMUs, from a

group of PD patients. Signals were recorded at a 100 Hz sampling rate and they

were filtered between 3 and 17 Hz using a band-pass Butterworth filter to extract the

tremor component. Also, a low-pass filter with cutoff frequency of 2 Hz was applied

in order to remove voluntary movement component. The model architecture was

composed by a combination of two consecutive 1D-CNN layers, followed by a MLP

layer. Authors explained that the first part of the network is aimed to perform a

feature extraction process over the signals using convolutions and pooling. Then,

the extracted features are passed to the MLP which is in charge of performing the

prediction stage.

FIGURE 1.5: CNN-MLP model architecture diagram used in [36]. 1D-
CNN layers were composed by 64 filters of size 2, 1D-MaxPooling

were of size 2 and the MLP consisted of 50 neurons.

Although the model was also tested on estimating and predicting the voluntary
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component of the signal, achieving about 99 % of estimation accuracy, the experi-

ments related to tremor activity are the ones of interest in this case, whose results

were not as good as for voluntary movement. Prediction accuracy for tremor signals

was 97.3 %, 93.7 %, 91.4 % and 90.3 % for 10, 20, 50 and 100 ms prediction horizons,

respectively. The lowest performance was given for signals associated with holding

the hand against gravity in postural position, with an accuracy between 66 % and

73 %. Thus, results were highly dependent on the type of gesture and position of the

patient.

FIGURE 1.6: Example of estimation and prediction of tremor signal
from [36]. Green scattered line corresponds to last 10 ms predicted

segment.

Shahtalebi et al. [37] proposed a bidirectional RNN architecture called PHNet to

extract and predict the voluntary component involved in pathological hand tremor

(PHT) signals from PD and ET patients. Then, the tremor component can be also

recognized and reduction techniques via stimulation could be applied. In this case,

the data were acquired using an inline 3D accelerometer sensor and downsampled

to 100 Hz. Patients were asked to perform different static tasks in order to obtain

information from a variety of postures. Authors proposed an additive model for the

voluntary component, assuming that the final measured signal is just the sum be-

tween the voluntary motion component and the tremor activity. Following this idea,

they created the ground-truth for action tremor by mixing experimentally-collected
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static tremor signals with a synthesized voluntary component created using a si-

nusoidal function. In this way, they could train the model to predict the artificial

voluntary component in a large dataset and, after, evaluate the performance on real

action tremor signals.

FIGURE 1.7: Workflow diagram for model training proposed by [37].
After adding synthesized and recorded components, the resulting
signal is fed to the RNN model which is trained to predict the next

voluntary component values.

FIGURE 1.8: Bidirectional RNN architecture proposed by [37]. The
information from the forward and backward paths are not mixed at

the end to generate a unique output.
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The bidirectional RNN architecture was composed by an specific type of recurrent

cells: Gated Recurrent Unit (GRU) [38]. Authors decided to use a bidirectional ap-

proach because they wanted to build an online-offline prediction system. The for-

ward path of the network corresponds to the online prediction, where past values

are used to predict future unseen ones, whereas the backward path tries to recon-

struct the previous part of the signal from current values. Then, they implemented

the model so as to divide the output into two sequences (forward and backward

paths) instead of mixing both information. The model was tested using different

input length sequences: 1, 2, 3, 4 and 5 s. The best performance was achieved with

input sequences of 4 s length and the results were extremely accurate (MSE<0.002).

Even when the model was tested on real action tremor signals, the estimation of the

voluntary component was precise (see Figure 1.9).

FIGURE 1.9: Voluntary component prediction examples from [37].
Black lines correspond to the real measured signal while red lines are

the estimations provided by PHNet.

Finally, another recent and interesting study was the one performed by Pascual-

Valdunciel et al. in 2021 [21]. The objective of this study was to develop a DL model
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capable of predicting the full tremor waveform (amplitude and phase) with mini-

mum phase delay from kinematic signals. They acquired data from ET patients us-

ing a configuration of 4 IMUs located over the dorsal side of both hands and at the

forearms, with a sampling rate of 50 Hz. They empathized the need for several pre-

processing steps before getting the data ready for training. First of all, raw quater-

nions had to be converted into Euler angles. Then, a band-pass Butterworth filter

between 4 and 10 Hz was applied in order to extract the tremor component from the

signals. The last step was to perform a min-max scaling over the signals with the

purpose of easing the training for the network (see Figure 1.10). Two models con-

sisting in one and two LSTM layers plus a linear layer were trained using different

input and output lengths, namely: 600 and 1000 ms as input lengths, and 100, 200,

400, 600 and 1000 ms as prediction horizons. Performance was evaluated in terms

of MSE, RMSE, Pearson correlation coefficient (PCC) and phase delay. Correlations

were in the range of 0.70 in the worst case (input 600 ms, output 1000 ms) and 0.99

in the best case (input 1000 ms, output 100 ms). The prediction quality for 1000 ms

horizon could be improved up to 0.76 correlation by using the same length at the in-

put. In conclusion, authors demonstrated the potential usage of LSTM architectures

for accurate prediction on appropriately processed kinematic tremor signals.

FIGURE 1.10: Workflow schema for the experiments conducted
in [21].
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1.3 Motivation

While the tremor detection problem is part of the development of tremor manage-

ment systems and, thus, relevant for the background of this thesis, it has been shown

that, in recent years, classification of tremorgenic signals using ML and DL algo-

rithms is already explored and various studies have proved the potential usage of

these methods in the field. What it is not entirely and generally demonstrated are

the capabilities of AI models to predict tremor activity (amplitude and phase) with

high accuracy for the typical tremor duration windows (>200 ms). In this context,

this Master thesis is aimed to explore more extensively and generally the potential

usage of DL models for tremor signals forecasting.

First of all, many investigations were carried out using kinematic information,

recorded by means of accelerometers, gyroscopes and IMU devices, which usually

require a heavy preprocessing stage. Instead, in this thesis, most experiments will

be focused on using sEMG signals, which are a raw representation of electrophysi-

ological data (muscle activity). Thus, models might be capable of learning intrinsic

patterns from biological signals directly, which might be helpful for the generaliza-

tion and characterization of tremor activity. In this regard, it should be remarked the

importance of including information from both ET and PD disorders. This way, the

models could be trained using separated or combined information and their gener-

alization capabilities could be studied and tested. Therefore, this investigation will

be carried out using data from ET and PD patients.

Regarding the design of DL architectures, other studies have shown the potential

of RNN-based models, making use of different approaches in the filed (GRU, LSTM).

Not so many investigation were conducted exploring other kind of designs, taking

advantage of newer more powerful architectures which could bring an improved

performance in prediction of tremor signals. Consequently, this Master thesis aims

to build different non or less-explored approaches in this field, to test their efficacy

and compare it with the state-of-the-art (SOTA).

Finally, another motivation for this investigation is to study the combined usage

of kinematic and EMG signals for tremor activity forecasting, as there have not been

found studies on this topic.
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1.4 Objectives

Once analyzed the SOTA related to the investigation of this thesis and declared a

convenient motivation as foundation, a series of objectives should be stated in order

to specify the critical points to be assessed and to summarize the scope of this work:

• Design a sufficient but simple preprocessing pipeline and study the feasibility

to use minimal preprocessed EMG signals to predict tremor oscillations.

• Design, implement and train predictive models based on a variety of contem-

porary DL architectures and approaches.

• Test the predictive capabilities of the models when trained separately with ET

and PD data, and when trained using both information.

• Test models’ performance for different combinations of input and output sig-

nal lengths.

• Study the combined usage of kinematic and EMG signals to train a predictive

DL model and assess the performance.

Following these previous ideas, this thesis will be divided into 5 main parts:

1. Definition and description of the data to be used in the study.

2. Definition and implementation of preprocessing steps for the data and database

creation.

3. Description of the DL models designed for the prediction of tremor signals and

definition of the training algorithm and performance metrics.

4. Individual and comparative analysis of the results and a final overall discus-

sion.

5. Declaration of the conclusions obtained from the investigation.
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1.5 Hypothesis

To conclude with the introductory part for this Master thesis, it is convenient to add

a set of hypothesis about some expected results of the investigation, that should be

properly answered at the end of this work.

• Given the complex structure of DL models, it is expected that they will be able

to extract patterns and learn predictive information from the data, even if the

preprocessing effort is minimal.

• In terms of prediction accuracy, there will be a trade-off between input length

and prediction horizon: performance will decrease as the input length becomes

smaller or the output longer, while it will increase for longer input lengths or

smaller prediction horizons.

• The combined usage of kinematic and EMG signals might bring an improved

performance in terms of prediction accuracy for tremor activity, as models will

be fed with two compatible sources of tremorgenic information.
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Chapter 2

Materials and methods

This chapter involves the first three main parts of the thesis, which include all the in-

formation regarding the collected data, preprocessing steps, implemented DL mod-

els for prediction and definition of the performance metrics and training algorithm.

2.1 Materials

One of the objectives of this Master thesis is to evaluate predictive capabilities of the

DL models in pathological tremor signals from the most prominent tremor disorders

today: ET and PD. Therefore, a recruitment process for patients from both diseases

was performed before acquiring the data.

Twelve ET patients were selected from the Movement Disorders Clinic of Gre-

gorio Marañón Hospital (Madrid, Spain) to participate on the study performed by

Pascual-Valdunciel et al. [21]. Fourteen PD patients were recruited and tested at

Imperial College London (London, United Kingdom). Procedures were compliant

with the Declaration of Helsinki and approved by Spanish Agency of Medicines and

Medical Devices (record 714/18/EC) for the experiments with ET patients, and by

Imperial College Ethical Committee (record 18IC4685) for the experiments with PD

patients. The ET and PD patients included in the study satisfied the following cri-

teria: diagnosis of ET or PD, present clinically postural or rest tremor; age between

18-85 years; tremor affecting at least one of the upper limbs; absence of other neu-

rological or musculoskeletal pathology and ability to understand the procedure and

sign the informed consent.
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2.1.1 Data acquisition and description

For ET Patients, bipolar sEMG electrodes were placed over the muscle belly of FCR

and ECR, after cleaning the skin with alcohol. sEMG signals were acquired at 2042 Hz.

Additionally, kinematic signals were also recorded during the experiments using a

motion capture system (Tech-MCS, Technaid S.L., Madrid, Spain) of four Inertial

Measurement Units (IMUs). The sensors were located over the dorsal side of the

hand and the forearm of both upper limbs (see Figure 1.10). Raw quaternions rep-

resenting the spatial orientation of the IMUs were sampled at 50 Hz during 60 sec-

onds. In two experimental sessions and, at least, three trials per patient, subjects

were asked to hold the following postures against gravity to elicit tremor: both arms

outstretched and pronated; or both arms with the elbows flexed and facing stretched

fingers. On the other hand, only EMG data were acquired from PD patients and the

recording stage of kinematic data using the IMUs system was excluded, due to the

limited time and resources for the study. In this case, sEMG signals were acquired

at 2000 Hz with a bio-signal amplifier (OT Bioelettronica, Italy) using bipolar elec-

trodes placed on FCR and ECR muscles. Patients were asked to maintain a posture

that facilitated the appearance of tremors for 30-60s: with both arms stretched out

in front and pronated; with both arms raised, elbows flexed and fingers pointing to

each other at the face level, or with both arms and hands resting on the table.

2.1.2 Data preprocessing

EMG data

The first part of data preprocessing was a quality selection procedure for sEMG sig-

nals. After experimental sessions were ended, each record was assessed and tagged

according to its quality, based on visual inspection performed by an expert in EMG

tremor signals. An heuristic 3-class quality scale was established as follows: 0 (Not-

Acceptable), 1 (Acceptable) and 2 (Good). For the purpose of this investigation, only

EMG records tagged as 1 or 2 quality classes were considered and included into the

datasets (see Table 2.1). For the case of EMG recorded data from PD patients, all

sequences satisfied the same signal quality requirements so it was not necessary to

perform a selection process.
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EMG-ECR EMG-FCR

Acceptable (1) 23 46

Good (2) 125 95

Total 148 141

Available records 289

TABLE 2.1: Number of selected EMG records from ET and PD pa-
tients based on signal quality information.

sEMG recordings are known to generally contain different sources of artifacts

and noise, such as: electrode inherent noise, movement artifacts, power line compo-

nent, cross-talk between muscle fibers or electrocardiographic artifacts. Therefore, a

preliminary filtering process is recommended [39].
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(A) Source: ET data.
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(B) Source: PD data.

FIGURE 2.1: Example EMG signals before and after preprocessing.
Red lines correspond to the raw sEMG recordings and black lines to

signals after being processed.

As commented in the introduction, pathological tremor in ET and PD patients

can have frequencies between 3 and 12 Hz. However, at the time of the experimen-

tal sessions, it was noted that patients presented tremor with frequencies less than

10 Hz. Consequently, in order to extract the tremor component from raw signals, a
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Butterworth band-pass filter of order 5 with cut-off frequencies 4 Hz and 9 Hz was

applied. Butterworth filters have no ripple in their response and the transition is

much more smooth than with other types of filters. Also, it was applied forward

and backward to the signals, which provides a zero phase distortion [40]. Finally,

the mean was removed from the signals and the recordings were downsampled

from their original sampling rates, 2042 Hz and 2000 Hz for ET and PD patients,

respectively, to a final sampling rate of 50 Hz. According to Shannon-Nyquist sam-

pling theorem [41], to recover the information contained in a continuous signal with

frequencies lower than f , it must be sampled at a rate fs such that: fs > 2f . There-

fore, given that the objective signal is the tremor component, whose frequency is less

than 10 Hz in this case, a sampling rate of 50 Hz fulfills the Shannon-Nyquist theo-

rem. Downsampling process helps to reduce as much as possible the computational

and storage costs.

Kinematic data

Only the kinematic sequences associated to the selected sEMG recordings from ET

patients were used in the dataset. Kinematic data were recorded in raw quaternions

format with the IMUs system at a sampling rate of 50 Hz.

Quaternion number system is an extension to the complex numbers which was

first described by William Rowan Hamilton, whose objective was to apply complex

numbers to represent 3-dimensional rotations. A quaternion is generally defined as:

q = a+ bi+ cj+ dk (2.1)

where a, b, c, d ∈ R and i, j,k are the basis vectors which must fulfill the fundamental

formula of quaternions [42]: i2 = j2 = k2 = ijk = −1

Quaternions are used in problems that involve 3-dimensional rotations calcula-

tions because storing the captured data in this format demands less storage and it

is more efficient, however, they are less intuitive to be interpreted. Consequently,

they were transformed into Euler angles and represented based on the rotation axes

of the IMUs (x, y, z). Then, only the variations in the angle corresponding to z-axis

were taken, as that is the axis associated to the flexion-extension movement of the
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wrist. Finally, sequences were filtered using the same configuration for EMG data

(Butterworth band-pass filter of order 5 between 4 and 9 Hz), in order to apply the

same signal processing strategy. In Figure 2.2, an example of EMG and its associated

kinematic signal after processing is depicted. It can be noticed that their frequency

is closely similar but the kinematic sequence is delayed with respect to the EMG,

which is expected as the former represents directly electrophysiological activity and

the kinematic signal represents the consecutive movement.
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FIGURE 2.2: EMG+Kinematic signal from an ET patient example. (a)
shows the data after processing and as stored in the dataset. (b) shows

an scaled view in order to see clearer the delay between signals.

Tremor activity detection procedure

The principal objective of this Master thesis is to evaluate the predictive capabil-

ities of DL models on tremor-associated signals. Given that tremor episodes are

recurrent and not constant, it is expected that not every recorded sequence con-

tains tremor component. Consequently, it is needed to have a tagging procedure

for detecting and filtering the sequences in which there exists tremor activity. In

this regard, frequency-based features are generally used in literature as a simple,

computational-efficient approach to classify tremor signals, without resort to ML

algorithms. For this study, the tremor detection process was based on the Power

Spectral Density (PSD) of the sequences. PSD is defined as the Fourier transform of
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the autocorrelation for a given signal X , formally:

SX(ejω) = F{RX [m]} =
+∞∑

m=−∞
RX [m]e−jωm, (−π ≤ ω < π) (2.2)

where F denotes the Fourier transform and RX [m] the autocorrelation of signal X .

PSD can be interpreted as a measure of the distribution of the mean power of a sig-

nal along the frequency domain [43]. Since the objective frequency band is between

4 Hz and 9 Hz, the values of the PSD associated to that interval can be used to de-

termine a threshold for tremor activity. It should be noted that the definition of the

PSD given by Equation 2.2 is true for a wide-sense stationary signal, that is, a signal

whose statistical properties are approximately time invariant with respect to the ori-

gin. This property is assumed to be fulfilled by the EMG sequences, however, it is

important to remark that this assumption is not totally true for biological signals in

general, because they are not stationary.

