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MASTER OF SCIENCE IN TELECOMMUNICATION
ENGINEERING

MASTER THESIS

DESIGN AND IMPLEMENTATION OF A

HIGH-PERFORMANCE HARDWARE PLATFORM

FOR DRIVING MOTOR CONTROL SYSTEMS.

ALEJANDRO GÓMEZ MOLINA
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ALEJANDRO GÓMEZ MOLINA

Tutor
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Abstract

A control system can be defined as a group of resources that can generate response

control signals from an external physical stimulus. These signals are capable of

controlling and regulating the behavior of a physical system.

Modern control systems make intensive use of hardware and software resources to

meet the stringent requirements of these kinds of system. These requirements range

from efficient use of software resources to thermal management. As it seems, it would

be an exhaustive task, especially for non-expert developers.

Therefore, in view of all these elements, the aim of this final master thesis will be to

design and implement a hardware platform and a front-end framework for a complete

generic motor control system. The main objective is to create a system capable of

handling high-power motor devices and different types of input transductors and a

user-friendly configuration front-end.
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Chapter 1

Introduction and Goals

1.1 Introduction

Control systems are part of our daily life. Nearly all electronics which interact with

a physical environment have almost one sort of control system to regulate their

behavior. Any environment is constantly changing, the change is constant in our

world, but the problem is that there is not a way to predict where, when, or how it

will occur. It is evident that it is impossible to create systems programmed to handle

all possible changes, there are infinities. However, it is possible to create resilient

systems with the ability to automatically adapt its behavior in concordance with the

external perturbance.

The importance of these devices becomes clear when realize that they are in charge

of the safety of millions of human lives: airplane controllers, brake systems, or even

surgical appliances are controlled by these systems. Consequently, control systems

must meet stringent requirements.

Creating a control system is not an easy task, every system must be analyzed and

modeled to create a proper controller. Furthermore, these modeled systems must be

implemented in real hardware and software platforms where non-idealities are always

present. These platforms also must meet strict requirements in the range from efficient

use of resources to thermal management. As it seems, it would be an exhaustive task

even for senior control developers.

This thesis has been developed with the key idea of simplifying the development

process of brushed motor control systems. It creates a generic control hardware

platform and an abstraction layer to interact with the hardware in an easy way.

In this first chapter some concepts related to brushed motor control systems will

be introduced briefly. Next, it will be introduced the grounds of and the motivations

of this thesis and, finally, a quick summary of the whole document structure will be

done.

1
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1.2 Control systems

A control system is defined as a set of devices that manages, commands, directs, or

regulates the behavior of other devices or systems to achieve a desired result. The

main feature of a control system is that there should be a cause-effect relation for

the components of the system.There should be a mathematical relation between the

input and the output of the system [10]. This relation between the input and the

output is known as transfer function or network function.

Figure 1.1: Diagram of open-loop control system [38].

A basic control system can be represented by the block diagram of Figure 1.1. It

is composed by two main blocks: a plant (or system) to be controlled with a transfer

function G(s) and a controller with a transfer function Gc(s), whose function is to

generate the necessary control signal u(t) for the plant. This system is called open-

loop control system due to the control signal u(t) depends only on the stimulus signal

r(t), not being affected by the output signal y(t) or, what it is the same, the control

action is independent of the desired output.

Figure 1.2: Diagram of close-loop control system [38].

A more complex system can be created by adding a feedback branch from the

output to the input as shown in Figure 1.2. In this type of systems, the input of the

controller is the difference between the stimulus signal r(t) and the feedback signal

y(t), also called error signal e(t). These systems are called close-loop control systems.

Control systems are designed with different purposes and requirements. However,

all of them share a common essential requirement: they must be stable. Furthermore,

there are some usual goals when designing a control system [38]:

• Steady state specifications: The error signal e(t) must be zero when t
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Figure 1.3: Response to a unity step function in a second-order system [38].

approaches infinity t → ∞, where e(t) = r(t) − y(t) and r(t) is the reference

signal desired in the output. Ideally, when the system meets this requirement,

it is said that the system is in steady state. However, for practical reasons,

the system is considered in a steady state when, for a time t ≥ ts, the value of

|y(t)| ≤ v, where v is a tolerance commonly expressed as percentage. In other

words, the system is in steady state when the output is within a defined error

band.

The time elapsed from the application of an input stimulus to the time in

which the output remains within the error band is known as the settling time

ts. The settling time is just another parameter defined in the transient state.

• Transient state specifications: As shown in Figure 1.3, some of the main

specifications to take into account for second-order systems are:

– Settling time (ts): necessary time to reach the steady state.

– Overshoot (Mp): maximum value at the output.

– Pea time (tp): time elapsed to reach the maximum output value.

– Rise time (tr): time taken by the output to cross the reference value for

the first time.

• Perturbation suppression: External perturbations should not affect the

system in steady state or, at least, when t → ∞.

1.2.1 Control: digital control systems

Digital control systems are similar to analog control systems, but here the analog

control is replaced by a digital processor. These systems are also known as hybrid

time systems since they use continuous and discrete parts at the same time. The

superior performance, low cost, and flexibility of the design explains the growing

popularity of these systems over analog controllers [28]. Figure 1.4 shows the typical

structure of a digital control system.
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Figure 1.4: Typical diagram of a digital control system [30].

Following its discrete nature, digital control systems use analog-to-digital converters

(ADC) to discretize the input signals and digital-to-analog converters to generate the

necessary continuous signals to control the plant. Normally, signals are sampled with

a sampling period T ∈ R+.

1.3 Controller plant

The signal generated by the controller is applied to the plant, which is the real actuator

to be controlled. The physical nature of this plant defines how the actuator reacts to a

given control signal. The design of the controller relies on the plant behavioral model,

and this model is made creating a mathematical description of its internal structure.

This section describes the internal structure of brushed direct current motors, the

plant on which this project is focused.

1.3.1 Direct current motors

Direct current motors (DC motors) are electromechanical devices designed to

transform electrical energy into movement. This type of motor is widely used

in electronic applications such as automotive control systems, robotics, and home

appliances where speed or position control is needed due to its cost efficiency and

simplicity.

A brushed DC motor is a type of DC motor that is mainly composed by two

parts: the outside casing, known as stator, with two permanent magnets attached

around each one with different polarity, and the inner dynamic part known as rotor.

The rotor is made up of at least three windings connected to metal plates known as

armatures. This kind of motor gets its name from the carbon brushes that provide

the energy from the supply to the windings via the commutator. The commutator

is made up of small electrical contacts or segments connected to different windings

[27]. In movement, the brushes enter in contact with different segments, energizing

the windings, and therefore generating a dynamic magnetic field inside the motor.

Figure 1.5 illustrates the different parts of a motor.
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Figure 1.5: Schematic of a brushed direct current motor [42].

Figure 1.6: Working diagram of a electric motor [4].

A brushed DC motor generates torque from DC power supply applying the Lorentz

principle. This principle says that any current-carrying conductor placed within an

external magnetic field experiments a force whose magnitude depends on the relative

orientation between the current-carrying conductor and the field. A working diagram

of a DC motor is shown in Figure 1.6.

1.3.2 PWM Control

The speed of DC motors and the direction of rotation are controlled using PWM

signals. PWM stands for Pulse Width Modulation, and it is a modulation technique

for encoding the amplitude of a signal into the duty cycle of another periodic signal

used as a carrier (a square signal, for instance). This modulation technique is typically

used in communication systems or to control the amount of energy supplied to a load.

The duty cycle is defined as the relation between the time in which the signal is active

and the period of the signal [62].

Due to mechanical inertia and coil inductance that avoid instant changes, DC

motors only react to DC signals. When a high-frequency signal is applied, the motor

reacts only to its DC component, also known as the average voltage. The average
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Figure 1.7: PWM timing diagram [62].

voltage of a PWM signal is given by its duty cycle following Expression 1.1. Hence,

by modulating the width of the duty cycle of the PWM signal, the average voltage

supplied to the motor is modified, and therefore its speed. Figure 1.7 shows some

examples of the relation between duty cycle and average voltage.

D =
τ

T
× 100% (1.1)

Vavg = Vmax ×D (1.2)

Where D is the duty cycle, τ is the duration of the positive state, T is the period

of the signal, Vmax is the peak voltage of the signal and Vavg is the average voltage.

PWM provides many advantages to the control system; for example, it can be easily

controlled and generated by a digital system. Furthermore, one of the most important

advantages is that it always provides the maximum torque to the motor independently

of the average voltage. A DC motor torque is determined by the amount of current

supplied and depends on the voltage applied to the motor (Ohm’s law). Given that a

PWM signal always provides the maximum voltage, the torque is always maximum.

1.3.3 Rotatory Encoders

Incremental position sensors, commonly known as incremental encoders, are devices

used to measure the speed and angular position of rotating objects by detecting

discrete steps of linear or angular displacement [35]. Due to its low cost and ability

to provide easily interpreted output signals, these devices are widely used in the

industry to measure revolutions per minute (RPM), direction, and position of motors.

Encoders are made using three main technologies: optical, magnetic, or capacitive.
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The simplest form of incremental encoder has a single output line on which a signal

toggles to indicate each position increment [35]. Given that this single signal does

not provide information about the direction, a second line is used to provide that

information, giving, as a result, a dual-channel device. These two outputs are also

called quadrature outputs since they are out of phase at 90 degrees [39]. As shown

in Figure 1.8, the position, clockwise (CW) or counterclockwise (CCW), depends on

which channel phase leads.

Figure 1.8: The square waves emitted by a quadrature encoder [39].

The angular resolution of an encoder is defined by its CPR (counts per revolution)

or by its PPR (pulses per revolution). The CPR is the number of changes on both

channels in one revolution; in contrast, the PPR is the number of pulses in a single

channel. In a quadrature encoder, CPR is achieved by multiplying PPR by four, as

shown in Figure 1.9.

Figure 1.9: Difference between CPR and PPR [47].

Some microcontrollers have special hardware to drive incremental encoders that

allows efficient use of encoders with high CPR. This feature will be exploited in this

project.
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1.4 Grounds for and objectives

In view of the complexity of a digital control system and the large number of technical

variables to take into consideration when designing a physical control system, the

main goal of this thesis is to design and implement a hardware control platform for

a generic motor control system. This platform is created with the aim of simplifying

and speed-up the modeling and design process by the creation of an abstraction layer

between the user and the hardware.

This platform will be capable of driving high-power motor devices and different

types of input transductors, both digital and analog. The system will be designed to

be scalable, reusable, and powerful and is aimed at control engineers in laboratory

applications.

The design process will follow a series of necessary steps to achieve the proposed

goals. These steps will not be followed strictly in a linear way, but will be followed

using an iterative scheme allowing to change, improve, and include new characteristics

and requirements to the project. The steps are:

• Study of the background of control systems.

• Capture of user requirements.

• Definition of hardware and software requirements.

• Translation of the requirements into implementable design blocks.

• Implementation of the blocks.

• Unit testing.

1.5 Document structure

This document is structured in five main blocks. In the first chapter of the present

document, the global theoretical background, as well as motivations and goals are

introduced.

The second chapter presents the hardware design process. This chapter describes

the blocks of the hardware platform, how they are made, and the relation among

them, paying special attention to the component selection. This is followed by an

explanation of the circuit board design and fabrication process.

The third chapter describes the software design process from requirement gathering

to its implementation on the hardware platform. In this chapter, the decisions made

to meet the strictly time requirements needed in control systems are described.



1.5. Document structure 9

The fourth chapter contains the testing process for all different blocks of hardware

and software parts. In this chapter, an incremental testing process is applied to reduce

the probability of a critical failure and to narrow the search of existing bugs.

Finally, in the fifth chapter, a critical analysis of the targets achieved is made.

Using this analysis and the results of the testing process, improvements and new

requirements are proposed for future versions.
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Chapter 2

Hardware Design

2.1 Introduction

According to Oxford [45], hardware can be defined as the machinery and electronic

part of a computer system. Indeed, it is the physical support and the main constraint

of any computer system, that is to say, the whole system is first limited by the

hardware performance.

Unlike software, hardware usually requires a more tedious creation process, which

involves a great number of physical resources in each step. Manufacturing is a slow and

complex process that uses high-tech machinery in specialized fabrics. Therefore, the

time taken from the design of the prototype to the moment in which it is manufactured

and fully tested is relatively long. On top of that, it is evident that any mistake done

during the design may incur a new iteration of the whole process and, consequently,

a break of weeks in the production process. In the vast majority of cases, a hardware

problem cannot be fixed with a simple update, it will need a physical intervention.

As a physical device, the hardware is exposed to a number of physical variables

(such as temperature, humidity, light, etc.) and must work in potentially hostile

environments, mostly crowded by hundreds of other electronic devices. Designers

must take this into consideration to create hardware capable of withstanding not

only to natural perturbations, but also incoming disturbances from other devices, all

of this without disturbing other electronic devices. This is not a simple choice, all

these requirements are gathered in directives that consumer electronics must meet

and certify.

As if this were not enough, the design process has many other factors that affect

it: cost, form factor, size, normative, power consumption, and the manufacturing

process are some common factors. In addition, there are external factors, such as

global economy, natural disasters or political movements that, although they do not

directly concern the hardware, can affect the whole supply chain. An example of this

is the Sars-Cov-2 pandemic, and the following chip stock break suffered worldwide.

This shortage is expected to continue within the next two years and, as a result, is

changing the way in which the hardware is designed.

11
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Overall, this chapter describes the hardware design process from requirements

to the manufacturing and testing process. Hardware has been divided into design

blocks lumping together parts with similar requirements or functionalities. It will be

explained how these blocks are turned into schematics and then into printed circuit

boards. Finally, the manufacturing and testing process will be described from an

industrial perspective.

2.2 Requirement gathering

Requirements gathering is the procedure by which a designer transforms the user

needs into a group of potentially implementable features. This process requires

constant fluid and bidirectional communication among the parties involved. In other

words, it can be seen as the translation of the user’s wishes into a list of real technical

requirements.

This project has started with the aim of covering some of the most important needs

in control system laboratories. After many meetings with the parties involved, the

hardware requirements shown in Table 2.1 have been collected.

2.3 Common concepts

2.3.1 Transmission lines

When the frequency of signals traveling through an electric wire is nearly direct

current, it can be assumed that the electric voltage across the conductor is the same

in all points. However, if the frequency of signals is high and at the same time

the length of the trace is long enough, the trace cannot be treated as ordinary. To

determine whether a trace is electrically ’long’ or ’short’, it is necessary to know the

wavelength (λ) of the signal that can be calculated using Expression 2.1. As a simple

rule of thumb, if the trace length is greater than 1/10 of the wavelength of the signal,

it must be considered a transmission line [9].

λ =
C

f
(2.1)

Where C is the speed of light and F is the frequency of the signal.

A transmission line is a physical environment or structure that allows the confined

and guided transmission of an electronic wave between two points, typically between

a source (origin) and a load (destination). It is made of conductors and dielectrics

whose geometry defines the way in which the waves are transmitted.
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Table 2.1: Hardware requirements.

ID Requirement

Form factor

HF-1 The prototype will be formed by multiple boards forming a stack structure.

HF-1.1 There must be at least two boards to divide the control block from the high-power block.

HF-1.2 The size of the boards must be as small as possible.

HF-2 The position of user buttons and the signing light must be easily accessible.

HF-3 The boards must be interconnected through an accessible pin header.

HF-4 The input of the encoders and the connection of the motors must be aligned.

Communications

HC-1 The prototype must contain a high-speed ethernet peripheral.

HC-2 The board must contain a CAN bus with an external port.

HC-3 The board must contain an UART bus with an external port.

HC-4 Optionally, the system may contain a USB port with a USB-C connector

Power

HP-1 The system must be able to control at least two motors at the same time.

HP-1.1 The voltage of the motors may be in the range from +6 to +12 V

HP-1.2 Each motor may require currents up to 5A DC and 10A peak.

HP-2 The power input must be the same for the control and power blocks.

HP-3 There must a 5V output in each digital connector.

HP-4 The analog supply must be separated from the digital one.

Sensing

HS-1 The system must include one encoder input per motor output.

HS-2 The board must contain at least 4 analog inputs.

HS-2.1 The analog input must be capable of sensing analog strain gauges.

HS-2.2 The analog input must be used in single or differential mode

HS-3 The power board must contain one temperature sensor.

HS-4 Each motor output must contain one current sensor to measure the supplied current.

The behavior of a transmission line can be modeled using the quadrupole shown in

Figure 2.1. Using this model, the behavior of the transmission line is completely

defined by a unique parameter known as characteristic impedance (Z0). The

characteristic impedance is defined as the relationship between the voltage and the

current along the line. The value of Z0 can be calculated using the primary parameters

of the line: series Resistance (R), Series Inductance (L), Parallel Capacity (C),

and Parallel Conductance (G) [19]. The relation between these parameters and the

characteristic impedance is shown in Expression 2.2. The value of Z0 depends on the

frequency and the length of the line.

Z0 =

√
R+ jωL

G+ jωC
(2.2)
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Figure 2.1: Quadrupole model of a transmission line.

Reflection losses are power losses caused by an impedance change on the transmis-

sion line. This change causes a reflection of the wave and, therefore, a second wave in

the opposite direction to the main one. The magnitude and polarity of the reflected

wave depend on the degree of mismatch between both impedances.

Γ =
V −

V +
=

ZL − Z0

ZL + Z0
(2.3)

The relation between the incident wave (v+) and the reflected one (v−) is known

as the reflection coefficient (Γ). This coefficient can be expressed in terms of the

characteristic impedance Z0, the mismatched impedance ZL using Expression 2.3.

An adaption mismatch causes power losses because not all power is delivered to the

load, instead some are reflected. These losses are commonly known as return losses

and are defined by Expression 2.4.

