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Resumen

La diabetes afecta a alrededor de 422 millones de personas en el mundo, siendo
uno de los grandes problemas de salud en la actualidad. La diabetes engloba un
grupo de enfermedades que se caracteriza por tener niveles elevados de glucosa
en sangre. Este proyecto se centra en la diabetes tipo 1. Las complicaciones
de la diabetes estdn provocadas por las hiperglucemias e hipoglucemias. FEstas
complicaciones pueden acarrear otras enfermedades tales como infartos, accidentes
cerebro-vasculares, ceguera o hasta la muerte. Sin embargo, estas complicaciones
pueden evitarse o, al menos, reducirse controlando los niveles de glucosa en un rango
normal.

El uso de un predictor de los futuros niveles de glucosa puede ayudar a los pacientes
a planificarse y a afectuar las modificaciones necesarias a su tratamiento para evitar
los eventos de hiperglucemia y de hipoglucemia. Para la implementacién de este
predictor se ha optado por utilizar redes neuronales artificiales, en concreto se ha
elegido el uso de redes neuronales recurrentes.

En este Trabajo de Fin de Master se ha disenado un predictor basado en
redes neuronales recurrentes, especificamente se ha usado Long-Short Time Memory
(LSTM). Este predictor se ha desarrollado para pacientes con diabetes tipo 1, como
parametros de entrada al predictor se han utilizado tres de ellos: los valores pasados de
glucosa proporcionados por un sensor de medicién continua, las unidades de insulina
proporcionadas por una bomba de insulina y, por tltimo, la cantidad de carbohidratos
ingerida. Ademas, se han establecido 4 tiempos de prediccién: 5, 15, 30 y 45 minutos.
A su vez, se han considerado 3 valores para las dimensiones de entrada: 5, 20 y 50.
Para terminar, se han desarrollado 12 predictores cada uno especializado en un tiempo
de prediccién y en una dimension de entrada.

Palabras claves: Redes neuronales artificiales, Long-Short Time Memory,

LSTM, series temporales, prediccién de glucosa, diabetes, diabetes tipo 1.



Abstract

Diabetes affects around 422 millions of people worldwide, making it a the current
major healthcare problem. Diabetes is a group of diseases that is characterized by
high blood sugar. This project focuses on type 1 diabetes. Diabetes complications are
caused by the occurrence of hyperglycemia and hypoglycemia. These complications
may produce other diseases such as heart attack, stroke, blindness or even death.
Nevertheless, these complications may be avoided or, at the very least, reduced by
controlling the blood glucose concentration in a normal range.

A predictor of future glucose levels may help patients plan and make necessary
modifications to their treatment to avoid hyperglycemic and hypoglycemic events.
This predictor was implemented using artificial neural networks, specifically, it uses
recurrent neural networks.

In this Master’s Thesis, a recurrent neural network based predictor that uses
Long-Short Time Memory (LSTM) was designed. This predictor is specific for type 1
diabetes patients. The input parameters of the predictor are the past glucose levels by
a continuous measurement sensor, the insulin units provided by a insulin pump, and,
lastly, the carbohydrates intake. In addition, 4 prediction times have been established:
5, 15, 30 and 45 minutes. At the same time, 3 input dimensions have been selected: 5,
20 and 50. To conclude, twelve predictors have been developed, each one is specialized
in a prediction time and an input dimension.

Key words: Artificial neural networks, Long-Short Time Memory, LSTM,

temporal series, glucose prediction concentration, diabetes, type 1 diabetes.
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Chapter 1

Introduction

1.1 Context

Diabetes mellitus (DM), also known as diabetes, is a group of diseases characterized
by high blood sugar levels over a long period of time [17]. This disease is highly
related to insulin, a hormone that regulates blood sugar, also referred to as glucose,
in the body. The underlying cause of diabetes varies from each of the four types: type
1 diabetes, type 2 diabetes, gestational diabetes and other specific types of diabetes
[1].

Diabetes is an important health care problem. According to a global report by
the World Health Organization (WHO) [51], around 422 million adults, globally,
had diabetes in 2014. The diseases prevalence and the number of cases of diabetes
continues to increase. Diabetes was found to be the direct cause in 1.5 million deaths
in 2012. Additionally, in the same year, 2.2 million deaths were due to complications
of the disease. Possible complications caused by diabetes are heart attacks, strokes,
kidney failure, etc [65]. These complications are some of the main costs in the
healthcare system and could be reduced with better control of diabetes [15].

The treatment for this disease is blood glucose control and with it, complications
can be prevented. The objective of blood glucose control is to minimize the
occurrences of hypoglycemia and hyperglycemia, low and high blood glucose levels,
respectively. Normoglycemia is the normal concentration of blood glucose, this is
achieved when the values of glucose are between 80-130 mg/dl for the fasting plasma
glucose, and less than 180 mg/dl for one or two hours after a meal for the postprandial
plasma glucose [58]. Factors that influence the blood glucose levels are diverse,
including, but not limited to, diet, physical exercise, insulin therapy, ... These factors
can be addressed and are often main treatments to combat diabetes.

To track and control blood sugar levels, self-monitoring by the patient is necessary
[9]. In order to do this, different types of glucometers are available in the market.
The traditional models require that the patient prick themselves to get a blood
sample (capillary blood glucose measurements), however, this method can be painful
[21]. Therefore, the capillary blood glucose measurements (CBGMs) are often not
monitored continuously throughout the day, resulting in only a few samples being
taken daily. Currently, there are also systems that provide a continuous glucose
monitoring (CGM) obtaining subcutaneous glucose measurements every few minutes.

CGM sensors, such as the Medtronic [Northridge, CA] Guardian® [38], are
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minimally invasive systems that measure the glucose in the interstitial fluid instead of
the plasma. The measurement of glucose in the interstitial fluid is delayed with respect
to the blood glucose levels, this delay could be longer than 10 minutes [19]. The use
of a glucose predictor could provide valuable information, making the data coming
from the CGM in a time horizon more useful. Additionally, a predictor would allow a
patient to plan their actions, and therefore, deal with the disease. Although, to have a
useful predictor, two factors have to be taken into account. First, the time prediction
horizon has to be long enough so patients can adjust their actions. Secondly, according
to [49] the fact that there is a delay between the CGM system measurement and the
blood glucose value, means it is important that the time prediction horizon is longer
than the delay so the patient can anticipate any changes that may occur in his or her
blood glucose levels.

Different techniques have been followed to predict the blood glucose level as, for
instance, neural network models (NNMs), auto-regressive models (ARMs), recurrent
neural networks (RNNs), convolutional neural networks (CNNs).

[49] proposed a NNM to predict glucose in real time from two different sensors.
The model only used CGM measurements as input data. The algorithm provided
three different prediction times for 15, 30 and 45 minutes. Moreover, they compared
their model with the [62] ARM model, obtaining better results using the NNM. This
proved that the use of artificial neural networks could fit in this kind of problem.

In addition to previously mentioned approaches, [68] proposed a model that was
built from CNN layers and employed WaveNet algorithms. They used the database
OhioT1DM dataset! developed by [35] that contains type 1 diabetes patients’ glucose
levels, insulin bolus, carbohydrate intake and time. They also used other input data
such as heart rate and temperature. However, these new parameters hindered the
performance of their model.

A RNN, proposed by [2], used input data from the previous values of a CGM
sensor. They compared their model and the model of [49]. The results showed that
the RNN architecture was better in making predictions than the NNM model.

Neural network techniques have been used in the past and having good perfor-
mance in the prediction of blood sugar levels. The use of RNN is recommended
because their feedback connections allow them to learn temporal dependencies [2].
This Master’s Thesis presents a model using long short term memory neural networks
(LSTM). LSTMs are a type of RNNs designed by [23].

1.2 Motivation and objectives

The main goal of this Thesis is to design and implement a set of predictors with the
aim of predicting the glucose level of type 1 diabetics. First, a main predictor model
developed will consist of LSTM artificial neural networks fed with previous values
of glucose, insulin bolus and meal intake. Based in the main predictor model, a set
of predictors specialized in forecasting for different prediction times (PTs) will be
deployed. Furthermore, the use of different input dimensions in the performance of
the predictors will be explored. The Master’s Thesis is based and extends the work

! Avalaible in: http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.html
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of [49].
To achieve the objectives described above, this Thesis will complete the following;:

e Study diabetes disorder, focusing on diabetes type 1.

e Explore the basis of recurrent neural networks, and specially LSTMs neural
network and their use in forecasting.

e Design a predictor based on a LSTM architecture.

e Train the predictor to find the optimal parameters for each PT (5, 15, 30 and
45 minutes) and for each input dimension (5, 20 and 50).

e Validate the set of models specialized in predictions for each PT and each input
dimension.

1.3 Document layout

This Master’s Thesis is divided into six chapters:

e Chapter 1 presents the objectives, the motivation and the most important
aspects of each chapter.

e Chapter 2 will explain the function of insulin and glucagon and how these two
hormones helps to control the blood sugar levels. It will continue explaining the
main types of diabetes mellitus, and which is the effect of the hypoglycemia and
hyperglycemias. Lastly, it will present the main treatments for diabetes type 1
and the different devices used to control the glucose level.

e Chapter 3 will start by presenting the different paradigms of learning for
artificial neural networks (ANNs). Then, the perceptron the most basic ANN
will be presented. In addition, it will provide insight of the RNNs. It will also
introduce the back-propagation through time (BPTT) algorithm, an algorithm
to perform the training of the RNN. Moreover, it will present the limitations of
the RNN and the problem of the vanishing and exploding gradient. To conclude,
it will give an introduction to the basics concepts of LSTM neural network and
the main reasons of its creation.

e Chapter 4 will start by presenting the development environment. Then the
chapter will continue by explaining the nature of the dataset and the pre-
processing techniques used to prepare the data to feed the proposed predictor.
Furthermore, it will show the process of arrange the data for the training and
evaluation for the proposed predictor. In addition, the main architecture of the
LSTM based predictor model will be presented. Finally, it will show the search
of the optimal parameters to predict for each PT and each input dimension,
concluding with a set of predictors optimized for each PT and each input
dimension.
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e Chapter 5 will be dedicated to assess the set of predictors designed in Chapter 4.
First to be presented will be the metrics used to measure the performance of
the models. Afterwards, the results from the different studies carried out in this
chapter will be presented. To conclude, the results will be discussed.

e Chapter 6 will give the conclusions of the Thesis and outline possibilities of

future research.