The PSD of the EMG signals was estimated using Welch’s method [44], which

provides an estimate for the PSD based on splitting the signal into overlapping seg-

ments, computing the modified periodograms for each segment and averaging the

results. Welch’s method presents some important advantages with respect to other

estimation methods, such as Blackman-Tuckey: it reduces spectral leakage by apply-

ing a window over the segments and variance by averaging various estimates [43].

For this study, Welch’s method was applied using two segments with 50% overlap

and a Hanning window to compute PSD estimates. The maximum value of the PSD

between 4 Hz and 9 Hz was compared to an heuristic threshold to decide whether

the an EMG sequence contains tremor or not. This threshold was defined as the me-

dian of the maximum PSD values between 4 Hz and 9 Hz from a sample of EMG

recordings that represents more than 50% of the sequences. The mean value was

discarded due to the presence of strong outliers in the distribution. Moreover, it

was visually verified that the median value approximately served as threshold be-

tween tremor and no-tremor sequences. Nonetheless, it should be remarked that

this method was developed based on this specific dataset and it is not guaranteed

that it can be applied generally. The goal of this process was to easily filter tremor

signals but, for general applications, classification methods as those mentioned in
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the introduction might be used (see Section 1.2.1).
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FIGURE 2.3: PSD for three processed EMG sequences of 1 s length.
Dashed lines indicate the filtered frequency band in which tremor
component is expected to appear. It is shown that the maximum of

the PSD (x) is located inside this band.

2.1.3 Datasets

The datasets were created using sequences of 2 s duration. Only those signals in

which tremor was detected during the first second were included. The first second

will serve as the source for the input window in model training, whereas the resting

part of the signal will be used as output window, i.e. prediction objective. Addi-

tionally, a 50% overlap was applied when loading the original recordings, with the

purpose of increasing as much as possible the number of samples in the datasets. At

the end, a total of 3800 EMG sequences of 2 s were selected from ET patients (along

with their associated kinematic sequences), and 5200 from PD patients.

Train Validation Test
ET PD ET PD ET-P001 PD-P010

Database ET∗ 3060 0 340 0 100⋆ 0
Database PD 0 4590 0 510 0 100

Database ET+PD 3060 3060 340 340 100⋆ 100

TABLE 2.2: Distribution of samples for the databases in train, test
and validation subsets. ∗Database ET has one version including only
EMG data and another including EMG and kinematic sequences.
⋆Samples from patient ET-P001 were cropped to 100 in order to have

the same number of testing samples from both diseases.

For the purposes of this thesis, four different datasets were created using the se-

lected samples (see Table 2.2). A leave-one-patient-out method was used to create a

test subset from the data, in order to evaluate the performance of the models. This

methodology helps to assess the generalization capabilities of the models, as well
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as to detect overfitting. Since the data contain information from two different dis-

eases, one ET patient and one PD patient were selected and their recordings were

removed from the training data to create the test subset. The remaining sequences

were divided into train and validation subsets.

2.2 Methods

2.2.1 Development tools

This Master thesis was developed using the Python programming language and en-

vironment. Python is a general-purpose programming language that is increasing in

popularity from past years, specially for tasks related to the field of data science, ML

and DL. It has a large variety of libraries specifically designed for data manipula-

tion, scientific analysis, algebra, ML modeling and automatic differentiation. For the

purposes of this Master thesis, the principal libraries employed are: SciPy (scientific

computing and signal processing), NumPy (matrix operations), Pandas (dataframes

and data manipulation), Matplotlib (data visualization) and PyTorch (automatic dif-

ferentiation). All DL models were implemented using the PyTorch library which,

along with automatic differentiation features, it provides a large set of functions to

load the data, train, test and deploy DL models. All code regarding the experiments

of this work is available at a repository in GitHub1.

2.2.2 LSTM

The Long Short-Term Memory network was proposed by Hochreiter et al. [45] in

1997 and it belongs to the field of recurrent neural networks (RNN). RNNs are de-

signed to work with sequential data. Their architecture is characterized by the ca-

pability to save memory states, i.e. learn time dependencies in the input sequences

and try to simulate memory notion. To this end, RNNs implement an update rule for

their hidden states in which the information is shared across successive time steps.

This strategy is known as sequence unrolling and it consists in connecting current

1https://github.com/Robolabo/. Access should be requested to the repository owner
(a.gutierrez@upm.es).

https://github.com/Robolabo/
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inputs to previous outputs [46]. Formally, a RNN can be expressed in two equations:

ht = f(Wxt + Uht−1 + bh) (2.3)

yt = g(Vht + by) (2.4)

where ht,ht−1 are the hidden states from current and previous time steps, respec-

tively; W, U and V are weights matrices, xt is the current input vector, bh, by are

bias vectors and f , g denote the applied activation function (e.g. tanh, ReLU) which

introduces a non-linear transformation.

This type of neural networks needs a different procedure to perform the learn-

ing process which, traditionally and generally for every neural network, is based on

back-propagation and gradient descent techniques. The reason is that RNNs work

with sequential data, meaning that each training iteration is over once the whole

sequence is processed. Thus, there exists a time step dependency between the pa-

rameters of the neural network. This problem must be taken into account when com-

puting the derivatives and updating the weights. For this purpose, a modified ver-

sion of back-propagation was proposed for RNNs which is called back-propagation

through time (BPTT). BPTT includes the time dimension on back-propagation pro-

cess by assuming that the loss function (L) at the current time step depends on pre-

vious ones, so the derivatives are taken from latest to first time steps (see Figure 2.4).

FIGURE 2.4: Computational graph of BPTT for an input sequence of
three time steps [46]. At the last time step, the derivative of the loss
function is computed with respect to that input. Then, the result is
assumed to be dependent on the previous time steps and the deriva-

tives are propagated until the beginning of the sequence.

BPTT solves the back-propagation problem in RNNs, however, one of the main
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drawbacks of this type of architectures is the difficulty to learn long-term patterns

as length of the input sequences increases. This is known as the vanishing gradients

problem, which is explained in detail in Appendix A. LSTM was created as a solution

to this issue. It is based on a memory cell composed by four non-linear gating units,

whose purpose is to regulate the incoming and outgoing information flow. The gates

are named as: input gate, forget gate, context gate and output gate. They are defined

by Equations 2.5, 2.6, 2.7 and 2.8. Matrices first index corresponds to the vector they

process, while second index refers to the gate [46].

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (2.5)

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (2.6)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt + Whcht−1 + bc) (2.7)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (2.8)

for xt ∈ RN , where xt is the input vector at time step t and N the feature length. ⊙

represents the Hadamard product (element-wise multiplication). Then, the output

gate generates the final hidden state which is propagated to the next step:

ht = ot ⊙ tanh(ct) (2.9)

These equations conform a model for human memory notion. LSTM cells build

a representation for new (it) and past (ft) information by applying linear combi-

nations between the input (xt), previous hidden state (ht−1) and previous context

(ct−1). Thus, they are adding additional information to the current time step (con-

text) apart from the hidden state, as vanilla RNNs. Next, the current cell information

(Wxcxt+Whcht−1+bc) is filtered by applying a non-linear transformation (tanh) and

an element-wise multiplication with the input. The resulting information is added

to the multiplication between the forget representation and the previous context. At

this point, the output is computed from the new context vector and, finally, the next

hidden state is generated.
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Model and hyperparameters

LSTM architecture has been widely used in research when working with sequen-

tial/time series data. It has shown a great performance and, moreover, it was already

applied to tremor-associated signals, as explained in the introduction. Therefore,

the first implemented model in this work was based on the LSTM cell. A two-layer

LSTM model called LSTMp is proposed as the simplest design that is going to be the

reference to compare the next approaches. This idea is based on the previous work

conducted by Pascual-Valdunciel et al. [47], where a similar model was proposed to

perform signal prediction of kinematic signals.

Input sequence

x1

LSTM1

LSTM2

LSTM1 LSTM1

LSTM2 LSTM2

h11

h11

h21

h12

h22

h12

...

...

h2t-1

h1t-1

h1t

Linear

h2t

Predicted sequence

x2 xt...

FIGURE 2.5: Diagram of the implemented LSTM model. Each layer
corresponds to a different LSTM cell with its own parameters. The
final hidden state of the first layer from each time step is passed as in-
put to the second layer. Finally, the last hidden state from the second
layer is fed to a linear layer to produce the entire predicted sequence.

A grid-search strategy was employed to find the best performing model, using the

following predefined hyperparameters sets based on similar studies:

• Hidden size (num. of neurons): {35, 50}.

• Learning rate: {0.001, 0.0005, 0.0001}.

2.2.3 CNN

CNNs are a specific type of neural networks specialized in processing arrays of data,

e.g.: images. They have far superior performance on extracting spatial patterns from
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two dimensional data, with respect to other types of neural networks [48]. The rea-

son is that they are inspired by the visual cortex functioning when it comes to data

processing. CNNs implement a special type of neural layer called convolutional

layer. It performs a convolution between the input and a series of matrices called fil-

ters or kernels, which are also known as feature detectors. The convolution consists

in computing a dot product between the image and each of the filters, for different

regions of the input (perceptive field). The output of each operation conforms a fea-

ture map, which represents the patterns found by each filter in the input. Then, a

non-linear transformation is applied to generate the final set of feature maps. There-

fore, the training process of a CNN has the objective of learning the appropriate set

of weights for the filters in order to perform the given task [49].

FIGURE 2.6: Diagram of an example CNN architecture [49]. The
model is conformed by two convolutional layers, two pooling lay-
ers and a fully-connected network. The dimensionality reduction in
the process is visually represented by the decreasing size of the fea-

ture maps.

In addition to convolutional layers, CNNs also are characterized by the applica-

tion of downsampling operations to reduce input dimensionality. This procedure is

driven by the pooling layers which, similarly to convolutional layers, are composed

by a set of filters but, this time, their parameters are not trainable. This happens

because the objective of pooling layers is to apply an aggregation function to fixed

size regions in the input. After, the resulting matrices are compressed by selecting

the maximum value of each of them (max pooling) or averaging all values (average

pooling). This way, the dimensionality of the data is sequentially reduced.

CNNs have been extensively applied in computer vision tasks but, also, various

studies have proved the feasibility of applying these architectures to sequential/time

series data [50], [51]. However, some modifications have to be implemented since
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the input have no longer more than one dimension. Consequently, the kernels of the

neural network are one-dimensional and the operations (convolutions and pooling)

are perform along a unique axis. In this case, the feature maps can be interpreted

as the recognized temporal patterns through the signal. Thus, the objective of this

type of CNNs is similar to that of RNNs but, contrary to them, CNNs process the

whole signal at once in parallel, which supposes an advantage in terms of computing

efficiency for long sequences.

Model and hyperparameters

Conv1D

(conv1ch, 3, /1)

Padding = 'same'.

Filtered EMG

AvgPool1D

2x1

ReLU

Conv1D

(conv2ch, 2, /1)

Padding = 0.

ReLU

AvgPool1D

2x1
Flatten

Predictor

(A) Complete model. Conv1D notation: (Num. of filters, Kernel size, Stride)

Linear + ReLU

Linear + ReLU

Linear

Linear + ReLU

Linear

Linear

Train win.: 300 ms Train win.: 600 ms Train win.: 1000 ms

(B) Predictor module for each training window.

FIGURE 2.7: Diagram of LeNetp model.

The first CNN-based architecture in this work is called LeNetp and it based on

the LeNet network presented by LeCun et al. [52] in 1998. The original purpose of

this network is to work with gray-scale (1 color channel) images of 28x28 pixels and

perform a classification task. It is a basic CNN architecture based on subsequent

convolutions and downsampling stages. Thus, due to its simplicity and design, it

was selected as a reference to build a CNN network for the signal prediction task.
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The architecture of the model is presented in Figure 2.7. It should be noted that,

regarding the convolution stages, two different combinations of number of filters

per convolution were employed during training, therefore, the number of filters in

the diagram is referred as conv1ch, conv2ch for the first and the second convolution,

respectively. Padding ’same’ consists on applying the necessary padding length in

order to have the same output length as at the input. There exist other ways to

perform padding, if necessary. In this case, having the same output length as at

the input helps to add more complexity to the network. The input length (training

window) determines directly the size of the final flattened vector, since the output

length of the signal after each convolution or pooling is given by:

Lo =
Li + 2 · p− d · (ks − 1)− 1

s
+ 1 (2.10)

where Li is the input length, p is the padding, d is the dilation, ks is the kernel size

and s is the stride. Consequently, a different sequence of linear layers and activation

functions were applied for each training window. The number of layers increases

with the input length, in order to take advantage of the more incoming informa-

tion from the signal. In the simplest case, there is only one single linear layer that

performs directly the prediction.

A grid-search strategy was employed to find the best performing model, using

the following predefined hyperparameters sets, :

• conv1ch: {3, 6}.

• conv2ch: {12, 16}.

• Learning rate: {0.001, 0.0005, 0.0001}.

The hyperparameters were selected based on the original LeNet structure which

used 6 and 16 kernels for the convolutions and filters of size 2x2 for the average

pooling layers. The strides, paddings and kernel sizes for the convolutional layers

were adapted to the input size of the signals, which will be between 15 (300 ms) and

50 (1000 ms) samples, in order to maintain a minimum sequence length through the

processing for the convolutions and pools. Finally, the sigmoid function was sub-

stituted by the ReLU. The main reason is that ReLU helps to accelerate the training
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process compared to other functions, because its derivative is 1 for positive inputs.

It should be noted that this activation function is not applied on the final linear layer

since the output signal can have positive and negative. In other words, if ReLU were

applied at the end of the process, predicted values would be always positive.

Another CNN-based architecture called incepCNNp is proposed as a more so-

phisticated approach to the LeNetp model presented before. It is inspired by ChronoNet

architecture developed by Subhrajit et al. [53] in the context of abnormal EEG detec-

tion.

Filtered EMG

Conv1D (16, 2, /2) Conv1D (16, 4, /2) Conv1D (16, 8, /2)

Filter concatenation

Conv1D (16, 2, /1) Conv1D (16, 4, /1) Conv1D (16, 8, /1)

Filter concatenation

Linear

Flatten

Linear + ReLU

Linear + ReLU

(Dropout = 0.2)

(Dropout = 0.2)

FIGURE 2.8: Diagram of incepCNNp architecture. Conv1D notation:
(Num. of filters, Kernel size, Stride).

The authors experimented with a set of modules inspired by the inception architec-

ture designed by Google [54]. This architecture was proposed as a solution to overfit-

ting and to improve computing efficiency in deeper CNNs, in which the complexity
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of the models started to suffer from problems related to vanishing and exploding

gradients, as well as training expenses. Authors of the ChronoNet architecture in-

spired their model on the simplest version of inception. These modules consist in

same-level convolutions with exponentially increasing kernel size, followed by a fil-

ter concatenation operation. In addition, ChronoNet includes recurrent networks and

residual connections to improve the performance with time series data and prevent

overfitting. For the purposes of this Master thesis, the proposed model follows the

same idea but replacing the recurrent parts of the network by a sequence of lin-

ear layers and activation functions, in order to assess the performance of the model

without sequences-oriented layers. The resulting architecture is shown in Figure 2.8.

Regarding the hyperparamter selection, only different learning rates ({0.001, 0.0005,

0.0001}) were used in the grid-search process. The resting parameters were chosen

according to the ChronoNet architecture, but reducing the number of kernels and

their sizes since, in this case, the task is simpler (one channel of EMG instead of

several channels from EEG).

2.2.4 CNN-LSTM

The next proposed model for tremor signal prediction is a combination between

CNN and recurrent structures. While in literature it is common to find studies

that make use of RNNs and, less frequently, CNNs for time series forecasting, the

combined usage of both architectures has not been widely explored. The most in-

teresting study that was found in this regard is the one performed by Subhrajit et

al. [53], that was mentioned before. The authors experimented with a combination

of convolutional and recurrent modules to process biological signals, adding skip-

connections to avoid overfitting and vanishing gradients. In the previous section,

their model was used as reference to create a CNN-based architecture (incepCNNp)

but, now, another similar model called CNN-LSTMp is proposed including recur-

rent parts (see Figure 2.9). The objective of this model is to assess the possible im-

provements of combining convolutional with recurrent structures when processing

one-dimensional signals.