RL [dB] = 10× log10

(
Pincident

Preflected

)
(2.4)

2.3.2 Impedance matching

As mentioned above, the characteristic impedance depends on the geometry of the

conductors and dielectric that shapes the environment through the wave travels.

Impedance matching is the process by which the geometry of the transmission line is

changed to achieve a desired characteristic impedance.

Impedance control is especially important in high-speed buses due to the potential

negative impact on bit error rate, distortions, reflections, and power losses that can

occur without proper impedance matching. Some of these buses have a predefined

impedance that must be achieved by the transmission line to ensure proper work [17].

The typical line geometries used on a printed circuit board (commonly known as

a PCB) are shown in Figure 2.2. The impedance of the traces depends on their

geometry, materials, and layer arrangement of the PCB. [43].
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Figure 2.2: Controlled impedance configurations [46].

2.3.3 Digital Single-ended and differential lines

Single-ended and differential signaling are two methods for transferring information

between two components [59]. As shown in Figure 2.3b, single-ended is the simplest

and most widely used method of transferring information between devices because it

requires only one wire per signal, with all sharing the same reference line (ground)[23].

These lines only carry two possible voltages: HIGH to identify a logic ‘1’ or LOW to

identify a logic ‘0’ [52].

Since in single-ended signaling all signals share a common reference plane (ground),

any noise introduced here would affect all lines, causing ripples in the signals. As an

example, power supplies are the most dominant sources of noise in circuit boards.

Furthermore, it is sensitive to the induced noise along the path.

(a) Differential pair. (b) Single ended.

Figure 2.3: Differential and single ended lines comparison [59].
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Some of these problems can be compensated using differential signaling. As shown

in Figure 2.3a, differential signaling is a method that, in contrast to single-ended

signaling, uses two wires to transmit each signal. Differential pairs are often used in

high-speed buses where strong noise immunity is needed, as in the case of Ethernet

or USB.

Each wire of the differential pair carries a voltage level with the same magnitude

but with opposite polarity [59], the original signal is recovered by taking the difference

between both lines (see Figure 2.4). The key idea is that any noise will be coupled in

both lines with the same magnitude and, therefore, by taking the difference between

the lines, the common noise would be compensated.

Figure 2.4: Differential signal recovery at a receiver component [59].

2.4 Thermal dissipation.

Joule effect is a physical phenomenon by which the passing of an electric current

through an electrical conductor produces thermal energy [55]. Thermal energy

generates a temperature rise that heats the conductor. Thermal conduction, also

known as heat conduction, is defined as the transfer of thermal energy between two

bodies with different temperatures.

In engineering, the heat flow is often expressed in terms of thermal resistance.

Thermal resistance is a physical property by which an object or material resists

heat flow. It is an analogy between the diffusion of heat and electric charge: as

electrical resistance is associated with the conduction of electricity, thermal resistance

is associated with the conduction of heat [7].
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Figure 2.5: Thermal resistance analogy [7].

The heat flow through the thermal conductor of Figure 2.5 is given by Fourier’s

law of heat conduction in Expression 2.5.

Q = −KA
T2 − T1

L
(2.5)

Where Q is the heat flux through the plane, K is the conductivity of the materials,

L is the thickness of the plane, and A is the area of the plane.

Rth =
L

KA
(2.6)

Now, by the definition of Rth in Expression 2.6, the analogy to the Ohm law can be

seen. As in the electrical case, thermal resistances can be combined to solve problems

in which heat flows through different thermal conductors, as shown in Expression 2.7.

Q =
T∞,1 − T∞,3

Rtotal
=

∆T

R∞,1 +R1 +R2 +R1 + T∞,1
(2.7)

The thermal resistance is a key parameter that is currently provided by almost all

manufacturers of electronic components. Manufacturers provide empirical informa-

tion about the thermal resistance between the silicon (junction) and the case and the
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maximum power dissipation and/or junction temperature at the junction supported

by the device. This information must be taken into account when designing high-

power systems to avoid thermal breakdowns.

2.5 Block diagram

Using the requirements listed in Table 2.1, the hardware has been divided into five

functional blocks as shown in Figure 2.6. This block diagram divides the hardware

project into smaller blocks that make description, design, and implementation easier.

In the following sections, the different parts that make up each block and how they

are made are explained in detail.

Figure 2.6: Hardware block diagram.

2.5.1 Control block

This block is made up of all the parts in charge of processing the input signals and

the generation of digital stimuli. In summary, it is made up of a microcontroller and

its associated electronics.

2.5.1.1 Microcontroller selection

The choice of microcontroller depends on the required capabilities of the system.

Using the requirements listed in Table 2.1, the Simplia COMPAC IMXRT module has

been selected [54]. IMXRT Module is a M.2 2230 format board based on an IMXRT

1052 processor with with a Plug and Trust device to provide a root of trust at IC

level. Moreover, multiple interfaces such as LCD, USB, CSI, SD, and RMII make this

module suitable for different applications [54]. The i.MX RT1050 MCU runs on the

Arm Cortex-M7 core at 600 MHz and its one of the first crossover microcontrollers

that combine the high-performance and high level of integration of an application
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processor with the ease of use and real-time functionality of a microcontroller [41].

The internal structure of the COMPAC SoM is shown in Figure 2.7.

Figure 2.7: COMPAC SoM diagram [54].

This module has been selected not only for its incredible performance but also for

the complete software development kit (SDK) that the manufacturer provides. This

SDK provides the necessary configuration, documentation, drivers, and middleware to

facilitate software development. Furthermore, it is a ready-to-use module or, in other

words,it does not require extra hardware to start to work with the microcontroller.

2.5.2 Communication block

2.5.2.1 Ethernet

Ethernet is an international standard for Local and Metropolitan Area Networks

(LANs and MANs), employing CSMA/CD (carrier sense multiple access with collision

detection) as the media access method and the IEEE 802.3 protocol and frame format

for communications [12].

Ethernet standard lies in the lower layers of the OSI model, defining the data link

and the physical layers. The data link layer, among other components, is composed

of the Medium Access Control block (MAC), which functions as the interface between

the processing systems (CPU, MCU, FPGA, etc.) and the physical layer.

On the other hand, the physical layer is in charge of sending the data incoming

from the MAC layer through the physical networking interface as an analog signal

[57]. The most common physical mediums are coaxial, twisted pair, and optical

cables. In general, these tasks are performed off the processing chip by an integrated

circuit known as Ethernet PHY Controller. Ethernet-capable devices have associated

MII and/or RMII peripherals, which work as interfaces between the MAC and the

physical layers.
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Figure 2.8: Block diagram showing connectivity in an Ethernet device [57].

MII stands for Media-Independent Interface and requires up to 18 lines to

communicate each PHY controller with the MAC. Therefore, Reduced MII or RMII

is a variant of MII which cuts the number of necessary lines down to 8 per PHY

controller. RMII specification is capable of supporting 10 Mbps and 100 Mbps data

rates. The recommended trace impedance for MII and RMII controllers is 50 Ω and

it is also recommended to match the length of the traces and make them as short as

possible. Figure 2.8 shows a typical connectivity diagram of an Ethernet device.

Ethernet over twisted pair is the preferred physical layer standard for network

cabling applications at distances less than 100 m [1]. This medium is formed by

up to 4 twisted differential pairs with a differential trace impedance of 100 Ω. The

number of twisted pairs depends on the cabling category (CAT-1 to CAT-8) and,

consequently, the maximum data rate.

2.5.2.2 Ethernet Design

For this implementation, the LAN8720AI-CP ethernet physical transceiver (PHY)

from Microchip has been used. This 24 pin Quad-Flat no-lead chip is a 10/100

ethernet transceiver compliant with IEEE802.3/802.3u with auto-negotiation and

automatic polarity detection. This chip is connected to the microcontroller MAC

through the ENET peripheral. The schematic has been designed according to the

manufacturer’s requirements shown in Figure 2.9. As an Ethernet connector, the

Link-PP LPJG0846BBNL connector has been used, which includes the required coils

within the same header.

In addition, electrostatic discharge protection (ESD) has been added to the Tx /

Rx pairs to avoid electrical damage when using the device. Both pairs have also been

impedance-matched to 100 Ω and length-matched interpair (both pairs have the same

length) and intrapair (in each pair, both lines have the same length). The schematic
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Figure 2.9: Recommended LAN8720A schematic [34]

of this module is shown in Appendix F. This block has been added to comply with

the HC-1 requirement in Table 2.1.

2.5.2.3 UART

UART or Universal Asynchronous Receiver/Transmitter is a serial data protocol

mostly used in device-to-device communications. UART peripherals have up to two

single-ended data lines that can function in simplex mode (only one data line and

direction), semi-duplex (one line for both directions), or full-duplex (one line per

direction) [53].

UART is a low-speed transmission protocol whose main advantage is that it is

asynchronous, that is, neither of the connected devices must share the same clock

signal, reducing the number of necessary lines and the complexity of the transceiver.

Since they do not share a clock, the transmission speed must be agreed between the

two devices. The data rate is measured in bauds or symbols per second, with the

most common baud rates being 4800, 9600, 19200, 57600, and 115200 bauds.

The frame format is also quite simple; the transmission line keeps a logic ’1’ during

the idle state. The transmission starts by pulling down the transmission line (TX)

during one bit time or, what is the same, putting a ’0’ or start bit in the TX. Next,

the binary data is transmitted starting from the least significant bit (LSB) to the

most significant bit (MSB). It is noteworthy that although the frame data size can

be in the range from 5 to 9 bits, the 8 bit data frames are mostly used. Optionally,

the data may be followed by a parity bit that indicates its evenness or oddness of the

data as a redundancy check. Lastly, the TX line must be high for at least 1 or 2 bit

times (depending on the configuration) before a new transmission starts. A typical

data frame diagram is shown in Figure 2.10.
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Figure 2.10: UART frame [44].

2.5.2.4 UART implementation

In order to comply with the HC-3 requirement in Table 2.1, an external UART header

has been added to the board connected to the UART1 peripheral through a level

translator to obtain a +5V tolerant port. The diagram of this module is shown in

Figure 2.11. Moreover, it can be seen that the output header is connected to +5V

and protected using an ESD diode, which meets the HP-3 requirement.

Figure 2.11: UART Schematic.

2.5.3 USB

USB stands for Universal Serial Bus and, as its name says, it is a serial protocol and

wiring standard designed to support data exchange between a host device and a wide

range of simultaneous accessible peripherals [6]. It should be noted that it has been

adopted as the communication standard for numberless peripherals like keyboards,

mouses, massive storage, printers, and so on, replacing legacy interfaces like RS232,

parallel port, and PS/2.

This standard defines the bus topology, types of devices, data flow, and even

the physical wires and connectors. The basic USB cable is made up of two power

conductors and a twisted pair as a differential transmission line. In addition to that,

newer versions add two additional twisted pairs to provide enhanced SuperSpeed

data paths, one for the transmit path and the other for the receive path [61]. The

impedance of each twisted pair is matched at 90 Ω.

As shown in Figure 2.12, there is a wide range of standard connectors, USB Type

C being the last version. Type-C connectors are becoming widely used since they

provide great transmission performance, are reversible, and can support up to 100 W

at different voltages [58].



2.5. Block diagram 23

Figure 2.12: USB standard connectors [20].

Depending on the version of the specification, USB can achieve data rates from 1.5

Mbps in USB1.1 to 20 Gbps in the latest release USB4.0. One of the main features of

USB is that it is designed not only to serve as a communication interface, but also to

function as a power supply. According to the USB specification, USB1.1 and USB2.0

can supply up to 500 mA, while USB3.0 can provide up to 1.5 A. Some consumer

electronics use only this feature to provide power input through USB connectors.

2.5.4 USB design

As shown in Figure 2.13, a USB C connector has been added to the USB1 peripheral

(USB2.0). It only uses a pair protected by the ECMF02-4CMX8 ESD IC which

incorporates a common mode filter. The USB pair has been impedance matched to

90 Ω and length matched to obtain the same length in both lines. Some unused lines

have been pulled up or pulled down to avoid unwanted behavior.

Figure 2.13: USB schematic.
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2.5.5 CAN

The Controller Area Network bus or CAN bus is a fully centralized asynchronous

communication protocol defined by the ISO-11898 standard. First introduced for

automotive applications, it is also widely used in many industrial applications where

efficient and robust communications are needed. Two versions are now in use: a low-

speed version known as CAN 2.0A or Basic/Standard CAN, and a high-speed version

known as CAN 2.0B or Extended-Frame CAN [60].

The CAN bus is formed by a two-wire differential interface that runs over a

twisted pair. It uses a non-return zero (NRZ) codification scheme which ensures

compact messages with minimum number of transitions and high resilience to external

perturbations. The CAN bus can work with different data rates in the range of 10

Kbps to 1 Mbps, with the 20 kbps data rate compulsory in all devices. Moreover,

this bus can reach up to 1000 m working at low data rates.

Figure 2.14: Standard and Extended frame of the CAN data message architecture

[56].

The basic CAN frame is primarily composed of a Start-Of-frame block (SOF), an

11 bit message identifier, and up to 8 bytes of payload. It can also contain a CRC

block, an acknowledgment slot, and other overheads as shown in Figure 2.14. ID

slot is also used to encode the message priority, providing all devices with a package

filtering mechanism.

The CAN bus is used in practically all modern vehicles and industrial devices,

mainly due to the following benefits [11]:

• Simple: systems can communicate using only two wires, reducing errors, wiring,

weight, and cost. Furthermore, CAN transceivers and controllers are simple,

inexpensive, and easy to implement.
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• Fully centralized: the CAN bus provides only one point of entry for all network

devices.

• Robust to disturbances: the bus structure makes the system extremely robust

to external interference, which is a key feature in noisy applications.

• Efficient: the CAN bus uses prioritized frames that guarantee a fast response

to critical operations. Therefore, it enables the use of the bus CAN in real-time

critical applications.

2.5.6 CAN Implementation

This block has been implemented using the NCV7351D1ER2G transceiver manu-

factured by ON-Semiconductor. The NCV7351 CAN transceiver is the interface

between a controller area network (CAN) protocol controller and the physical bus.

Furthermore, it is compatible with the ISO 11898-2 standard providing a transmission

speed up to 1 Mbps. With the aim of making the bus +5V tolerant, a level translator

has been added between the microcontroller (+3.3 V tolerant) and the transceiver

(+5V tolerant).

Figure 2.15: CAN schematic.

As shown in Figure 2.15, ESD protection has also been added to avoid electrical

damage due to electrostatic discharges. A 120 Ω end line resistor, not mounted by

default, which can be used in the case of working as an end device or in one-to-one

communications.

2.5.7 Brushed Motor driver

2.5.7.1 H-Bridge

An H-bridge is a structure composed of four switches, typically used to control the

direction of current that follows through the power rail. The structure of an H-bridge

is shown in Figure 2.16. The name of this structure came from the way the switches

are connected.

The switches have different functions: the two switches at the top are known as

the ’high side’ and are responsible for connecting the DC to the power rail. The two
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in the bottom are known as the ’low side’ and are responsible for connecting the load

to the ground [3]. As shown in Figure 2.16, the activation pattern of these switches

defines the current path and therefore the direction of the motor.

Figure 2.16: Typical H-Bridge output operating configurations.

Although there are many possible implementations, most applications use Metal

Oxide Semiconductor Field Effect Transistors (also known as MOSFETs) as switches.

The main advantage benefit of using MOSFETs over other types of transistors like

Bipolar Junction transistors (also known as BJT) is that smaller MOSFETs can drive

higher currents with lower power losses and therefore fewer amounts of heat.

MOSFETS can be P-Channel or N-Channel depending on the application and

requirements. For example, in H-Bridge applications, the high side is usually

composed of P-channel MOSFETs, whereas the low side is composed of N-channel

MOSFETs. This structure is not arbitrary; it responds to practical reasons: to drive

both N and P MOSFETs, it is necessary that the voltage between its gate and source

pins be greater than a certain threshold value. Furthermore, in P-MOSFETs, the

source pin must have a higher voltage than the drain one, and, by contrast, in N-

MOSFETs, the source pin must have a lower voltage. In the H-Bridge structure, the

P and N MOSFET sources are connected to the input voltage and to the ground,

respectively.

When selecting a MOSFET device for high-power applications, there are several

factors to consider, such as size, form factor, power rating, working voltage and on-

resistance. On-resistance (Ron)is defined as the equivalent series resistance present

between the source and the drain when the MOSFET is operating in the active region

or when the device gate is fully charged [3]. This resistance value becomes especially

important, since it defines the amount of power dissipated by the device. The amount

of power dissipated in a MOSFET transistor is given by Expression 2.8, where i is
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the current flowing through the transistor. Eventually, excess power will destroy the

device.

Pd = Ron × i2(W ) (2.8)

One of the main disadvantages of P-MOSFETS compared to N-MOSFET is that

the electron mobility inside a N-MOSFET transistor is around twice that of P-

MOSFET, and therefore, with the same geometry, N-MOSFET has almost half the

resistance compared to P-MOSFET transistors when working with the same operation

conditions. This fact is especially important because the power dissipated by a P-

MOSFET becomes twice. One solution is to use N-MOSFETS on both sides (high and

low). However, special controllers would need to bootstrapping the device to maintain

the correct voltage between the source and gate pins of the high-side MOSFETs.

Today, there are many inexpensive devices specially designed to drive N-MOSFET

bridges with all-in-package solutions that can be easily implemented in projects. In

the following chapters it will be discussed these solutions more deeply.

2.5.7.2 H-Brigde design

For this project, two different strategies have been adopted when implementing the

H-Bridge. On the one hand, one board has been designed using the MC33HB2001

monolithic H-Bridge Power IC. This device can control inductive loads with current

peaks up to 10A. Furthermore, the HB2001 is enhanced with SPI communications that

provide configuration and diagnostic capabilities. In addition, this device provides an

analog feedback proportional to the current supplied to the load that allows to meet

the HS-4 requirement in Table 2.1.