Chapter 2

Background

This Chapter aims to give a brief review of the current knowledge about diabetes,
focusing on type 1 diabetes. First, it will give an introduction of the importance of
the main hormones that control the blood sugar levels: insulin and glucagon. It will
continue by classifying the different types of diabetes, the main consequences of the
diseases, and the main methods of treatment for type 1 diabetes. To conclude, it will
present some of the technology used to control diabetes. The main ideas exposed in
this Chapter comes from [26], [6] and [48].

2.1 Mechanism of blood sugar control: Insulin and
Glucagon

There are two main hormones, insulin and glucagon, that help to control blood sugar
levels in the body. Insulin is a hormone that is secreted in the pancreas, specifically,
in the beta () cells of the islets of Langerhans. One of the main functions of insulin is
to decrease the blood glucose level. In the alpha («) cells of the islets of Langerhans,
glucagon is secreted. Its main function is to raise the blood glucose concentration,
therefore, it has the opposite effect of insulin.

The insulin levels of a person who is fasting are between 5 and 25 11/ml [14]. There
are different factors that increase these levels. The secretion of insulin depends mainly
on the blood sugar level, for instance, after the absorption of the carbohydrates there
is an increase of the blood glucose levels and then the secretion of insulin grows.
Other factors that increase insulin levels of secretion include the presence of some
amino-acids in conjunction with the increase of the glycemia, or also known as blood
glucose levels. Moreover, gastrointestinal hormones, such as gastrin and secretine, are
released by the digestive tract after a meal. These hormones induce an early secretion
of insulin as a preventive action to the absorption of glucose after meals.

Glucagon and growth hormone are hormones that stimulate the secretion of
insulin. On one hand, hormones, such as Glucagon, may increase the secretion of
insulin indirectly by the strengthening of the glucose stimulus. However, during
hypoglycemic events, a stimulation of the sympathetic nervous system increases the
secretion of glucagon is produced and, at the same time, the secretion of insulin is
inhibited. On the other hand, other hormones, such as growth hormone, directly
stimulate the secretion of insulin.
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The stimulation of the parasympathetic nerves also increases secretion of insulin
during a hyperglycemia event.

Insulin impacts glucose in two ways that result in the reduction of blood glucose
levels. First, insulin promotes the glucose uptake by the cells. Glucose needs the
action of insulin to pass though the membrane cell and this way can be used for the
cells as a source of energy. There are exceptions, for instance, the brain does not need
insulin to be able to use the glucose, because brain cells are permeable to glucose
and can use glucose without the insulin intervention. Glucose is the main source of
energy for the brain, which needs a continuous input of glucose [10]. If glucose levels
decrease too much, an individual may go into coma. Other tissues that do not need
the action of insulin to use glucose are the retinas and the kidneys.

The second role of insulin consists of the storage of the glucose for later use. There
are two methods in which the glucose is stored. The insulin promotes the glycogenesis,
which is the process that stores the glucose in the form of glycogen. This glycogen
is stored in the liver to be used later in order to maintain normal blood sugar levels
in times of fasting. Glycogen is also stored in muscular cells to be used during times
of physical activity. Second method happens when the blood glucose levels are so
high, that all the glucose cannot be stored as glycogen, then insulin promotes the
conversion of glucose into fatty acids that are later converted and deposited as fats.

The deficit of insulin promotes the use of fats as an energy source, which produces
Acetyl Co-enzyme A. If this deficit is prolonged over a long period of time then the
Acetyl Co-enzyme A is used to produce ketone bodies. These ketone bodies modify
the pH of the blood and may cause ketoacidosis and possibly a coma that may end in
death. Moreover, the deficit of insulin decreases the number of proteins because there
is an increase of the catabolism of proteins and also the protein’s synthesis stops. All
this contributes to an increase of amino-acids in the blood plasma. These amino-acids
are used as a source of energy or as substrate for the gluconeogenesis, the formation of
glucose from substances other than carbohydrates. The loss of proteins can produce
an alteration of several functions of the organs.

Glucagon is the other hormone that helps to maintain the blood glucose levels
between the normal values. Its main function is opposite to the one of the insulin.
Glucagon raises the levels of blood sugar in one of two ways that glucagon promotes:
glycogenolysis and gluconeogenesis. The glycogenolysis is the extraction of glucose
from the glycogen in the liver and is the main source of glucose for short fasting
periods. In addition, the glucagon increases the gluconeogenesis in the liver and if
the fasting last for a long period of time and glycogen reserves are depleted, the
gluconeogenesis is the only source of glucose [54].

2.2 Diabetes mellitus

Diabetes mellitus, also known as diabetes, is a major healthcare problem [63].
According to the global report by the World Health Organization (WHO) [51], around
422 million adults had diabetes in 2014 and the number of cases and the prevalence
are increasing. Diabetes was the direct caused in 1.5 million deaths and 2.2 million
deaths were due to complications of the disease in 2012. Possible complications are
heart attacks, strokes, kidneys failure, among others [65]. These complications are
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some of the main costs in the healthcare system. These costs could be avoided with
a better control of diabetes. [15].

Diabetes is a chronic disease that occurs when the pancreas does not produce
enough insulin or when the body has a resistance to the insulin that it produces [51].
Insulin is essential for glucose to function properly in the metabolism, as can be seen
in Section 2.1.

2.2.1 Types of diabetes

There are different types of diabetes and the underlying cause of diabetes varies from
type to type. Diabetes is classified in four different groups: type 1 diabetes, type 2
diabetes, gestational diabetes and other specific types of diabetes [1].

2.2.1.1 Type 1 diabetes

Type 1 diabetes, also known as juvenile diabetes or insulin-dependent diabetes, is a
chronic condition. The usual onset age of type 1 diabetes is puberty, but can start at
any age [17].

Type 1 diabetes can be caused by injury of 5 cells in the pancreas or by diseases
that impair insulin production. The causes of the destruction to [ cells include,
but are not limited to, autoimmune diseases and viral infections. Moreover, genetic
inheritance and environmental factors also play an important role in the degeneration
of B cells [26].

The main symptoms that patients can suffer are related to the high levels of
blood sugar. These symptoms include, but are not limited to: dry mouth, constant
urination, extreme fatigue and quick weight loss, etc [17].

2.2.1.2 Type 2 diabetes

Type 2 diabetes is the most frequent case of diabetes. According to [17], around 90 %
of all cases of diabetes are type 2 diabetes. In most cases, type 2 diabetes is seen in
adults older than 50 years old, although it seems to be an increase in the number of
cases in younger ages. The causes of type 2 diabetes are not completely understood,
however, it has a strong relation with obesity, sedentary lifestyle, age and genetic
inheritance [17].

Type 2 diabetes is due to an insulin resistance in the patient’s cells in addition to
the pancreas not being able to make enough insulin to overcome this resistance [26].
The symptoms may be identical to the symptoms on the type 1 diabetes, although,
the onset of the type 2 diabetes is slower and patients can live for long periods of
times without the acute symptoms of the disease[17].

The most common treatment of type 2 diabetes is exercise, diet control, weight
reduction and pharmacological treatment. This all helps to control the disease without
insulin injections [26]. This treatment helps to remit or improve the patient condition.

2.2.1.3 Gestational diabetes

According to [17] Gestational diabetes is a temporary condition that occurs in
pregnancy and it resolves when pregnancy ends. However, it can also carry the



8 2. Background

long-term risk of type 2 diabetes. Moreover, after birth, those children also have a
higher risk to develop type 2 diabetes. Gestational diabetes is usually diagnosed in
the second and the third trimester, although it also can be detected in the first one
[17].

2.2.1.4 Other specific types of diabetes

This last type of diabetes is made up of less common causes where the cause that
leads to diabetes is identified in a particular form [1]. This group includes, but is not
limited to: pancreatopathy, infections, genetic syndromes among others [65].

2.2.2 Hypoglycemia and hyperglycemia events

The normal concentration of blood glucose, normoglycemia, is achieved when the
values of glucose are between 80-130 mg/dl for the fasting plasma glucose, and less
than 180 mg/dl one or two hours after a meal for the postprandial plasma glucose
[58]. The postprandial plasma glucose is the concentration of blood sugar after a
meal. Type 1 diabetics cannot achieve these values without external help because
they have a deficit of insulin production, that is what causes the hypoglycemia and
hyperglycemia events.

Hypoglycemia and hyperglycemia are the two majors consequences of diabetes,
and they provoke most of the complications associated with the disease [48].
Hypoglycemia happens when the blood sugar is below 70 mg/dl [4]. As stated
in Section 2.1, the main source of energy for the brain is glucose. Therefore,
hypoglycemia causes severe dysfunction in the nervous system, including coma and
death [65].

According to [65], a hypoglycemia can occur for different reasons. One of the
causes can be the use of more than the needed insulin, these could reduce the blood
sugar below the normal levels. Moreover, physical activity can lead to a hypoglycemic
event, in addition to fasting for long periods, such as a night sleep. Not eating a proper
meal may turn out to be the cause of low blood glucose level too [65].

Hyperglycemia is a higher blood glucose level than the normoglycemia values. A
value higher than 180 mg/dl two hours after a meal is considered hyperglycemia [3].
A prolonged hyperglycemia over time can cause damage in the tissues. This damage
may produce macrovascular and microvascular diseases, such as atherosclerosis
and retinopathy, respectively [65]. Another disease caused by hyperglycemia is
ketoacidosis [48].

2.3 Management of type 1 diabetes

Currently, the most utilized therapy to manage type 1 diabetes is intensive therapy.
This intensive therapy tries to maintain the blood glucose levels in the normoglycemia
range and it consists of the following: control of the glucose levels, intensive insulin
therapy, nutritional therapy and physical exercise [65]. Furthermore, it is essential
that the patients are trained and educated about diabetes, so they can self-manage
it and develop the skills necessary for diabetes self-care [6].
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2.3.1 Glycemic control

The glycemic control is used to adjust the patient treatment. The hemoglobin A1C
test assess the necessary changes in the patient’s treatment in the long term. In
the other hand, the self-monitoring of blood glucose is used to adjust the patient
treatment in the short term.

The value of the hemoglobin A1C test is a percentage that represents the blood
sugar levels over the last two to three months [65]. It is used by the clinician to
evaluate the glycemic control in the long term and to assess the treatment [6].