In this case, the grid-search process was performed using the following hyper-

parameters sets:
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Filtered EMG

Conv1D (16, 2, /2) Conv1D (16, 4, /2) Conv1D (16, 8, /2)

Filter concatenation

Conv1D (16, 2, /1) Conv1D (16, 4, /1) Conv1D (16, 8, /1)

Filter concatenation

LSTM1 

LSTM2 

Features concatenation

Linear

FIGURE 2.9: Diagram of CNN-LSTMp architecture. Conv1D nota-
tion: (Num. of filters, Kernel size, Stride).

• Hidden size (num. of neurons): {35, 50}. Same for both LSTM cells.

• Learning rate: {0.001, 0.0005, 0.0001}.

2.2.5 Transformer

In 2017, Vaswani et al. [55] published a paper that would change the field of DL

for the upcoming years. In that paper, Attention Is All You Need, they presented the

Transformer architecture: an encoder-decoder approach in the context of machine

translation which, contrary to the SOTA models, substituted any recurrent structure

by only self-attention modules. Authors showed that the Transformer was capable
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of outperforming any other sequence-to-sequence model in most tasks. The great

innovation of this new approach is mainly the total independence of recurrent struc-

tures in the processing. Authors demonstrated that attention modules were enough

for a model to learn patterns and create fair, strong representations for text data.

FIGURE 2.10: Original diagram of the Transformer architecture [55].

In neural networks, attention is a mechanism that allows models to create more

complex representations for sequences, applying weights to the tokens that are com-

puted based on the relative importance of each token in the sequence. These atten-

tion mechanisms can be interpreted as an imitation of the visual attention system

in human beings [56], since its objective is to provide information about the relative

importance of the elements in some situation. There exists several variants of the

attention mechanism, regarding the operations involved in the computation of the

attention weights. However, the core idea is the same for almost every method and

it consists on a function that maps a query with a set of key-value pairs to an output,

where all elements are vectors. The nomenclature comes from the field of databases

and the meaning of each element is similar in this case. The query represents the
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searched element, that is, the token of the sequence for which the attention weights

from other tokens is going to be computed. These other tokens and their respective

importance regarding the query are represented by the key-value pairs. Therefore,

the attention system will apply some compatibility function between the query and

the keys, providing the corresponding values. The final output is a weighted sum of

those values. Vaswani et al. proposed a self-attention mechanism named as scaled

dot-product attention:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.11)

where Q,K, V are the query, keys and values matrices consisting on the stacked

individual query, keys and values vectors, and dk is the embedding size. Authors

claimed that this implementation is much faster and efficient than other similar ap-

proaches, since it is based on simple matrix multiplications.

In addition, authors decided to perform this attention process several times in

parallel, by using different representations or heads, thus, implement multi-head

attention. This method allows the model to create deeper and richer representations

that will be jointly used at inference time. Formally, multi-head attention can be

expressed as follows:

Multihead(Q,K, V ) = Concat(head1, · · · , headh)WO

with headi = Attention(QWQ
i ,KWK

i , V W V
i )

where WQ
i ,WK

i ,W V
i are parameters matrices that are learned during the training

process.

Apart from the attention mechanism in the Transformer architecture, authors

declared the necessity of introducing information related to the absolute or relative

position of the tokens in the sequence. This is extremely important for the model

to learn the temporal (positional) dependencies in the data, otherwise, it would not

be able to establish these connections between the tokens, which is also crucial for

the training of the attention mechanism. Consequently, authors added a positional

encoding vector to the input embeddings. This positional encoding can be computed
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in several ways, both fixed and learned terms. However, in the original architecture,

authors noted that both approaches had similar performances so they decided to

create a fixed function based on cosine and sine functions:

PE(pos,2i) = sin(pos/n2i/dk)

PE(pos,2i+1) = cos(pos/n2i/dk)

where pos is the token position in the sequence, i is the embedding dimension in-

dex, n is an scalar and dk is the embedding dimension size. Therefore, the positional

encoding is defined as a couple of sinusoidal functions of the same frequency, which

reduces as the embedding dimension increases. For a fixed dimension index, an spe-

cific sine or cosine is added to the input embedding, so every token in the sequence

carries information about its position and the model would be able to attend to rel-

ative positions. Moreover, the calculation of these functions is extremely fast and

efficient and only depends on the selected embedding dimension.

0 1 2 3 4 5 6 7 8 9 10
token

dim = 0

0 1 2 3 4 5 6 7 8 9 10
token

dim = 1

0 1 2 3 4 5 6 7 8 9 10
token

dim = 2

0 1 2 3 4 5 6 7 8 9 10
token

dim = 3

FIGURE 2.11: Example visualization of sine and cosine functions used
for positional encoding. For even dimensions, the sine function is
employed, whereas the cosine is added for odd dimensions. In both

cases, as the dimension depth increases, the frequency reduces.

The Transformer architecture has an encoder-decoder structure, in which those

previously presented concepts of self-attention and positional encoding are imple-

mented. The encoder takes the input sequence, adds positional information, per-

forms the self-attention and, then, the resulting vectors are passed to feed-forward

networks that process each token individually. These last neural networks have the

purpose of preventing the model to stop learning by applying linear transformations
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along with a ReLU non-linear activation function. Additionally, there exist residual

connections between the input and the output of the self-attention module. This

encoder structure can be repeated N times, which supposes more flexibility when

designing models of this kind. Finally, the outputs of the encoders are fed to the

decoder, which has a similar structure. However, the decoder is meant to work in

an autoregressive process, that is, it is sequentially receiving the previous outputs

and, applying attention between them and the encoders outputs, it generates the

probabilities for the next token.

FIGURE 2.12: Tranformer encoder illustration by [57].

Besides major implementations and results using the Transformer architecture

are associated to the field of natural language processing, since its release researchers

have successfully tried to create variants of the Transformer to work with images [58]

and time series data. At this moment, there exist several Transformer-based net-

works for time series forecasting, such as: LogTrans [59], Pyraformer [60], Auto-

former [61], Informer [62] and FEDFormer [63]. The main difference between those

studies comes from the implementation of the self-attention module for the time se-

ries. It should be noted that, with this kind of data, one of the main problems is the

creation of a good methodology to perform both embedding and attention. In the

field of natural language processing, there exists the concept of word embeddings,

which is a unique map between a word an a vector in certain subspace. The unique

representations for words allows a proper self-attention learning, because the model

is capable of learning and identifying unique tokens. However, in time series data,
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FIGURE 2.13: Summary of the pipeline from existing Transformer-
based architectures for time series forecasting [64]. Solid boxes are

essential operations while dotted boxes are optional.

the problem is different because both the input and the embeddings are in continu-

ous space. That is the reason for the amount of different approaches in time series

forecasting (see Figure 2.13).

Nevertheless, the efficacy of those models was called into question with the re-

cent publication of the paper: Are Transformers Effective for Time Series Forecasting?,

where Zeng et al. [64] designed a much more simpler feed-forward neural network

that overcome the aforementioned Transformer-based architectures in most popu-

lar test datasets. In this context, by the end of 2022, Yuqi Nie et al. [65] proposed

a novel architecture for long-term time series forecasting called PatchTST. This new

model obtained better results than the existing approaches and, also, overcome the

feed-forward network proposed by Zeng et al. PatchTST is based on feeding a Trans-

former Encoder with patches from the original signal. For the case of multi-channel

signals, it implements channel-independence, i.e. each channel is fed to the model

individually. The authors showed that the combination of instance normalization,

patching and channel-independence is enough to obtain better results than those

from previous architectures. Thus, for the case of EMG signal prediction, the pro-

posed model is based on the ideas of PatchTST.

Model and hyperparameters

The last proposed model in this Master thesis for tremor signal prediction is called

TSTp. It is mainly conformed by a group of Transformer encoders, along with other

operations and layers. Firstly, before signals are projected to the model space, they

are normalized and divided into patches. The number of patches depends on their

length and the stride applied: Np = SL−PL
s + 1, where Np is the number of patches,
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SL is the sequence length, PL is the patch length and s is the stride. Then, the patches

are passed through the projection layer and the positional information is added. The

resulting vectors are fed to the Transformer encoders, which have the same struc-

ture as in the original Transformer architecture. Finally, the flattened outputs pass

through the prediction head, which is composed by a linear projection and the de-

normalization step.

Flatten + Linear + Denormalize

Instance Normalization +  Patching/2

Projection
Layer

Positional
Encoding

Predicted signal

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Nx

FIGURE 2.14: Transformer-based model architecture (TSTp).

As well as for the other models, a grid-search strategy was used to find the best

set of hyperparameters for each situation, given the following predefined sets:

• Patch length: {160 ms, 200 ms}. (Stride fixed to 2.)

• Model dimension: {128, 256}. (Feed-forward dimension fixed to 128.)

• Num. Attention Heads: {4, 8}.

• Num. Encoder layers: {4, 6}.

• Learning rate: {0.001, 0.0005, 0.0001}.
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2.2.6 Training algorithm

A common training function was defined for all the presented models. The algo-

rithmic view of this function is available below (see Algorithm 1). Regarding the

Algorithm 1: Train function pseudo-code.

Define num. epochs, validation ratio and steps until early-stopping;
Data: Xt ← Load train dataset
Data: Xv ← Load validation dataset
criterion←MSELoss;
optimizer← AdamOptimizer;
for epoch in epochs do

forall sample in Xt do
Separate the input and target signals;
optimizer.zero_grad();
output←model(input_signal);
loss← criterion(output, target_signal);
loss.backward();
optimizer.step();
if validation then

Disable gradient update;
forall sample in Xv do

Separate the input and target signals;
output←model(input_signal);
loss← criterion(output, target_signal);

end
valid_loss← Average validation loss;
if valid_loss < best_valid_loss then

best_valid_loss← valid_loss;
stop_counter← 0;

else
stop_counter← stop_counter + 1 ;

end
Unable gradient update;

end
end
if stop counter > early stopping steps then

Save model;
break;

end
end

training parameters, a number of 1000 epochs was selected along with an early stop-

ping criterion of 200 steps, that is, the training will be aborted if no improvement is

achieved during 200 subsequent validation steps. These validation steps occur with

a frequency that depends on the selected batch size and the size of the train dataset.
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As optimizer, Adam was selected. There exist several optimizers that can be used

depending on the specific dataset or task. For the purposes of this work, Adam was

considered as a proper solution due to its computational efficiency and low mem-

ory requirements [66]. Finally, the MSE was chosen as loss function, since this is a

regression/prediction task.

It should noted that the separation of the samples in train and target signals is

performed inside the training function. Thus, the complete 2 s sequences are loaded

at the beginning and, before feeding the model, the original sequence is divided

according to the selected train and prediction windows:

• Train window: {300 ms, 600 ms, 1000 ms}.

• Target/Prediction window: {100 ms, 200 ms, 300 ms, 600 ms, 1000 ms}.

In this way, train, validation and test sets can be created once and used as many

times as needed. Moreover, models could be assessed for different combinations of

input and output lengths, thus, in terms of predictive capabilities, which is one of

the main objectives in this investigation

2.2.7 Performance metrics

In order to evaluate the prediction models, a set of three different metrics was se-

lected: the Mean Squared Error (MSE), the Root-Mean-Square Error (RMSE) and

Pearson’s Correlation Coefficient (PCC):

MSE =

(
1

N

) N∑
i=1

(yi − ŷi)
2; RMSE =

√√√√( 1

N

) N∑
i=1

(yi − ŷi)2 (2.12)

PCC ≡ ρ = ry,ŷ =

∑N
i=1(yi − y)(ŷi − ŷ)√∑N

i=1(yi − y)2
√∑N

i=1(ŷi − ŷ)2
(2.13)

where N is the number of predictions made, yi the true value of the signal, ŷi the

predicted value and y, ŷ are the sample means.

The MSE value provides information about the prediction accuracy of the model,

since it consists on computing the differences between real and predicted values.

On the other hand, PCC represents the similarity between the real and the predicted
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signal. Values of this coefficient closer to 1 or -1 mean higher linear relationship be-

tween them, so the objective is to maximize it. In this work, special attention will be

given to PCC over the other metrics when evaluating the models and extracting con-

clusions, because the main interest is that the models learn to reproduce the overall

behavior of tremor activity in the signals.

2.2.8 Statistical tools

All models were trained following a grid-search strategy to choose the best combi-

nation of hyperparemeters. After this process was conducted, the best performing

models for each combination of train/target windows were selected and compared,

using an appropriate statistical procedure to determine whether there exists statisti-

cal significance between the results or not. To this end, there exist different statistical

tests that can be applied, depending on the specific situation and objectives. For the

case of this investigation, the goal is to compare the populations of correlations ob-

tained by the different models on the test sets. One alternative is to apply a repeated

measurements ANOVA test with five factors (one per model), whose objective is to

analyse the difference between the means of various populations. Therefore, it tests

the null hypothesis of populations having the same mean. Nonetheless, in order to

apply this test, it has to be assumed that the observations are independent, follow a

normal distribution and have similar variance [67]. Unfortunately, it was obtained

via Shapiro-Wilk normality tests that the populations of correlations in the exper-

iments do not follow a normal distribution. Consequently, the repeated measure-

ments ANOVA was substituted by a Friedman test [68], which is its equivalent non-

parametric version. Non-parametric tests are statistical tests which are not based on

parametrized probability distributions, thus, they can be applied to many situations

while still providing proper robustness. However, for cases in which a parametric

test is appropriate, the non-parametric versions are less powerful [67].

Friedman tests do not provide information about the specific pairs of popula-

tions (models) between which there exist differences. Therefore, another comple-

mentary statistical test is required to compare the performance of the models rig-

orously. To this end, the most popular test that is employed to compare the means

from two populations is the Student’s t-test, however, it has to be substituted by its
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non-parametric equivalent as occurred with the repeated measurements ANOVA.

In this case, the Wilcoxon signed-rank test [69] was employed.

Finally, as a principal representation tool, box plots will be used to show the

results. In descriptive statistics, box plots are graphical representations to visually

inspect the distribution, spread and skewness of a population of samples, by means

of their quartiles (data points that divide the population in four equal parts). Box

plots are composed by a box, whose limits represent the first (Q1 → 25%) and third

(Q3 → 75%) quartiles, a line inside the box which represents the median or second

quartile (Q2 → 50%), and two additional lines named as whiskers, which can be

computed in different ways [67]. For the case of this investigation, the whiskers

are drawn at 1.5 times the interquartile range (IQR) below Q1 and above Q3. The

remaining points that fall outside the resulting limits are depicted individually and

they are called outliers.
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Chapter 3

Results

This chapter is dedicated to the presentation of the results obtained throughout this

Master thesis. As explained in the introduction, the main objective of this work is

to assess the predictive capabilities of various DL models, based on different archi-

tectures and approaches, for EMG signals associated with tremor activity. There-

fore, the first part of the chapter is conformed by the comparisons between the

performance of the models for each database (ET, PD and ET+PD), separately (Sec-

tions 3.1.1, 3.1.2, 3.1.3).

Another core objective is to test the predictive capabilities of models that have

been trained with data from one disease in data from the other disease, e.g.: a model

trained using only ET data is tested using PD data and vice versa. These experiments

are denoted as cross-testing and Section 3.1.4 is dedicated to show and comment the

results obtained in this matter.

Finally, the last part of the chapter is focussed on the results obtained from tremor

signal prediction using combined kinematic and EMG information (Section 3.2) and

a final discussion of all results (Section 3.3).

3.1 EMG signal prediction

Table 3.1 shows the results of the Friedman tests for each database and, also, for the

experiments conducted on cross-testing. In order to simplify the presentation of the

tables, the cross-testing experiments are denoted as: ETPD for models trained on ET

data and tested on PD, and PDET for models trained using PD data and tested on

ET samples.
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Train win. (ms)/Pred. win. (ms) ET PD ETPD PDET ET+PD
300/100 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
300/200 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
300/300 0.074 <1e-4 <1e-4 <1e-4 <1e-4
300/600 0.229 <1e-4 <1e-4 0.0192 <1e-4
300/1000 0.1496 <1e-4 <1e-4 0.0482 0.0003
600/100 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
600/200 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
600/300 0.0139 0.1666 <1e-4 0.0002 <1e-4
600/600 0.3199 0.0019 <1e-4 0.0212 0.0002
600/1000 0.7299 0.2415 <1e-4 0.0152 <1e-4
1000/100 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
1000/200 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
1000/300 0.0137 0.0002 0.0002 0.0069 <1e-4
1000/600 0.2211 0.0552 <1e-4 0.5314 <1e-4

1000/1000 0.79 <1e-4 <1e-4 0.6155 0.0097

TABLE 3.1: P-values of Friedman tests for the different databases and
cross-prediction.

In all tests, the populations of correlations obtained by every model were com-

pared, in order to check whether there exist differences between their means or not.