Since this is a monolithic solution, it requires fewer components and therefore a

smaller area and a lower price. However, it is limited by its thermal capabilities.

According to the HB2001 datasheet, this device has a thermal resistance RΘJA of

75.7 °C/W , a maximum junction temperature TJ(max) of 150 °C, and each MOSFET

transistor has a maximum drain-to-source resistance RDS(on) of 125 mΩ. Assuming

an ambient temperature TA of 25 °C, the maximum dissipated power Wmax can be

calculated as shown in Expression 2.9.

Wmax =
(TJ(max) − TA)

RΘJA
=

(150− 25)

75.7
= 1.65W (2.9)

Assuming that almost all the power is dissipated by the MOSFET transistors and

that there are always at least two transistors on, the maximum worst-case current

supplied to the load can be calculated as shown in Expression 2.10. This means that,

in the worst case, this IC can provide a constant current of 2.57 A.

Imax =

√
Wmax

2×RDS(on)
=

√
1.65

2.125
= 2.57A (2.10)
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With the aim of overcoming these limitations, a second board has been designed

using a fully custom design. For this design, the 85V full-bridge MOSFET driver

MIC4606 manufactured by Microchip has been used, which features adaptive dead

time and shoot-through protection. This driver is capable of controlling four N-

MOSFET transistors using just two PWM inputs, one for each side of the H-Bridge.

The H-Bridge is formed by 4 SISS50DN N-MOSFET transistors manufactured by

Vishay. According to the datasheet, each transistor has a maximum RDS(on) of 4.1

mΩ, a thermal resistance RΘJA of 25 °C/W , and a maximum junction temperature

TJ(max) of 150 °C. Using Expression 2.9 and assuming an ambient temperature TA of

25 °C, the maximum dissipated power and, therefore, the maximum supplied current

can be calculated as shown in Expression 2.11. Notice that, unlike the monolithic

design, for these calculations it is assumed that in the worst case only one transistor

is switched on. This happens because in the fully custom design, each transistor has

its own body; however, in the monolithic case, all transistors share the same body.

Wmax =
(TJ(max) − TA)

RΘJA
=

(150− 25)

25
= 5W (2.11)

Imax =

√
Wmax

RDS(on)
=

√
5

0.0041
= 34A (2.12)

It is evident that in the second case the maximum power increases more than 3

times. Nevertheless, this design requires more components, a more complex layout,

and hence higher cost and a much larger PCB area. This design requires flyback

diodes to protect to eliminate the sudden voltage spike caused by the inductive load

when the transistor is switched, ESD diodes to protect the transistor’s gates, and

extra components required by the bridge driver.

Furthermore, a current sensing circuit to meet the HS-4 requirement shown in Table

2.1. This circuit is made of the INA281A1 current sense amplifier manufactured by

Texas Instruments and two parallel sensing resistors of 10 mΩ. Given that the current

amplifier is powered by the +3.3V power rail and its gain is 20 V/V , the maximum

sensed current can be calculated as shown in Expression 2.13.

Vin(max) =
VVcc

G
=

3.3

20
= 165mV (2.13)

Imax =
Vin(max)

Rsense(par)
=

165mV

5mΩ
= 33A (2.14)

However, it is necessary to calculate the maximum current supported by the

resistors that, according to the datasheet, are capable of dissipating up to 1 W.

The maximum current is calculated as shown in Expression 2.15. The two sensing

resistors have been configured in parallel to duplicate the maximum power dissipated

by them, giving a maximum sensing current of 20 A.
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Imax = =

√
Wmax

Rsense
=

√
1

0.01
= 10A (2.15)

In both designs, monolithic and fully custom, a low-pass filter has been added to

the current feedback path to measure only the average current supplied to the load.

This filter has been designed using a second-order Sallen Key structure [8] with cutoff

frequency fc = 1224Hz, quality factor Q = 0.5, gain G = 1 and damping ratio ζ = 1.

The schematics of both boards are shown in Appendices G and H. In both cases, a

fan has been added a fan above the logic to reduce the probability of thermal damage.

2.5.8 Analog acquisition

Despite its digital nature, most electronic devices must interact with a pure analog

world, making it necessary the existence of special circuits which work as an interface

between the analog world and the digital processing units. An analog-to-digital

converter, also known as ADC, is an electronic device capable of converting an analog

input signal to a digital signal value that represents the value of the analog signal

compared to a reference voltage. These circuits can be embedded into complex

processing systems (microcontrollers, FPGAs, etc.) or as individual integrated

circuits.

The analog input to be measured can be single-ended or differential, but always

must be in the range of the reference voltage (Vref ) or FSR. The FSR or full-scale

input range is divided into a number of subranges or steps, each one with an assigned

binary code. Resolution is defined as the number of bits used to encode each step.

With n bits, an ADC can encode up to 2n − 1 steps. For example, a 12 bit ADC can

be encoded in 212 − 1 = 4095 steps. The minimum voltage that guarantees a change

in the output code is called the least significant bit (LSB) voltage. Therefore, the

resolution determines the precision of a measurement.

The sample rate is defined as the number of samples that can be taken per unit

of time. According to the Nyquist theorem, an analog input can be reconstructed

without information loss as long as it is sampled at a sample rate greater than or

equal to twice its maximum frequency. This is a key feature to consider to avoid side

effects such as aliasing.

2.5.8.1 Analog acquisition implementation

For this block, the MCP3564T ADC manufactured by Microchip has been used.

The MCP35614 device is an 8-channel, 24-bit Delta-Sigma analog-to-digital converter

(ADC) with a programmable data rate of up to 153.6 ksps. A filtered low-noise +3.3V

power rail has been used as the voltage reference for the ADC. The configuration of

the eight analog channels is controlled by four analog multiplexers, providing three

different configurations: differential input, single-ended input, and strain gauge input.
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Figure 2.17: Analog input schematic.

The selected multiplexer is the NX3L2T66GM manufactured by NXP with a series

resistance of 0.5mΩ. As shown in Figure 2.17, the multiplexer controls the connection

and disconnection of the 120 Ω Wiston bridge used to linearize the input of the strain

gauge. This bridge is made of a monolithic resistor array to achieve the same value,

tolerance, and temperature shift in all resistors.

All inputs are connected to the ADC through a low-pass filter that acts as an anti-

aliasing filter with a cutoff frequency fc = 1.6KHz. To avoid filter gain dismatches

with the differential input configuration, a common mode capacitor has also been

used between every two consecutive channels. The complete schematic diagram for

this block is shown in Appendix F.

2.5.9 Power supply

The power rail block is one of the most critical parts in designing an electronic

device. A simple hardware design may contain many components with different supply

requirements, and consequently, it must use different power rails at different voltages

with loads ranging from a few milliamperes to hundreds of amperes. The design of

these power rails must meet requirements such as power efficiency, PCB space and

layout, transient behavior, and cost.

In summary, a power supply can be defined as a component or group of components

capable of generating a regulated power output (voltage and/or current) from an

unregulated power input. It can also provide additional features such as current

and heat measurement and overload protection. There are many different internal

structures for these devices depending on the characteristics of the input and output

sources, such as the maximum voltage and current and the type of source (alternating

current or AC and direct current or DC).

This section will focus on DC/DC power supplies which, as implied by the mane,

use an unregulated direct current input (DC) to generate a regulated DC output.
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In this category of power supplies, there are two main internal structures: switching

mode power supplies (SMPS) and linear regulators. To make a good choice, it is

necessary to know the merits and drawbacks of each structure. Therefore, in the

following sections, a brief description of each will be given.

2.5.9.1 Linear regulators

A linear regulator is an electronic device capable of generating a regulated voltage

output by varying an active series load. In other words, it can be seen as a series

resistor connected between the input and the output, whose resistance changes to

maintain the desired voltage at the output. This load regulation is done using a

feedback control system, as shown in Figure 2.18.

Figure 2.18: Basic structure of a linear regulator [29].

These regulators are simple, inexpensive, and do not need many extra electronics

(usually only a couple of decoupling capacitors). Furthermore, linear regulators have

a low noise figure, high accuracy, and high power supply rejection ratio (PSRR),

providing, as a result, a highly regulated output voltage with low noise. Therefore,

these features are highly desirable, especially in analog applications.

However, they are not suitable for all applications for some reasons: firstly, they are

only step-down regulators, which means that they can only generate a lower voltage

than the input. Moreover, there must be a minimum voltage difference between the

input and output, which is also known as dropout voltage (VDO). However, its biggest

drawback is its low power efficiency.

As shown in Expression 2.17, power efficiency can be defined as the relationship

between the power provided at the input and the power delivered to the load. Since

the output current is virtually the same as the input (LR acts as a load), the power

efficiency is defined by the voltage ratio between the output and the input. To

illustrate the problem, imagine that a linear regulator is used to regulate from +12V to

+5V, giving an approximate power efficiency of 40%, which means that the remaining

60% are dissipated by the device as heat.
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Pdiss = (Vin − Vout)× Iout = VDO × Iout (2.16)

η =
Vout × Iout

Vin × (Iout + IQ)
× 100 ≈ Vout

Vin
% (2.17)

2.5.9.2 Switching regulators

A Switching Mode Power Supply (SMPS) is a circuit that uses a power switch, an

inductor, a diode, and an output capacitance to regulate the output voltage. The

power switch transforms the input into a pulsed voltage that is smoothed using an

output capacitor. The power switch, typically a Field Effect Transistor (FET), is

switched by a switching controller that monitors the output in a feedback control

loop.

Compared to linear regulators, SMPS regulators provide high power efficiency

(higher than 90%) and low power dissipation, resulting in less heat, regardless of

the relationship between input and output voltages. However, its switching nature

generates undesired noise from the voltage ripple across the capacitor. Depending on

the switching frequency, the selected components, and the applications,the generated

noise would be a serious problem and difficult to fix. Therefore, these types of power

supply are the main source of noise in modern electronics.

Figure 2.19: Buck Power Stage Schematic [21].

The main components of an SMPS circuit can be rearranged to form a step-down

converter (Buck), a step-up converter (Boost), or an inverter Buck-Boost converter.

However, in this section, we will focus on the step-down topology shown in Figure

2.19. The working principle is simple, during the time that the switch is closed

(TON ), the output capacitor (C) will be charged through the inductor (L) and, since

the current flowing through the inductor can suddenly increase, the capacitor will be

slowly charged maintaining a voltage across it lower than the input voltage; On the

other hand, when the switch is opened (Toff ), the diode starts conducting creating a

current loop, allowing the inductor to inject energy to maintain the voltage across the
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capacitor. As a result, the output voltage is given by the duty cycle (the relationship

between TON and the switching period Ts) and the input voltage.

2.5.10 Power supply design

According to the system requirements and the previous sections, the board has two

possible power inputs: a +12V power input from the motor board and a +5V power

supply from the USB connector. Furthermore, the system must be able to generate

three power rails of +5V, +3.3V, and +3.3V with low noise. These power rails must

be able to meet the power requirements shown in Table 2.2. Thus, both input power

supplies must be able to supply 6.32 W to the system, which means that each supply

must be able to supply the currents shown in Table 2.2. This table was calculated

using the worst-case scenario.

Table 2.2: Power Requirements

Voltage Current Power

Required Power Rails

+5V 900mA 4.5W

+3.3V 300mA 1W

+3.3 Analog 400mA 1.32W

6.32W

Required Power Inputs

+12V 526mA 6.32W

+5V 1264mA 6.32W

It should be noted that the system has been designed to use only one power source

at a time, which means that if both sources are simultaneously connected, only one

will supply power to the load, whereas the other is automatically disconnected. This

is done using the structure shown in Figure 2.20. If the +12V supply is disconnected

and the +5V supply is connected, the V2 p-channel MOSFET is active, allowing

the current to flow toward the system. However, if both supplies are connected, the

gate-to-source voltage across the transistor is greater than 0V, which means that V2

will be in cutoff mode. These structures are also known as load switches. The V2

transistor has been carefully selected to support maximum current with low power

loss (low conduction resistance Ron).

When the +12V supply is connected, the +5V power rail is generated using the

TPS5622 buck converter, manufactured by Texas Instruments, capable of supplying

up to 2A and with an input voltage range from +4.3V to +17V. This IC has also been

used to generate the +3.3V power rail from the +5V power rail. Both power stages

have been designed using the WEBENCH Power Desing Tool provided by Texas

Instruments. Furthermore, the basic design generated by the tool has been modified

to use cheaper and available components with the same electrical characteristics.



34 2. Hardware Design

Figure 2.20: Input power schematic.

These power supplies have been designed to provide up to 2A which, according to the

requirements shown in Table 2.2, is enough to provide the desired power.

As stated in the previous sections, switching power supplies introduce unwanted

high-frequency noise into the system. This noise becomes especially important when

switching power supplies are used to power sensitive analog electronics such as ADCs.

For this reason, the AP7343 linear regulator, manufactured by Diodes Incorporated,

has been added, capable of providing 400 mA to the analog block. The full schematic

of this block is shown in Appendix F.

2.6 Printed Circuit boards

A printed circuit board, also known as PCB, is a physical support for all different

components that shape the electronic circuit. It is made of mainly a base flat

material, solid or flexible, on whose faces the components that form the circuit are

placed. The interconnection between the components is made with metallic traces,

typically copper. The trace patterns are transferred using a mask and engraved on

the copper by either physical processes (such as etching) or chemical processes (such

as electrodeposition).

Basic printed circuit boards consist of two or more electrical layers separated by a

dielectric insulator, commonly called prepreg, forming a stack. In the middle of the

stack there is another thicker layer of insulator known as the core, whose function is to

provide rigidity to the board. A PCB may have two to more than ten electrical layers,

but always a pair number. External layers are coated with a thin resin layer known as

solder mask, whose function is to protect copper and avoid short circuits during the

soldering process. The electrical layers are interconnected using small plated holes

known as vias.

The dielectric layers deeply affect the performance of the circuit board, especially

in high-frequency applications. Dielectrics are defined by their thermal, electrical,

magnetic, chemical, and mechanical characteristics. Fiberglass, Teflon, and polyimide

are often used as dielectric materials for PCBs. FR-4, which is made of fiberglass
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and resin, is the most common material used in standard PCBs due to its

performance/price ratio.

Design rules (such as trace size and clearance), as well as layer stacks, are completely

defined by the fabrication process and the technology applied by the manufacturer.

It is important to keep this fact in mind since not all manufacturers have the same

capabilities and materials to build the boards.

2.6.1 Board layout

The entire system has been divided into three boards according to the requirement

HF-1 in Table 2.1. As a result, a stack-like structure is obtained that allows

the division between the control block and the power electronics (requirement HF-

1.1).Therefore, new types of motor or actuators can be used simply by changing the

power board.

All boards have been designed with the same form factor, a rectangular 60x80

mm2 shape with rounded corners and holes in every corner. The size is the smaller

size that allows positioning all external connectors in the control board (requirement

HF-1.2). The resulting structure is shown in Figures 2.21 and 2.22. The boards also

contain three fiducial marks in the upper and lower layers that allow SMT placement

equipment to accurately locate and place the components.

Figure 2.21: Board 3D stack top view.
Figure 2.22: Board 3D stack bottom view.

The printed circuits have been fabricated by Eurocircuits and assembled by RBZ

Embedded Logics. The first step in the assembly process requires the exposed pads

to be coated with solder paste using a metallic pattern mask known as a stencil.

Then, a pick-and-place machine places the components in their correct positions.

These machines can place more than 104,000 components per hour. Lastly, all

components are soldered at the same time using reflow soldering. This technique

consists in introducing the board into an oven, which raises the board temperature

to the melting point of the solder paste. The solder paste reflows creating permanent
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solder joints. Reflow soldering is suitable for soldering thousands of components in a

short period of time.

2.6.1.1 Control board

This board holds the main blocks of the control system: control, acquisition, power,

and communications. It has been designed using the four-layer stack described in

Figure 2.23. This stack is just one of the multiple stack-up options offered by the

PCB manufacturer Eurocircuits. Therefore, this stack-up has been selected as a

trade-off between cost and fabrication capabilities: it offers impedance control with a

space between layers small enough to have good impedance matching without using

thicker tracks, which means a smaller area and a higher degree of integration.

Figure 2.23: Control board stack-up.

There are two controlled impedances: a 100 Ω differential for Ethernet pairs and a

90 Ω differential for the USB pair. The size and spacing of the tracks are summarized

in Table 2.3. These values were calculated using an impedance calculator provided

by Eurocircuits for its stackups.

Table 2.3: Impedance control +/- 10% differential pairs.

Layer Impedance Track width Dif. Pair Space Reference Layer

1 AND 4 100 Ω 0.150mm 0.200mm 2 AND 3

1 AND 4 90 Ω 0.185mm 0.200 2 AND 3

As shown in Figure 2.25, the board is divided into two zones: digital and analog.

Both zones are joined by a single point located next to the analog linear regulator.

The purpose of this structure is to avoid digital noise from coupling into the analog

supply. The analog connectors are also located at the top of the board. Figure

2.24 shows the power plane division, it can be seen how the different power rails are

distributed across the board.
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Figure 2.24: Control board power plane

division.

Figure 2.25: Control board ground plane

division

All components are situated in both the top and bottom layers. As shown in Figure

2.27, on the top layer 4 analog inputs are located on the top, one encoder connector

and the UART port on the left, and the other encoder connector and the CAN port on

the right. At the bottom there is a 24 pin header that works as a connector between

the control board and the motor board. The signals assigned to this port are shown

in Figure 2.26. The microcontroller SoM is located in the center of the board.

Figure 2.26: Control board connector.