The self-monitoring of blood glucose is mostly used by the patients. The patients
have been trained to use this value to make the necessary adjustment to their
treatment. Therefore, the value of blood glucose levels is of high importance in
the treatment of diabetes type 1. The number of measurements of the patient’s
capillary blood glucose is assessed by a clinician. In addition to capillary blood glucose
monitoring, there is also evidences that the use of continuous glucose monitoring
sensors are helpful for glycemic control [28].

[6] recommends the following glycemic values of the previous tests for adults with
diabetes, with the exception of pregnant women. These values can be different for
each person depending of their situation and their clinician’s judgment:

e Hemoglobin A1C less than 7%.
e Fasting plasma glucose: 80 - 130 mg/dl.

e Postprandial plasma glucose: less than 180 mg/dl.

2.3.2 Insulin therapy

In intensive therapy to manage diabetes, the insulin treatment applied is also an
intensive insulin therapy. This insulin therapy tries to emulate the functioning of
a healthy pancreas, which is accomplished using multiple insulin injections or with
insulin pumps. In this therapy, there are two kinds of bolus. The basal bolus that
emulates the secretion of the pancreas in fasting periods and the postprandial to
control hyperglycemia after the meal.

It is important to emphasize the importance of training and education of the
patient on the disease, as it allows the patient to modify the bolus in function of the
meals, exercise, and other parameters that can affect their blood sugar levels.

According to [12], insulin can also be classified by its pharmacokinetics. There are
three factors that help characterize insulin. First, the onset defines the absorption
time of the insulin by the body. Secondly, the peak states the moment of maximum
effect of the inulin. Lastly, the duration establishes the time that insulin remains in the
patient’s body. Four types of insulin are defined in relation to the pharmacokinetics:
rapid-acting insulin, intermediate-acting insulin, long-acting insulin and biphasic
insulin [12]. Figure 2.1 shows a simulation of the different pharmacokinetics insulin
types.

As stated before, there are two types of insulin bolus. For the basal bolus,
intermediate-acting insulin and long-acting insulin are used. On the other hand,
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Figure 2.1: Simulation of different pharmacokinetics insulin types.

the postprandial bolus are performed with rapid-acting insulin. Biphasic insulin are
used to perform both insulin bolus in only one injection [12].

2.3.3 Nutritional therapy and physical exercise

The objective of this treatment is to modify the diet to improve glycemic control
[6]. The recommended diet is a balanced and healthy diet [11]. In addition, planned
intake of carbohydrates improve blood glucose levels and the quality of life [34].

Physical exercise is another important part of the treatment against diabetes. It
improves glycemic control because during exercise the motor cells are able to uptake
glucose without the action of insulin and in this way, it reduces the blood sugar
levels [26]. In addition, physical exercise increases the insulin sensitivity, so less
insulin is needed to have the same effect in the patient. This should be considered
in order to prevent the occurrence of a hypoglycemia. Moreover, it helps to decrease
cardiovascular risk factors and helps to lose weight. It is recommended to do 150
minutes of moderate aerobic exercise per week, distributed over at least 3 to 5 days

[6].
2.4 Diabetes technology
According to [5], diabetes technology refers to the devices and, also, software that

helps to manage the diabetes disease. This classification is going to be divided in two
main categories insulin delivery and blood glucose monitoring [5].
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2.4.1 Insulin delivery

The most used methods to deliver insulin are insulin syringes and insulin pens. Insulin
syringes are the traditional way to deliver insulin and consists of the syringe and the
vial with the insulin. Insulin pens combine the syringe and the vial in one device.
The use of insulin pens have some benefits. It is easier to use and may help people
with lack of dexterity skills [45].

(a) Syringe and vial (b) Pen

Figure 2.2: (a) Insulin syringe [60] and (b) Lantus® SoloStar® insulin pen [56]
systems to deliver insulin therapy.

Insulin pumps are also widely used in intensive insulin therapy. Insulin pumps try
to emulate the secretion of a healthy pancreas, therefore, there are two different types
of injections: basal insulin and insulin bolus. Insulin pumps only deliver one type of
rapid-acting insulin. The basal insulin injections are small quantities of insulin that
emulate the secretion of pancreas in the fasting periods. The insulin bolus emulates
the pancreas secretion after a meal, this bolus is calculated and programmed by the
patient before each meal. The use of insulin pumps improve the glycemic control and
reduce the number of hypoglycemia occurrences [66].

2.4.2 Blood glucose monitoring

Individual self-monitoring of blood glucose is an important part of diabetes treatment
and is even more important if the patient is using an intensive insulin therapy.
To accomplish the self-monitoring of blood glucose, an important device called a
glucometer is used. Glucometers are devices that measure the capillary blood glucose
levels. The information provided by the blood glucose monitor helps patients make
better decisions about their treatment.

Continuous glucose monitor sensors provide information about the trend, rate
of change and concentration of glucose in the patient [48]. In this Master’s Thesis,
glucose data is provided by the Guardian® Real-Time CGM System, a CGM sensor
that measures the glucose in the interstitial fluid every 5 minutes. In Section 4.2, the
dataset will be furthered explained.
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Figure 2.3: MiniMed' " 670G insulin pump [39].

Figure 2.4: Accu-Check® Aviva Glucometer [50].

Figure 2.5: Guardian  Sensor 3 CGM System [40].



Chapter 3

Recurrent Neural Networks

This Chapter is a brief summary of recurrent neural networks that will be used in
the predictor of this Master’s Thesis. The main aspects discussed here are from [25],
[16], [42] and [59].

First, a brief introduction of artificial neural networks (ANNs) and types of
learning will be given.

The recurrent neural networks (RNN) will be exposed and the main ideas behind
these networks. Then, the algorithm of back-propagation through time to train
recurrent neural networks will be explored and the limitations of RNNs will be
explained. To conclude, the long-short term memory (LSTM) neural networks, a
type of RNN that were designed to overcome their limitations, will be presented.

3.1 Introduction

ANNs are inspired in a simple abstraction of the neurons of the brain [16]. These
ANNs receive some inputs to generate outputs. The inputs to the ANN can be
different kinds of data, for example, images, signals to be processed, time series, etc,
so the ANN can produce the desired output. ANNs learn by examples, that are in
training datasets, to solve a specific task. The process of learning is based on the
modifications of the weights and biases in the neurons. These learning processes can
be classified in three different paradigms: supervised learning, unsupervised learning
and reinforcement learning ([57] [7]).

In supervised learning, the dataset used for training is labeled, so each input data
has his correspondent output, also called target. Being (I = {i1, 49, ..., i, }) the inputs
that produce the correspondent labelled output or target (7' = {t1,t2, ...,t,}). An
error function that measures the predictions of the ANN with the targets associated
to the input data has to be defined. These error functions are propagated by the
neural network model, in this way, the ANN learns from past experiences. There
is also necessary a test dataset used to validate the performance of the model built
with ANN. The most popular supervised learning algorithm to train ANN is the
back-propagation algorithm [55].

On the other hand, in unsupervised learning the training dataset is not labeled;
so the model only trains in response to its inputs. One of the most used unsupervised
learning methods is the cluster analysis, which is used to find hidden patterns in the
data or for clustering the data. Evaluating the performance of these models is less
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straightforward than in the supervised learning. Some examples are Adjusted Rand
Index, H criterion and Mutual Information, among others [64].

To conclude this classification, it is important to note the reinforcement learning
rule. The model is provided with a grade for each different input value to the network.
This grade or score is the performance of the model, and the model trains to maximize
this score [16].

ANNSs have proved successful in solving problems that are highly non-linear, where
variables vary over time, or to detect patterns and trends that are complex and hidden,
among others. Several examples of these solutions in different fields may be cited:
in the image classification, ANN have been used for medical image analysis [33], on
natural language processing ([13], [27]), and for audio signal processing [47]. The
use of ANNs to predict the blood glucose levels may be a good approach as shown in
Section 1.1. The forecast of blood glucose levels will be a supervised learning problem.

One of the simplest ANN is the perceptron [53], and it will be used in this Thesis as
the final layer of the proposed predictor, see Section 4.3. The perceptron formulation
is shown in Equation 3.1.

y=¢(Wz+b) (3.1)

The internal parameters of neural networks are the weight matrix (W) and the
vector bias (b). These internal parameters are applied to the input vector to the
perceptron (z). The activation function (¢) is applied to the results of applying
the internal parameters to the input vector. This produces the output vector with
predictions made by the perceptron (y). The activation function may be linear or
non-linear. The choice of a specific activation function is determined by the specific
problem to solve, see Figure 3.1.

3.2 Recurrent Neural Networks

The choice of the type of the network architecture is strongly influenced by the type
of problem to be solved. In this Master’s Thesis, a forecast time-series is stated thus
a LSTM architecture has been chosen as the most optimal solution. LSTM are a type
of recurrent neural networks, and it would be explained further in this Chapter (see
section 3.2.2). Recurrent neural networks (RNN) are designed to process sequences.
They excel in processing sequential data because they have recurrences that provide
memory to the RNN [25]. This memory enables the RNN to learn sequential or
temporal patterns.

There are several ways to build RNNs, because most recurrent functions can be
considered a RNN [25]. To show how a RNN works, a recurrent neural network is
presented in Eq 3.2.

h =@ (Wa:k +Uhp_1 + b) (3.2)

where k stands for the time step and hy is the output of the RNN. Moreover, z, is
the input vector that is a sequence of values from k = {1,...,7}, being 7 a number of
time steps that belongs to N. In addition to the internal parameters W and b, the
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Figure 3.1: (a) Linear, (b) ReLU, (c) sigmoid and (d) tanh activation functions.

RNNs include the weight matrix (U) that is applied to the former output of the RNN
hg_1.

The unfolding of a RNN consists of converting the RNN in a multilayer perceptron
with as many layers as the length of the sequence input (7 time steps). The multilayer
perceptron [41] is the generalization of the perceptron (see Equation 3.1) for the case
of multiple layers. Figure 3.3 shows a representation of the unfolding of Figure 3.2
for a 7 = 2. By using Equation 3.2 the process is shown in Equation 3.3.

hy=¢ | Wap+U | p(Wzxg_1+Uhg_2+b) | +b (3.3)

hi—1

3.2.1 Back-propagation through time

The internal parameters of the ANN are initialized with a random value. Therefore,
the objective of training an ANN is to modify its internal parameters (weights and
bias) to produce a system’s output that approximates closely to the desired value. The
back-propagation algorithm [55] is a method to find the local minimum of a function.
Therefore, to train the ANN is needed a function that assess the performance of
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the model. This performance function is also called loss function. Finding the
minimum of this loss function, provides the optimal internal parameters to the ANN
and consequently it will perform better in the assigned task. The most common loss
function (L) applied in the back-propagation is the mean square error (MSE).