Nevertheless, these tests serve as an overview of the situations where there exist dif-

ferences between the models, thus, there might be ones better than others; and those

scenarios where no statistical significance was obtained so the performances of all

models were similar.

It can be noticed that there less statistical differences exist for the cases where the

models are trained and tested on ET data (ET column), where the number of cases

in which there exists statistical significance (p < 0.05) is 8 out of 15 total tests. On the

other hand, more statistical significances are found for the resting cases: 12/15 in PD

column, 15/15 in ETPD column, 13/15 in PDET column and 15/15 in ET+PD col-

umn. These observations suggest that the performance of the models might depend

on the disease in certain grade. Figure 3.1 shows the correlation boxplots where all

models are compared regarding the training windows and databases. It can be seen

that the distributions of the correlations for database PD, cross-testing ETPD and

database ET+PD are more concentrated in high values, while for the cases of ET

and PDET the distributions are more spread.

Additionally, Table 3.1 shows that the differences between the models decrease

as the prediction window enlarges. This can be a consequence of the increasing

complexity when the target signal becomes longer. While there might be models

that perform better for short and intermediate prediction horizons, there could be
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FIGURE 3.1: Boxplots of correlations obtained by the models, sepa-
rated by training windows and for each database.

a threshold from which models are less capable of accurately predicting the next

samples and their results become more similar in terms of performance.

Given that there are five different models, the total possible pairs without repeti-

tion ascends to ten, so ten different Wilcoxon tests were conducted for each database

(see Appendix B). The results were summarized in the tables that are presented in

the following sections, along with correlation boxplots for visualization.

3.1.1 ET dataset

The first part of the results corresponds to the models that were trained and tested

on the ET database. In Table 3.2, a comparison between the best models for each

scenario is presented. The average correlation coefficient (ρ) was computed from all

test samples and, then, the set of Wilcoxon tests was performed in order to check

the presence of statistical significance in the results. The table is divided in three

main rows, corresponding to the three different training windows (input lengths)
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Train Database: ET - Test Database: patient ET-P001
Train win. (ms) Pred. win. (ms) LSTMp LeNetp incepCNNp CNN-LSTMp TSTp

300

100 0.9865•⋆ 0.8922∗†⋄⋆ 0.9816•⋆ 0.9854•⋆ 0.9145∗•†⋄

200 0.9173•⋆ 0.8775∗†⋄ 0.9373•⋄⋆ 0.9233•† 0.8887∗†

300 0.8418 0.8150 0.8521⋆ 0.8462 0.8218†

600 0.7113 0.6816 0.7312⋆ 0.7125 0.6643†

1000 0.5760 0.5628 0.5946 0.5794 0.5635

600

100 0.9889•⋆ 0.9721∗†⋄⋆ 0.9887•⋆ 0.9906•⋆ 0.984∗•†⋄

200 0.9487•† 0.9248∗†⋄ 0.9645∗•⋆ 0.9569•⋆ 0.9427†⋄

300 0.8668† 0.8757† 0.9074∗•⋄⋆ 0.8951† 0.8912†

600 0.7544† 0.7509† 0.7846∗• 0.7608 0.7797
1000 0.5829 0.6117 0.6121 0.6294 0.6425

1000

100 0.9907•⋆ 0.8952∗†⋄⋆ 0.9872•⋆ 0.9909•⋆ 0.9759∗•†⋄

200 0.9185• 0.8746∗†⋄⋆ 0.9385• 0.9384• 0.9284•

300 0.8676• 0.8074∗†⋆ 0.8621• 0.8486 0.8693•

600 0.6997⋆ 0.7023 0.7135 0.6838 0.7274∗

1000 0.6800 0.6569 0.6558 0.6439 0.6927
# Times as best 1 0 8 2 4

TABLE 3.2: Mean correlation coefficient (ρ) comparison between
models for database ET.. Symbols to denote presence of statistical sig-
nificance (p < 0.05) with respect to the models: LSTMp (∗), LeNetp

(•), incepCNNp (†), CNN-LSTMp (⋄), TSTp (⋆).

and each of these rows contains another five sections that correspond to the pre-

diction horizons (output lengths). The highest correlations in each scenario is pre-

sented in bold and, at the bottom of the table, an additional row is included to count

the number of scenarios where a certain model obtained the best result. Then, the

presence of statistical significance between the results of two models, according to

Wilcoxon signed-rank test, is denoted by a set of different symbols.

Regarding the first input window (300 ms/5 samples), the best correlation results

are obtained for the shortest prediction horizon, as expected. Almost every model

had a mean correlation on the test set over 0.9, excepting the LeNetp which had

an average correlation of 0.89. Also, results from LeNetp were statistically different

from the ones obtained by the rest of the models, which are better. This suggests that

it is truly performing worse in this case. Meanwhile, the best model for this combina-

tion of train/target windows was the LSTMp, nonetheless, incepCNNp and CNN-

LSTMp provided closely similar results with no statistical significance between them

and the LSTMp, so these three models have equivalent performance. Continuing

with the second prediction horizon (200 ms/10 samples), still three models were ca-

pable of provide a mean correlation over 0.9 as for the previous scenario. In this

case, incepCNNp obtained a 0.94 average correlation and presence statistical signif-

icance with respect to three out of the four resting models. It should be noted that
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this prediction window is now inside the typical duration of a tremor period and

most of the models are showing an acceptable performance. In the next prediction

window (600 ms/15 samples), a drop in terms of performance occurred for all mod-

els, whose mean correlations are now around 0.83. Again, the model that shows the

best performance is the incepCNNp with 0.85 but, in this case, the results are only

significantly different from those of TSTp. Finally, for the two remaining prediction

windows (600 ms/30 samples and 1000 ms/50 samples) the results descend down

to 0.7 for 600 ms and less than 0.6 for 1000 ms. The best performing model appeared

to be the incepCNNp but in these cases there are almost no evidences of statistical

significance with respect to the other models.

For the case of the second training window (600 ms/30 samples), the results ap-

pear to be similar for the first two prediction horizons. The main improvement

comes for the intermediate output windows (300 ms and 600 ms) where the mean

correlations are all over 0.75, so doubling the size of the input window conducts to

a notable improvement, which is expected as the models would have more informa-

tion during training. Still, the last prediction window contains the worst results and

all models appeared to be equivalent.

Finally, the last input window (1000 ms/50 samples) had similar results for the

first two output lengths while, contrary to what might be expected, for the interme-

diate prediction horizons the results were worse than those obtained using a 600 ms

training window. Probably, longer input windows contain more variability in the

signals and, thus, the uncertainty in the predictions could increase for intermediate

horizons. However, in the last scenario, an improvement can be seen in the average

correlations with respect to the previous input window. These results suggest that

the models perform better in intermediate prediction lengths with intermediate in-

put windows but, for the longest output where the complexity of the task should be

the highest, models benefit from having maximum information as possible.

In Figure 3.2, the boxplots show the previously commented observations about

the behaviour of the models, with respect to train and prediction windows. The dis-

tributions of the correlations are narrower for short prediction lengths. For the first

two training windows, every model obtains correlations over 0.9 for more than 75%

of the test samples, regardless of the input length. while as it increases the variability
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in the results is more prominent. Lastly, the model that for most scenarios has the

highest median and narrowest distribution of correlation values is the incepCNNp,

which fits with the times that it was recognized as best model in Table 3.2. Nonethe-

less, it is clear that, for the longest output length, the variability in the predictions is

high, besides in the best case (Train. win.: 1000 ms) the medians are always above

0.7, but this can be expected assuming that as longer the signal is, the greater the

chance to find variations in the sequence, moreover, it cannot be guaranteed that the

whole target signal contains tremor activity. It should be remarked that presence of

tremor is only ensured by a detection threshold during the first second of the input

but, as in a real scenario, the target is completely unknown by the models and it

might or might not contain tremor patterns.
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FIGURE 3.2: Boxplots of correlations obtained by the models for ET
database, separated by training and prediction windows.

3.1.2 PD dataset

The results corresponding to database PD are presented in Table 3.3, with the same

format as commented above. There are more cases in which statistical significance

exists between pairs of models, also, the average correlations are noticeably higher

in general.
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Train Database: PD - Test Database: patient PD-P010
Train win. (ms) Pred. win. (ms) LSTMp LeNetp incepCNNp CNN-LSTMp TSTp

300

100 0.9991 •†⋄⋆ 0.9738∗†⋄ 0.9970∗•⋄⋆ 0.9985∗•†⋆ 0.9914∗†⋄

200 0.9907•⋆ 0.9771∗†⋄⋆ 0.9928•⋄⋆ 0.9904•†⋆ 0.9804∗•†⋄

300 0.9652•†⋆ 0.9439∗†⋄⋆ 0.9743∗•⋄⋆ 0.9645•† 0.9469∗•†

600 0.9000•† 0.8611∗†⋄⋆ 0.9198∗•⋄⋆ 0.8992•† 0.8787•†

1000 0.7931•† 0.7308∗†⋄ 0.8080 ∗•⋆ 0.8008• 0.7461†

600

100 0.9994 •†⋆ 0.9940 ∗†⋄⋆ 0.9986∗•⋄ 0.9992•†⋆ 0.9984∗•⋄

200 0.9899•⋆ 0.9826∗†⋄⋆ 0.9906•⋆ 0.9904• 0.9879∗•†

300 0.9644• 0.9598∗† 0.9694• 0.9642 0.9633
600 0.8943† 0.8961⋄ 0.9032∗⋄ 0.8820•†⋆ 0.8975⋄

1000 0.7931 0.8071 0.8111 0.8076 0.8039

1000

100 0.9986 •†⋆ 0.9844∗†⋄⋆ 0.997∗•⋄⋆ 0.9984•†⋆ 0.9944∗•†⋄

200 0.9907•⋆ 0.9771∗†⋄ 0.9875•⋄⋆ 0.9915•†⋆ 0.9794∗†⋄

300 0.9675 •⋆ 0.9520 ∗⋄ 0.9632 0.9660•⋆ 0.9564∗⋄

600 0.9092 0.8959†⋄ 0.9141• 0.9206• 0.8937
1000 0.8834⋆ 0.8716†⋄ 0.8812•⋄⋆ 0.8946•†⋆ 0.8578∗†⋄

# Times as best 4 0 8 3 0

TABLE 3.3: Mean correlation coefficient (ρ) comparison between
models for database PD. Symbols to denote presence of statistical sig-
nificance (p < 0.05) with respect to the models: LSTMp (∗), LeNetp

(•), incepCNNp (†), CNN-LSTMp (⋄), TSTp (⋆).

For the first input window of 300 ms, the situation is very similar as for ET

database in the two first output horizons: most models obtain mean correlations

in the test set over 0.9. Nonetheless, in this case, it happens that the performances of

the models for these scenarios are optimum, since most of them obtain correlations

around 0.99. Additionally, significant differences exist in the results when making

the statistical comparisons. This suggests that, even if all models are providing sim-

ilar mean correlations, their distributions are different between them. Consequently,

for the case of PD data, the models might be treating the sequences in distinct ways.

Continuing with the next prediction windows, it is remarkable that for 300 ms of

output length the mean correlations are still over 0.9, more specifically, around 0.95.

The best model is the incepCNNp in this case, with a 0.97 average correlation and

presenting statistical significance with respect to all other models. LeNetp model is

the one whose performance decreased the most, down to 0.94. For the next output

window (600 ms), only LSTMp and incepCNNp achieved results over 0.9, being the

former the best performing model. The worst is again the LeNetp with 0.86 mean

correlation. Lastly, for the longest prediction horizon of 1000 ms, it occurs the biggest

drop in terms of performance, as expected. Only three models (LSTMp, incepC-

NNp, CNN-LSTMp) provided mean correlations around 0.8 (about 0.1 less than for

the previous window), while the rest of them achieved results closer to 0.7. Also, the
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presence of statistical significances is less prominent. This behaviour was also no-

ticed for the case of ET database, where as prediction window increased, the models

were starting to become more similar regarding their results. About the drop in the

mean correlations, it might be a similar situation as for ET sequences: as signals

become longer, there is more room for variability and, moreover, more chance that

there is absence of tremor activity in the prediction window. In any case, taking into

account that the models were trained only with 300 ms (15 samples), a performance

of 0.8 mean correlation for the most difficult scenario is promising.

The results for the next input length (600 ms) are very similar to those of the

previous window, specially for the first four prediction horizons, where results of

the best models are also above 0.9. A tiny decrease in the mean correlations can

be noticed with respect to the previous input window. However, these differences

correspond to hundredths and thousandths of correlation. The most remarkable

case is the 1000 ms output window, where an improvement of 0.01 (4%) for the best

model can be seen. There are no statistical significances between the results of the

models, thus, they should perform approximately the same but it seems that having

more information at the input supposes better performance for the longest output.

For the last training window (1000 ms), average correlations for the first three

output lengths are similar to the previous ones. The improvements correspond to

the last two output lengths, where the effect of more input information is an increase

of performance, specially for the longest prediction horizon. In this case, all models

experienced a significant improvement, going from mean correlations around 0.8 up

to 0.89, with a 12% better performance for the CNN-LSTMp with respect to previous

input windows. Regarding intermediate windows, it is interesting that, contrary to

the ET database, the results are better using the longest input length.

In Figure 3.3, the boxplots show the distributions of the correlations for each

scenario. Visually, it is obvious that, for the first three output windows, the distri-

bution of the correlations are much more concentrated around the median than for

ET database. Also, the presence of outliers is minor. On the other hand, for the last

two prediction horizons, the improvement given by the increasing length at the in-

put is represented by tighter distributions of the results. As commented before, in

this case, models always perform better for longer prediction horizons when they
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are trained with more information.
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FIGURE 3.3: Boxplots of correlations obtained by the models for PD
database, separated by training and prediction windows.

3.1.3 ET+PD dataset

Train Database: ET + PD - Test Database: patients ET-P001 and PD-P010
Train win. (ms) Pred. win. (ms) LSTMp LeNetp incepCNNp CNN-LSTMp TSTp

300

100 0.9939•†⋄⋆ 0.9286∗†⋄⋆ 0.9906∗•⋄⋆ 0.9963∗•†⋆ 0.9594∗•†⋄

200 0.9643•†⋆ 0.9292∗†⋄⋆ 0.9710 ∗•⋄⋆ 0.9628•†⋆ 0.9371∗•†⋄

300 0.9131•†⋆ 0.8837∗†⋄ 0.9319∗•⋄⋆ 0.9223•†⋆ 0.8920 ∗†⋄

600 0.8316•† 0.7853∗†⋄⋆ 0.8466∗•⋄⋆ 0.8300•† 0.7997•†

1000 0.6676†⋄ 0.6436†⋄ 0.7191∗•⋄⋆ 0.6996∗•†⋆ 0.6504†⋄

600

100 0.9957•⋄ 0.9789∗†⋄⋆ 0.9939•⋄⋆ 0.9959∗•†⋆ 0.9932•†⋄

200 0.9765•⋆ 0.9565∗†⋄⋆ 0.9803•⋆ 0.9807•⋆ 0.9704∗•†⋄

300 0.9396•† 0.9252∗†⋄ 0.9496∗•⋄⋆ 0.9449•†⋆ 0.9322†⋄

600 0.8346†⋆ 0.8260†⋆ 0.8548∗•⋄ 0.8241†⋆ 0.8486∗•⋄

1000 0.6836•†⋄⋆ 0.7097∗ 0.7383∗⋄ 0.7255∗† 0.7222∗

1000

100 0.9933•⋄ 0.9425∗†⋄⋆ 0.9943•⋄ 0.9966∗•†⋆ 0.9896•⋄

200 0.9649•†⋄ 0.9316∗†⋄⋆ 0.9705∗•⋄⋆ 0.9798∗•†⋆ 0.9574•†⋄

300 0.9245•⋄ 0.8865∗†⋄⋆ 0.9302•⋆ 0.9317∗•⋆ 0.9149•†⋄

600 0.8327•† 0.8049∗†⋄⋆ 0.8513∗•⋆ 0.8486• 0.8236•†

1000 0.8061 0.7841†⋄⋆ 0.8103• 0.8126• 0.8004•

# Times as best 0 0 8 7 0

TABLE 3.4: Mean correlation coefficient (ρ) comparison between
models for database ET+PD. Symbols to denote presence of statis-
tical significance (p < 0.05) with respect to the models: LSTMp (∗),

LeNetp (•), incepCNNp (†), CNN-LSTMp (⋄), TSTp (⋆).