On the bottom layer, most of the components are located, as well as the Ethernet

and USB connectors. The power supply block has been routed following the

manufacturer’s instructions carefully to avoid thermal or electrical failures. At the top

are situated the analog components aligned with its respective connectors in the other

layer. The earth net from the USB and Ethernet connector has been conscientiously

isolated from the ground of the system, removing all copper in the surrounding areas.
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The Ethernet lines that come from the microcontroller have been routed following

the shortest path and trying to maintain the same length in all lines. In Figure 2.28

the Ethernet and USB differential pairs that have been matched by impedance and

length are highlighted. In this layer, there is also a 10 pin header that works as a

programmer port. The resulting 3D model is shown in Figures 2.29 and 2.30.

Figure 2.27: Control board top layer. Figure 2.28: Control board bottom layer.

Figure 2.29: Control board top layer 3D.
Figure 2.30: Control board bottom

layer3D.

As shown in Figure 2.31, the board has been panelized in a 3x2 panel. These

kinds of panel are often used to ease the assembly process carried out by automatic

machines, also known as pick-and-place. Both columns are joined by a piece of PCB

drilled with small holes known as ’mouse bites’. These ’mouse bites’ create a weak

junction that allows the board to be separated. External frames are removed using a

process called V-Scoring or V-Cutting, which consists of cutting a ’v’ groove on the

top and bottom of a circuit board while leaving a minimum amount of material in
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place to hold the boards together.

Figure 2.31: Control board panel.

2.6.1.2 H-bridge MIC4606

Figure 2.32: Motor boards stackup.

The MIC4606 board contains the implementation of the full custom H-Bridge, and

the HB2001 board contains the monolithic IC design. In contrast to the control board,

for these boards, a two-layer stackup was selected manufactured by Eurocircuits. The

complexity, number of components, and absence of controlled impedance allow the

use of a cheaper and lower cost structure, which is shown in Figure 2.32. Since there

are no internal power planes, the power rails have been routed in the top and bottom
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layers.

Figure 2.33: Motor MIC4606 board top

layer.

Figure 2.34: Motor MIC4606 board

bottom layer.

As shown in Figures 2.33 and 2.35, all components have been located in the top

layer, leaving the bottom layer to connect the power rails, the high-power outputs,

and the board connector (see Figures 2.34 and 2.36). On the top is the input source

connector and on the sides are the motor connectors. These connectors, as well as all

other high-power components, have been connected to copper without thermal relief.

Although it may cause problems during the assembly process, it was done to allow a

greater amount of current to flow through the high-power components.

Figure 2.35: Motor HB2001 board top

layer.

Figure 2.36: Motor HB2001 board bottom

layer.

In the center of both boards, there are two H-bridges with a fan above them to

avoid heating problems. The transistors and the HB2001 IC were interconnected by

large copper planes on both layers. These planes are also connected through a dense
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array of vias to ease heat dissipation. In addition to the H-Bridge, these boards also

contain power LED indicators and a reset button on their top layer, in addition to

an I2C temperature sensor, which meets the requirements of HF-2 and HS-3 in Table

2.1.

Figure 2.37: Motor MIC4606 3D model. Figure 2.38: Motor HB2001 3D model.

The 3D models of both boards are shown in Figures 2.37 and 2.38. These boards

have been panelized together in a 2x3 array (3 MIC4606 boards on the left side

and 3 boards HB2001 on the right size). These boards are joined by a small piece

of PCB drilled with multiple holes. It is worth stating that these boards can be

panelized together because both share the same stackup and, therefore, share the

same fabrication process. The result panel is shown in Figure 2.39.

Figure 2.39: Motor boards panel.
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Chapter 3

Software design

3.1 Introduction

Software is defined as a set of coded instructions for the automatic performance of

the desired tasks. In an embedded system, both hardware and software are closely

related to each other. Embedded software is designed, implemented, and compiled to

run on a specific target hardware, typically with reduced resources and capabilities.

However, this does not mean that embedded systems are slow; on the contrary, these

systems are in charge of running critical tasks, with highly restrictive time constraints,

also known as hard Real-Time, in which any missed deadline results in a loss of life

or property.

If this were not enough, these systems must be able to operate for long periods

of time without human intervention. They are called embedded systems because

they are typically integrated as part of a high-level system. As a result, embedded

software must be reliable and capable of detecting, reporting, and recovering errors

in real time with any kind of external intervention. Software design must take care of

all these requirements and constraints and take advantage of all hardware capabilities

to obtain a high-performance system. As an example of the importance of embedded

software design, the case of sudden unexpected acceleration (SUA) in Toyota cars can

be mentioned. A pour design plagued by software bugs and more than half a dozen

death tasks caused 89 deaths and 57 injuries only in the first half of the year 2000

[24]. This is only one case, but the history is full of countless others with hundreds

of lives and millionaire losses.

In the following sections, the requirements and modeling of the behavior of the

system will be described. Furthermore, the design, implementation, and integration

of the different necessary software blocks will also be described in detail. This

software uses third-party software, which was consciously chosen on the basis of its

hardware regiments and type of license. This project was designed with the intention

of being open source. The purpose of this block is to design embedded software that

implements a high-performance motor controller and a sensor acquisition system,

interfaced using high-speed buses and standard communication protocols. As a result,

reliable, maintainable, efficient, and well-documented software is expected.

43
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3.2 Requirement gathering

This project has started with the aim of covering some of the most important needs

in control system laboratories. In the same way as in the hardware chapter, after

many meetings with the parties involved, the following software requirements shown

in Table 3.1 have been gathered.

Table 3.1: Software requirements.

ID Requirement

Controller

SW-1 The software must implement the control loops

SW-1.1 The software must implemented a direct controller

SW-1.2 The software must implemented a feedback loop

SW-1.3 The software must implemented a forward loop

SW-1.4 The software must implemented a parallel loop

SW-2 The system must control in position, speed and current

SW-3
The controller reference can be set externally or internal,

The internal reference is generated by an internal function generator

SW-3.1
The functions could be: delta, step, ramp, sine, cosine,

parabola, exponential and trapezoid

Communications

SW-4
The software must implement method to configure the motors,

control loops, sensors and function generation

SW-5
The software must implement method to extract data

(controller output and sensor data)

SW-6
The communications can be carried out trough Ethernet

UDP (main), UART and CAN

SW-7
The system must use ROS2 (Robotic Operative System)

communications.

3.3 Modeling

The first step in designing an embedded system is to define the underlying

infrastructure and behavior. Modeling is the process of obtaining deep knowledge

about a system through imitation to be able to predict and control that system [26].

In summary, a model specifies what a system is supposed to do.

One widely extended method for system modeling is the use of finite-state machines

(FSM). FSMs model the behavior of the system using states and transitions among
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Figure 3.1: Typical finite state machine diagram [26].

those states. One of the main advantages of this modeling strategy is that this model

can be translated directly into a mathematical model in which all possible states,

transitions among them, and conditions can be checked using linear temporal logic

(LTL). This is useful, especially when designing critical systems, because it allows

us to predict the state of the system at every moment just by knowing the previous

inputs. Therefore, the systems become fully predictable, allowing us to be sure that

the system will behave as expected. Moreover, this modeling technique uses discrete

states and discrete transitions that can be easily implemented in discrete devices such

as processors and microcontrollers.

In a state machine, the state is at any moment the result of all previous inputs. All

transitions among states are defined by a pair condition/action in which, when the

condition is met, the system changes its state carrying out the action defined in the

transition. The typical state diagram used to describe these models is shown in Figure

3.1. One of the main drawbacks of this model is that the number of required states

increases with the complexity of the behavior, making its implementation difficult or

even impossible in a real system. However, extended finite-state machines, also known

as eFSM, solve this problem by adding the concept of internal variables, which can

be read and updated in any transitions. As a result, the state of the system depends

not only on the previous input, but also on the value of the internal variables.

3.3.1 System modeling

In this MSc Thesis, the system behavior was modeled using eFSM. The behavior of the

whole system has been divided into two different state machines: communication and

control. The communication machine is in charge of configuring the control machine

and sending the output data, and the control machine implements the control loops.

There are two identical control machines running at the same time, one per motor.

The block diagram of these machines is shown in Figures 3.2 and 3.3.

3.3.2 Controller diagram

As requested in Table 3.1, the system implements four control loops: direct (DIR),

feedback (FB), forward (FF ) and parallel (FP ). As a result, both motors are

managed by the controller structure shown in Figure 3.4. The design of this module
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Figure 3.2: Finite state machine used in control.

Figure 3.3: Finite state machine used in communications

has been based on the Telelabo implementation created by the RBZ embedded logics

and Robolabo [18].

Both motor controllers are implemented in single-executed independent tasks that

can be enabled and disabled according to the user’s needs. Each loop implements

a PID controller that can be configured independently. Every PID contains four

configurable parameters: proportional constant (Kp), derivative constant (Kd),
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Figure 3.4: Control loop structure [18].

integral constant (Ki), and windup (Wup). The mathematical expression of a typical

PID controller is shown in Expression 3.1. The windup variable is used to implement

an anti-windup system on the integral controller. The integral windup occurs when

the integral component accumulates a value beyond the saturation limits that causes

the controller to stop working.

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t) (3.1)

The full controller allows three possible control schemes as follows:

• Position: the controller follows an angular position set by the reference (r(k)).

This mode is used to move the motor to a very accurate position using the

information provided by the encoder.

• Speed: the controller follows a speed set by the reference (r(k)). This mode is

used mainly in applications in which a constant angular speed is required. The

controller uses the information provided by the encoder for this purpose.

• Current: the controller will follow a specific current set by the reference (r(k)).

This functionality is used in applications where torque control is required. This

mode uses the information provided by the current feedback.

The controller also allows two possible reference sources: internal and external.

When the internal reference is enabled, an internal stimulus generator is activated,

generating a specific function on the reference input.This mode has been designed for

the purpose of running tests and performing modeling tasks.

However, when the external reference is enabled, the user can override the reference

value. This second mode has been implemented to perform real control applications

in which the user can set a new goal according to its needs.
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3.3.2.1 Reference generator

As mentioned in the previous section, the controller incorporates an internal stimulus

or function generator that can apply specific functions as a reference input. This

mode facilitates testing and system modeling since external generators are no longer

needed.

The reference generator can generate up to eight different types of function. The

timestamp used to calculate the values is provided by the tick counter set by the

controller. All functions have different parameters that can be modified. Information

on the parameters required by the functions is shown in Table 3.2.

Table 3.2: Function list.

Index Name Function

0 Delta y(t) =

{
1 t = 0

0 t ̸= 0

1 Step y(t) = 1

2 Ramp y(t) = A× t

3 Parabolic y(t) = A× t2

4 Sine y(t) = A× sin(ω × t)

5 Cosine y(t) = y(t) = A× cos(ω × t)

6 Trapezoidal y(t) =



A
T1

× t t ≤ T1

A T1 < t ≤ T2

A
(T3−T2)×(T3−t) T2 < t ≤ T3

0 t > T3

7 Exponential y(t) = v1 + v2 × e−v3×t

3.4 Robot Operating System: ROS2

The Robot Operative System (ROS) is a set of open-source tools and libraries that

are used to help developers build and reuse code between robotic applications [5]. It

includes services for hardware abstraction, low-level device control, message-passing

between processes, package management, among others [51]. The main characteristics

are the following:

• Uses a peer-to-peer (P2P) communication system with a publisher/subscriber

structure.

• ROS is distributed, the publishers and subscribers can be anywhere.

• ROS is designed to be lightweight, the framework consists of standalone libraries

wrapped around a thin ROS interface layer.



3.4. Robot Operating System: ROS2 49

• ROS is language-agnostic; it can be used in any programming language. There

are libraries for C, C++, Python, and Java, among others.

• ROS is free and open source.

The key advantage of ROS is that it creates a hardware abstraction layer that

facilitates the development of complex systems without a deep knowledge of the

hardware; low layers are standardized, making it easy to reproduce the results.

Figure 3.5: ROS2 architecture [2].

This open-source framework, started in 2007 at Stanford University, is supported

by a global community of engineers, developers, and hobbyists who contribute to its

development and maintenance. Therefore, ROS is becoming the standard in robotics

programming. The blocks that shape the ROS framework can be classified into four

main classes as follows [2]:

• Plumbing: this block is composed of all drivers, processes, message structures,

and standards used not only to communicate the different software block, but

also to interact with the hardware.

• Tools: it is composed of software for simulation, debugging, visualization,

plotting, logging, and playback.

• Capabilities: this block consists of software use for control, planning, perception,

manipulation, and mapping.

• Ecosystem: ROS includes a large global community that shares free software

packages, tutorials, and knowledge. This is a powerful tool to speed up robot

development.

3.4.1 ROS2 communications

ROS uses a publisher-subscriber structure composed of four key components [49]:
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• Nodes: they are single-purpose executable programs that are individually

compiled, executed, and managed.

• Topics: a topic can be defined as the name of a stream of messages, or in other

words, they are the pipelines that the nodes use to communicate among them.

• Messages: data structures published on the topics. In the ROS framework, they

are defined into .msg, .srv, and .action files.

There are two versions of the ROS framework; however, this project is based

on the ROS2 framework. The ROS2 communication system is based on the DDS

protocol. The Data Distribution System (DDS) is an API and middleware standard

that provides connectivity, low latency, extreme reliability, and scalable architecture

for Internet of Things (IoT) applications [16]. This communication middleware was

introduced into the ROS2 framework, since DDS is an industrial standard that

provides distributed system capabilities and security configurations, among others.

As shown in Figure 3.6, ROS defines 4 possible ways to communicate between nodes:

• Publish-subscribe: nodes can publish on a topic and receive the data published

by other nodes on the topics to which they are subscribed. This is a very

scalable 1-N communications.

• Services: they provide call-and-response communications. Compared to the

published/subscriber model, in which there is a continuous data stream, services

only provide data when they are called by a client.

• Actions: they are intended to run a long task. Actions are similar to services,

but they are preemptive and can provide continuous feedback while running.

• Parameters: parameters are configuration values of a node. A node can store

integer, float, boolean, string, and list parameters. These parameters can be

accessed and written by other nodes [50].

3.4.2 micro-ROS

ROS has been designed for use on systems with a minimum of hardware requirements

like several hundred megabytes of RAM. In general, robots are not made up of

one single, but numerous small microcontrollers that perform small tasks, such as

managing access to sensors and actuators. These devices have only a few dozen

kilobytes of RAM and limited processing capabilities, making it impossible to run

ROS directly on them [25].

Micro-ROS is an open-source microcontroller-optimized framework that supports

all major ROS capabilities and provides all libraries, tools, and interfaces required to

integrate resource-constrained devices. Micro-ROS bridges the gap between resource-

constrained systems and large processing units in robot applications [14].
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Figure 3.6: ROS2 communication diagram [50].

Figure 3.7: Micro-ROS architecture [14].

As shown in Figure 3.8, Micro-ROS follows the ROS2 architecture and makes

use of its stack structure to use XRCE-DDS as communication protocol instead of

DDS. XRCE-DDS stands for eXtremely Resource Constrained Environment Data

Distribution System, and, as its name implies, it provides access to the DDS network

from resource-constrained devices [32]. This is possible thanks to a client-server

architecture, where low-resource devices (also known as XRCE Clients) are connected

to a server (also known as XRCE Agent) which acts on behalf of its clients in the DDS

network. In Figure 3.8, a general diagram of the XRCE-DDS structure is shown.

3.4.3 micro-ROS port

The micro-ROS middleware has been configured and compiled to run on the

IMXRT1052. This has been done by creating a generic static library (using the micro-
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Figure 3.8: XRCE-DDS Structure [31].

ROS tools provided), editing the toolchain parameters, and providing the required

dependencies. Micro-ROS provides 3 different transport options: UDP, TCP, and

custom. The TCP, UDP transports require a posix-like socket library implementation.

This socket library is provided by LwIP middleware, which has been included in

the micro-ROS compile options. Customs transports can use any kind of bus as

communication layer, it should just be implemented the open, read, write, and close

functions according to the prototype functions provided by the micro-ROS library. In

this project, not only are UDP transports used, but UART and CAN bus transports

have also been implemented. The transport layer is selected at compilation time by

editing the configuration macros.

micro-ROS is a static library, that is, all the required memory is allocated at

compilation time. However, the publisher, subscribers, and services are allocated on

run-time, which requires dynamic allocation. Hence, micro-ROS requires functions

to allocate and free memory in a dynamic way. Given that micro-ROS runs

on FreeRTOS, some native functions such as pvPortMalloc and pvPortFree have

been used, and other custom functions have been implemented to provide memory

reallocation capabilities. Lastly, required posix-like clock functions have been

implemented using the FreeRTOS time counters.

All download, generation, and compilation processes were automated by a script,

which can be executed in Linux-like operating systems and in Windows systems using

the Windows Subsystem for Linux (WSL).

3.4.4 ROS application structure

The implemented ROS application consists of six services that are used to configure

the system parameters, one service that extracts sensor data, and one publisher that

extracts continuous data from the controller. Every service is identified by a topic

that serves as a data stream for a specific message type. This application uses custom

message types to configure and extract system data. In Table 3.3 there is a brief

summary of the topics and data types used in this project. Furthermore, in Tables

D.1, D.2, D.3, D.4, D.5 and D.6 there are descriptions of the message structure, data
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types and expected values. Figure 3.9 shows a simple description of the implemented

ROS2 application.

Table 3.3: Communication topics.

Topic Data type Description

Services

/motor/config motor data msg/srv/MotorConfig Set motor configuration

/motor/sendData motor data msg/srv/Enable Enable continuous data sending

/motor/enable motor data msg/srv/Enable Enable motor controller

/motor/loop motor data msg/srv/LoopConfig Set loop configuration

/motor/stimulus motor data msg/srv/StimulusConfig Set stimulus configuration

/motor/sensoRead motor data msg/srv/SensorData Get sennsor data

/motor/reference motor data msg/srv/reference Set controller goal

Topic /motor/data motor data msg/msg/MotorData Controller data

Figure 3.9: ROS application structure.
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3.5 Drivers and middlewares

This software project has been created as the union of different software blocks.