The back-propagation algorithm propagates the error from the loss function (L) by
computing the gradient of L. Then, it updates the weights and biases correspondingly
to the gradient of L using the stochastic gradient descent (SGD), more sophisticated
methods are stated in 4.4.2. In addition to the gradients, it is needed a coefficient
called the learning rate («) to update the parameters, as shown in Equation 3.4. The
learning rate («) is a decisive parameter to train the ANN, its value determines the
time it takes to reach the minimum of the function. In addition, a value of o too high
may end with the algorithm not being able to converge to find a solution.

W(r+1)=W(r)— osz?,L( 3 (3.4)
b(r+1)=b(r) — aag(Lr)

However, RNNs cannot be trained directly with the back-propagation algorithm
[55] because the gradients cannot be computed with it. Real-time current learning
(RTRL) and back-propagation-through-time (BPTT) are two modified methods of the
back-propagation algorithm that are available to train RNN. Both methods provide
the same gradients, the main difference is the process followed to calculate them. This
Thesis will focus in the BPTT algorithm.

The BPTT algorithm can be seen as applying the back-propagation algorithm to
the unfolded RNN [25]. To see how the BPTT behaves, it will be applied to the single
layer RNN defined by the Equation 3.2.

The steps are the same as in the back-propagation algorithm [55]. However, now
the input vector (xy) is a sequence from k = {1,...,7} and the output vector is hy.
The BPTT starts the calculation of the gradient at the last point of the sequence T,
and then it continues working backwards through the whole sequence. The BPTT
as the back-propagation algorithm is resolved in three steps: the calculation of the
loss function, the application of the chain rule to calculate the gradients and, lastly,
the updating of the RNN parameters. The back-propagation algorithm is a iterative
process that stops when the minimum of the loss function is founded and the index r
denotes the actual iteration, see Equation 3.4.

The first step consists in compute the loss function. The loss function assess the
error between the predictions made by the ANN and the correspondent targets (see
Section 3.1). In this Thesis, it has been selected the mean square error (MSE), see
Equation 3.5.

1 N
= g (3.5)

where [(n) = [t(n) — h(n)], is the vector that measures the error of the predicted
output of the RNN (h(n)) and the correspondent target (¢(n)), being n the specific
sample [59].
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Before continuing, let Ao B be defined as the element wise product of matrices A
and B of same dimension, with elements given by:

(Ao B)ij = (A)ij(B)ij (3.6)

Next step consists of back-propagating the error through the network. The chain
rule of calculus is used to compute the gradients of the error because the parameters
of the RNN are an indirect function of the loss function [16]. Then, the gradients of
L are calculated as shown in Eq 3.7.

gk = 6(r)an(r)

%ﬁ,) =6(r)hg_1(r) (3.7)
iy = 3(r)

where hi_1(r) is the output of the time step (k-1) at the iteration r, k = {1,...,7}.
d,(r) is the sensitivity at the last time step. The sensitivity can be thought of as
an intermediate variable that simplifies the calculus and the notation in the back-
propagation algorithm, and is computed as shown in Eq 3.8:

5:(r) = =2(l(r)) o Fr (2,(r)) , for k=7

or(r) = (Fk (zk(r)) o (U(r))T> () | for k={r—1,...,1} (3:8)

where being zj(r) the output of the RNN in the & time step without the activation
function, as shown in Eq 3.9:

2z =Waxp +Uhgp_1+ 0 (3.9)

where Fj,(zx(r)) is the diagonal matrix shown in the Equation 3.10, being ¢ the
derivative of the activation function in Eq 3.2.

(1) o e 0
£, = . ‘ﬁ(_’”) 9 (3.10)
e e

Once the sensitivities are calculated, the last step is to update the parameters of

the RNN:

Wir+1) = W) —a (Sis o) @)
Ulr+1) = U(r) = a (Sizy 1) (i1 (1)) (3.11)
b(r+1) = b{r) — @ (Zf_, d(r)
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It is possible to notice in Equation 3.11 that the gradients for the parameters are
summed at each time step, because the parameters are shared across the time steps
[25].

Finally, it is important to note the problem of long-term dependencies that were
explored by [22] and [8]. When the gradients are propagated over too many time steps,
the gradients tend to vanish (very small value) or to become unstable (becoming a
very huge value). This problem makes it very difficult to learn long dependencies for
the RNNs.

In RNNs, the same activation function is applied during multiples times. It
produces a highly non-linear behavior. There are some activation functions that
produces this non-linear behavior that boost the vanishing and exploding gradient
phenomenon, for example, the sigmoid and the tanh, see Fig 3.1c and Fig 3.1d
respectively.

3.2.2 Long Short-Term Memory neural networks

The long short-term memory neural network were introduced by [23]. LSTMs are
a special type of RNN developed specifically to solve the vanishing and exploding
gradient problem. Thus, being able to learn long-term dependencies as well as short-
term dependencies. An LSTM cell (see Fig 3.4) is composed of 4 layers, also called
gates, that interact with the cell state (cg), the output of the LSTM (hy), also called
the hidden state, and between them.

The cell state is the memory of the cell and maintains the information through
the unfolding of the LSTM cell. The inputs to the four gates are the correspondent
xy, vector, where k is a sequence from k = 1,...,7, and the previous outputs (hidden
states) from the LSTM (hy—_1).

The four gates are the forget gate (f), the input gate (ix), the new cell state
candidate gate (c;) and the output gate (o). Each gate has its own parameters,
biases (b), weight for the input value (W) and weight for the hidden state value (U),
and the sub-index used denotes to what gate corresponds. The behaviour of a LSTM
cell is the following:

1. The forget layer decides what percentage of the information from the cell state
has to be left behind and which should remains in it. The activation function of
this gate is a sigmoid (o) (see Fig 3.1¢). Therefore, the output of the forget layer
is between 0 and 1. The output of the forget layer (fx) is multiplied element-
wise (see Eq 3.6) to the cell state (ci). This process is the one that erases the
information of the cell state. This process is the same in the input and output
gate that also have a sigmoid as activation function.

fi=0 (fok + Ufhk_1 + bf) (3.12)

Cr = fk O Cr—1 (313)
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2. The next step consists of updating the new information to the cell state, c;, .

The new cell state candidate gate (¢x) proposes the new information that may
be added to the memory of the cell (see Equation 3.15). The activation function
is a hyperbolic tangent (tanh)(see fig 3.1d), so this gate is, also known as the
tanh gate. The input gate decides what percentage of the new information is
going to be stored in the memory of the cell. This is done through an element
wise multiplication such as in the previous step (see Equation 3.14). The result
from these operations is the new information, see Equation 3.16.

ir =0 Wixg + Uihg—1 + b;) (3.14)
¢, = tanh (Wzl’k + Uihp—1 + bi) (3.15)
Cij, = 1 © Cg, (3.16)

. The new cell state is updated with the information provided by the two previous

steps, as shown in Equation 3.17.

¢y = cf, + Ciy, (3.17)

. The output hy, is obtained through two mechanisms. First, the cell state (¢) is

modified with an hyperbolic tangent (tanh) activation function. To conclude,
the output gate selects the percentage of the data that is going to be output by
the cell.

o =0 (Wozk + Ushg—1 + bo) (3.18)

hr = o o tanh (Ck) (319)
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Figure 3.4: Computational graph of a LSTM cell [59].
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Chapter 4

Design Process

This chapter describes the design process of this Master’s Thesis. First, it presents
the development environment used to develop the glucose predictor and the concept
of computational graph.

Then, the dataset used in this thesis is presented. Moreover, the pre-processing
techniques used and how the data is arranged to train and validate the model proposed
is also presented. The neural network architecture proposed for the glucose predictor
is shown as well. To conclude, the process of searching the optimal parameters of the

neural network is presented.

4.1 Development environment

The chosen framework to implement the predictor is PyTorch [44]. PyTorch is an open
source platform to develop neural network models and it is deeply integrated with
python. Two main features from PyTorch are worth noting: tensors and dynamic
computational graphs.

The PyTorch tensors are represented similarly to NumPy [43] as n-dimensional
arrays. One of the advantages is that PyTorch tensors can be computed on Graphical
Processing Units (GPU) with the Compute Unified Device Architecture (CUDA) and
this can help to reduce computational time.

First, let’s explain what is a computational graph. A according to [59]
computational graph represents a mathematical expression and is composed of the
mathematical operations, the inputs and the outputs. Mathematical operations are
represented by nodes, inputs are the variables that feed the mathematical expression
and outputs are the solutions of the mathematical operations [59]. The computational
graphs paradigm is implemented in two ways. First, static computational graphs,
and second, dynamics computational graphs. In the static computational graph
approach, the graph is created before running the program. This is the approach
used in frameworks such as TensorFlow. In contrast, PyTorch uses the dynamic
computational graph paradigm. In PyTorch, the computational graph is declared
with the Autograd package. Autograd creates the computational graph automatically
when model operations are performed. This automatic process is known as a dynamic
computational graph. Therefore, the dynamic computational graph can be different
at each iteration because it is created on each iteration.

Computational graphs are used by the framework to calculate the back-propagation
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algorithm [52] [55]. The Listing 4.1 and Listing 4.2 show how PyTorch computes the
back-propagation algorithm for a simple neural network example. In this example, it
is possible to see that the computational graph is created in the moment of the
forward propagation (MLP(x)), the first step of the back-propagation algorithm.
Once the gradients are calculated (second step of the back-propagation algorithm)
with (loss.backward()), the computational graph is freed. The final step of the
algorithm is when the parameters are updated with (optimizer.step()). Also, it would
be possible to update the parameters by implementing the expression with tensors.
Prior to presenting the example of how the back-propagation algorithm is carried out,
following sections will demonstrate the different ways to create ANNs in PyTorch.

PyTorch allows ANNs to be developed from scratch using Tensors, but also
includes torch.nn class that provides built-in functions and classes to create ANNs
with a more comprehensible, concise and scalable approach. It also includes built-in
activation functions, such as ReLU, sigmoid and tanh (see Fig 3.1), and loss functions,
among others features. To analyze the different approaches, a multilayer perceptron
with two layers, 12 inputs and 1 output will be built. The first layer will have a sigmoid
activation function and the second layer will have a linear activation function. This
neural network will be built from scratch, using the built-in functions and classes from
the torch.nn class, and, will conclude by using the sequential class of the torch.nn
class. Notice that these approaches are not mutually exclusive.