Some differences have been noted between the results using PD data and those

for the ET database. This could be a consequence of the different nature of the sig-

nals which, while always associated with tremor activity, they correspond to distinct
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diseases. In order to analyse the effect of having tremor signals from both diseases

together, it is interesting to assess the performance of models that have been trained

using information from both sources. Table 3.4 shows the mean correlation results

for the case where all models were trained using a combined database of ET and PD

data. The structure and notation is still the same, as explained for the other cases.

This time, the analysis of the results is more focused on the main differences with

respect to the previous databases, highlighting the situations where clear improve-

ments or decrease in performance exist.

For all training windows and the three first output lengths (100-300 ms), all mod-

els obtain average correlations over 0.9, being the incepCNNp and CNN-LSTMp the

best ones, depending on the specific scenario. This supposes an improvement with

respect to the ET database results, where mean correlations for the same situations

were oscillating around 0.85. However, the first noticeable improvement appears

with 600 ms prediction window. The results are in between the ones obtained for the

ET database (≈ 0.75) and the ones from PD database (> 0.90), since in all cases the

average correlation of the best model is around 0.85. The second most prominent

improvement corresponds to the longest prediction horizon (1000 ms). For input

lengths of 300 ms and 600 ms, the mean correlations are now above 0.7, contrary

to the results corresponding to the ET database. However, the correlations for this

database were already close to 0.7, so for these training windows the increase in per-

formance is small. Now, for the last input window of 1000 ms, the mean correlation

for the best model reaches 0.8 which supposes a worse performance, in comparison

with PD database, but, regarding ET database, there is an improvement of about

17% with respect to the mean correlation value.

Figure 3.4 shows the boxplots of the correlation values obtained by each model

for every combination of train/target windows. The behaviour of the models is now

similar to the one observed for the PD database: the longer the training length, the

better the performance. Also, it can be noticed how the values are getting greater

and more concentrated around the median, as the training window increases. It is

important to note that the test set in this case contains samples from ET and PD in the

same proportion (50%/50%). Therefore, higher values of mean correlations are not

only consequence of having PD sequences in which models have great performance.
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Clearly, having information from both diseases is helping the models to generally

perform more accurate predictions.
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FIGURE 3.4: Boxplots of correlations obtained by the models for
ET+PD database, separated by training and prediction windows.

3.1.4 Cross-testing

Train Database: ET - Test Database: patient PD-P010
Train win. (ms) Pred. win. (ms) LSTMp LeNetp incepCNNp CNN-LSTMp TSTp

300

100 0.9902•† 0.9677∗†⋄⋆ 0.9959∗•⋄⋆ 0.9892•† 0.9874•†

200 0.9834•† 0.9629∗†⋄⋆ 0.9901∗•⋄⋆ 0.9822•† 0.9782•†

300 0.9372†⋆ 0.9324†⋆ 0.9662∗•⋄⋆ 0.9398† 0.9524∗•†

600 0.8413•†⋆ 0.8637∗†⋆ 0.9073∗•⋄⋆ 0.8594†⋆ 0.8762∗•†⋄

1000 0.5862•†⋆ 0.7349∗⋄ 0.7417∗⋄ 0.6202•†⋆ 0.7545∗⋄

600

100 0.9978 • 0.9823∗†⋄⋆ 0.9976• 0.9970• 0.9972•

200 0.9701†⋄⋆ 0.9702†⋆ 0.9873∗•⋄⋆ 0.9754∗† 0.9831∗•†

300 0.9288•†⋆ 0.9445∗†⋄⋆ 0.9583∗•⋄ 0.9250•†⋆ 0.9595∗•⋄

600 0.8220•†⋆ 0.8637∗⋄⋆ 0.8741∗⋄ 0.8165•†⋆ 0.8844∗•⋄

1000 0.6416•†⋆ 0.7656∗†⋄ 0.7275∗•⋄⋆ 0.6792•†⋆ 0.7816∗†⋄

1000

100 0.9916•⋄ 0.9798∗†⋄⋆ 0.9929•⋆ 0.9948∗•⋆ 0.9865•†⋄

200 0.9669†⋄⋆ 0.9657†⋄⋆ 0.9840 ∗•⋆ 0.9789∗• 0.9708∗•†

300 0.9079•†⋆ 0.9374∗† 0.9568∗•⋄ 0.9298†⋆ 0.9428∗⋄

600 0.7911•†⋄⋆ 0.8671∗⋄ 0.8877∗⋄ 0.8448∗•†⋆ 0.8748∗⋄

1000 0.7777•†⋆ 0.8270 ∗†⋄ 0.8571∗•⋄ 0.7847•†⋆ 0.8452∗⋄

# Times as best 1 0 9 1 4

TABLE 3.5: Mean correlation coefficient (ρ) comparison between
models for ETPD cross-testing. Symbols to denote presence of sta-
tistical significance (p < 0.05) with respect to the models: LSTMp (∗),

LeNetp (•), incepCNNp (†), CNN-LSTMp (⋄), TSTp (⋆).
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The last part of this section is dedicated to analyse the cross-prediction exper-

iments. As shown in the previous results, the combined usage of ET and PD se-

quences provides better performance in terms of correlations obtained by the mod-

els. This suggests that the models benefit from being trained with data from both

diseases. However, in order to properly analyse and discuss the individual effects

of one database with respect to the other, it is interesting to test the models trained

on ET (or PD) on the test set of the other disease. Table 3.5 and Table 3.6 show the

results in this matter. The first one corresponds to the mean correlation values ob-

tained for models trained using ET data and tested in PD. The second correspond to

the complementary situation: models trained using PD data and testes in ET.

Train Database: PD - Test Database: patient ET-P001
Train win. (ms) Pred. win. (ms) LSTMp LeNetp incepCNNp CNN-LSTMp TSTp

300

100 0.9896•⋄⋆ 0.9065∗†⋄⋆ 0.9929•⋆ 0.9916∗•⋆ 0.9415∗•†⋄

200 0.9340†⋄ 0.8968†⋄ 0.9601∗•⋄⋆ 0.9437∗•†⋆ 0.8914†⋄

300 0.8706† 0.8439† 0.9226∗•⋄⋆ 0.8847† 0.8483†

600 0.7340† 0.7057† 0.7866∗•⋆ 0.7605 0.7125†

1000 0.5682† 0.5704† 0.6340 ∗•⋆ 0.5972⋆ 0.5528†⋄

600

100 0.9795• 0.9824∗†⋄⋆ 0.9897•⋆ 0.9909• 0.9898•†

200 0.9474†⋄ 0.9493†⋄ 0.9737∗•⋄⋆ 0.9684∗•†⋆ 0.9560 †⋄

300 0.9051† 0.9041†⋄ 0.9282∗•⋄⋆ 0.9157•† 0.9052†

600 0.7613† 0.7734† 0.8104∗•⋆ 0.8000 0.7881†

1000 0.6288† 0.6380 0.6814∗⋄ 0.6433† 0.6710

1000

100 0.9835•⋄⋆ 0.9211∗†⋄⋆ 0.9917•⋆ 0.9934∗•⋆ 0.9808∗•†⋄

200 0.9425•⋄ 0.9066∗†⋄ 0.9553•⋆ 0.9601∗•⋆ 0.9414†⋄

300 0.8850• 0.8535∗†⋄ 0.8920• 0.8977• 0.8755
600 0.7654 0.7431 0.757 0.7666 0.7448
1000 0.6882 0.7179 0.7062 0.7215 0.6980

# Times as best 0 0 9 6 0

TABLE 3.6: Mean correlation coefficient (ρ) comparison between
models for PDET cross-testing. Symbols to denote presence of sta-
tistical significance (p < 0.05) with respect to the models: LSTMp (∗),

LeNetp (•), incepCNNp (†), CNN-LSTMp (⋄), TSTp (⋆).

The results show that the models are predicting with better correlations ET sig-

nals when they were trained with PD data. If the results of Table 3.2 are compared to

the ones of the PDET cross-prediction (Table 3.6), they happen to be better, suggest-

ing that models benefit from being trained in PD data. It can be hypothesized that

the reason to this behaviour is related to the quality of the training data, regarding

the number of differentiable tremor events that can be found in the sequences. Since

an heuristic method was applied to tag and filter the recordings, it is possible that

the quality of one of the datasets in that sense is poorer. In this case, results suggest

that the ET dataset might contain less useful information regarding tremor events
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than the PD dataset. On the other hand, the ETPD cross-prediction shows mean

correlation values always above 0.75 for the best performing models. Thus, ET data

can be used to predict PD sequences but less accurately than using samples from the

same disease.
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FIGURE 3.5: Boxplots of correlations obtained by the models for
ETPD cross-testing, separated by training and prediction windows.
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FIGURE 3.6: Boxplots of correlations obtained by the models for
PDET cross-testing, separated by training and prediction windows.
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Figures 3.5 and 3.6 show the boxplots corresponding to the correlations obtained

by each model for each situation in the cross-prediction experiments. The poor per-

formance of the LSTMp model is seen in the distributions, specially for the largest

output windows.

3.2 EMG+KIN signal prediction with LSTM

As commented in Section 1.2, no studies were found at the time of this investigation

that made prediction experiments of tremor-associated signals using both informa-

tion. Some DL architectures make this kind of approaches possible, since they are

capable of working simultaneously with various features for every time steps. One

of these architectures is, for instance, the LSTM, which can take for each time step

not only the values of the time series itself but, also, additional values that could

represent complementary or associated information to the signal. Moreover, these

additional values could correspond to another time series that is simultaneous to the

other. The objective of this part of the investigation is to train a LSTM model that

takes both kinematic and EMG signals to predict the next samples of the EMG enve-

lope. Therefore, the target sequence is the same as for previous experiments but, this

time, the model will have information of the associated kinematic signal to the EMG

sequence during training. The main advantage of kinematic signals is that they are

significantly less noisy than EMG, because the IMUs are recording just movement.

The same LSTM model as the one for EMG signal prediction (LSTMp) was em-

ployed in this experiment. Table 3.7 shows the results obtained regarding the mean

correlation coefficient, MSE and RMSE. It should be noted that the values of MSE

and RMSE are high because of the lack of signal normalization. The most important

metric for this investigation, as explained in previous sections, is the mean correla-

tion coefficient.

The metrics show that the LSTM model is providing acceptable performance

(ρ ≈ 0.8) for the first three prediction windows (100, 200, 300 ms) in all cases. Then,

for the longest output windows (600, 1000 ms) the mean correlations are always be-

low 0.7. Moreover, even when the LSTM is trained using the longest input window,

it is only able to achieve a mean correlation of 0.62 for 1000 ms prediction horizon.
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Train Database: ET - Test Database: patient ET-P001
Train win. (ms) Pred. win. (ms) Hidden size Learning rate ρ MSE RMSE

300

100 35 0.001 0.9817 31.2603 2.5811
200 50 0.001 0.8993 100.1529 5.7557
300 50 0.0001 0.8164 133.0573 7.3333
600 50 0.0001 0.6474 183.7293 9.2523
1000 50 0.0001 0.5063 267.7385 11.3056

600

100 50 0.0005 0.9795 33.5611 2.5782
200 35 0.001 0.9454 55.6044 4.6832
300 35 0.0005 0.8321 84.2085 6.9043
600 35 0.0005 0.6729 244.0873 10.3264
1000 50 0.001 0.5164 351.7870 12.4779

1000

100 50 0.001 0.9819 15.9296 1.8218
200 35 0.001 0.8953 102.4482 5.8664
300 50 0.001 0.7941 117.1362 7.1764
600 35 0.0005 0.6650 192.8847 9.5610
1000 35 0.0001 0.6260 171.3992 8.8281

TABLE 3.7: Prediction results from LSTMp model trained in extended
database ET (kinematic and EMG signals).

Now, if these results are compared to those obtained when training the LSTM using

only EMG data (see Table 3.2) a noticeable decrease regarding the mean correlations

can be seen, specially for the longest output windows. For intermediate prediction

horizons, a similar behaviour is noticed: the model works better when it is trained

using also intermediate input windows. Nonetheless, the metrics are worse in gen-

eral and very far from the results that were obtained using the combined ET+PD

database or even cross-prediction. This suggests that the addition of kinematic in-

formation is not only unhelpful but, also, it hinders the training process of the model

and reduces its predictive capabilities, regarding the EMG target sequences. Never-

theless, it should be remarked that these results are conditioned to the data used in

this investigation.

3.3 Discussion

The investigation conducted in this Master thesis has compared the performances of

five DL models based on different architectures and designs. Based on the literature,

a 2-layer LSTM model (LSTMp) was employed as the baseline reference to compare

the possible improvements of other approaches. The results obtained showed that

this simple architecture can be outperformed in the prediction task by other more

complex models, which add convolutional and attention structures. Moreover, it
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was shown that the usage of convolutional modules is beneficial for the time series

forecasting of tremor-associated EMG signals. The most complex CNN-based model

(incepCNNp), inspired by the architecture of Inception modules, achieved the best

performance in most scenarios throughout all databases. Thus, it is fair to consider

incepCNNp as the overall best performing model but it should be remarked that all

models are generally close in terms of performance, even if statistical significance

was found.
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FIGURE 3.7: Boxplots of correlations obtained by incepCNNp model,
separated by prediction windows and databases. For each situation,
correlations from the three training windows were included together.

The worst results were obtained using the simplest CNN-based model (LeNetp),

which suggests that, when the model is simple, it is better to have sequence-oriented

structures, otherwise, parallel feature extraction techniques are insufficient. On the

other hand, the combined usage of recurrent and convolutional modules did not

suppose a noticeable improvement in the performance. Even, results showed that

the CNN-LSTMp model had worse generalization capabilities, as in the cross-prediction

experiments a general decrease in the mean correlations was noticed. Nonetheless,

this might be a consequence inherited from the LSTM architecture, because this de-

crease in performance was also evident for the LSTMp model. This suggests that, in

this case, a recurrent architecture is more dependent on the specific disease in which

it is trained, while feature extraction modules have better generalization capabili-

ties. It can be hypothesized that, in this case, CNNs can extract several and complex

statistical properties of the signals, by means different feature maps and a deeper
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architecture. These patterns are computed using all the information at once in paral-

lel and might be more generalizable than those obtained using recurrent structures,

which are limited by sequential processing.

Regarding the Transformer-based model (TSTp), its performance is usually bet-

ter than that of the LSTMp, but not as good as those of incepCNNp and CNN-

LSTMp. Thus, attention mechanisms can outperform recurrent structures in some

cases for tremor signal prediction task, but convolutional architectures appear to be

a better alternative. Nevertheless, both CNNs and Transformers overcome one of

the biggest drawbacks of employing recurrent approaches, which is the limitations

of sequential processing. Convolutions and attention are applied in parallel to the

whole sequences, providing faster and more computationally efficient training and

inference, which leads to better scalability. Consequently, CNN-based architectures

could be the best option for tremor signal prediction, based on the results of this

investigation.

The influence of training with data from different diseases on the performance

of the models was studied in two perspectives: using a combined database with

both diseases and evaluating the models in a cross-prediction scenario. The results

regarding the mixed database ET+PD showed that models benefit from having in-

formation of the two diseases. Mean correlations were improved in comparison with

the case of ET database, which is the dataset where the performances are the worst.

It is worth noting that the differences in terms of prediction accuracy between ET

and PD database are significant. This suggests that the data source is influencing

noticeably the training process. It is true that the PD database is larger that ET one

but it is difficult to assume that the difference regarding the number of samples is

the main cause to such an improvement. Probably, the disease and the acquisition

methodology have also some influence in this regard. It should be remarked that

the data from ET and PD patients was not provided by the same source and they

were acquired in different circumstances, without the possibility to apply a proper

inter-patient normalization, such that the characteristics of the signals in amplitude

and noise were equivalent. Having said that, it is important to note that the models

could overcome this normalization issue and it seems that they were even capable
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of working with signals from different sources and, moreover, they can improve the

results if they are trained with the information mixed.

On the other hand, the cross-prediction experiments have shown that, to per-

form accurate predictions in signals from one disease, it is not necessary to train the

models with the same information. They are capable of learning patterns that, more

than overfitting the signals from one of the diseases, they generalize at some grade

tremor activity, even if the characteristics regarding frequency and amplitude are

different. It was also noticed that the performance of the models in ET signals can

be improved by using only PD information in the training process, while models

trained in ET data provided worse but similar results on PD test set, than models

trained in PD database. Consequently, with the data and methodology employed in

this Master thesis, it is demonstrated that, for the case of ET and PD, the two most

common tremor-associated disorders, DL models can work indistinctly with signals

from both sources, providing promising results.