These software blocks can be classified into three different categories depending on

their functions and the resources used. The three possible groups are as follows:

• Application: run the main tasks and the system logic. This software runs in a

high-abstraction layer without direct interaction with the hardware layers.

• Middleware: this software adds functionalities, but it does not run at a high

level as the application software or at a lower level as the driver software. The

name middleware comes from the fact that it is in the middle of the application

and the driver layer.

• Driver: this software interacts directly with the hardware, providing an

abstraction layer for interacting with external devices and peripherals. Drivers

implement the lower layer of the system.

In the following sections, the different middlewares and drivers (project-specific and

third-party) will be described. Furthermore, the reasons why these software blocks

have been selected and how they are integrated into the project will be explained.

3.5.1 Third party middlewares

3.5.1.1 FreeRTOS

A real-time system is a system that can respond to an event in finite and bounded

time. These events trigger a response that must be handled in a limit time, also known

as deadline. Based on this definition, a real-time operating system (also known as

RTOS) can be defined as an operating system that can meet these restrictive deadlines

[13]. The main task of an RTOS is to schedule and execute tasks in a way that

guarantees its deadlines.

FreeRTOS is an open source real-time operating system licensed under the MIT

license. This lightweight implementation of an RTO is designed to be small, simple,

and easy to use, making it suitable for running on embedded systems with low

hardware resources. The size of a compiled binary of the FreeRTOS kernel is in

the range of 4 KB to 9 KB. This RTO has been ported to the vast majority of

hardware platforms from virtually all microcontroller manufacturers, making it a de

facto standard in the industry [15].

FreeRTOS incorporates a real-timer preemptive task scheduler which allows to run

multiple prioritized tasks concurrently in single core microcontrollers. Furthermore,

it also provides tools for communicating (queues), synchronizing (events), and

temporizing tasks, as well as tools for controlling access to shared resources (mutex

and semaphores). The main advantages of using FreeRTOS are the following:

• FreeRTOS kernel is platform independent; that is, it can be compiled and

executed on any hardware platform with enough hardware requirements.
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• FreeRTOS is small and efficient, so it does not require high memory or processing

capabilities.

• It is open source and free to use, even in commercial applications.

• It is a well-documented project with a huge community.

• its wide use shows its stability and reliability.

• Software implemented using FreeRTOS is easy to use, portable, and easily

scalable.

This middleware is widely used in this project. On the one hand, all state

machines and other auxiliary functions are separated into different tasks to guarantee

their execution times. Furthermore, some of these tasks are communicated and

synchronized using queue and events. One of the most used tools is the mutex; it is

used to protect access to shared resources such as communication buses. Moreover,

FreeRTOS is a requirement for using other middleware such as micro-ROS and LwIP.

3.5.1.2 LwIP

LwIP is a small Low-weight independent and open-source implementation of the

TCP/IP stack licensed under a BSD-Style license. Originally written by Adam

Dunkels at the Swedish Institute of Computer Science, this is now developed and

maintained by a huge developer community distributed all over the world.

LwIP has become a perfect solution for embedded devices, focusing on reducing

memory usage. This full-scale TCP/IP stack implementation is suitable for use in

systems with tens of kilobytes of free RAM and ROM for around 40 kilobytes of ROM.

Its main features include:

• It includes support to protocols such as IPv4, IPv6, ICMP, TCP, UDP, IGMP.

ARP, PPPosS, and PPPoE, among others.

• Includes support for the DHCP and DNS clients.

• Includes a Berkely-alike socket API, which is the de facto standard used in the

POSIX sockets specification.

• Add-ons for applications such as HTTPS server, SNTP client, SMTP client,

MQTT client, and TFTP server, among others.

Due to its multiple features and low weight, LwIP has been ported to a number

of hardware platforms and operating systems; it can also run without an underlying

operating system. The current versions of LwIP are fully compatible with FreeRTOS,

which is the real-time operating system used on this project. LwIP is an essential

part of this project, as it provides the networking capabilities used by other software

blocks, such as micro-ROS. This project uses the TCP/UDP socket API and DHCP

client features.
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NXP SDK already includes the Ethernet interface layer required to port LwIP

to the IMXRT1052 microcontroller. However, it was necessary to implement the

Ethernet PHY driver, since the PHY chip used on the NXP development board was

different from the one used in this project.

3.5.2 Project specific middlewares

3.5.2.1 Pulse width modulator PWM

The NXP software development kit provides the necessary drivers to control their

PWM peripherals; however, they are general purpose drivers that require quite a

complex configuration. To enable a single channel of the PWM peripheral, it is

necessary to configure the clock and the alternate function of the output pins, to

connect those pins to the peripheral through the pin matrix, etc. This middleware

has been created with the aim of abstracting that configuration process and providing

a simple interface to control the peripheral. As a result, all configuration and control

have been reduced to the functions shown in Listing 3.1. All functions listed use

a PWM index parameter that identifies which PWM interface is being configured

(PWM1 or PWM2). The resulting middleware headers are shown in Listing 3.1.

1 /∗∗ I n i t i a l i z e PWM pe r i ph e r a l with the g iven f requency . ∗/
2 void exPWM Init ( PWM Index t pwmIndex , u i n t 32 t f requency ) ;

3

4 /∗∗ Set a duty cy c l e in a s i n g l e channel ∗/
5 void exPWM SetDutyCycle ( PWM Index t pwmIndex , PWM Channel t

channel , f l o a t duty ) ;

6

7 /∗∗ Set the duty cy c l e in both channel . ∗/
8 void exPWM SetDoubleDutyCycle ( PWM Index t pwmIndex , f l o a t channelA

, f l o a t channelB ) ;

9

10 /∗∗ Set the PWM pe r i ph e r a l f requency . ∗/
11 void exPWM SetFrequency ( PWM Index t pwmIndex , u i n t 32 t f requency )

;

Listing 3.1: PWM middleware headers.

The source code is implemented in the pwm.c and pwm.h files allocated in the

source folder. This middleware uses the PWM driver provided by the NXP SDK.

3.5.2.2 Encoder controller

The IMXRT microcontroller used in this project contains peripherals specially

designed to count incoming pulses from the rotatory encoders. The count value

is stored into an internal 32 bit register. When the rotary encoder moves forward,

the register value increases; on the contrary, when the encoder moves backward, the

value decreases. The goal of this middleware is to convert those pulses into a relative

angular position, angular speed, and direction.
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This peripheral has two possible interrupt sources that can be activated when

the counter register is underflowing (rollunder) and when the counter reaches a

specific comparison value (rollover), which can be set via software. In the running

state, both interrupts are enabled, and the comparison value is set to the number

of counts per revolution. When the rollover interrupt is triggered, an internal

variable is incremented; in the same way, when the rollunder triggers, the variable is

decremented. As it can be seen, that variable is counting the number of revolutions.

The value of this variable, together with the value of the counter register, provides

the relative position of the encoder at any time. This is an efficient way to measure

the relative position, avoiding potential problems such as overflow.

The speed is measured using the position and time difference between two

consecutive measurements. This measure must be performed at regular time intervals

to achieve a reliable measurement. Moreover, the time interval determines the

resolution of the measurement. The longer the time, the greater the position

difference. The speed measurement has been implemented using a periodic timer

interrupt whose period can be defined in run-time.

The implemented middleware can control both encoder inputs independently at

the same time. The peripherals are automatically configured by just providing the

encoder index (ENCODER 1 or ENCODER 2), the count per revolution value (CPR),

and the period used to measure the speed. The middleware provides functions to read

the position in radians and the speed in radians per second, as well as many other

auxiliary functions. The source code for this middleware is found in the encoder.c

and encoder.h files located in the source folder. The resulting API headers are shown

in Listing 3.2.

1

2 /∗∗ Get the pu l s e r e g i s t e r va lue ( t i c k s ) ∗/
3 u in t 32 t ENCODER ReadCounter( ENCODER Index t encoder ) ;

4

5 /∗∗ Get the i n t e r n a l pu l s e counter ∗/
6 i n t 6 4 t ENCODER GetPosition ( ENCODER Index t encoderIndex ) ;

7

8 /∗∗ Get the r e l a t i v e p o s i t i o n in rad ians ∗/
9 f l o a t ENCODER GetAngularPosition ( ENCODER Index t encoderIndex ) ;

10

11 /∗∗ Get the motor speed in rad ians per second ∗/
12 f l o a t ENCODER GetAngularSpeed( ENCODER Index t encoderIndex ) ;

13

14 /∗∗ Get the number o f pu l s e s between two speed measurements ∗/
15 u in t 32 t ENCODER GetDifferentialPosition ( ENCODER Index t

encoderIndex ) ;

16

17 /∗∗ Get the movement d i r e c t i o n s , ’ 0 ’ c lockwise , ’ 1 ’ an t i c l o c kw i s e

∗/
18 ENCODER Direction t ENCODER GetDirection (ENCODER Index t

encoderIndex ) ;
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19

20 /∗∗ I n i t i a l i z e encoder p e r i ph e r a l ∗/
21 void ENCOER Init ( ENCODER Index t encoderIndex ,

22 u in t 16 t countPerRebolution ,

23 u in t 16 t speedSamplePeriod ms ) ;

Listing 3.2: Encoder middleware headers.

3.5.2.3 Board general controller

This middleware has been designed to control general-purpose inputs / outputs

(GPIOs) used on the boards. Hence, this software block provides functions to control

the board LEDS, the analog multiplexer output, the fan, and the general-purpose

output attached to the main connector.

3.5.2.4 Timer service

As shown in previous sections, some software blocks require timer interrupts to handle

some tasks. However, the number of hardware timers is limited and the configuration

may be complex. This middleware has been created with the aim of providing a

simple way to create hardware timer alarms, abstracting the configuration process and

interrupt handling. Moreover, this software offers a common interface for initializing

alarms, abstracting the hardware layer.

This software uses the programmable time interval peripheral (PIT), available on

the IMXRT1052 microcontroller. This peripheral is based on a simple counter, which

triggers an interrupt when a certain value is reached.

The middleware is capable of managing up to four alarms that can be enabled,

disabled, or deleted. The Initialization of an alarm only requires the trigger period,

the callback function, and a pointer to the argument passed to the callback function.

The period resolution has been set to 1 ms due to the fact that a lower time resolution

may cause processing overhead, which may affect the timing of the other task running.

By default, alarms are configured to be triggered periodically during the time they

are enabled. The resulting API headers are shown in Listing 3.3.

1 /∗∗ I n i t i a l i z e t imer s e r v i c e . ∗/
2 void TIME SERVICE Init ( void ) ;

3

4 /∗∗ Set a new timer . r e tu rn s the the t imer index or −1 i f e r r o r . ∗/
5 i n t TIME SERVICE SetTimer (TIME SERVICE Callback t ca l lback , void ∗

param , u in t 16 t per iod ) ;

6

7 /∗∗ Star t the t imer with the g iven index . ∗/
8 void TIME SERVICE StartTimer ( i n t t imerIndex ) ;

9

10 /∗∗ Stop the t imer with the g iven index . ∗/
11 void TIME SERVICE StopTimer ( i n t t imerIndex ) ;



3.5. Drivers and middlewares 59

12

13 /∗∗ Delete the t imer with the g iven index . ∗/
14 void TIME SERVICE DeleteTimer ( i n t t imerIndex ) ;

Listing 3.3: Timer middleware headers.

3.5.3 Device drivers

Drivers are software that is responsible for setting up and managing hardware devices

at the lowest level. In this project, two different types of drivers are used. On the

one hand, peripheral drivers provided by the microcontroller manufacturer are used

to interface hardware devices attached to the communication buses.

On the other hand, drivers have been designed and implemented to manage the

specific hardware devices used on the board. All of these drivers have been designed

following a similar design pattern in which the input/output functions and the

project/platform dependencies are extracted from the main source. Isolating the

platform-dependent functions makes it easy for the software to be ported to other

programs regardless of its architecture. In addition, these drivers use fixed-size

variables (such as int16, int32, etc.) instead of basic datatypes (such as int, char,

etc.) to avoid potential porting problems.

3.5.3.1 Analog to digital converter MCP3564

This analog-to-digital converter manufactured by Microchip uses an SPI register-

based structure. This device has a total of 16 internal registers made of volatile

memory. These registers have sizes of 8, 24, and 32 bits. This driver has been

designed to work with the entire MCP3561/2/4 ADC family [37].

All communication starts with an 8-bit command on the SDI input. This command

defines the action that the interface will execute. The first two bits [7:6] are the

separate addresses to which the device can respond. The following 4 bits [5:2] can

serve two purposes: in the case of register read/write, they define the first address

that is read/written; in the case of a fast command, they define what command is

executed. Lastly, the remaining two bits determine the type of command that can be

read static, read incremental, write incremental, and fast commands.

All registers are configured according to the specification given in the datasheet

using bit masks. The different masks have been grouped into enumeration types

to facilitate the configuration process and avoid confusion. The resulting driver

provides functions to read voltage values and configure measurement type, gain, and

oversampling, among many other functionalities. The porting layer implementation

uses the SPI peripheral driver provided by the NXP SDK and the SPI3 peripheral.
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The source code is allocated in the MCP356x.c and MCP356x.h files, and the

porting functions are allocated in the MCP356x port.c and MCP356x port.h files.

The resulting driver headers are shown in Listing 3.4.

1 /∗∗ I n i t i a l i z e dev i ce with d e f au l t c on f i gu r a t i on . ∗/
2 MCP356X Error t MCP356x InitDefault ( void ) ;

3

4 /∗∗ Conf igure s i n g l e channel measurement∗/
5 MCP356X Error t MCP356X SetSinegleChannel ( MCP356X Input Source t

channel ) ;

6

7 /∗∗ Read raw vo l tage in one shot mode∗/
8 MCP356X Error t MCP356x ReadSingle ( i n t 3 2 t ∗ rawVoltage ) ;

9

10 /∗∗ Read vo l tage ∗/
11 MCP356X Error t MCP356x ReadVoltage ( f l o a t ∗ vo l tage ) ;

12

13 /∗∗ Set ADC operat ion mode ∗/
14 MCP356X Error t MCP356X SetWorkingMode( MCP356X MODE t mode ) ;

15

16 /∗∗ Set conver t i on mode ∗/
17 MCP356X Error t MCP3565X SetConversionMode ( MCP356X CONV MODE t

conversionMode ) ;

18

19 /∗∗ Wait un t i l measurement i s completed ∗/
20 MCP356X Error t MCP3565X WaitForSample ( u i n t 32 t timeout ) ;

21

22 /∗∗ Set oversampl ing ra t e ∗/
23 MCP356X Error t MCP356x SetOSR( MCP356X OVERSAMPLE t os r ) ;

24

25 /∗∗ Conf igure d i f f e r e n t i a l channel measurement ∗/
26 MCP356X Error t MCP356X SetDifferentialChannel (

MCP356X Input Source t p channel , MCP356X Input Source t

n channel ) ;

27

28 /∗∗ Conf igure i n t e r r up t pin ∗/
29 MCP356X Error t MCP356X SetIRQMode( MCP356X IRQ Mode t mode ) ;

30

31 /∗∗ Set MDAT pin output ∗/
32 MCP356X Error t MCP356X EnableMDAT( void ) ;

33

34 /∗∗ Set measurement gain ∗/
35 MCP356X Error t MCP356X SetGain ( MCP356X GAIN t gain ) ;

Listing 3.4: MCP356X driver headers.

3.5.3.2 H-Bridge HB2001

This H-Bridge monolithic device uses a fixed 16 bit SPI register-based communi-

cation structure. This device has a total of 4 volatile registers with a 13 bit size
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[40]. Every transaction consists of a 16 bit data frame in which the first bit [15:15]

determines the type of operation (’1’ read, ’0’ write), the following two bits [14:13]

determine the register to read/write and the remaining bits [12:0] are the register

data. When a read operation is performed, the value of the register data bits is

ignored.

This driver uses a bit mask-based structure in which the different masks are

grouped to ease the use of the driver. The configuration of the registers follows

the requirements specified in the device datasheet. The porting layer implementation

uses the SPI peripheral driver provided by the NXP SDK and the SPI4 peripheral.

The source code of this driver is allocated in the MC33HB2001.c and MC33HB2001.h

files, and the porting layer in the MC33HB2001 port.c and MC33HB2001 port.h files.

The resulting driver headers are shown in Listing 3.5.

1 /∗ I n i t i a l i z e d r i v e r ∗/
2 MC33HB2001 Error t MC33HB2001 Init ( void ) ;

3

4 /∗∗ Get dev i c e ID ∗/
5 MC33HB2001 Error t MC33HB2001 DeviceID ( u in t 16 t ∗ devID ) ;

6

7 /∗∗ Get system s ta tu s ∗/
8 MC33HB2001 Error t MC33HB2001 GetStatus ( u i n t 16 t ∗ s t a tu s ) ;

9

10 /∗∗ Check i f the load i s connected ∗/
11 MC33HB2001 Error t MC33HB2001 CheckOpenLoad( void ) ;

12

13 /∗∗ Enable/Disab le thermal managenet c a p a b i l i t i e s ∗/
14 MC33HB2001 Error t MC33HB2001 EnableThermalManagement ( void ) ;

15

16 /∗∗ Enable/Disab le Current l im i t ∗/
17 MC33HB2001 Error t MC33HB2001 EnableCurrentLimit ( void ) ;

18

19 /∗∗ Set cur rent l im i t ∗/
20 MC33HB2001 Error t MC33HB2001 SetCurrentLimit ( MC33HB2001 ILIM t

iL imi t ) ;

21

22 /∗∗ Set s lew ra t e ∗/
23 MC33HB2001 Error t MC33HB2001 SetSlewRate ( MC33HB2001 SR t s r ) ;

24

25 /∗∗ Set opera t i on mode ∗/
26 MC33HB2001 Error t MC33HB2001 SetMode(MC33HB2001 Mode t mode ) ;

27

28 /∗∗ Enable/ d i s ab l e output ∗/
29 MC33HB2001 Error t MC33HB2001 EnableOutput ( void ) ;

30

31 /∗∗ Enable/ d i s ab l e v i r t u a l input ∗/
32 MC33HB2001 Error t MC33HB2001 EnableVirturalInput ( void ) ;

33
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34 /∗∗ Set v i r t u a l input value . ∗/
35 MC33HB2001 Error t

36 MC33HB2001 SetVirturalInput ( MC33HB2001 VirtualInput t vin , u i n t 8 t

va lue ) ;

Listing 3.5: MC33HB2001 driver headers.