First, let’s present the model done from scratch just using PyTorch tensors,
see Listing 4.1. It is important to note that the tensors need to activate the
parameter requires_grad=True, so the Pytorch can calculate the gradients for the
back-propagation. In this approach the parameters (weights and biases), the
activation function (sigmoid), the forward propagation and the updating of the
parameters of the ANN have to be specified.
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Listing 4.1: Multilayer perceptron and Back-propagation from scratch

import torch

class MLP _scratch:
def __init__(self):
self.weights_1 = torch.randn (12, 2, requires_grad=True)

self.bias_.1 = torch.zeros (2, requires_grad=True)
self.weights_2 = torch.randn (2, 1, requires_grad=True)
self.bias_2 = torch.zeros (1, requires_grad=True)

def sigmoid (self, x):
return 1. / (1. 4+ torch.exp(—x))

def __call__(self, input):
layer_.1 = input @Q self.weights_1 + self.bias_1
layer_.1 = self.sigmoid(layer_1)
output = layer_.1 @Q self.weights_2 + self.bias_2
return output
# Initialization
mlp = MLP _scratch () # defining the ANN
x = torch.randn(12) # input
target = torch.tensor ([1.]) # target of the ANN
Loss_funct = nn.MSELoss() # Defines the loss function
Ir = 0.01 # learning rate
# Backpropagation
output = mlp(x) # Output from the model
loss = Loss_funct (output, target) # the loss is computed
loss .backward () # Backpropagate the gradients
# Parameter updating
with torch.no_grad ():
mlp. weights_1 —= mlp. weights_1.grad * Ir
mlp.bias_.1 —= mlp. bias_1.grad * Ir
mlp. weights_2 —= mlp. weights_2.grad * Ir
mlp. bias_2 —= mlp. bias_2.grad * Ir
mlp. weights_1.grad.zero_() # Reset the gradients
mlp. bias_1.grad.zero_()
mlp. weights_2.grad.zero_ ()
mlp. bias_2.grad.zero_()

Another way to deploy an ANN in Pytorch is using the nn.Module class, see
Listing 4.2. This allows more facilities to create more complex ANNs, whose
resulting ANN is more readable. In addition to the functions and classes provided
by the nn.Module, PyTorch also allows the creation of custom functions and layers.
nn.Linear provides a linear layer with the expected number of inputs and outputs,
and nn.Sigmoid() provides the sigmoid activation function. In addition, the use of the
optimizer simplifies the process of parameter updating.
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Listing 4.2: Multilayer perceptron and back-propagation using PyTorch classes

import torch
import torch.optim as optim
import torch.nn as nn

class MLP _functional (nn.Module):
def __init__(self):
super (). __init__()
self.Linear_.1 = nn.Linear (12, 2)
self.sigmoid = nn.Sigmoid ()
self.Linear_2 = nn.Linear (2, 1)

def forward(self , input):

layer_.1 = self.sigmoid(self.Linear_1(input))

output = self.Linear_2(layer_1)

return output
# Initialization
mlp = MLP _functional () # defining the ANN
x = torch.randn(12) # input
target = torch.tensor ([1.]) # target of the ANN
optimizer = optim.SGD(mlp. parameters (), 1lr=0.01)
Loss_funct = nn.MSELoss() # Define the loss function
# Backpropagation
optimizer.zero_grad () # Reset the gradients
output = mlp(x) # Output from the model
loss = Loss_funct(output, target) # the loss is computed
loss .backward () # Backpropagate the gradients
optimizer.step () # Updates the parameters

To conclude, let’s present another class that is inside the torch.nn class, the
sequential class. The sequential class creates the ANN by adding the modules
sequentially. This approach presents a more simple way to write the ANN, see
Listing 4.3. The back-propagation algorithm is similar to the Listing 4.2 to calculate.

Listing 4.3: Multilayer perceptron using sequential class

import torch
import torch.nn as nn

MLP = nn. Sequential (
nn. Linear (12, 2),
nn. Sigmoid (),
nn. Linear (2, 1))

The approach to create ANN with Tensors is very flexible and it allows the creation
of any kind of ANN. However, this approach is complex and very prone to error. On
the other hand, the use of the sequential class is very readable and easy to use,
although the creation of a more complex ANN could be challenging. The nn.Module
class allows enough flexibility to create complex ANNs and, at the same time, provides
a comprehensible, concise and scalable way to build ANNs. Therefore, it is the
selected approach.

Other libraries used in the development of this Master’s Thesis are: Numpy [43],
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Matplotlib [24] and Pandas [37]. Numpy is used to implement some of the metrics to
validate the predictors and also because it was needed as intermediary values between
PyTorch and the other two libraries. Matplotlib is used to display the figures that are
in this Master’s Thesis. Moreover, Pandas is used to access and modify the dataset
used in this Master’s Thesis. To conclude, MATLAB [36] has been used to develop
the filter that was applied to the signal, see Section 4.2.1.1.

4.2 Dataset

In order to develop and train our glucose level predictor based on LSTMs, a dataset
is needed. In this section, the dataset used and a brief introduction of how the data
was acquired is presented. This experiment and the analysis of the data was made
after the collection of the data done in [48]. The dataset utilized in this Master’s
Thesis is the Dataset 2 [48]. This dataset was also used in [49].

The experiment is implemented as a three weeks randomized crossover with the
participation of twelve patients, six men and six women. Three variables were
acquired from the subjects: glucose levels that were obtained from a CGM sensor
(Guardian® Real Time, see Table 4.1) and from a glucometer, insulin bolus from
their insulin pump and the food intake. The devices used in the study were the
Guardian® Real Time, a glucometer to do the calibrations for the CGM sensor, the
insulin pump owned by the subject and a PDA or a paper sheet to record the food
intake. The phases of the experiment were: training, experimental, shift and control.

Guardian® Real Time Medtronic-Minimed

Type of sensor Minimally invasive

Applied technology Glucose oxidase enzyme (Enzymatic)
Calibrations required 2 per day

Life time 72 hours on average

Sampling period 5 minutes

Measurement frequency Continuous

Table 4.1: Main characteristics of Guardian® Real Time [48]

After the experiment, all the data from the twelve patients was gathered and
analyzed. The data from the CGM sensor, Guardian® Real Time, was directly
downloaded from the sensor so the experimenter could assume the data as reliable.
The same happened with the data from the insulin pump. However, the food intake
data was filled manually so it needed a study to validate if the data was reliable. That
study compared the insulin bolus from the insulin pump with the food intake in order
to verify if the data was reliable. According to this study, some of the registers from
the food intake were missing, and others were unreliable. For the missing data, the
main meals were estimated using the information of the insulin bolus. However, not
all the information could be estimated so all the information that was missing and
unreliable data were eliminated.

After validating the information, the database had 58 complete profiles from eight
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different patients with information about the glucose levels from the CGM sensor,
the capillary glucose blood levels from the glucometer (used for the calibration of the
CGM sensor), the insulin data from the insulin pumps and the food intake converted
into grams of carbohydrates (see a patient example in Figure 4.1). Each profile has
the information of one whole day. Each day has 288 samples with a sampling period
of 5 minutes, see Table 4.1.

The implementation of the glucose level predictor is the objective of this Master’s
Thesis. Three parameters from the previous experiment will be used in this thesis: the
glucose levels from the CGM sensor, the insulin data from the insulin pump and the
the food intake converted into grams of carbohydrates. The glucose values from the
glucometer will be used automatically by the Guardian® Real Time to calibrate the
output. These three parameters are selected because they are the mains parameters
to control the glucose concentration in the body, see Chapter 2. Another important
parameter not involved in the experiment, was physical exercise. This data was not
recorded. Another issue to note is that all these variables are time dependent. The
three parameters provided have the same sampling period, 5 minutes, and are acquired
simultaneously. Therefore, the time will not be fed to the predictor because RNNs
are able to learn the time dependency by themselves.

The database obtained from the previous experiment has the variability needed
to train and evaluate a prediction model [48]. The variability among patients is
wide enough to provide different situations to the predictor proposed in this Master’s
Thesis.

4.2.1 Data preprocessing

The predictor proposed was fed with three parameters: the glucose data from the
CGM sensor, the insulin data from the insulin pumps, and the food intake, see
Figure 4.2. In this Section, these three parameters and the pre-processing techniques
applied to the raw data provided are presented.

Data pre-processing is a different set of techniques that transform raw data into
a suitable form needed to increase the performance of ANN. The raw data obtained
is often incomplete or it is not suitable to train the ANN. That is why data pre-
processing is almost always necessary when working with ANN. Another issue to
consider is that the pre-processing techniques have the risk of eliminating the relevant
information presented in the data.

4.2.1.1 Glucose preprocessing

There are three main artifacts that can be highlighted in the raw glucose data. There
are missing values (values equal to zero, see Figure 4.3), jumps in the signal due to
the calibration (see Figure 4.4) and noise in the CGM signal. Therefore, to use the
glucose data, the missing data from the sensor needs to be recovered and the impact
of the calibrations needs to be reduced, as well as the noise distortions.

First, let us focus on the missing values of the signal. According to [48], this
loss data may be caused by a number of factors. One of these factors could be a
problem with the connection between the CGM sensor and the receptor. Another
factor could be a problem that happens during the calibration. For example, if the
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Figure 4.2: Representation of the raw parameters to feed the RNN

sensor measurement is far from capillary blood glucose level then it stops sending
measurements until it calibrates itself. The selected method to correct the missing
values is the interpolation [48].

Figure 4.3 represents a profile with missing values and its interpolation.

According to [48], the Guardian® Real Time needs at least two calibrations during
the day, see Table 4.1. These calibrations are the blood glucose concentration mea-
sured by a glucometer. Users are responsible to upload the calibration measurements
into the device. Once the calibration is inserted, the internal parameters of the CGM
sensor starts to update to the approximate output of the blood glucose concentration
measurements from the glucometer. This process may produce some discontinuities
in the signal, which impairs the performance of the predictor [48], see Figure 4.4.

To compensate these distortions, a threshold of 30 mg/dl has been defined. Only
jumps bigger than or equal to the threshold are compensated. The process is done
empirically, and it proceeds as follows: if a distortion that is bigger than or equal to
the threshold is found, then it checks if there is an associated calibration value that has
produced this distortion. Once a calibration value corresponds with an artifact, then
a linear transformation is applied to the signal to correct the distortion. Figure 4.5
shows an example of the results of the process.