Other relevant factors regarding time series forecasting are the training and pre-

diction windows. In this investigation, three input lengths and five target windows

of increasing size were employed. Regarding the influence of the training signal

length, it was noticed that its effects for the first three output windows (100, 200,

300 ms) is minimum. The accuracies in the predictions were highly similar using the

three input lengths for all models. Apparently, it begins to be more important when

the prediction window is longer than 600 ms, where a noticeable improvement is

seen when the models are trained with the longest input window (1000 ms). This

result is expected as for longer predictions, where the variability of the signal in-

creases, models benefit from having seen the behaviour of the signal during more

time.

On the other hand, the influence of the prediction window in the results is clear:

as far as the models must predict more future samples, their performances are lower

and the variability in the results increases, as it is shown in the boxplots of corre-

lations presented before. Nonetheless, for the first four prediction horizons (100,

200, 300, 600 ms), the mean correlations obtained by the best model in the ET+PD

database were always above 0.8, which is a remarkable prediction performance. For
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longer target windows, a noticeable decrease in accuracy is observed and the distri-

butions of the correlations are wider. Also, there is less evidence of statistical signif-

icances between the results from all models, which suggests that they are reaching

a bottleneck. This can be expected regarding the nature of the data. Besides it has

some general features, tremor activity is the consequence of a neurological disorder,

in which different factors have to be taken into account at the time of characteriz-

ing its associated biological signals. These factors might include non-stationary and

random components in time which, at the end, cause bottlenecks and limitations

regarding the predictive capabilities of any system. Nonetheless, correlation results

show that the models are capable of fitting both amplitude and phase of tremor ac-

tivity with high accuracy (ρ > 0.8) for most combinations of training and target

windows (see Figure 3.8).

Finally, the combined usage of kinematic and EMG information was assessed in

terms of prediction performance for tremor-associated EMG signals. It was hypoth-

esized that the addition of another source of information from tremor activity might

help the models to learn better patterns to perform the predictions more accurately.

However, it was observed that the results of an LSTM trained with both kinematic

and EMG signals were worse than those of the models trained only in EMG data.

Then, regarding the data employed in this study, kinematic information seems to

be unhelpful to the models, moreover, it hinders the prediction task. As it was al-

ready commented, kinematic signals are the mechanic translation of EMG activity

and, thus, it should provide the same information but delayed. It is reasonable to

assume that, contrary to what was expected, kinematic signals are adding a layer

of complexity, instead of helping the models to learn deeper patterns. Nevertheless,

these results are only applicable to the ET database, since no kinematic information

could be acquired from PD patients. In order to generalize these conclusions to other

diseases, extended experiments should be conducted.
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FIGURE 3.8: Prediction examples for ET+PD database and training
window of 1000 ms using incepCNNp model.
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Chapter 4

Conclusions

In this Master thesis, an in-depth research on the field of tremor-associated signal

prediction was conducted. First of all, a simple preprocessing pipeline for the EMG

signals was proposed, based on basic filtering and a downsampling procedure to

reduce computational costs of training and inference. Compared to the SOTA, the

designed pipeline is significantly simpler, while the results show that models are not

suffering from an insufficient and incorrect signal processing. Afterwards, a wide

variety of DL models has been proposed, including architectures and modules from

different branches of DL, thus, extensively exploring the viability of using artificial

intelligence to predict tremor signals. No other studies were found at the time of

this Master thesis that involved this amount and variety of architectures, making an

overall comparison between them and looking for the best possible approach. The

results showed that the proposed incepCNNp model, entirely based on convolu-

tional and linear layers, is the one that achieves the best performance, demonstrat-

ing that CNN-based approaches can be more powerful in time series forecasting of

tremor-associated signals than traditional recurrent architectures. This performance

was also assessed using information from various tremor disorders: ET and PD,

which is a novelty with respect to the SOTA studies that were focused only in a single

disease. It was shown that the combined usage of different sources of information

can help to improve the prediction performance of the models. Furthermore, it was

demonstrated that DL models are capable of performing accurate signal prediction

on sequences from other diseases, different from those in which they were trained.

This is a promising useful result, as it opens the possibility to create general models

for tremor management, no matter the type of tremor it aims to handle. Regarding
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the training and prediction windows, the results of this investigation showed that

an input length of 300 ms is enough to obtain a correlation coefficient over 0.8 in the

prediction of the next 600 ms window, when using the combined ET+PD database.

These results are also very encouraging because, as typical tremor frequencies are

between 4 and 12 Hz, it is crucial to obtain high accuracies for prediction windows

≤ 250 ms. Then, the results showed that this is affordable by using only a short in-

put window of 300 ms, which corresponds to just 15 samples with a sampling rate

of 50 Hz. Finally, this Master thesis included an additional experiment regarding the

combined usage of kinematic and EMG signals for tremor prediction. This is also a

novelty in the field, since no other studies were found in which authors employed

both signals to perform the predictions. However, contrary to what it was expected,

the addition of kinematic information to the EMG signals caused a decrease in per-

formance, rather than improving the results. This suggests that it is better to use

those signals separately to perform the predictions. Pascual-Valdunciel et al. [47] al-

ready showed that it is possible to obtain similar correlation metrics using kinematic

signals. However, the usage of this type of information for tremor prediction has

an important disadvantage: the signals do not correspond directly to the activity

of the muscles, instead, they are the mechanic manifestation of biological activity.

Therefore, there exists a loss in terms of information due to the transduction from

EMG to kinematic activity. This step supposes a filter for the biological signals which

may contain useful and deeper information regarding the characterization of tremor.

Consequently, the usage of EMG signals, which are a direct translation of the activity

from the nervous system, can be enriching for the learning stage and generalization

capabilities of the models. However, the designing of an EMG-based approach has

some drawbacks regarding the setup of the experiments and the necessity of having

a minimum grade of signal to noise ratio in the acquisition.

The field of time series forecasting for pathological tremor signals using DL tech-

niques has still a wide margin for improvement, even more regarding practical and

real applications of these novel methods. It is increasing in popularity with the ar-

rival of more powerful and efficient approaches based on artificial intelligence. This

Master thesis contributes in several aspects to the investigation of automatic tremor

management systems that, in the near future, could improve the life of people who
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suffer from tremor disorders. Also, it can be another reference for studies regard-

ing other medical topics, in which time series forecasting of biological signals is in-

volved.

4.1 Future work

Further investigations in the same line of this Master thesis should be focused on:

• Study the effects of including an inter-patient normalization process to unify

the signals from different diseases and sources.

• Extend the database with more patients, other types of tremor apart from Es-

sential and Parkinsonian variants, and additional postures or activities during

recording time.

• Given that CNN-based approaches are more powerful in this case, explore the

possibility of improving the performance and find the best balance between

complexity and rapid training and inference, by optimizing the proposed ar-

chitectures.

• In-depth analysis of the CNN-based models to explore the feature maps and

gain insights about what are the models learning from the data, which might

help clinicians to better understand tremor characteristics.

• Implement the models in real-time tremor suppression devices to assess the

feasibility of employing these approaches in a tremor management system.

• Combine the tremor prediction and detection models to create a complete

tremor management pipeline.
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Appendix A

Vanishing Gradients problem

The vanishing gradients problem is a well known issue in the field of RNNs, which

is related to the training process of neural networks that use gradient-based learning

strategies. The problem consists on the gradients tending to zero as a consequence

of training with long input sequences. In these cases, it might occur that the par-

tial derivatives of the loss function, with respect to the weights, become very small,

causing difficulties in the updating stage and, thus, in learning. An example of this

problem, regarding the weights matrix W, is shown below, being the cases of matrix

U and vector b similar to it.

Let the partial derivative of loss function Lwith respect to W for time step t be:

∂Lt
∂Wt

=
∂Lt
∂yt

∂yt

∂ht
· · · ∂h2

∂h1

∂h1
∂Wt

=
∂Lt
∂yt

∂yt

∂ht

(
T∏
t=2

∂Lt
∂Wt

∂ht

∂ht−1

)
∂yt

∂W

ht = f(Wxt + Uht−1 + b)

(A.1)

Then, the evaluation of the partial derivatives in the sequential product leads to:

∂Lt
∂Wt

=
∂Lt
∂yt

∂yt

∂ht
· · · ∂h2

∂h1

∂h1
∂Wt

=
∂Lt
∂yt

∂yt

∂ht

(
T∏
t=2

f ′(Uht−1 + Wxt + b)U

)
∂yt

∂W
(A.2)

where f is the activation function.

The most popular activation functions are tanh and sigmoid. tanh maps their

entries between -1 and 1, while the sigmoid does it between 0 and 1. The derivatives

of these functions are upper-bounded to 1, which leads to the derivative ofL tending

to 0 for any t time step. Therefore, for very long sequences, it may happen that
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gradients stop being updated or the update becomes significantly small.

∂Lt
∂Wt

→ 0

Wt+1 = Wt − α
∂Lt
∂Wt

≈Wt

(A.3)
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Results of Wilcoxon tests between

prediction models

Train win. (ms)/Pred. win. (ms) LSTM-LENET LSTM-INCEP LSTM-CNNLSTM LSTM-TST LENET-INCEP LENET-CNNLSTM LENET-TST INCEP-CNNLSTM INCEP-TST CNNLSTM-TST
300/100 <1e-4 0.4873 0.3322 0.0354 <1e-4 <1e-4 0.0007 0.2594 <1e-4 0.001
300/200 0.0002 0.1648 0.1312 0.0053 0.0002 0.023 0.7544 0.0019 <1e-4 0.133
300/300 0.5822 0.1586 0.2638 0.518 0.1393 0.0743 0.7622 0.5247 0.021 0.0996
300/600 0.2438 0.1811 0.9534 0.1867 0.1777 0.2912 0.5158 0.6084 0.0348 0.2209
300/1000 0.9534 0.4724 0.9698 0.5682 0.1607 0.8339 0.7912 0.6824 0.1744 0.5202
600/100 <1e-4 0.2727 0.9178 0.036 0.0003 <1e-4 0.0092 0.3622 0.0077 0.0316
600/200 0.0052 0.0032 0.0789 0.5247 <1e-4 <1e-4 0.0504 0.5202 0.0006 0.0092
600/300 0.6278 0.0058 0.1973 0.0825 0.0316 0.536 0.1024 0.0322 0.0124 0.9097
600/600 0.4852 0.0142 0.7129 0.1312 0.0137 0.9671 0.2912 0.0711 0.7387 0.1777
600/1000 0.3862 0.536 0.1202 0.06 0.7701 0.1867 0.2249 0.5705 0.3104 0.8446
1000/100 <1e-4 0.2424 0.7939 <1e-4 <1e-4 <1e-4 0.0001 0.2184 0.0008 <1e-4
1000/200 0.0011 0.3357 0.8258 0.645 <1e-4 0.0001 0.0023 0.6699 0.0705 0.1961
1000/300 0.0058 0.7727 0.5941 0.518 0.0222 0.0954 0.0033 0.1766 0.9753 0.1243
1000/600 0.4873 0.3391 0.5988 0.0428 0.39 0.5136 0.334 0.552 0.3237 0.0643

1000/1000 0.6181 0.317 0.2682 1.0 0.7859 0.8689 0.3514 0.6849 0.3862 0.168

TABLE B.1: P-values of Wilcoxon tests between models for database
ET.

Train win. (ms)/Pred. win. (ms) LSTM-LENET LSTM-INCEP LSTM-CNNLSTM LSTM-TST LENET-INCEP LENET-CNNLSTM LENET-TST INCEP-CNNLSTM INCEP-TST CNNLSTM-TST
300/100 0.0018 0.0008 0.1286 0.4895 <1e-4 <1e-4 <1e-4 0.0009 0.0028 0.8151
300/200 <1e-4 0.0002 0.7284 0.2315 <1e-4 <1e-4 0.0001 <1e-4 <1e-4 0.4073
300/300 0.3695 <1e-4 0.8018 0.0268 <1e-4 0.375 0.0054 <1e-4 0.0166 0.0619
300/600 0.0087 <1e-4 0.1856 0.0002 0.0003 0.1347 0.06 <1e-4 0.0075 0.0185
300/1000 <1e-4 <1e-4 0.2697 <1e-4 0.5566 <1e-4 0.2058 <1e-4 0.3604 <1e-4
600/100 <1e-4 0.896 0.3409 0.5941 <1e-4 <1e-4 <1e-4 0.6599 0.1193 0.606
600/200 0.9479 <1e-4 0.0233 <1e-4 <1e-4 0.1294 0.0002 <1e-4 0.0162 0.1024
600/300 0.0055 <1e-4 0.9069 <1e-4 0.0029 0.0049 0.001 <1e-4 0.9808 <1e-4
600/600 0.0002 <1e-4 0.7439 <1e-4 0.2551 <1e-4 0.0366 <1e-4 0.1722 <1e-4
600/1000 <1e-4 0.0015 0.0968 <1e-4 0.0155 <1e-4 0.4392 0.0366 0.0009 <1e-4
1000/100 0.0005 0.1269 0.0021 0.4917 <1e-4 <1e-4 0.0032 0.0658 0.0113 0.0013
1000/200 0.3938 <1e-4 0.0004 0.001 <1e-4 0.0025 0.0033 0.1032 0.0001 0.3104
1000/300 0.0079 <1e-4 0.0275 0.0001 0.0046 0.2355 0.1106 0.0014 0.1286 0.0126
1000/600 <1e-4 <1e-4 0.0727 <1e-4 0.2396 0.0209 0.1099 0.0014 0.9863 0.001

1000/1000 0.001 <1e-4 0.7596 <1e-4 0.0354 <1e-4 0.0653 <1e-4 0.937 <1e-4

TABLE B.2: P-values of Wilcoxon tests between models for ETPD
cross-prediction. Models were trained using train set of ET database

and tested on PD test samples.

Train win. (ms)/Pred. win. (ms) LSTM-LENET LSTM-INCEP LSTM-CNNLSTM LSTM-TST LENET-INCEP LENET-CNNLSTM LENET-TST INCEP-CNNLSTM INCEP-TST CNNLSTM-TST
300/100 <1e-4 <1e-4 0.0014 <1e-4 <1e-4 <1e-4 0.0624 0.0003 <1e-4 <1e-4
300/200 <1e-4 0.317 0.2082 <1e-4 <1e-4 <1e-4 0.0283 0.0161 <1e-4 0.0015
300/300 <1e-4 0.0055 0.6976 0.0074 <1e-4 <1e-4 0.0145 0.0039 <1e-4 0.06
300/600 0.0014 0.0003 0.8205 0.375 <1e-4 0.0004 0.0021 0.0006 0.0003 0.1449
300/1000 0.0003 0.0216 0.3391 0.0658 <1e-4 <1e-4 0.0679 0.0901 <1e-4 0.0546
600/100 <1e-4 0.0007 0.4809 0.0056 <1e-4 <1e-4 <1e-4 0.0004 0.8906 0.0224
600/200 <1e-4 0.4291 0.9342 0.0443 <1e-4 0.0001 0.0104 0.6648 0.0046 0.0638
600/300 0.0322 0.4171 0.9507 0.6475 0.0112 0.0529 0.2667 0.241 0.1985 0.7258
600/600 0.9397 0.0053 0.05 0.2438 0.1269 0.0357 0.926 0.0004 0.0901 0.0187
600/1000 0.0577 0.3187 0.3137 0.1243 0.3221 0.8285 0.8716 0.9863 0.8933 0.9452
1000/100 <1e-4 0.0002 0.3996 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.0084 <1e-4
1000/200 <1e-4 0.0669 0.5775 0.0003 <1e-4 <1e-4 0.1507 0.0446 0.0002 0.0002
1000/300 0.0072 0.1566 0.9643 0.0039 0.1949 0.0076 0.4034 0.2383 0.1003 0.0239
1000/600 0.2301 0.6133 0.7129 0.2943 0.0248 0.0259 0.7387 0.6699 0.0927 0.1365

1000/1000 0.4371 0.9288 0.0755 0.022 0.0496 0.002 0.0605 0.0266 0.0006 <1e-4

TABLE B.3: P-values of Wilcoxon tests between models for database
PD.
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Train win. (ms)/Pred. win. (ms) LSTM-LENET LSTM-INCEP LSTM-CNNLSTM LSTM-TST LENET-INCEP LENET-CNNLSTM LENET-TST INCEP-CNNLSTM INCEP-TST CNNLSTM-TST
300/100 <1e-4 0.0831 0.048 0.0115 <1e-4 <1e-4 <1e-4 0.4034 <1e-4 <1e-4
300/200 0.0516 <1e-4 0.0469 0.1402 <1e-4 0.0034 0.7859 0.0004 <1e-4 0.001
300/300 0.587 <1e-4 0.2537 0.3039 <1e-4 0.0669 0.8312 <1e-4 <1e-4 0.1153
300/600 0.9835 0.0121 0.0813 0.4494 0.0298 0.2609 0.6133 0.4639 0.0016 0.0766
300/1000 0.4598 0.0095 0.2565 0.9151 0.028 0.2009 0.9288 0.1973 0.0112 0.0454
600/100 <1e-4 0.2396 0.1669 0.1811 <1e-4 <1e-4 0.0067 0.5337 0.0212 0.0521
600/200 0.2865 <1e-4 0.0013 0.9534 <1e-4 <1e-4 0.1384 0.029 <1e-4 0.0005
600/300 0.2742 0.0375 0.5728 0.4351 0.0026 0.0256 0.8988 0.0218 <1e-4 0.1973
600/600 0.5682 0.0144 0.1153 0.4151 0.0112 0.3732 0.4291 0.2082 0.0345 0.6133
600/1000 0.6157 0.0404 0.5846 0.1269 0.0648 0.7336 0.1468 0.0107 0.2803 0.0813
1000/100 0.0002 0.9835 0.0013 0.0428 <1e-4 <1e-4 0.0003 0.39 <1e-4 <1e-4
1000/200 0.0153 0.0888 0.0369 0.3514 <1e-4 <1e-4 0.0881 0.496 0.0002 0.0008
1000/300 0.0348 0.8071 0.3187 0.6724 0.0016 0.019 0.0989 0.3769 0.1177 0.2712
1000/600 0.3919 0.0577 0.645 0.3154 0.6549 0.8446 0.5543 0.9015 0.1596 0.5497
1000/1000 0.4171 0.9342 0.8608 0.8473 0.3479 0.7181 0.1755 0.989 0.6875 0.3938

TABLE B.4: P-values of Wilcoxon tests between models for PDET
cross-prediction. Models were trained using train set of PD database

and tested on ET test samples.