3.5.3.3 Temperature sensor MCP9808

This device manufactured by Microchip is a digital temperature sensor that works

with an I2C register-based structure [33]. This device has eight registers with a size

of 16 bits that allow reading the device status, setting up the configurations, and

reading the current temperature.

The standard I2C communications start with a 7 bit address followed by the

operation bit (’0’ read,’1’ write). To write a register, the communications start with a

write operation followed by the register address and the 16 bit register data. To read

a register, the communications start with a write operation followed by the register

address and a 16 bit read operation.

This driver uses a bit mask-based structure in which the different masks are grouped

to facilitate the use of the driver. The resulting driver header is shown in Listing 3.6.

1 /∗∗ I n i t i a l i z e dev i ce with g iven address ∗/
2 MCP9808 Error t MCP9808 Init ( u i n t 8 t devAddress ) ;

3

4 /∗∗ Conf igure dev i c e address ∗/
5 MCP9808 Error t MCP9808 setDevAddress ( u i n t 8 t devAddress ) ;

6

7 /∗∗ Read temperature ∗/
8 MCP9808 Error t MCP9808 ReadTemperature ( f l o a t ∗ temperature ) ;

9

10 /∗∗ Get/Set C r i t i c a l temperature alarm ∗/
11 MCP9808 Error t MCP9808 GetCriticalTemperature ( f l o a t ∗ temperature

) ;

12

13 /∗∗ Get/Set window temperature ∗/
14 MCP9808 Error t MCP9808 GetWindowTemperature ( f l o a t ∗ upperTemp ,

15 f l o a t ∗ lowerTemp ) ;

16

17 /∗∗ Get/Set h y s t e r e s i s ∗/
18 MCP9808 Error t MCP9808 GetHysteresis ( MCP9808 Hysteresis t ∗

hy s t e r e s i s ) ;

19

20 /∗∗ Get/Set r e s o l u t i o n ∗/
21 MCP9808 Error t MCP9808 GetResolution ( MCP9808 Resolution t∗

r e s o l u t i o n ) ;

22
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23 /∗∗ Get dev i c e i d e n t i f i e r ∗/
24 MCP9808 Error t MCP9808 GetID( u i n t 8 t ∗ id , u i n t 8 t ∗ r e v i s i o n ) ;

Listing 3.6: MCP9808 driver headers.

3.6 Project structure
The software folder structure is shown in Figure 3.10. This project structure

has been generated by the automatic project creator included in the integrated

development environment provided by NXP known as MCUXpresso. This set of

tools is responsible for the import and configuration of peripheral drivers, third-party

libraries, and middlewares such as LwIP and FreeRTOS.

Figure 3.10: Project folder structure.

The vast majority of code specifically developed for this project is located

in the source folder. The ’App’ folder contains the application logic such as

hardware initialization, communications configuration, control task, project-specific

middleware, among others. The BSP folder contains the board support package

provided by Simplia, with different useful drivers and middlewares used on this

project. The Driver folder contains the drivers specifically developed for this project.

The config folder contains all the necessary headers used to configure the project. The

library folder contains additional libraries required by the board support package.

Lastly, the TPL folder contains the third-party software used in this application.
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Chapter 4

Testing

4.1 Introduction

During the development process, there may be some errors. These errors can occur

in design, manufacturing, or assembly processes or even during the definition of the

concept. The hard task is not how many errors have been made, but how to detect and

solve them. Although some errors, such as assembly issues, can be quickly resolved,

others, such as design errors, can be tedious to solve.

The way the system is tested is crucial to delimit the origin of failures and to avoid

the creation of new problems. Some failures that can be easily solved, such as short

circuits, can have disastrous consequences if they are not detected in time. Moreover,

some problems that can be classified as a software bug at first glance may have its

origin in a non-detected hardware issue. Detecting those problems in the correct step

can save a lot of debugging time.

As can be seen, it is important not only the test that is performed, but also the

order in which they are performed. This chapter will describe the testing process

carried out in this MSc. Thesis; it will start with a non-electrical testing in an effort

to find potential problems at a glance. The power rails will then be tested and finally

the software and functional tests will be performed. This process is not linear; as will

be seen, some problems require more than one iteration to figure out its origin.

4.2 Visual inspection

This is the first simple test to find obvious problems at first sight. It is important to

perform this test before electrical testing to avoid electrical damage or malfunctions

when connecting the power supply. The checklist passed on this test is as follows:

• Incorrectly placed components: all components must be soldered correctly

without assembly problems and aligned well with the footprint pads. The goal

is to find problems such as component misalignment and tombstoning.

• Missing components: all required components must be soldered. It will be

checked that all components are in their correct place.

65
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• Short circuit: there must be no solder bridges between two consecutive pins or

neighbor pads. In almost all cases, these bridges can be easily seen.

• Board integrity: components and board traces cannot be destroyed or damaged.

Excess heat during the assembly process can destroy components and circuits;

some of these problems can be easily detected.

The boards did not show critical errors except for some missing resistors.

4.3 Electrical inspection

Once the visual inspection has passed, the next step is to perform electrical testing.

These tests will look for electrical problems that are not evident at first sight. To

avoid electrical damage, the first tests were carried out without connecting the main

supply using a digital multimeter. The checklist passed on this test is as follows:

• Component polarity: all active components and integrated circuits should have

the correct polarity and conduction value. It is necessary to check all protection,

barrier, and light-emitting diodes.

• Short circuit: there must be no electrical connection between consecutive pins

or pads, buses, or different power rails. It is especially important to check the

short circuits between the power rails and the ground to avoid damage.

4.3.1 Power Supply

The power tree is one of the most important hardware blocks; any malfunction here

can destroy or make the prototype unusable. Testing this block requires extreme care

and the use of special equipment, such as a current-limited power supply, to avoid

damage. It is worth mentioning that the reason why the +5V supply shows a voltage

range lower than the nominal one is because of the voltage drop in the series diode

used in the load switch.

Table 4.1: Voltage measured on different power rails.

Rail Minimum Maximum Average Units

+3.3VA 3.28 3.32 3.3 V

+3.3V 3.32 3.38 3.35 V

+5V 4.88 4.94 4.9 V

Table 4.1 shows the voltages measured on the different power rails, all voltages are

in the operative range. As mentioned in previous chapters, one important parameter

to take into consideration is the noise coupled in the power rails, especially in the

analog power rail. Figures 4.1, 4.2, and 4.3 show the noise measured on the +3.3 V
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analog, +3.3 V and +5 V power rails, respectively. The noise measured on the +3.3V

analog supply has an average voltage of 224µV that, compared to the 1.47mV and

968µV measured on the +5V and +3.3V supplies, is much lower as required.

As a summary, it can be concluded that the power supplies work with the expected

voltage ranges and noise.

Figure 4.1: Noise measured on the analog +3.3V power rail.

Figure 4.2: Noise measured on the +3.3V

power rail.

Figure 4.3: Noise measured on the +5V

power rail.

4.4 Software testing

With the hardware fully tested, the next step is to check that all software blocks,

peripherals, and devices work as expected. In some of these tests, more than one

feature is checked at the same time because of the implicit relation among them for

example, the testing of the drivers and middlewares carries with the testing of the

communication buses.

The first test consists of flashing a simple code to verify the connection between

the probe and the microcontroller and verifying the integrity of the internal memory.

This test is important to check that there are no hardware issues and that the start-
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up routines work as expected. As can be seen, this test is implicit in all other tests,

since all of them require flashing the code; however, it is important to make a first

connection test before starting to debug the software to discard potential failures.

Once the connection to the microcontroller is verified, the next step is to test the

different parts of the software. The test performed and the procedures followed are

summarized in the following sections. As a programmer and debugger, the J-LINK

V9 USB debugger manufactured by Segger has been used.

4.4.1 SPI bus, ADC driver, and analog multiplexers

This test will verify that the SPI peripheral, the ADC driver, and the analog

multiplexer work properly. When the analog multiplexer is enabled, the inputs of

the even channels are connected to the resistor divider used to measure the strain

gauges. The expected voltage is 1.65 V, since the power supply of the analog block

is 3.3V and it is a balanced voltage divider. Before measuring channel 4, the gain is

set to 1/3 to test this feature.

The code used to perform this test is shown in Listing 4.1. As shown in Figure 4.4,

the measurements coincide with the expected values.

1 f l o a t ReadSingleChannel ( MCP356X Input Source t channel )

2 {
3 f l o a t vo l t age = 0 ;

4 /∗ Set s i n g l e channel A con f i g u r a t i on ∗/
5 MCP356X SetSinegleChannel ( channel ) ;

6 /∗ Star t s i n g l e measurement ∗/
7 MCP3565X SetConversionMode (MCP356X CONVMODE ONESHOT3) ;

8 MCP356X SetWorkingMode(MCP356X MODE CONVERSION) ;

9 /∗ Wait un t i l measurement i s completed ∗/
10 MCP3565X WaitForSample (ACQUISITION TASK READ TIMEOUT) ;

11 /∗ Read and s t o r e data ∗/
12 MCP356x ReadVoltage(&vo l tage ) ;

13

14 re turn vo l tage ;

15 }
16

17 void ADCTest( void )

18 {
19 f l o a t measure1 , measure2 , measure3 , measure4 ;

20

21 /∗ I n i t dev i c e ∗/
22 MCP356x InitDefault ( ) ;

23

24 /∗ Enable analog muxes ∗/
25 BOARD CONTROL EnableGauge(GAUGE 1) ;

26 BOARD CONTROL EnableGauge(GAUGE 2) ;

27 BOARD CONTROL EnableGauge(GAUGE 3) ;

28 BOARD CONTROL EnableGauge(GAUGE 4) ;

29
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30 /∗ Read s i n g l e channel ∗/
31 measure1 = ReadSingleChannel (MCP356X CHANNEL CH0) ;

32 measure2 = ReadSingleChannel (MCP356X CHANNEL CH2) ;

33

34 /∗ Set ADC Gain to 1/3 ∗/
35 MCP356X SetGain (MCP356X GAIN 0b3) ;

36 measure3 = ReadSingleChannel (MCP356X CHANNEL CH4) ;

37

38 /∗ Set ADC Gain to 1 ∗/
39 MCP356X SetGain (MCP356X GAIN X1) ;

40 measure4 = ReadSingleChannel (MCP356X CHANNEL CH6) ;

41 }

Listing 4.1: ADC test code.

Figure 4.4: ADC test results.

4.4.2 PWM middleware

This test checks at the same time the PWM peripheral and the PWM middleware

designed to manage it. As shown in Listing 4.2, the test consists of setting each PWM

peripheral with a different frequency and then setting different duty cycles in each

channel.

1 void testPWMGeneration ( void )

2 {
3 exPWM Init (PWM INDEX 2, 30000UL) ;

4 exPWM Init (PWM INDEX 1, 40000UL) ;

5

6 exPWM SetDoubleDutyCycle (PWM INDEX 2, 20 , 40 ) ;

7 exPWM SetDoubleDutyCycle (PWM INDEX 2, 60 , 80 ) ;

8 }

Listing 4.2: PWM test code.

The results are checked using a digital analyzer attached to the PWM outputs.

The generated PWM signals are shown in Figure 4.5 and, as can be seen, the modules

work as expected.
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Figure 4.5: PWM test results.

4.4.3 UART peripheral

This test checks the peripheral UART functionality using an echo program: the

program will reply the same data it receives until an escape character arrives. The

test code used is shown in Listing 4.3.

1 void UARTTest( void )

2 {
3 char bu f f e r = ’ \0 ’ ;

4 u in t 16 t s i z e = 0 ;

5 /∗ I n i t i a l i z e p e r i ph e r a l ∗/
6 UART Init (ACQUISITION UART INDEX, /∗ UART1 ∗/
7 ACQUISITION UART BAUDRATE, /∗ 115200 ∗/
8 ACQUISITION UART PARITY) ; /∗ None ∗/
9

10 whi le ( bu f f e r != ’ q ’ )

11 {
12 s i z e = UART ReadData(ACQUISITION UART INDEX, &buf f e r , 1 ,

10) ;

13 i f ( s i z e != 0 )

14 {
15 UART SendData(ACQUISITION UART INDEX, &buf f e r , 1 , 10) ;

16 }
17 }
18 }

Listing 4.3: UART test code.

This test requires a UART-to-USB converter attached to the UART port and

serial console software. The result of this test is shown in Figure 4.6. As can be seen,

the peripheral seems to work correctly.

4.4.4 CAN communication

This test verifies the correct behavior of the CAN bus. It consist of an simple echo

application that replies the received bytes plus one. Periodic messages were sent to

the board using a CAN-to-USB converter and the CAN bus monitor. Figure 4.7
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Figure 4.6: UART test results.

shows the messages sent and the replies from the board. It can be concluded that the

bus works as expected working at a baudrate of 500000 bps.

Figure 4.7: CAN bus test results.

4.4.5 I2C and MCP9808 driver

This test checks the functionality of the I2C peripheral and the MCP9808 temperature

sensor driver. The test tries to set and read some device parameters and then try to

get the current temperature. The code used to check these functionalities is presented

in Listing 4.4.

1 void I2CTempTest ( void )

2 {
3 u i n t 8 t r ev i s i on , id ;

4

5 f l o a t wTempCritical = 35 . 7 5 ;

6 f l o a t rTempCrit ica l = 0 . 0 ;

7 f l o a t temperature = 0 . 0 ;

8
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9 MCP9808 Init (0 x18 ) ;

10 /∗ Get dev i c e data ∗/
11 MCP9808 GetID(&id , &r e v i s i o n ) ;

12 /∗ Remove wr i t e p r o t e c t i on ∗/
13 MCP9808 UnlockCriticalTempReg ( ) ;

14 /∗ Set and check c r i t i c a l temperature alarm ∗/
15 MCP9808 SetCriticalTemperature ( wTempCritical ) ;

16 MCP9808 GetCriticalTemperature(&rTempCrit ica l ) ;

17 /∗ Read cur rent temperature ∗/
18 MCP9808 ReadTemperature(&temperature ) ;

19 }

Listing 4.4: I2C and MCP9808 driver test code.

This test was carried out using the debugger and with the power board attached to

the control board. After some measurement tests, it can be concluded that the driver

and peripheral work correctly.

4.4.6 Encoder middleware

This test checks the functionality of the encoder by measuring the position and

speed of a motor that runs at its maximum speed (100% duty cycle). The code used

in this test is shown in Listing 4.5.

1 void EncoderTest ( void )

2 {
3 i n t counter = 100 ;

4 f l o a t p o s i t i o n = 0 . 0 , speed = 0 . 0 ;

5 /∗ I n i t encoder p e r i ph e r a l ∗/
6 ENCOER Init (ENCODER1, 3700 , 10) ;

7

8 whi le ( counter−−)

9 {
10 /∗ Read data ∗/
11 po s i t i o n = ENCODER GetAngularPosition (ENCODER1) ;

12 speed = ENCODER GetAngularSpeed(ENCODER1) ;

13 }
14 }

Listing 4.5: Encoder test code.

The test was repeated with the motor moving in opposite directions to verify that

the middleware works in both directions. The results shown in Figure 4.8 show that

the peripheral and middleware work as expected.

4.4.7 USB bus

This test was designed to verify USB bus functionality. It creates a virtual serial port

over USB and implements an echo application similar to the test used to test the

UART bus. The code employed to test this device is shown in Listing 4.6.
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Figure 4.8: Encoder test results.

1 void USBVComTest( void )

2 {
3 VIRTUAL VCOM Init ( ) ;

4 char bu f f e r = ’ \0 ’ ;

5 s i z e t s i z e = 0 ;

6

7 whi le ( bu f f e r != ’ q ’ )

8 {
9 s i z e = VCOM Read(&buf f e r , 1) ;

10 i f ( s i z e != 0)

11 {
12 VCOM Write(&buf f e r , 1) ;

13 }
14 }
15 }

Listing 4.6: USB test code.

This test requires the use of a serial communication console. The results of this

test are shown in Figure 4.9. As can be seen, the test replies exactly the same string

sent.

Figure 4.9: USB test results.

4.4.8 Ethernet and LwIP middleware

This test checks the functionalities of the ethernet peripheral and LwIP middleware.

The software creates a socket on port 7 and starts listening for TCP traffic

implemented an echo application: all incoming traffic is forwarded to the sender.
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Figure 4.10: LwIP and ethernet test results.

The board has been connected through the Ethernet port to a computer, and both

IPs have been configured in the same range. Then, using a TCP echo tool, the

functionality was tested. In Figure 4.10 the test results can be seen.

4.4.9 ROS middleware

Having the hardware and communication buses tested, the next step is to verify

the connection between micro-ROS middleware, the XRCE-DDS agent, and ROS2.

To perform this test, it is necessary to have a full installation of ROS2, the agent

software, and the message package designed for this application. This software and

other required dependencies are automatically installed by the system setup script

implemented for this project (see Appendix C).