When performing this process, the following conclusion has been reached: the
57th profile, that corresponds to the patient 10, has been dropped from the study
because it did not have calibration data and the distortions could not be corrected.

The CGM signal is very noisy, so to reduce the noise and smooth the data from
CGM signal, a moving average filter is applied. The Equation 4.1 shows the formula
of the moving average filter. Let N be the length of the window where the averaging
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is applied, x the raw signal, and & the filtered signal. The moving average filter is a
finite impulse response (FIR) filter, so it only depends on the input parameters and
it is a time dependent filter. There are two things to keep in mind when a filter is
applied. First, the signal is not modified excessively, so the relevant information is
still presented in the signal. Second, the filter provokes a delay in the signal applied.
Nevertheless, the benefits of applying a filter outweigh the disadvantages of using it.

Taking all this into account, the chosen moving average filter has a length N = 5.
This allows the signal to be cleaned and avoids deleting relevant information (see
Figure 4.6).

i (i) = % S a(i—n) (4.1)

4.2.1.2 Insulin preprocessing

Insulin pumps have two kinds of insulin injections: basal insulin and bolus insulin (see
Section 2.4.1). The bolus insulin for the meals is several orders of magnitude bigger
than the basal insulin. The insulin bolus are represented as an impulse function or
Dirac delta function (see Figure 4.7). This may produce the RNN to ignore the value
of the bolus of insulin or another unforeseen behaviour. Therefore, a pre-processing
technique is needed.

The chosen solution is to transform the bolus of insulin, that is an impulse
function, into a rectangular function with the same area. The insulin bolus is
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Figure 4.6: Comparison between the raw CGM and the filtered CGM signal

distributed during 12 samples that correspond to 1 hour, because rapid acting insulin
used in insulin pumps, tends to acts during 1 hour on average. In addition, the basal
insulin is not transformed and it behaves as before. Figure 4.8 shows the results of
the pre-processing technique applied.

4.2.1.3 Food intake preprocessing

The food intake was manually provided by the patient. These values were transformed
to grams of carbohydrates, representing the amount of carbohydrates eaten by the
patient in the meal. Each registered meal is represented with only one value. The
representation of this parameter shows that the food intake is also represented as a
impulse function or Dirac delta function, see Figure 4.9. The problem is similar to
the one stated in the Section 4.2.1.2. Therefore, the solution is also similar.

The food intake parameter is transformed into a rectangular function with the
same area that the impulse function had with 12 samples equivalent to one hour. The
value of one hour is being established as the average absorption time of glucose for the
different types of carbohydrates. Figure 4.10 shows the results of the pre-processing
technique applied.

4.2.1.4 Normalization

The predictor proposed in the Thesis is based on LSTMs, which are a type of RNN
that have sigmoid and tanh activation functions in their gates (see Section 3.2.2).
The value of the sigmoid output is in the range between 0 and 1 (see Figure 3.1c).
Therefore, the output of the sigmoid saturate in 1 and into 0. Something similar
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happens with the tanh function, but in this case their range is between -1 and 1 (see
Figure 3.1d). It is important to note that the range from the sigmoid (0, 1) is more
restrictive than the range of the tanh. Therefore, the input parameters to the RNN:
glucose from the CGM sensor, the insulin and the food intake, should be in the range
of 0 to 1 to prevent unforeseen results and to facilitate the proper learning of the
neural network. Moreover, this process is also done to the targets of the RNN model.
Sections 3.1 and 4.2.2 explain the targets.

There are multiple ways to normalize the data in order to train an ANN, some
examples are: logarithmic normalization, standard normalization or min-max feature
scaling. The chosen method has been the min-max feature scaling, because it
guarantees the normalized values will be in the range of (0,1). This method proceeds
as follow:

1. For each parameter of the network, it has to be found the minimum value in
the dataset for that specific parameter, z,,in.

2. Similarly, the procedure is the same for the maximum value in the dataset for
that parameter, x,,q.

3. Once that the previous steps are complete, the normalization is applied:

g = i dmin (4.2)

Tmaxr — Tmin

Let x; correspond to the value of the specific parameter, that is being
normalized. Where i € {1, ..., N} being N the numbers of samples in the dataset.

4.2.2 Data arrangement

After finalizing the pre-processing process described in Section 4.2.1 the parameters
are prepared to be fed into the RNN. In this section, the process of preparing the
data to train and evaluate the predictor based in LSTMs will be presented.

The paradigm of learning used, as previously stated, is supervised learning (see
Section 3.1). Then, the data is to be arranged in inputs, I = {i1,...,i,}, and targets,
T = {t1,...,t,}. This dataset consists of a time-series of 288 samples distributed
every 5 minutes that has already been pre-processed. These time-series are: the
glucose (X), the insulin (C') and the food intake (Z). These time series have to be
converted in a supervised learning problem, this may be done in a variety of methods.
However, for this Thesis, the sliding window or windowing ([29] and [31]) has been
selected and it has been applied as follows:

1. Prior to the explanation of the windowing method, it is important to define
some important terminology. The input dimension, also known as the sequence
of values, determines how many past values of glucose, insulin or food intake
are fed as an input to the predictor. The prediction time (PT) states the time
at which the prediction will be made. PT states the time of the prediction in
minutes, but notice that the data is sampled every 5 minutes, so the prediction
time will be a multiple of 5.
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Figure 4.11: Parameters after normalization

2. Additionally, it is important to understand the functions of the glucose
parameter. The past values of glucose are an input to the predictor and, also,
the future values of glucose are the target of the predictor. Therefore, the time
series has to be re-arranged in input values and in target values. The insulin
and the food intake parameters are only inputs to the system, so they only have
to be re-arranged as input values.

3. To illustrate the process, let the input dimension be 5 and the PT be 10 minutes,
which is equivalent to 2 samples, the time series of glucose X = {x1,z9,...,2,},
the insulin, w = {wy,ws,...,w,}, and the food intake, Z = {z1,22,...,2,}.
Then, the data is arranged as illustrated in Figures 4.12 and 4.13, where [ are the
inputs (see Figure 4.12) and T are the corresponding targets (see Figure 4.13).

Note that I is a three dimension tensor, where the first one is the new size of
the dataset after the arrangement with the sliding window method. The second
dimension is the input dimension, that is the number of past values that will
feed the predictor. Finally, the third one is the number of input parameters,
in this case, three. T is a single dimension tensor with correspondent future
glucose value for each row of the Inputs (see Figure 4.12). The inputs may be
also represented as in Eq 4.3.

I=1{31.T0, ... 05 ... 00} (4.3)

where each J; is a tensor, that represents an input value to the predictor. Being
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J; a sequence of values from k = {1, ..., 7}, being 7 equal to the input dimension,
in this example, 5 time steps, as shown in Eq 4.4.

Ti Ti+1 Ti+2 Ti+3 T4
Ji= | wi Wit1 Wiy2 Wit3 Wits
Zi  Zil %42 Zi43 Zitd4

(4.4)

To simplify, let i be the input vector for the time step k (see Equation 4.5).

Then, T, is represented as shown in Eq 4.6

ik
k= | wg
Zk
ﬁk:[ik

i

(4.5)

(4.6)

Once the data in the dataset is converted in a supervised learning problem, the
next step is to arrange the dataset into three smaller subsets: training, validation, and
the test datasets. It is important to note that the data in each subset only belongs
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to that subset, and does not appear in the others. The training dataset holds the
data that is used to train the ANN. The ANN makes predictions with the inputs that
it receives. Then it compares this prediction with the targets using the defined loss
function to calculate the error. Finally, back-propagates the error through the ANN
and updates the parameters (see Equation 3.4). The training dataset is the only one
where the back-propagation algorithm is applied. Therefore, the training dataset has
a great importance because the ANN only learns from this data, thus the training
dataset hold the majority of the data.

The validation dataset is also used during the training process to test the
performance of the model for unseen data. In this way it prevents overfitting.
Overfitting is the overspecialization of the ANN for the data presented in the training
dataset, which causes poor performance when different data is presented. The process
followed in this thesis is to stop the training when the performance for the validation
dataset begins to worsen, this method is called early stopping [46] (see Figure 4.14).
The validation data only uses a small portion of the whole dataset.

—— training error

----- validation error
1.0

0.8 A

0.4 —

0.2 A

0.0 Stop training

25 5.0 7.5 10.0 12.5 15.0 17.5
Iterations

Figure 4.14: Example of the early stopping method.

The purpose of the Test dataset is to evaluate the performance of the fully trained
ANN for unseen data. The targets in the test dataset, as well as in the validation
dataset, are only used to compare the predictions made by the ANN with the expected
targets. There are different metrics used to evaluate the performance of the ANN in
the test dataset (see Section 5.1). The amount of data in the test subset should be
long enough to ensure that the ANN could be evaluated properly, but leaving enough
data for the training dataset.

At the moment the data is distributed in each subset, it is important to note that
the data belonging to each patient should be only in one of the datasets, because this
data is correlated among them and this could bring misleading results as the data
would be biased. Therefore, to ensure the independence of the findings done in this
Thesis, the data would be arranged according to that.
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Another important issue to consider is that the distribution of the data should
be balanced between the number of hard and easy cases to predict. This means
that each set (Training, Validation and Test) should have a similar proportional
relation between the difficulty of the cases to predict. If this is not addressed, the
different subsets will not be representative of the dataset and will not fully comply
with their function. In addition to the balance, the different subsets should be
as representative as possible of the phenomenon to predict, in this case, glucose
concentration. Therefore, each subset has cases with different hypoglycemic and
hyperglycemic events, different quantities and times of food intake and insulin
injections, and different glucose concentrations, tendency and speed of change in each
period of time.

Taking all of this into consideration, the different subsets are distributed as follows:
training dataset has 36 profiles from patients 1, 2, 3, 5 and 7, validation dataset has
6 profiles from patient 10 and test dataset has 15 profiles from patients 6 and 9.

4.3 Neural network architecture

In this Section the architecture of the proposed predictor will be presented. The
proposed predictor is based in LSTM neural networks, see Section 3.2.2. Here a
generic version of the model is presented, and in Section 4.4 the parameters of the
model are tuned for each prediction time (PT) proposed. Four forecasts are done, one
at each proposed PT: 5 minutes, 15 minutes, 30 minutes and 45 minutes. Notice that
the PT at 5 minutes does not have much value for a patient due to its very short notice,
so the patient cannot take actions to prevent an hyperglycemia or hypoglycemia.
Nevertheless, it is helpful to the designer to give an insight of the best performance
that can be achieved.