Train win. (ms)/Pred. win. (ms) LSTM-LENET LSTM-INCEP LSTM-CNNLSTM LSTM-TST LENET-INCEP LENET-CNNLSTM LENET-TST INCEP-CNNLSTM INCEP-TST CNNLSTM-TST
300/100 <1e-4 0.0407 <1e-4 0.0003 <1e-4 <1e-4 <1e-4 <1e-4 0.0016 <1e-4
300/200 <1e-4 0.0422 0.8932 <1e-4 <1e-4 <1e-4 0.0159 0.0493 <1e-4 <1e-4
300/300 0.0007 0.0005 0.345 0.008 <1e-4 0.0007 0.5548 0.002 <1e-4 0.0003
300/600 <1e-4 0.0278 0.7557 0.1389 <1e-4 0.0014 0.0125 0.0108 0.0073 0.6272
300/1000 0.2075 0.0005 0.0385 0.3083 <1e-4 0.011 0.171 0.0421 0.0042 0.0315
600/100 <1e-4 0.9029 <1e-4 0.2075 <1e-4 <1e-4 <1e-4 0.0014 0.0421 <1e-4
600/200 <1e-4 0.1784 0.1639 0.0063 <1e-4 <1e-4 <1e-4 0.0995 <1e-4 <1e-4
600/300 0.0171 0.0011 0.1363 0.3031 <1e-4 0.001 0.1389 0.0229 <1e-4 0.0204
600/600 0.6908 0.0305 0.1917 0.0058 0.0309 0.7884 0.0002 0.001 0.4185 0.0015
600/1000 0.0032 <1e-4 0.0007 0.0008 0.089 0.7308 0.3218 0.0376 0.3764 0.8749
1000/100 <1e-4 0.6438 <1e-4 0.0777 <1e-4 <1e-4 <1e-4 <1e-4 0.0631 <1e-4
1000/200 0.0008 0.0007 <1e-4 0.277 <1e-4 <1e-4 0.0009 0.0074 <1e-4 <1e-4
1000/300 <1e-4 0.2484 0.0354 0.3971 <1e-4 <1e-4 0.0261 0.9727 0.0079 0.023
1000/600 0.0107 0.0411 0.123 0.6702 <1e-4 0.0008 0.0067 0.5266 0.0077 0.1721
1000/1000 0.0604 0.2929 0.0512 0.583 0.0032 0.0463 0.0293 0.7034 0.2347 0.7474

TABLE B.5: P-values of Wilcoxon tests between models for database
ET+PD.
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Tables of prediction results

Training database: ET - Test data: patient ET-P001
Train win.(ms) Pred. win. (ms) Hidden size Learning rate ρ MSE RMSE

300

100 50 0.001 0.9865 77.0607 3.5920
200 35 0.001 0.9173 186.4097 6.7244
300 35 0.0005 0.8418 153.3340 7.9956
600 50 0.0005 0.7113 250.9704 10.4011
1000 50 0.0001 0.5760 502.2108 14.2719

600

100 50 0.001 0.9889 118.2013 4.0750
200 35 0.001 0.9487 187.0405 6.8334
300 50 0.0005 0.8668 232.7564 8.6526
600 50 0.001 0.7544 382.0917 12.0545
1000 50 0.0005 0.5829 497.1880 14.1765

1000

100 35 0.001 0.9907 84.9150 3.4720
200 50 0.001 0.9185 211.7232 7.2486
300 35 0.001 0.8676 284.2798 9.0826
600 35 0.0001 0.6997 544.4229 14.2175
1000 35 0.0005 0.6800 296.4531 10.6443

TABLE C.1: Prediction results from LSTMp model trained in database
ET.

Training database: ET - Test data: patient PD-P010
Train win.(ms) Pred. win. (ms) Hidden size Learning rate ρ MSE RMSE

300

100 35 0.001 0.9902 0.3978 0.5702
200 50 0.001 0.9834 2.3060 1.3361
300 50 0.001 0.9372 6.8298 2.3146
600 35 0.001 0.8413 15.8189 3.6336
1000 50 0.0001 0.5862 35.5500 5.4789

600

100 50 0.001 0.9978 0.3305 0.4920
200 35 0.0005 0.9701 3.9557 1.7701
300 35 0.0005 0.9288 7.5630 2.4871
600 35 0.0005 0.8220 19.7817 3.9267
1000 50 0.0005 0.6416 36.8870 5.4647

1000

100 35 0.001 0.9916 0.3783 0.5275
200 50 0.001 0.9669 4.6577 1.8467
300 50 0.001 0.9079 7.4006 2.4761
600 50 0.001 0.7911 17.7511 3.7565
1000 50 0.001 0.7777 12.9237 3.2751

TABLE C.2: Prediction results from LSTMp model trained in database
ET and tested on database PD.
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Training database: PD - patient PD-P010
Train win.(ms) Pred. win. (ms) Hidden size Learning rate ρ MSE RMSE

300

100 50 0.001 0.9991 0.0787 0.2347
200 50 0.001 0.9907 1.1972 0.9408
300 35 0.0005 0.9652 3.9010 1.7328
600 35 0.001 0.9000 11.8236 3.0638

1000 35 0.0005 0.7931 23.4499 4.3520

600

100 50 0.001 0.9994 0.0712 0.2309
200 35 0.001 0.9899 1.4273 1.0235
300 35 0.001 0.9644 3.5383 1.6126
600 50 0.0005 0.8943 11.6317 2.9583

1000 35 0.001 0.7931 21.0517 4.0346

1000

100 50 0.001 0.9986 0.0612 0.2171
200 50 0.001 0.9907 1.4252 0.9281
300 35 0.001 0.9675 3.3517 1.5725
600 35 0.0005 0.9092 8.3406 2.5561

1000 50 0.0005 0.8834 8.0309 2.4312

TABLE C.3: Prediction results from LSTMp model trained in database
PD.

Training database: PD - Test data: patient ET-P001
Train win.(ms) Pred. win. (ms) Hidden size Learning rate ρ MSE RMSE

300

100 50 0.0005 0.9896 202.1284 5.5787
200 50 0.0005 0.9340 296.1274 8.5179
300 35 0.0005 0.8706 331.1071 9.9468
600 50 0.0005 0.7340 448.7246 12.7218

1000 50 0.0001 0.5682 592.7478 15.4725

600

100 50 0.001 0.9795 301.6852 6.3293
200 35 0.0005 0.9474 409.3758 9.3187
300 50 0.0005 0.9051 365.8860 9.7689
600 35 0.0005 0.7613 550.5888 13.4246

1000 35 0.0005 0.6288 580.5461 15.0582

1000

100 35 0.001 0.9835 347.7738 7.3216
200 35 0.0005 0.9425 466.8848 10.4072
300 35 0.001 0.8850 524.8913 11.5759
600 50 0.0005 0.7654 481.7008 13.0623

1000 35 0.001 0.6882 384.3894 12.1726

TABLE C.4: Prediction results from LSTMp model trained in database
PD and tested on database ET.
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Training database: ET+PD - Test data: patients ET-P001 and PD-P010
Train win.(ms) Pred. win. (ms) Hidden size Learning rate ρ MSE RMSE

300

100 50 0.001 0.9939 25.6099 1.7637
200 50 0.001 0.9643 68.4585 3.5146
300 50 0.001 0.9131 86.3624 4.7935
600 50 0.001 0.8316 133.1646 6.6002
1000 35 0.0001 0.6676 281.5488 9.6443

600

100 50 0.001 0.9957 65.8185 2.2893
200 50 0.001 0.9765 74.9813 3.4454
300 35 0.001 0.9396 109.1421 4.7549
600 35 0.001 0.8346 167.2260 7.1195
1000 35 0.0005 0.6836 260.6097 9.1814

1000

100 35 0.001 0.9933 55.9864 2.0147
200 35 0.0005 0.9649 90.4897 3.9348
300 35 0.001 0.9245 137.1865 5.2343
600 50 0.001 0.8327 166.6103 6.9498
1000 50 0.0005 0.8061 152.8588 6.4760

TABLE C.5: Prediction results from LSTMp model trained in database
ET+PD.

Train Database: ET - Test Database: patient ET-P001
Train win. (ms) Pred. win. (ms) Filters Learning rate ρ MSE RMSE

300

100 6/16 0.001 0.8922 23.5993 3.58
200 6/16 0.001 0.8775 70.0111 5.8073
300 6/16 0.001 0.815 93.7299 7.1209
600 6/16 0.001 0.6816 176.9437 9.7037

1000 6/16 0.001 0.5628 364.5609 12.998

600

100 6/16 0.001 0.9721 24.7854 3.2279
200 6/16 0.001 0.9248 70.4169 5.8549
300 6/16 0.001 0.8757 69.3508 6.1624
600 6/16 0.001 0.7509 234.9962 10.1248

1000 6/16 0.001 0.6117 434.0286 13.3847

1000

100 6/16 0.001 0.8952 25.5472 3.5398
200 6/16 0.001 0.8746 129.5295 7.0686
300 6/16 0.001 0.8074 171.67 8.2647
600 6/16 0.001 0.7023 308.6369 11.2198

1000 6/16 0.001 0.6569 303.5724 10.6547

TABLE C.6: Prediction results from LeNetp model trained in database
ET.
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Train Database: ET - Test Database: patient PD-P010
Train win. (ms) Pred. win. (ms) Filters Learning rate ρ MSE RMSE

300

100 6/16 0.0005 0.9677 2.1186 1.2304
200 6/16 0.001 0.9629 4.4155 1.8295
300 6/16 0.0005 0.9324 6.6672 2.3486
600 6/16 0.0001 0.8637 14.5883 3.4508

1000 6/16 0.0001 0.7349 28.2143 4.8812

600

100 6/16 0.001 0.9823 1.3917 1.0219
200 6/16 0.001 0.9702 4.1634 1.7627
300 6/16 0.0001 0.9445 6.1798 2.1683
600 3/12 0.0001 0.8637 14.9715 3.532

1000 3/12 0.0001 0.7656 22.6129 4.2996

1000

100 6/16 0.0005 0.9798 1.5103 1.0379
200 6/16 0.0005 0.9657 4.7772 1.8269
300 6/16 0.001 0.9374 6.746 2.2052
600 6/16 0.001 0.8671 11.8401 3.0075

1000 6/16 0.0001 0.827 10.2048 2.8705

TABLE C.7: Prediction results from LeNetp model trained in database
ET and tested on database PD.

Train Database: PD - Test Database: patient PD-P010
Train win. (ms) Pred. win. (ms) Filters Learning rate ρ MSE RMSE

300

100 6/16 0.001 0.9065 21.6306 3.248
200 6/16 0.0005 0.8968 54.6053 5.3498
300 6/16 0.0001 0.8439 74.5626 6.5082
600 3/12 0.001 0.7057 183.1599 9.7423

1000 6/16 0.0001 0.5704 352.201 12.9507

600

100 6/16 0.001 0.9824 23.0797 2.9804
200 3/12 0.001 0.9493 46.6701 4.6948
300 6/16 0.001 0.9041 79.6405 6.0991
600 3/12 0.0005 0.7734 215.6342 9.6731

1000 6/16 0.0005 0.638 385.8215 12.6397

1000

100 6/16 0.001 0.9211 27.9527 3.5257
200 6/16 0.0005 0.9066 86.4764 5.9961
300 3/12 0.001 0.8535 186.5759 7.8767
600 6/16 0.0005 0.7431 289.4431 10.6833

1000 6/16 0.0005 0.7179 261.2029 10.0542

TABLE C.8: Prediction results from LeNetp model trained in database
PD.
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Train Database: PD - Test Database: patient ET-P001
Train win. (ms) Pred. win. (ms) Filters Learning rate ρ MSE RMSE

300

100 6/16 0.0005 0.9738 0.8573 0.772
200 6/16 0.001 0.9771 3.0371 1.5261
300 6/16 0.0005 0.9439 5.8601 2.1481
600 3/12 0.0005 0.8611 14.0693 3.4279

1000 3/12 0.001 0.7308 27.4713 4.8684

600

100 3/12 0.001 0.994 0.6957 0.6735
200 3/12 0.001 0.9826 2.2991 1.2848
300 6/16 0.001 0.9598 4.6408 1.8523
600 6/16 0.0005 0.8961 11.3174 2.9749

1000 6/16 0.001 0.8071 19.0528 3.8565

1000

100 6/16 0.001 0.9844 1.4504 0.9694
200 3/12 0.001 0.9771 3.5319 1.4974
300 3/12 0.0001 0.952 5.4634 1.9366
600 6/16 0.0001 0.8959 9.3853 2.7156

1000 6/16 0.0001 0.8716 8.5831 2.5751

TABLE C.9: Prediction results from LeNetp model trained in database
PD and tested on database ET.

Train Database: ET+PD - Test Database: patients ET-P001 and PD-P010
Train win. (ms) Pred. win. (ms) Filters Learning rate ρ MSE RMSE

300

100 6/16 0.001 0.9286 11.5123 2.1699
200 6/16 0.0005 0.9292 30.4733 3.6196
300 6/16 0.001 0.8837 37.4137 4.2664
600 6/16 0.001 0.7853 93.4875 6.4664

1000 3/12 0.001 0.6436 187.5261 8.7636

600

100 3/12 0.001 0.9789 12.6129 2.1322
200 6/16 0.001 0.9565 29.2761 3.3812
300 6/16 0.001 0.9252 38.645 4.0188
600 6/16 0.001 0.826 119.7771 6.5377

1000 6/16 0.001 0.7097 212.7684 8.3872

1000

100 6/16 0.001 0.9425 14.2636 2.2109
200 6/16 0.001 0.9316 47.9066 3.8965
300 3/12 0.001 0.8865 76.9854 4.8875
600 3/12 0.0005 0.8049 141.6623 6.7643

1000 3/12 0.0005 0.7841 145.1352 6.3191

TABLE C.10: Prediction results from LeNetp model trained in
database ET+PD.
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Train Database: ET - Test Database: patient ET-P001
Train win. (ms) Pred. win. (ms) Learning rate ρ MSE RMSE

300

100 0.001 0.9816 6.6104 1.7621
200 0.001 0.9373 32.5608 3.9863
300 0.0001 0.8521 80.0774 6.4955
600 0.0005 0.7312 212.8938 10.0396

1000 0.0001 0.5946 317.8019 12.316

600

100 0.0005 0.9887 4.202 1.4637
200 0.001 0.9645 24.7289 3.52
300 0.0001 0.9074 48.4397 5.344
600 0.0001 0.7846 218.8105 9.7157

1000 0.0001 0.6121 408.4256 13.186

1000

100 0.001 0.9872 10.3889 2.1232
200 0.0005 0.9385 83.925 5.4762
300 0.0001 0.8621 133.0693 7.2714
600 0.0005 0.7135 325.2867 11.2714

1000 0.0001 0.6558 270.0531 10.252

TABLE C.11: Prediction results from incepCNNp model trained in
database ET.