First, the connection between the micro-ROS application and the XRCE-DDS agent

was verified. The test was repeated to test the different communication buses used in

this application (ethernet, UART, and CAN). The switch between these buses requires

a recompilation of the micro-ROS middleware and the application. The result of the

UART test is shown in Figure 4.11. This test was performed using a UART-to-USB

adapter connected to the machine running the agent software, configured to work

at a 576000 baudrate. As can be seen, the node, its services, and its publishers are

registered correctly.

Finally, integration with the ROS2 environment was verified. This test consisted

of trying to access the services, topics, and data types registered by the node. It

was performed using the ROS2 command line application. In Figure 4.12, it can be

seen that services and topics are registered as expected. In the last line, the message

structure of the configuration service can be seen, which means that the application

is also integrated with the message package.
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Figure 4.11: Agent connection test.

Figure 4.12: ROS2 connection test.

4.5 Functional test

The last step in testing is to verify that the application behaves as expected. For

this purpose, a Python script has been developed to configure the motor parameters,

subscribe to the data topic, and plot the captured data. This script calls to the node

services using a Python ROS2 API included in the ROS2 middleware.

The first test was performed using only the control board without the power

board. This test consisted of configuring the stimulus generator and plotting the

generated function to verify the application behavior, the service configuration, and

the communication bandwidth. In figures 4.13 and 4.14 the generation results for the

trapezoidal and sine functions can be seen.

The last test consisted of measuring the motor response to different functions. This

test required the connection of all hardware: control board, power board, motor, and



76 4. Testing

Figure 4.13: Trapezoidal function gener-

ation result.
Figure 4.14: Sine function generation

result.

encoder. The configuration used in the motor is shown in Table 4.2 and in the loop

in Table 4.3. As can be seen, the system was configured with the simplest controller.

All stimulus used were configured with an amplitude of 10 radians.

Table 4.2: Motor configuration used for testing.

Parameter Value Unit

Motor ID MOTOR1 -

Frequency 3000 Hz

Control Period 1 ms

Speed Period 30 ms

CPR 3700 pulses

Mode Position -

Reference Internal -

Voltage 12 V

Table 4.3: Controller loops configuration used

for testing.

Loop Kp Ki Kd Windup

Direct 1 0 0 12

Feedback 1 0 0 12

Feedfordward 0 0 0 0

Paraller 0 0 0 0

In Figures 4.15, 4.16 and 4.17 the motor responses to the steps, ramps, and

parabola functions are shown, respectively. The quantification noise shown in the

speed measurements is due to the low pulse resolution of the encoder: between two

consecutive measurements, there are not enough pulses to have a high resolution. The

adjustment of the time between two consecutive speed measurements depends on the

encoder CPR used, and in the number of points required, the higher time means the

lesser measurements.
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Figure 4.15: Step response.

Figure 4.16: Ramp response. Figure 4.17: Parabola response.

4.6 List of errata

After the testing process, there were some problems that, due to their type, could

not be solved. However, none of these errors was blocking, only some features were

affected, allowing the development of the main concept. These problems are as follows:

• P-MOS transistor N2 is inverted. The drain and source pins are inverted, which

causes the load switch to not work properly. This problem was found during

power supply testing. Solving this problem requires a redesign of the board.

Figure 4.18 shows the current schematic and Figure 4.19 shows the corrected

schematic. Furthermore, Appendix H shows the complete board schematic.

• The COMPAC X14 connector is inverted. This connector is flipped 180 degrees,

causing a loss of SPI and GPIO capabilities in the carrier board connector. This

problem limits some features, such as the fan controller and the SPI functions

of the HB2001 driver; however, they are not critical. This problem was found

during software testing. Figure 4.20 shows the current position of the connector.

It can be seen that the first pin is in the bottom-left corner. Instead, in the
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Figure 4.18: Transistor N2 flipped. Figure 4.19: Transistor N2 corrected.

corrected layout shown in Figure 4.21, it can be seen that the first pin is located

in the top-right corner.

Figure 4.20: Connector X14 flipped. Figure 4.21: Connector X14 corrected.

• Operational amplifiers N1 and N3 have incorrect reference. The reference of the

mounted component is MCP6401T instead of MCP6401RT, causing a polarity

inversion of the power supply. This problem was found during power testing

and could not be solved due to this component, and compatible ones are out of

stock. Figure 4.22 shows a comparison between both components where it can

be seen that they have the power polarity inverted.

Figure 4.22: Comparison between MCP6401 and MCP6401R.
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• The MIC4606 is connected to a wrong power rail. Although the datasheet shows

that this device can withstand voltages in the range of -0.3 to 18 volts, it requires

an operating voltage of 5.5 to 16 volts to work properly [36]. In this project, this

device has been connected to the 3.3 V power rail, out of the operating range.

Figure 4.23 shows the current schematic, Figure 4.24 shows the schematic with

the necessary corrections, and Appendix H shows the full board schematic. This

problem cannot be fixed without a board redesign, so this board could not be

used and tested in this MCs. thesis. Instead, the HB2001 board was used to

perform functional tests.

Figure 4.23: Wrong MIC4606 schematic. Figure 4.24: Corrected MIC4606

schematic.
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Chapter 5

Conclusions

5.1 Conclusions

This project was developed with the aim of creating a control platform to facilitate

and speed up the modeling, design, and implementation of brushed motor control

systems. As shown in previous sections, there is a wide variety of parameters and

design variables to take into account when designing this kind of platform.

This project involves all the necessary processes and tasks required in a real

engineering project, from gathering user requirements to manufacturing and testing.

It is worth highlighting that this project has been designed with a user-friendly

perspective and that all the features and requirements come from real user needs.

From communication buses to connectors position, all have been designed to meet user

expectations while complying with the restrictive technical requirements imposed.

The completion of this project required a complete perspective of all the related

elements and participants who participated in an engineering project. Every decision

taken in a state was the result of the previous decisions made and had a direct impact

on the following decisions. This was the reason why it was crucial to have a complete

picture of the project, the requirements, and the goals.

The development, carried out in the academic year 2021-2022, had serious problems

and delays with respect to the global component crisis that the industry has been

suffering during the last years. Some hardware blocks were redesigned more than three

times due to quick changes in component stock. Therefore, some of the components

already mounted on prototype boards are not the ones chosen during the development

process but compatible ones. In addition, manufacturing was delayed for several

months while some key components were in storage. This is the reason why it was

not possible to do more than one iteration in hardware development, adding more

pressure in the design process: it was only possible to make one prototype, and it had

to work.

Overall, the project has been completed successfully meeting the proposed goals

and requirements. As a result, a working prototype capable of controlling motors

81
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with a complete complex and fully configurable control loop was produced. This

prototype is interfaced with the widely used ROS middleware, which provides

complete interoperability with other systems, hundreds of tools to configure and

control the system, and a standard interface with the hardware.

Personally, this project gave me the opportunity to work in a real application system

with technical and economical constraints. During this project, I learned to convert

general ideas into real and implementable requirements. I finish this project with a

deeper understanding of embedded system design and robotics.

5.2 Future improvements

During the development and testing processes, new possible requirements, features,

and improvements were found. Some of these might be included in future iterations

and versions of this project. These improvements are as follows:

• Create new power boards: This project has been designed to easily be moved

to other applications by changing the power boards. It is proposed to create

boards to test and exploit this feature.

• Create a desktop application: Although the system can be controlled using the

application provided in the ROS framework, it is proposed to create a graphical

desktop application to manage the prototype in an easy way.

• Improve data structures: It is proposed to find more efficient data structures

for the interchange between the user and the application.

• Improve the communication structure: It is also proposed to review the topic

communication structure to find ways to configure and control the system.

There are many ROS capabilities that can be exploited to achieve this.

• Fix hardware bugs: Some design problems related to component orientation

were found during electrical and visual inspections. These problems can be

easily fixed in future hardware revisions.
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Appendix A

Ethical, social, economic and

environmental aspects

A.1 Social impact

Today, nearly all human appliances, from toothbrushes to autonomous cars, include

at least one microcontroller that turns it into an embedded system. The way in

which this kind of system works has a direct impact on user security and satisfaction.

Therefore, the creation and design of control systems is crucial for our society.

This project has been designed to provide powerful tools to engineers and control

system designers. These tools can facilitate the modeling, design, and implementation

of complex systems in a way that can be applied directly in user applications. This

project abstracts complex hardware layers, allowing the engineer to focus more on

creating a good control system. It is evident that this improvement increases the

quality of consumer electronics and then the security and satisfaction of the user.

A.2 Economic impact

Control systems are directly related to the robotic industry. During the last decade,

exponential growth has been observed in this industry. The technology sector requires

more sophisticated control systems to respond to the increasing demand for new

products and services.

An authentic revolution in the robotic industry is being experimented due to the

introduction of new technologies of autonomous systems and machine learning. All

in all, from an economic point of view, the topic of this project can be located at the

top of industry interests and investment.

A.3 Environmental impact

The creation of any electronic system implies a negative environmental impact.

Electronic devices use non-recyclable and, in some cases, toxic materials and
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fabrication processes that can contaminate the soil and water if they are properly

managed. However, this negative impact can be reduced and compensated for.

As shown in previous sections, this project has been designed to be modular. The

main advantage of this design is that it can be easily extended to other applications

without the need to re-make all the blocks, making the system flexible and reusable.

The lower hardware requirement compensates for part of the negative impact that

the creation of this system generates.

A.4 Conclusion

The industry demand for control solutions has increased during the last decades.

These solutions are applied in consumer electronics and the generation of raw

materials in most cases. Therefore, control systems have a crucial impact on the

daily life of the human population.

The increasing interest in these types of solutions is generating a rich market niche

and ecosystem. In addition, this solution may report economic and environmental

benefits if used to improve production processes in industrial applications. Finally,

its modular design makes it flexible, reusable, extensible, and scaleable, reducing the

environmental impact of its creation.
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Project budget.
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Table B.1: Project budget.

Human Resources

Hours €/h total

Electronic Engineer 450 21 € 9,450 €

Depreciation

Price
Time of use

(years)

Lifetime

(years)
Depreciation

Power Supply 100.00 € 30.00% 5 6.00 €
Soldering Station 1,500.00 € 30.00% 5 90.00 €
Oscilloscope 2,000.00 € 30.00% 7 85.71 €
Digital Multimeter 50.00 € 30.00% 7 2.14 €
Computer 1,500.00 € 60.00% 5 180.00 €
Software Licences 3,000.00 € 40.00% 1 1,200.00 €
Development kits 500.00 € 20.00% 3 33.33 €
Tools 500.00 € 60.00% 5 60.00 €
Laboratory material 200.00 € 50.00% 1 100.00 €
Total 1,757.19 €

Other expenses

Percentage total

Facilities and

maintenance
- 550 €

Indirect costs 13% 228.43 €
Total 778 €

Fabrication expenses

Cost

Components 564.00 €
Printed circuits 293.02 €
Assembly 350.00 €
Freight charges 60.00 €
Total 1,267 €

Results

Percentage Total

Total before taxes 13,252.65 €
Benefit margin 30% 3,975.79 €
Taxes 21% 3,617.97 €

Total cost 20,846.41 €



Appendix C

Manual: How to configure the

project environment

C.1 Install dependencies

The project repository is located on Github and can be downloaded using the following

command:

1 g i t c l one https : // github . com/Robolabo/COMPAC MotorControl . g i t

The first step is to install ROS2, the ARM GCC compiler, the micro-ROS agent,

and the required dependencies. This process has been automated in a scrip located in

the micro-ROS folder. Move to that folder and execute the script using the following

commands:

1 cd COMPAC MotorControl/ Software /Firmware/microROS/

2 sudo −s source setup . sh

This script has been developed and tested to install ROS2 foxy in Ubuntu 20.04.

Using a different version of Ubuntu may require installing other ROS2 distributions.

For doing this, change edit the distribution version parameter in the ’setup.sh’ script:

1 #Ubuntu 18 . 0 4 : dashing , e loquent

2 #Ubuntu 20 . 0 4 : foxy , g a l a c t i c

3 #Ubuntu 22 . 0 4 : r o l l i n g

4 export ROS DISTRO=foxy

Some of the installation paths are relative to the user, and, since the script is

executed as ’sudo’, it is recommended to execute the script again without ’sudo’ to

verify everything has been installed correctly.

1 source setup . sh
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On every new terminal, it is necessary to set up the ROS2 environment before

starting to use its packages. The environment is set up using the following commands:

1 export ROS DISTRO=foxy

2 source /opt/ ros /$ROS DISTRO/ setup . bash

3 source . / motor data msg/ i n s t a l l / setup . bash

Remember that it is necessary to set up the environment in every session. To avoid

doing this, you can add the previous lines at the end of the file /-bashrc:

C.2 Starting XRCE-DDS agent

One of the packages installed using the script ’setup.sh’ is the XRCE-DDS agent,

which acts as a point of union between ROS2 and micro-ROS. It is necessary to

launch this application to start communication with the board. The agent is launched

depending on the communication protocol used:

• UDP: The program requires as parameters the UDP port used. The IP and

port of this application must be the same as those configured on micro-ROS. In

the following example, the agent is starting in UDP mode on port 8888.

1 MicroXRCEAgent udp4 −p 8888

• UART: The program requires the device and the baudrate. The baudrate must

be the same as that configured in the application. In the following example, the

agent is starting in serial mode using the /dev/ttyUSB0 device with baudrate

576000.

1 MicroXRCEAgent s e r i a l −b 576000 −D /dev/ttyUSB0

• CAN: The program requires the name of the device as a parameter. In the

following example, the agent is starting in CAN mode using the can0 device.

1 MicroXRCEAgent can −D can0

Now, if everything was done correctly, you can connect the board and see the

registration log in the agent application, as shown in Figure C.1.

You can test if topics and services have been correctly registered using the

following commands to list them:

1 ros2 s e r v i c e l i s t # L i s t r e g i s t e r e d s e r v i c e s

2 ros2 t op i c l i s t # L i s t r e g i s t e r e d t op i c s



C.3. Compiling micro-ROS middleware 95

Figure C.1: XRCE-DDS agent register output.

C.3 Compiling micro-ROS middleware

The generation and compilation of the static library micro-ROS is automated in the

’build’ script located in the micro-ROS folder. The execution of this script requires

the installation of all ROS2 dependencies (see Section C.1).

The maximum number of publishers, subscribers, services, and the default

configuration of the UDP layer are defined in the COLCON UART.meta, COL-

CON UDP.meta and, COLCON CAN.meta. In the case of the UDP file, it is

important to define the agent IP and port by editing the following parameters:

1 . . .

2 ” rmw microxrcedds” : {
3 ”cmake−args ” : [

4 . . . . .

5 ”−DRMWUXRCETRANSPORT=udp” ,

6 ”−DRMWUXRCE DEFAULT UDP IP=10 .10 .10 .2 ” ,

7 ”−DRMWUXRCEDEFAULTUDPPORT=8888”

8 . . . .

9 ]

10 }
11 . . .

The selection of the bus must be done before the compilation. This script allows

for three possible options: UDP, SERIAL and CAN. The compilation process is done

calling the build script one of the options as shown:

1 source bu i ld . sh SERIAL
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The result of the compilation is in the libmicroros folder. It is also recommended

not to delete the firmware and uros ws folders to avoid generating and compiling all

the code again.

C.4 Compiling and flashing the COMPAC MotorControl

project

The development of this application has been done using the MCUXpresso IDE. This

IDE can be downloaded from the NXP website. The first step is to download and

install the software.

The next step is to install the Simplia SDK. As shown in Figure C.2, click on the

’installed SDKS’ tab and right-click on the list panel. This will show a drop-down

menu where it should be selected as ’import archive’. Then it is necessary to select

the route of the Simplia SDK zip file.

Figure C.2: MCUXpresso SDK instalation.

Now, the project can be imported. Click on ’file → Open Project From File

System and then Directory’ (see Figure C.3). The project is allocated in the folder

Software/Firmware of the repository, choose this folder, and then click on ’Finish’

(see Figure C.4). This will load the project.

Once the project is loaded, it can be compiled by clicking the hammer icon and

flashed and debugged by clicking on the bug icon (see Figure C.5). Note that it

is necessary to generate and compile the micro-ROS library before compiling the

application project.
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Figure C.3: MCUXpresso project import part 0.

Figure C.4: MCUXpresso project import part 1.
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Figure C.5: MCUXpresso compiling and debugging options.



Appendix D

ROS message types description.

The following tables describe the data structures created to configure the hardware

and extract the data generated by the system.

Table D.1: motor data msg/srv/MotorConfig message description.

Unit Variable Description Values

uint8 motor id Motor identifier
’0’ - motor 1

’1’ - motor 2

uin32 motor freq hz PWM frequency Herzt (Hz)

uin32 control period Controller period milliseconds (ms)

uin32 speed period Speed measurement period milliseconds (ms)

uin32 counts per rebolution Reduction and encoder CPR Pulses

uint8 mode Operation mode

’0’ - Position

’1’ - Speed

’2’ - Current

uint8 reference source Reference source
’0’ - Internal (stimulus)

’1’ -external

float32 supply voltage Motor supply voltage Volts (V)
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Table D.2: motor data msg/srv/MotorData message description.

Unit Variable Description Values

uint8 motor id Motor identifier
’0’ - motor 1

’1’ - motor 2

uin32 time stamp Control time Control ticks

uint32 speed Motor speed rad/s

float32 position Relative position radians

float32 current Motor current ampers

float32 control dir Direct loop output -

float32 control par Parallel loop output -

float32 control ff Feedforward loop output -

float32 control fb Feedback loop output -

float32 error Control signal -

float32 error fb Feedback error -

Table D.3: motor data msg/srv/Enable message description.

Unit Variable Description Values

uint8 motor id Motor identifier
’0’ - motor 1

’1’ - motor 2

bool enable Value status
True - enable

False - disable

Table D.4: motor data msg/srv/Reference message description.