Furthermore, in this study three values of input dimensions are set: 5 samples,
20 samples and 50 samples. The input dimension is related to the unfolding, as
explained in Section 3.2. The input dimension states the number of times that the
RNN is unfolded. Therefore, our input tensor (J;) will be a sequence of values from
k ={1,...,7}, assuming 7 equal to the stated input dimension. This input dimension
states how many past samples are taken into account by the model to made the
prediction so, 5 samples are equivalent to 20 minutes in the past, 20 samples are
equivalent to 1 hour and 30 minutes in the past and, to conclude, 50 samples are
equivalent to 4 hours and 10 minutes in the past.

The predictor proposed in the Figure 4.15, is composed of three layers, two LSTM
layers and one final linear layer. The LSTM layers (see Section 3.2.2) has 50 neurons
each and the linear layer is a perceptron with only 1 neuron (see Equation 3.1) and
a linear activation function (see Figure 3.1a). The optimizer algorithm to update the
parameters is the Adam [30] and a chosen learning rate of 0.001. These parameters,
are also called hyper-parameters and will be optimized in Section 4.4. Only the linear
layer will remain as stated in this Section.

Figure 4.15 also presents the unfolding and the data flow of the model. First,
the input sequence (J;) comes in the first LSTM layer. In this layer the unfolding is
processed and the output (h}) is the input to the following LSTM layer. Note that
the superscript denotes the layer of the model. The second LSTM layer processes
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Figure 4.15: Generic architecture version of the predictor proposed.

the information, and provides its output for the last value of the sequence, h2 to the
Linear layer. Finally, the linear layer computes the h2 to produce the expected value
of glucose concentration at the desired PT, ypr.

4.4 Parameter optimization

This section is devoted to find the optimal parameters for the proposed predictor.
There are different approaches that may be followed to find the optimal parameters
of the neural network. For instance, some of these approaches are: experimental
search, Bayesian optimization [61] or using another ANN that performs the parameter
optimization, which is another field of the machine learning called AutoML. An
example of this is presented in [18].

In this Master’s Thesis the chosen method is the experimental search, leaving the
others for future research. The proposed method is as follows. For each of the input
dimensions selected for the study (5, 20 and 50) and for each of the PT selected (5, 15,
30 and 45 minutes), a number of combinations of the different parameters are stated
and then it searches the parameters that produces the best performance. These are
considered the optimal parameters for that input dimension and PT. In Section 5.2,
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the models with these parameters are trained and assessed, and the results of their
performance are shown.

Two metrics are selected to compare the performance of the different parameters.
The first one is the error distribution e shown in Equation 4.7 [59]. The other metric
used is the root mean square error (RMSE) (Equation 4.8).

€:(|t1_y1‘7--~7|tn_yn’) (47)
1 N
RMSE = || + ;:1: (t; — i) (4.8)

where ¢; is the expected output (target) and y; is the prediction made by the model.

To help illustrate the differences between the parameter box-plots that are used
to display the error distribution e and bar charts are used to represented the RMSE
for each combination of parameters.

The search of the optimal parameters is divided in two parts, the architecture
parameters and the parameters related to the training of the proposed predictor.
First, the purpose of the architecture parameters search is to find the optimal number
of neurons and layers for the predictor. In the search of the training parameters, it will
find the best optimizer to update the parameters in the back-propagation algorithm
and the optimal learning rate («) that improves the performance of the model.

4.4.1 Architecture parameters

Once the main architecture is defined and the types of ANN are used, the architecture
parameters that define the structure of the proposed model are the number of neurons
and the numbers of layers.

In this study, the optimal parameters for the architecture presented in Section 4.3
will be searched. The linear layer will not be modified, its composition remains in 1
layer with 1 neuron, so during this Section when reference is made to the number of
layers or neurons, it refers to the LSTM layers of the model.

Each LSTM layer will have the same number of neurons. The number of neurons
that are considered in this study are: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. While
the numbers of LSTM layers are 1, 2 and 3. This gives a total of 30 combinations
that are searched to find the best performance for the prediction time (PT) stated (5
min, 15 min, 30 min and 45 min). In addition, a learning rate of 0.001 and the Adam
optimizer [30] have been chosen. This processes is repeated for the three different
input dimensions chosen 5, 20 and 50.

The distribution error e is shown in Figures 4.16, 4.17 and 4.18 for the input
dimension of 5, 20 and 50, respectively. In addition, in Figure 4.19 shows the RMSE
for each PT and each input dimension. Figures 4.16, 4.17 and 4.18 show a very similar
distribution error e for each model. In addition, Figure 4.19 also shows a very similar
performance for each model, however, there some cases where the error is higher.
Taken into account the results from both metrics, the best parameters are presented
in Table 4.2 with all the optimal parameters.
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Figure 4.16: Box-plots for the e for the different architecture parameters for a input
dimension of 5, being PT (a) 5 min (b) 15 min (c¢) 30 min (d) 45 min.

4.4.2 Training parameters

Once that the architecture parameters are selected, the next step is to find the optimal
combination of parameters involved in the training. The parameters that are included
in this search are the optimizer and the learning rate («) used in the back-propagation
algorithm. The selection of these parameters is crucial to achieve the finest training.
The more accurate the training of the ANN is, then its performance will be increased
in the evaluation when new data is presented.

Two optimizers are chosen to train the proposed predictor: RMSprop [20] and
Adam [30]. These optimizers are used to update the weights and biases of the ANN
in the back-propagation algorithm. They are an alternative to the SGD explained
in Chapter 3.2.1. Therefore, both RMSprop and Adam algorithm use a variation
of Equation 3.4. On the other hand, five different learning rates («) are considered
a = [0.0001,0.0005,0.001, 0.005,0.01] to search the best parameters for the training
of the ANN. This makes the total of 10 combinations to calculate.

[20] proposes the RMSprop algorithm. This algorithm presents a modification of
the SGD that adapt the learning rate depending on the moving average of the squared
gradients, g(r). Where g(r) and the updating of the weights and biases is calculated
as shown in Equation 4.9.
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Figure 4.17: Box-plots for the e for the different architecture parameters for a input
dimension of 20, being PT (a) 5 min (b) 15 min (c¢) 30 min (d) 45 min.

0u(r) = Bou(r — 1) + (1= 8) (e )

gv(r) = Bap(r — 1) + (1 p) <ab?nL(r)> (4.9)
W (1) = W) = =y awn)
[+ 1) = b7 () — ks

where the subscript b and w indicates the gradients for the biases and weights in
g. [ is constant, the value chosen is 0.99, and € is another constant that prevents
the division by zero, with a chosen value of 10~%. Finally, the index r denotes the
iteration.

The Adam algorithm, proposed by [30], in contrast to the RMSprop algorithm uses
two moving averages. First, it keeps the moving average of the gradient (m(r)), as a
biased estimator of the mean of the gradient. Similarly to the RMSprop algorithm, it
calculates the moving average of the squared of the gradient (v(r)) and it is a biased
estimator of the variance of the gradient. Their formulas are shown in Equation 4.10.
Note that the subscript b and w indicates the gradients for the biases and the weights
and that 8 and fs are two constants defined by the user.
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Figure 4.18: Box-plots for the e for the different architecture parameters for a input
dimension of 50, being PT (a) 5 min (b) 15 min (c¢) 30 min (d) 45 min.
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M (r) = Bimay(r —1) + (1 + Bl)a%

2
vulr) = Bamu(r = 1) + (1+ B2)a (5 )
mp(r) = Bimp(r — 1) + (1 + 51)04(%8714(,)

2
| 0o(r) = Bamy(r = 1) + (1+ Ba)a (25

(4.10)

To update the weights and the biases, the unbiased estimators of the mean (ri(r))
and the variance (0(r)) of the gradient are needed, see Equation 4.11.

i (r) = 120
tu(r) = 1255
ring(r) = {25
(1) = 155

(4.11)

Once the previous steps are calculated, the weights and biases of the ANN are
calculated as shown in the Equation 4.12. In this thesis, 51 and S5 have the values
of 0.9 and 0.999, respectively, as it is stated by the authors .In addition, € is fixed to

1078,
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Figure 4.19: Chart graph with the RMSE for the different architecture parameters
and grouped by the number of input dimension (a) 5, (b) 20 and (c) 50.
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Figure 4.20: Box-plots for the e for the different training parameters for a input
dimension of 5, being PT (a) 5 min (b) 15 min (c¢) 30 min (d) 45 min.
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The procedure is analogous to Section 4.4.1. The distribution error e is shown in
Figures 4.20, 4.21 and 4.22 for the input dimension of 5, 20 and 50, respectively. In
addition, in Figure 4.23 shows and the RMSE for each PT and each input dimension.
Taken into account the results from both metrics, the best parameters are presented
in Table 4.2 with all the optimal parameters. RMSprop has a good performance in
many of the models with a few exceptions. However, The Adam optimizer has the
best performance for all the models. The learning rates of 0,0001, 0.0005 and 0.001
are the ones that give the best performances. In total, twelve different models are
selected where each one is specialized for a input dimension and a PT.
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Figure 4.21: Box-plots for the e for the different training parameters for a input
dimension of 20, being PT (a) 5 min (b) 15 min (c¢) 30 min (d) 45 min.

Input dimension PT (min) LSTM layers Neurons optimizer o)
5 5 60 Adam 0.001
) 15 10 Adam 0.001
5 30 10 Adam 0.0001
) 45 10 Adam 0.0005
20 ) 80 Adam 0.0005
20 15 70 Adam 0.001
20 30 10 Adam 0.0001
20 45 90 Adam  0.0005
50 5 30 Adam  0.0001
50 15 10 Adam  0.0001
50 30 10 Adam 0.001
50 45 20 Adam 0.001

N NN WWWRF N WD WD

Table 4.2: Optimal parameters for each input dimension and PT. All these models
have a Linear layer with 1 neuron in top of the last of the LSTM layer, see Section 4.3
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Figure 4.23: Chart graph with the RMSE for the different training parameters and
grouped by the number of input dimension (a) 5, (b) 20 and (c) 50.