Train Database: ET - Test Database: patient PD-P010
Train win. (ms) Pred. win. (ms) Learning rate ρ MSE RMSE

300

100 0.0001 0.9959 0.3235 0.4962
200 0.001 0.9901 1.9933 1.1318
300 0.001 0.9662 4.6008 1.7899
600 0.0001 0.9073 10.3008 2.8166

1000 0.0001 0.7417 24.4693 4.4722

600

100 0.0001 0.9976 0.2244 0.4182
200 0.0001 0.9873 1.8025 1.1676
300 0.0001 0.9583 4.4853 1.8528
600 0.0001 0.8741 12.4002 3.1031

1000 0.0005 0.7275 24.4394 4.4611

1000

100 0.001 0.9929 0.2797 0.4641
200 0.0001 0.984 2.4281 1.2642
300 0.0001 0.9568 5.3643 1.9604
600 0.0001 0.8877 10.3363 2.8517

1000 0.0001 0.8571 8.9011 2.652

TABLE C.12: Prediction results from incepCNNp model trained in
database ET and tested on database PD.
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Train Database: PD - Test Database: patient PD-P010
Train win. (ms) Pred. win. (ms) Learning rate ρ MSE RMSE

300

100 0.0001 0.997 0.1852 0.3774
200 0.001 0.9928 1.0514 0.8827
300 0.001 0.9743 3.3036 1.555
600 0.001 0.9198 9.4642 2.6638

1000 0.0001 0.808 20.4606 4.0942

600

100 0.0005 0.9986 0.1422 0.3243
200 0.0001 0.9906 1.3286 0.9403
300 0.0005 0.9694 3.6164 1.6295
600 0.0001 0.9032 10.0575 2.777

1000 0.0001 0.8111 19.0348 3.8824

1000

100 0.0001 0.997 0.2015 0.3748
200 0.0001 0.9875 1.873 1.107
300 0.0005 0.9632 4.3965 1.7787
600 0.0001 0.9141 8.1596 2.4993

1000 0.0001 0.8812 7.7118 2.4189

TABLE C.13: Prediction results from incepCNNp model trained in
database PD.

Train Database: PD - Test Database: patient ET-P001
Train win. (ms) Pred. win. (ms) Learning rate ρ MSE RMSE

300

100 0.001 0.9929 8.477 2.0516
200 0.001 0.9601 21.798 3.2756
300 0.001 0.9226 60.7803 5.375
600 0.001 0.7866 127.8493 8.3494

1000 0.0001 0.634 275.3451 11.841

600

100 0.0001 0.9897 3.2654 1.2405
200 0.0001 0.9737 13.4008 2.6914
300 0.0001 0.9282 47.8706 4.8726
600 0.0001 0.8104 207.7331 9.0577

1000 0.0001 0.6814 394.114 11.9809

1000

100 0.001 0.9917 6.4954 1.56
200 0.0001 0.9553 49.1982 4.4842
300 0.0001 0.892 117.7127 6.7787
600 0.0001 0.757 259.7352 10.4858

1000 0.001 0.7062 258.6327 10.0415

TABLE C.14: Prediction results from incepCNNp model trained in
database PD and tested on database ET.
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Train Database: ET+PD - Test Database: patients ET-P001 and PD-P010
Train win. (ms) Pred. win. (ms) Learning rate ρ MSE RMSE

300

100 0.001 0.9906 6.1483 1.3491
200 0.001 0.971 13.1104 2.2185
300 0.001 0.9319 34.9078 3.7166
600 0.001 0.8466 85.7923 5.8833

1000 0.001 0.7191 199.2199 8.4191

600

100 0.0005 0.9939 1.7417 0.8091
200 0.0005 0.9803 10.8128 2.0681
300 0.001 0.9496 26.1572 3.2686
600 0.0005 0.8548 117.1698 6.2608

1000 0.0005 0.7383 230.7899 8.5256

1000

100 0.001 0.9943 3.966 1.1436
200 0.0001 0.9705 28.5649 2.8298
300 0.001 0.9302 64.3899 4.2082
600 0.0005 0.8513 166.5103 6.5522

1000 0.0005 0.8103 152.3684 6.1979

TABLE C.15: Prediction results from incepCNNp model trained in
database ET+PD.

Train Database: ET - Test Database: patient ET-P001
Train win. (ms) Pred. win. (ms) Hidden size Learning rate ρ MSE RMSE

300

100 32 0.001 0.9854 47.2400 2.9450
200 50 0.001 0.9233 121.4252 6.3903
300 50 0.0001 0.8462 177.7581 8.2933
600 50 0.0001 0.7125 287.3850 10.9318
1000 50 0.0001 0.5794 419.0272 13.5853

600

100 50 0.0005 0.9906 77.9495 3.0613
200 32 0.0005 0.9569 132.8318 5.7128
300 32 0.0005 0.8951 176.3752 7.7931
600 50 0.0001 0.7608 383.7545 11.9120
1000 32 0.0001 0.6294 484.2425 13.9923

1000

100 32 0.001 0.9909 54.4558 2.6155
200 50 0.001 0.9384 144.1817 6.3595
300 32 0.0005 0.8486 280.1692 9.6185
600 32 0.0005 0.6838 302.8548 11.5328
1000 50 0.0005 0.6439 280.3851 10.7280

TABLE C.16: Prediction results from CNN-LSTMp model trained in
database ET.
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Train Database: ET - Test Database: patient PD-P010
Train win. (ms) Pred. win. (ms) Hidden size Learning rate ρ MSE RMSE

300

100 50 0.001 0.9892 0.4067 0.5468
200 32 0.001 0.9822 3.3466 1.5514
300 50 0.0001 0.9398 6.1832 2.2942
600 50 0.0001 0.8594 16.7873 3.6984
1000 50 0.0001 0.6202 37.2273 5.5802

600

100 50 0.0005 0.9970 0.2032 0.4100
200 32 0.001 0.9754 3.3464 1.6159
300 32 0.001 0.9250 10.2065 2.8124
600 50 0.0001 0.8165 18.7922 3.9544
1000 32 0.0001 0.6792 30.0829 5.0177

1000

100 50 0.001 0.9948 0.2580 0.4453
200 50 0.001 0.9789 2.9982 1.4407
300 32 0.0005 0.9298 7.5205 2.4895
600 50 0.001 0.8448 15.7763 3.6375
1000 50 0.0001 0.7847 17.0362 3.7229

TABLE C.17: Prediction results from CNN-LSTMp model trained in
database ET and tested on database PD.

Train Database: PD - Test Database: patient PD-P010
Train win. (ms) Pred. win. (ms) Hidden size Learning rate ρ MSE RMSE

300

100 50 0.0005 0.9985 0.0946 0.2701
200 32 0.0005 0.9904 1.5579 1.0316
300 32 0.0001 0.9645 3.9449 1.7267
600 50 0.0001 0.8992 11.0061 2.9409
1000 32 0.0001 0.8008 22.7369 4.2589

600

100 50 0.001 0.9992 0.0907 0.2503
200 50 0.001 0.9904 1.448 1.0072
300 50 0.0005 0.9642 3.6891 1.6944
600 50 0.0001 0.882 12.5682 3.1061
1000 50 0.0001 0.8076 19.0738 3.8225

1000

100 32 0.001 0.9984 0.0591 0.2076
200 32 0.001 0.9915 1.4373 0.9615
300 32 0.001 0.966 4.0444 1.6079
600 32 0.0001 0.9206 7.6707 2.4894
1000 50 0.0001 0.8946 7.1026 2.2749

TABLE C.18: Prediction results from CNN-LSTMp model trained in
database PD.
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Train Database: PD - Test Database: patient ET-P001
Train win. (ms) Pred. win. (ms) Hidden size Learning rate ρ MSE RMSE

300

100 32 0.001 0.9916 208.4822 5.6266
200 32 0.001 0.9437 273.1626 8.2079
300 50 0.0001 0.8847 314.5978 9.8320
600 32 0.0005 0.7605 450.3237 12.6343
1000 32 0.0005 0.5972 532.1020 14.6606

600

100 32 0.001 0.9909 315.0364 6.4910
200 32 0.001 0.9684 395.4348 9.0367
300 32 0.0001 0.9157 445.2228 10.7028
600 32 0.0001 0.8000 526.3105 13.2133
1000 32 0.0001 0.6433 587.0131 15.1916

1000

100 32 0.001 0.9934 325.1829 7.1028
200 50 0.0001 0.9601 449.2589 10.1872
300 32 0.0005 0.8977 513.5740 11.5959
600 32 0.0005 0.7666 523.7467 13.5994
1000 32 0.001 0.7215 379.6608 11.9586

TABLE C.19: Prediction results from CNN-LSTMp model trained in
database PD and tested on database ET.

Train Database: ET+PD - Test Database: patients ET-P001 and PD-P010
Train win. (ms) Pred. win. (ms) Hidden size Learning rate ρ MSE RMSE

300

100 32 0.001 0.9963 18.1015 1.2813
200 32 0.001 0.9628 46.4576 3.1741
300 32 0.0005 0.9223 74.9674 4.6153
600 32 0.0005 0.8300 136.6239 6.6976
1000 32 0.001 0.6996 219.2020 8.8879

600

100 50 0.001 0.9959 39.2736 1.5205
200 32 0.001 0.9807 58.6371 3.1022
300 32 0.0005 0.9449 79.3752 4.2510
600 50 0.0001 0.8241 175.5901 7.1884
1000 32 0.001 0.7255 243.8218 8.9126

1000

100 50 0.001 0.9966 26.4256 1.2845
200 32 0.001 0.9798 73.5775 3.2744
300 50 0.001 0.9317 113.3134 4.9217
600 32 0.0005 0.8486 137.7013 6.5219
1000 32 0.0005 0.8126 147.2053 6.2838

TABLE C.20: Prediction results from CNN-LSTMp model trained in
database ET+PD.

Train Database: ET - Test Database: patient ET-P001
Train win. (ms) Pred. win. (ms) Patch len. (ms) Dim. Model Num. Heads Enc. Layers Learning rate PCC MSE RMSE

300

100 200 256 4 6 0.001 0.9145 13.2657 2.5917
200 160 256 4 6 0.001 0.8887 67.2772 5.7423
300 160 256 4 6 0.001 0.8218 144.7922 7.9181
600 200 256 4 4 0.001 0.6643 248.611 10.7638
1000 160 256 8 4 0.001 0.5635 365.4423 13.2544

600

100 200 128 4 4 0.0005 0.984 9.1343 2.0773
200 160 128 4 4 0.0005 0.9427 50.0117 4.7906
300 160 128 8 4 0.001 0.8912 83.3474 6.3481
600 160 256 8 4 0.0001 0.7797 245.0274 10.4311
1000 200 128 8 6 0.0001 0.6425 507.5738 13.9868

1000

100 160 256 4 4 0.0005 0.9759 21.3603 2.9228
200 160 256 8 4 0.001 0.9284 122.8206 6.3247
300 160 128 4 6 0.001 0.8693 183.7428 7.7981
600 160 256 4 4 0.0001 0.7274 312.6755 10.6949
1000 200 128 8 4 0.0005 0.6927 300.2678 10.4898

TABLE C.21: Prediction results from TSTp model trained in database
ET.
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Train Database: ET - Test Database: patient PD-P010
Train win. (ms) Pred. win. (ms) Patch len. (ms) Dim. Model Num. Heads Enc. Layers Learning rate PCC MSE RMSE

300

100 200 256 4 6 0.001 0.9874 0.663 0.6852
200 200 256 4 6 0.001 0.9782 3.5197 1.5695
300 160 256 4 6 0.001 0.9524 6.0992 2.1415
600 200 256 4 4 0.001 0.8762 13.4571 3.1731
1000 200 256 4 4 0.0001 0.7545 26.1008 4.5126

600

100 200 128 4 4 0.001 0.9972 0.3836 0.5115
200 160 128 4 4 0.0005 0.9831 2.678 1.3628
300 200 128 8 4 0.0001 0.9595 5.2521 1.9785
600 200 128 4 4 0.0001 0.8844 12.387 3.0518
1000 160 256 4 4 0.001 0.7816 22.2197 4.1488

1000

100 200 128 4 4 0.001 0.9865 0.7111 0.6912
200 160 128 4 4 0.0001 0.9708 3.7742 1.5468
300 160 256 4 4 0.001 0.9428 6.5618 2.1617
600 200 128 4 4 0.0005 0.8748 11.1348 2.9273
1000 200 128 4 4 0.0001 0.8452 10.4269 2.7914

TABLE C.22: Prediction results from TSTp model trained in database
ET and tested on database PD.

Train Database: PD - Test Database: patient PD-P010
Train win. (ms) Pred. win. (ms) Patch len. (ms) Dim. Model Num. Heads Enc. Layers Learning rate PCC MSE RMSE

300

100 200 256 4 4 0.001 0.9914 0.5768 0.6161
200 200 256 4 6 0.001 0.9804 2.7908 1.3992
300 200 256 4 6 0.001 0.9469 5.4674 1.983
600 160 256 4 6 0.001 0.8787 11.6797 3.0585
1000 160 256 4 4 0.001 0.7461 24.36 4.4917

600

100 200 128 4 4 0.001 0.9984 0.2187 0.37
200 200 128 8 4 0.001 0.9879 2.1497 1.2358
300 160 128 4 6 0.001 0.9633 4.4262 1.774
600 200 128 4 4 0.0001 0.8975 11.1344 2.9255
1000 200 256 8 6 0.001 0.8039 19.7898 3.8827

1000

100 200 128 4 6 0.001 0.9944 0.3271 0.4803
200 200 128 4 4 0.001 0.9794 2.7018 1.326
300 160 128 4 4 0.001 0.9564 5.0959 1.9287
600 160 128 4 4 0.0001 0.8937 10.1239 2.7489
1000 200 128 8 4 0.0001 0.8578 9.4176 2.6722

TABLE C.23: Prediction results from TSTp model trained in database
PD.

Train Database: PD - Test Database: patient ET-P001
Train win. (ms) Pred. win. (ms) Patch len. (ms) Dim. Model Num. Heads Enc. Layers Learning rate PCC MSE RMSE

300

100 160 256 4 6 0.001 0.9415 16.3645 2.5515
200 200 256 4 6 0.001 0.8914 47.6536 4.8868
300 160 256 8 6 0.001 0.8483 89.0267 6.7242
600 160 256 4 4 0.001 0.7125 202.7454 9.9821

1000 200 256 4 6 0.001 0.5528 378.2583 13.2565

600

100 160 256 8 4 0.001 0.9898 8.0796 1.7302
200 160 128 4 4 0.0001 0.956 38.8262 4.2454
300 160 128 8 4 0.0001 0.9052 70.9044 6.0405
600 160 256 4 4 0.0005 0.7881 261.6052 10.249

1000 160 256 8 6 0.001 0.671 408.1844 12.5314

1000

100 200 128 8 4 0.001 0.9808 10.0232 2.2022
200 200 256 4 4 0.001 0.9414 92.2452 5.7448
300 160 256 8 4 0.001 0.8755 170.3688 7.6952
600 160 128 4 4 0.0001 0.7448 301.2495 10.7962

1000 200 128 4 4 0.0001 0.698 265.1431 10.2659

TABLE C.24: Prediction results from TSTp model trained in database
PD and tested on database ET.
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Train Database: ET+PD- Test Database: patients ET-P001 and PD-P010
Train win. (ms) Pred. win. (ms) Patch len. (ms) Dim. Model Num. Heads Enc. Layers Learning rate PCC MSE RMSE

300

100 200 256 4 6 0.001 0.9594 7.6578 1.6436
200 160 256 4 4 0.001 0.9371 27.4754 3.3811
300 160 256 4 6 0.001 0.892 52.228 4.5613
600 160 256 4 6 0.001 0.7997 121.1521 6.6683
1000 200 256 4 4 0.001 0.6504 222.2162 8.9996

600

100 160 256 4 4 0.001 0.9932 3.1735 1.0753
200 200 128 4 4 0.0001 0.9704 23.5897 2.8608
300 160 128 4 6 0.0001 0.9322 40.9268 4.0166
600 200 128 4 4 0.0001 0.8486 117.898 6.369
1000 160 256 8 4 0.0001 0.7222 237.8405 8.7242

1000

100 200 128 4 4 0.001 0.9896 4.6981 1.2125
200 200 128 8 4 0.0005 0.9574 51.1513 3.5228
300 200 128 8 4 0.0005 0.9149 85.2684 4.6872
600 200 128 8 6 0.0001 0.8236 159.8057 6.6893
1000 200 128 4 4 0.0001 0.8004 142.1019 6.1948

TABLE C.25: Prediction results from TSTp model trained in database
ET+PD.
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