Unit Variable Description Values

uint8 motor id Motor identifier
’0’ - motor 1

’1’ - motor 2

float32 reference Reference value -
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Table D.5: motor data msg/srv/StimulusConfig message config.

Unit Variable Description Values

uint8 motor id Motor identifier
’0’ - motor 1

’1’ - motor 2

uint8 stimulus type Function type

’0’ - Delta

’1’ - Step

’2’ - Ramp

’3’ - Parabola

’4’ - Sine

’5’ - Cosine

’6’ - trapezoid

’7’ - Exponential

float32 amplitude Function amplitude -

float32 Frequency Sine/cosine frequency Hertz

float32 t1, t2, t3 Trapezoid variables Milliseconds

float32 v1, v2, v3 Exponential variables -

Table D.6: motor data msg/srv/LoopConfig Message description.

Unit Variable Description Values

uint8 motor id Motor identifier
’0’ - motor 1

’1’ - motor 2

uint8 loop id Loop identifier

’0’ - Feedfordward

’1’ - Feedback

’2’ - Direct

’3’ - Parallel

float32 kp Proportional constant -

float32 ki Integral constant -

float32 kd Derivative constant -

float32 windup Windup -

Table D.7: motor data msg/srv/SensorData message description.

Unit Variable Description Values

float32 adc 1 ADC analog value 1 Volts (V)

float32 adc 2 ADC analog value 2 Volts (V)

float32 adc 3 ADC analog value 3 Volts (V)

float32 adc 4 ADC analog value 4 Volts (V)

float32 temperature Board temperature Celcius degrees



102 D. ROS message types description.



Appendix E

Pin assignment

Table E.1: Pin assignment applied.

Pin Peripheral Signal Routed pin/signal Label Direction

L10 ADC1 IN, 4 [L10] GPIO AD B0 15 ADC1 IN4 Input

J11 ADC2 IN, 5 [J11] GPIO AD B1 00 ADC2 IN5 Input

M3 CAN1 TX [M3] GPIO SD B1 02 CAN TX Output

M4 CAN1 RX [M4] GPIO SD B1 03 CAN RX Input

J1 ENC1 PHASE, A [J1] GPIO SD BO 02 ENC1 A Input

K1 ENC1 PHASE, B [K1] GPIO SD B0 03 ENC1 B Input

H2 ENC2 PHASE, A [H2] GPIO SD BO 04 ENC2 A Input

J2 ENC2 PHASE, B [J2] GPIO SD BO 05 ENC2 B Input

J12 GPIO1 gpio io, 22 [J12] GPIO AD B1 06 G EN 1 Output

K10 GPIO1 gpio io, 23 [K10] GPIO AD B1 07 G EN 2 Output

L12 GPIO1 gpio io, 20 [L12] GPIO AD B1 04 G EN 3 Output

K12 GPIO1 gpio io, 21 [K12] GPIO AD B1 05 G EN 4 Output

L13 GPIO1 gpio io, 26 [L13] GPIO AD B1 10 LED 1 Output

H13 GPIO1 gpio io, 24 [H13] GPIO AD B1 08 LED 2 Output

B11 GPIO2 gpio io, 17 [B11] GPIO B1 01 SPI4 CS2 Output

D7 GPIO2 gpio io, 00 [D7] GPIO BO 00 GPIO1 Output

B8 GPIO2 gpio io, 05 [B8] GPIO BO 05 GPIO2 Output

D11 GPIO2 gpio io, 19 [D11] GPIO B1 03 SPI4 CS Output

P2 LPI2C1 SCL [P2] GPIO SD B1 04 I2C1 SCK Input/Output

N3 LPI2C1 SDA [N3] GPIO SD B1 05 I2C1 SDA Input/Output

H11 LPSPI3 SDI [H11] GPIO AD B1 13 SPI3 SDI Not Specified

H12 LPSPI3 PCS0 [H12] GPIO AD B1 12 SPI3 CS Not Specified

J14 LPSPI3 SCK [J14] GPIO AD B1 15 SPI3 SCK Not Specified

G12 LPSPI3 SDO [G12] GPIO AD B1 14 SPI3 SDO Not Specified

D8 LPSPI4 SCK [D8] GPIO BO 03 SPI4 SCK Not Specified

E8 LPSPI4 SDO [E8] GPIO BO 02 SPI4 SDO Not Specified

E7 LPSPI4 SDI [E7] GPIO BO 01 SPI4 SDI Not Specified

K14 LPUART1 TX [K14] GPIO AD B0 12 LPUART1 TX Output

Continue in the next page
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Table E.1 – Continued from previous page

Pin Peripheral Signal Routed pin/signal Label Direction

L14 LPUART1 RX [L14] GPIO AD B0 13 LPUART1 RX Input

J3 PWM1 B,0 [J3] GPIO SD B0 01 PWM1 A Output

J4 PWM1 A, 0 [J4] GPIO SD BO 00 PWM1 B Output

M14 PWM2 A, 3 [M14] GPIO AD B0 00 PWM2 A Output

H10 PWM2 B,3 [H10] GPIO AD B0 01 PWM2 B Output

A7 ENET MDC [A7] GPIO EMC 40 ENET MDC Output

C7 ENET MDIO C7] GPIO EMC 41 ENET MDIO Input/Output

B13 ENET REF CLK B13] GPIO B1 10 ENET TX CLK Not Specified

E12 ENET RX DATA, 0 [E12]GPIO B1 04 ENET RXD0 Input

D12 ENET RX DATA, 1 (D12] GPIO B1 05 ENET RXD1 Input

C12 ENET RX EN [C12]GPIO B1 06 ENET CRS DV Input

C13 ENET RX ER [C13] GPIO B1 11 ENET RXER Input

B12 ENET TX DATA, 0 [B12]GPIO B1 07 ENET TXD0 Output

A12 ENET TX DATA, 1 [A12]GPIO B1 08 ENET TXD1 Output

A13 ENET TX EN [A13] GPIO B1 09 ENET TXEN Output

L11 USB1 OTG1 ID [L11] GPIO AD B1 02 OTG1 ID Input

M12 USB1 OTG1 OC [M12] GPIO AD B1 03 OTG1 OC Input

K11 USB1 OTG1 PWR [K11] GPIO AD B1 01 OTG1 PWR Output
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Control board schematics.
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- LED1/REGOFF: 
  Activity Indicator. 
  Pulled Low, Internal regulator Enable

- LED2/INTSEL:
  Link Speed Indicator
  Pulled Low, REF-CLKO selected 

-PHYAD0:
 Pulled High, Unique address

- MODE0, MODE1, MODE2
  111 All Capable, Auto negotiaton Enable
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Appendix I

Bill of materials

Table I.1: Bill of materials for the COMPAC MotorControl board.

Designator Quantity Manufacturer Reference Value

A1 1 Simplia -

C1, C2, C3, C4,

C5, C6, C7,

C17, C18, C20,

C21, C23, C24,

C30, C31, C35,

C36, C46, C47,

C53, C54, C55,

C56, C57, C58,

C59, C60, C61,

C62, C63, C64,

C65, C66, C67,

C68, C69, C70,

C71, C72, C73,

C74

41 Samsung
CL05B104K

O5NNNC
100nF 0402

16V

C8, C13, C14,

C15, C16, C19,

C22, C28, C34

9 Murata
GRM21BR61

C106KE15
10uF 0805

16V

C9 1 Murata
GRM153R60

J105ME95D
1uF 0402

6V3

C10 1 Yageo
CC0402KRX

7R9BB471
470pF 0402

50V

C11, C12 2 Murata
GCM1555C1

H270JA16D
27pF 0402

50V

C25, C37, C40 3 Kemet
C0805C104

M5RACTU
100nF 0805

50V

Continue in the next page
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Table I.1 – Continued from previous page

Designator Quantity Manufacturer Reference Value

C26, C29, C44, C45 4 Murata
GRJ155R60

J106ME11D
10uF 0402

6V3

C27 1 Johanson 202S41W102KV4E 1nF 1210

2kV

C32, C33, C41,

C42, C43
5 Murata

GRM188R61

A226ME15D
22uF 0603

10V

C38, C39 2 Samsung
CL31A106K

BHNNNE
10uF 1206

50V

D1, D3, D4,

D6
4 ON NLSX4373DMR2G

D2 1 Microchip LAN8720AI-CP

D5, D7 2 TI TPS562208DDCT

D8 1 ON NCV7351D1ER2G

D10, D12, D13,

D14
4 NXP NX3L2T66GM,125

D11 1 Microchip MCP3564T-

E/NC

MCP3564T-

E/NC

E1 1 Wurth 9774025151R

E2, E3, E4,

E5, E6, E7,

E8, E9

8 JST PHR-4

F1 1 Nexperia PESD2CAN,215

F2 1 NXP IP4220CZ6,125

F3, F5, F6,

F7, F8,

F10, F12, F15

8 Bel Fuse 0ZCJ0020FF2E F RES 0.2A

30V

F4 1 ST ECMF02-4CMX8

F9, F11, F14,

F16, F18, F21
6 Littelfuse SMF5.0A

F19 1 Littelfuse SMBJ12A

G1 1 CTS
ECS-250-18

-33-AGM-TR
25MHZ

18pF

H1 1 Kingbright APT2012SGC

H2 1 Kingbright APT2012SYCK

H3, H4, H5 3 Kingbright APT1608SRCPRV

L1, L7, L11 3 Kemet Z0402C121APMST FB120R 1A

L2, L3 2 Taiyo Yuden
NRS5040T

3R3NMGJ
3,3uH 4A

N1 1 DI AP7343-33W5-7

Continue in the next page
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Table I.1 – Continued from previous page

Designator Quantity Manufacturer Reference Value

R1 1 Panasonic ERJ-2RKF1200X 120R 0402

1%

R2, R3, R4, R5 4 Panasonic ERJ-

2RKF49R9X

49R9 0402

1%

R6, R7, R8,

R10, R11, R12,

R15, R16, R17,

R20, R26, R30,

R34

13 Vishay
CRCW0402

10K0FKEDC
10K 0402

1%

R9 1 Panasonic ERJ-

2RKF33R0X

33R 0402

1%

R13, R36, R45,

R46, R54
5 Panasonic ERJ-2RKF1004X 1M 0402 1%

R14 1 Panasonic ERJ-2RKF1212X 12K1 0402

1%

R18, R19 2 Yageo
RC0402FR-

075K11L
5K11 0402

1%

R21, R22, R35,

R38, R39, R40,

R41, R48, R49,

R50, R51, R52,

R55

13 Vishay
CRCW0402

1K00FKED
1K 0402 1%

R23, R24 2 Panasonic ERJ-2RKF3300X 330R 0402

1%

R25 1 Vishay
CRCW12061

M00FKEA
1M 1206 1%

R27 1 Panasonic ERJ-2RKF1003X 100K 0402

1%

R28 1 Panasonic ERJ-2RKF3322X 33K2 0402

1%

R29 1 Yageo
AC0402FR-

0752K3L
52K3 0402

1%

R31, R32, R56 3 Panasonic ERJ-2GE0R00X 0R 0402 1%

R37, R42, R47,

R53
4 Yageo

YC164-FR-

07120RL
120R

4x0603 1%

R43, R44 2 Yageo
RC0402FR-

0710RL
10R 0402

1%

S1 1 Cannon, ITT KSR231GLFS

Continue in the next page
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Table I.1 – Continued from previous page

Designator Quantity Manufacturer Reference Value

V1 1 ON Semi MBR130T1G Schottky

30V 1A

V2 1 Vishay SI2369DS-T1-

GE3

X1 1 Conexcon 1360-3101111

X2, X4, X5,

X6, X8, X9,

X10, X12

8 JST
S4B-PH-SM4-

TB(LF)(SN)

X3 1 XKB
U262-161N-

4BVC11

X7 1 Link-PP LPJG0846BBNL

X11 1 Sullins NPPC122KFMS-

RC

X13 1 TE 2199230-3

X14 1 Hirose
DF40HC(2.5)-

40DS-0.4V(58)

Table I.2: Bill of materials for the COMPAC HB2001 board.

Designator Quantity Manufacturer Reference Value

AEREO1, AEREO2,

AEREO3
3 Phoenix Contac-

t/Conexcon

BC2ESDV-02-P

C1, C2, C10,

C11
4 AVX 12101C475K4T2A 4,7uF 1210

100V

C3, C9 2 Nichicon
UUR1H470

MCL6GS
47uF 50V

6.3mm

C4, C12, C14,

C15
4 Samsung

CL05B104K

P5NNWC
100nF 0402

10V

C5, C13 2 Samsung
CL21B104

KCFWPNE
100nF 0805

100V

C6, C8, C16,

C18
4 KEMET

C0402C103

K8PAC7867
10nF 0402

10V

C7, C17 2 Yageo
CC0402KR

X5R5BB105
1uF 0402

6.3V

D1, D2 2 NXP Freescale MC33HB2001EK

E1, E2, E4, E5 4 BOSSARD 1250779

Continue in the next page
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Designator Quantity Manufacturer Reference Value

E3 1 Sunon Fans
HA40101V4-

1000U-A99

E6, E7, E8,

E9
4 Wurth 9774060360R

H1, H5 2 Kingbright APT2012EC

H2, H3, H4 3 Kingbright APT1608SRCPRV

N1, N3 2 Microchip MCP6401T-

E/OT

N2 1 Microchip MCP9804T-

E/MC

R1, R8, R9,

R10, R14
5 Vishay

CRCW04021

K00FKED
1K 0402 1%

R2, R11, R12,

R13, R15
5 Vishay

CRCW0402

10K0FKEDC
10K 0402

1%

R3, R16 2 Panasonic ERJ-2GE0R00X 0R 0402 1%

R4, R5, R17,

R18
4 Panasonic ERJ-2RKF1302X 13K 0402

1%

R6, R19 2 Panasonic ERJ-2RKF1300X 130R 0402

1%

R7 1 Vishay
CRCW0603

10K0FKEA
10K 0603

1%

S1 1 Cannon, ITT KSR231GLFS

V1 1 Diodes B260-13-F Schottky

60V 2A

V2 1 ON Semi FDV305N

X1 1 Amphenol 95278-801-24LF

X2, X4, X5 3 Conexcon BC2EHDRC-02-

P

X3 1 JST B02B-PASK-1

Table I.3: Bill of materials for the COMPAC MIC4606 board.

Designator Quantity Manufacturer Reference Value

AEREO1, AEREO2,

AEREO3
3 Phoenix Contac-

t/Conexcon

BC2ESDV-02-P

C1, C2, C16,

C33, C34, C35,

C36

7 Yageo
CC0402KR

X5R5BB105
1uF 0402

6.3V

Continue in the next page
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Table I.3 – Continued from previous page

Designator Quantity Manufacturer Reference Value

C3, C4, C7,

C8, C18, C19,

C24, C25

8 Yageo
CC0402KR

X7R9BB473
47nF 0402

50V

C5, C6, C20,

C23
4 Samsung

CL31B106K

BHNNNE
10uF 1206

50V

C9, C15, C26,

C32
4 KEMET

C0402C103

K8PAC7867
10nF 0402

10V

C10, C27 2 Nichicon
UUR1H470

MCL6GS
47uF 50V

6.3mm

C11, C12, C13,

C14, C28, C29,

C30, C31

8 AVX
12101C475

K4T2A
4,7uF 1210

100V

C17 1 Murata
GRM155R60

J106ME15D
10uF 0402

6V3

C21, C22 2 Kemet
C0402C104

K8PACTU
100nF 0402

10V

D1, D2 2 Microchip
MIC4606-

2YML

E1, E2, E4,

E5
4 BOSSARD 1250779

E3 1 Sunon Fans
HA40101V4

-1000U-A99

E6, E7, E8,

E9
4 Wurth 9774060360R

F1, F2, F3,

F4, F7, F8,

F9, F10

8 Littelfuse SMAJ12CA

H1, H2, H3 3 Kingbright APT1608SRCPRV

N1, N4 2 TI INA281A1IDBVT

N2, N5 2 Microchip MCP6401T-

E/OT

N3 1 Microchip MCP9804T-

E/MC

R1, R2, R9,

R10, R20, R21,

R31, R32

8 YAGEO
RC0402FR

-076R8L
6R8 0402

1%

R3, R4, R8,

R11, R25, R26,

R33, R34

8 TE
RC0402FR

-0718RL
18R 0402

1%

Continue in the next page
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Designator Quantity Manufacturer Reference Value

R5, R12 2 Panasonic
ERJ-

2RKF1003X
100K 0402

1%

R6, R7, R28,

R29
4 Yageo

RC0402FR

-073R3L
3R3 0402

1%

R13 1 Vishay
CRCW0603

10K0FKEA
10K 0603

1%

R14, R15, R35,

R36
4 Panasonic

ERJ-

2RKF1302X
13K 0402

1%

R16, R17, R37,

R38
4 Vishay

RCWE1206

10L0JTEA
0R01 1206

1%

R18, R19, R27 3 Vishay
CRCW0402

1K00FKED
1K 0402 1%

R22, R23, R24 3 Yageo
RC0402FR-

074K02L
4K02 0402

1%

S1 1 Cannon, ITT KSR231GLFS

V1, V2, V8,

V9, V18, V19,

V25, V26

8 MCC 1N4148WX-TP 0.15A 75V

V3, V5, V11,

V14, V20, V22,

V27, V30

8 Vishay
SISS50DN

-T1-GE3

V4, V6, V12,

V13, V21, V23,

V28, V29

8 Faircild RS1M

V10 1 Diodes B260-13-F

V15 1 ON Semi FDV305N

X1 1 Amphenol 95278-801-24LF

X2 1 JST B02B-PASK-1

X3, X4, X5 3 Conexcon BC2EHDRC-02-

P
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