Chapter 5

Results

This chapter is devoted to present the evaluation metrics used to train and evaluate
the predictors presented in Section 4.4. In addition, the results of these metrics and
the performance of the models will be presented. To conclude, the results will be
discused.

5.1 Metrics

In order to evaluate the performance of the predictors proposed in Section 4.4, as
well as to define the loss function used in the BPTT algorithm to train the RNN, see
Section 3.2.1, it is necessary to define a series of metrics. The metrics presented in this
section are selected for their convenience to evaluate glucose prediction [48] and time
series, in general [59]. The metrics stated in this Thesis measure the error made in the
prediction and the correlation between the predicted signal and the targets. Another
metric is presented that measures the delay associated to the prediction with respect
to the original glucose signal. Let the prediction made by the proposed predictor be
Y ={y1,...,yn}, the correspondent expected output or targets T' = {t1,...,t,}, and
N the number of samples to be evaluated.

First, let us define the loss function used in the back-propagation algorithm. The
selected loss function is the mean squared error (MSE), see Equation 5.1. As the
selected loss function MSE is mainly used for training the predictor.

N
1 3 2
MSE = N — (ti - yz) (51)

The following metrics are used in the evaluation of the performance of the proposed
predictor. The first evaluation metric is the RMSE. It was already presented in
Section 4.4 (see Equation 4.8). The RMSE, unlike the MSE, presents the error in the
same unit that the variables that is evaluating. The RMSE provides an insight of the
accuracy of the model predictions.

The next metric that will be discussed is the Pearson correlation coefficient
(r¢y) [48], see Equation 5.2. This coefficient gives information about the similarities
between the target signal and the predicted signal.
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where # and § are the mean defined as = £ > ;tand § = % >, .

The final metric is the calculation of the delay associated to the prediction. This
metric was presented and developed by [49] and [48]. The purpose of this metric is to
assess the lag produced in the prediction with respect to the original glucose signal
from the CGM sensor. This metric measures the delay in the positive and negative

(5.2)

Tty =

slopes individually. Therefore, there are two values for this metric, one corresponds
with the rising trend (upward delay) and the other with the falling trend (downward
delay). The delay is calculated at 25%, 50% and 75% of the slope length. Being the
slope length defined as the difference between the lowest point and the highest point.
The upward and downward delay are finally computed as the average of all rising
trends and all the falling trends, respectively. Figure 5.1 shows an example of how to
calculate the delay.

As stated by the authors [49] to calculate the metric, it has been applied a first-
order low-pass filter to the predicted signal and to the glucose original signal.

5.2 Results

In Section 4.4 twelve predictors were tuned to predict the glucose concentration by
using three input parameters: glucose concentration from a CGM sensor, insulin, and
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Figure 5.2: Example of the effect initialization time and the prediction in the
illustration

the food intake. Each of the twelve predictors have an input dimension and a PT.
There are three input dimensions: 5, 20 and 50. In addition, there are four PT: 5,
15, 30 and 45 minutes. The architecture and the parameters for each predictor are
summarized in Table 4.2.

This study is divided in two parts. The first part consists of an evaluation of the
accuracy of the 12 different predictors for their corresponding PT. After the models
are evaluated individually, the second part assesses the effect of the prediction of using
a different input dimension.

In the first half of the study, these twelve predictors are evaluated by the test
dataset, see Section 4.2.2, and the metrics stated in Section 5.1. Moreover, to show
that overfitting did not occur, the twelve predictors are also assessed with those
metrics for the training dataset. The results from this metrics are displayed in
Table 5.1 for the training dataset and in Table 5.2 for the evaluation dataset. In
addition, the prediction for a profile of the test dataset for each model are displayed.

It is important to note that from this architecture, see Section 4.3, the prediction
starts once that the first input dimension values are fed. An example of this is
presented in Figure 5.2 with an input dimension of 5 and a PT of 45 min, the model
will start to predict when receives the first 5 values. Therefore, being the samples
separated by 5 minutes, the model of an input dimension of 5 will wait 25 minutes to
begin the predictions. Once the model has done the first prediction, the model will
forecast when a new input value is received.

First, it is important to verify that the models do not incur in overfitting. Table 5.1
and Table 5.2 show the results for the training and evaluation datasets, respectively.
The RMSE is very similar for both datasets, being slightly lower for the training
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Model ID PT (min) RMSE (mg/dl) 1, U.delay (min) D. delay (min)
60-60-1 ) ) 1.03 0.99 0 0
10-10-10-1 5 15 4.4 0.99 ) )
10-10-1 5 30 12 0.96 15 10
10-10-10-1 5 45 20.06 0.9 30 15
80-80-1 20 5 0.9 0.99 0 0
70-1 20 15 4.39 0.99 ) 0
10-10-10-1 20 30 11.97 0.96 15 )
90-90-90-1 20 45 19.6 0.9 25 10
30-30-30-1 50 5 0.86 0.99 0 0
10-10-1 50 15 3.66 0.99 5 0
10-10-1 50 30 11.59 0.96 15 )
20-20-1 50 45 17.94 0.90 25 10

Table 5.1: Metrics for all the models for the training dataset. The models are
identified by the numbers of neurons in each layer and ID stands for Input dimension.
U. delay and D. delay are defined as the upwards delay and the downward delay,
respectively.
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Figure 5.3: Predictions made a 5 minutes by the model with an input dimension of:
(a) 5, (b) 20 and (c) 50

dataset. There are some exceptions where the evaluation dataset is slightly lower,
these cases are the models for PT 5 and 15 minutes. The other metrics also have
similar results for both datasets. Therefore, this is a good indicator that there has
not been overfitting in our models.

A complete set of figures for the 12 combinations of predictors for profiles 29,
30, 48 and 50 can be found in Appendix C. The following figures will use a different
profile for each prediction time for illustrative purposes.

There are three models specialized in the prediction of each PT. Firstly, let assess
the performance of the models that predict in a PT of 5 min. Figure 5.3 shows
the prediction made by the predictor with input dimension 5, 20 and 50, respectively.
These three models have a high accuracy with error lower than 1 mg/dl, see Table 5.2,
and the time series is almost identical. There is not delay for these models.

The performance of the models with a prediction time of 15 min is shown in
Figure 5.4, for a predictor with input dimension 5, 20 and 50, respectively. These
models improve the RMSE results presented in [49] for a prediction time of 15 min
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Model ID PT (min) RMSE (mg/dl) 1, U.delay (min) D. delay (min)
60-60-1 ) 5 0.96 0.99 0 0
10-10-10-1 5 15 4.34 0.99 5) )
10-10-1 ) 30 12.6 0.96 15 10
10-10-10-1 5 45 21.40 0.89 30 15
80-80-1 20 5 0.86 0.99 0 0
70-1 20 15 4.23 0.99 5 0
10-10-10-1 20 30 12.51 0.96 15 )
90-90-90-1 20 45 21.52 0.89 25 20
30-30-30-1 50 5 0.85 0.99 0 0
10-10-1 50 15 3.67 0.99 5 0
10-10-1 50 30 12.20 0.96 15 10
20-20-1 50 45 20.76 0.88 25 15

Table 5.2: Metrics for all the models for the evaluation dataset.

The

models are

identified by the numbers of neurons in each layer and ID stands for Input dimension.
U. delay and D. delay are defined as the upwards delay and the downward delay,

respectively.
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Figure 5.6: Predictions made a 45 minutes by the model with an input dimension of:
(a) 5, (b) 20 and (c) 50

in a 55.44%, 56.57% and 62.32%, respectively. Moreover, Figure 5.4 shows that the
predicted glucose signals resemble with the original values from the CGM sensor.
This idea is reinforced by the value of the correlation, ry,, that is very close to 1
(see Table 5.2). Furthermore, the models present a delay of 5 minutes in the upward
slopes. However, the model is faster in the downward slopes, which explains the
models for input dimensions 20 and 50 do not have this kind of delay.

The glucose predictions made for a time of 30 min are shown in Figure 5.5 for
a predictor with input dimension 5, 20 and 50, respectively. Comparing the results
with those obtained in [49] for a PT of 30 min, these predictors improve the RMSE
in a 27.79%, 28.31% and 30.09%, respectively. To conclude, the r;, is very close to
1 (see Table 5.2), saying that the predicted signal is very close to the original from
the Guardian® Real Time. The delays are similar for all the models that predict for
that PT.

Lastly, the models with a PT of 45 min are shown in Figure 5.6. The results from
these predictors, see Table 5.2, improves the RMSE obtained in [49] by a 17.54%,
16.98% and 20.53%, respectively. The similarity between the predicted signal and
the original from the CGM sensor have worsened with regard to the previous cases
where the 1, was very close to 1. To conclude, the presented models are faster in
the falling slopes than in the upward slopes.

After the study of the performance of all the predictors, the most accurate models
are the ones with an input dimension of 50 (see Table 5.2). Moreover, these models
are the faster in both rising and falling slopes. This result was as expected because it
is the model that receives more information in their inputs. However, the evaluation
metrics in Table 5.2 present very similar performance between models with the same
PT, independently of the input dimension.

Figures 5.7, 5.8, 5.9 and 5.10 also present a high similitude between the prediction
at the same PT. Some differences start to appear when the PT is 30 min or 45
min between the performance of the model. Specifically, the differences are better
appreciated when there is an steep slope. In these cases, the predictors with input
dimensions of 5 and 20 tend to overshoot a bit more than the predictors with input
dimensions of 50. Nevertheless, these differences are difficult to appreciate and are
not very pronounced.

Another issue that was previously commented, but it is more noticeable in
Figures 5.7, 5.8, 5.9 and 5.10, it is that depending of the input dimension each

25
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predictor has a time of initialization to start the predictions. This initialization time

is longer if the input dimension is bigger.
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Figure 5.7: Predictions made a 5 minutes by the models with an input dimension of

5, 20 and 50

5.3 Discussion

Twelve models have been deployed to achieve the objective of predicting glucose
concentration in patients with diabetes type 1. These models may be grouped by
their PT, being then four groups in function of their prediction time: 5 min, 15 min,
30 min and 45 min.

However, these predictors are practical if they give enough time to the patient
to make the necessary modification to his or her treatment [49]. Consequently, the
predictors with a PT of 5 min are not very suitable for this task, even if they are the
most accurate models.

Predictors specialized to forecast at 15 min are still short of time to be practical
in usual terms. Although, these models may be useful in some cases due to their
high accuracy. A prediction time of 30 minutes or longer is wide enough to allow a

patient to do the necessary changes to prevent the occurrences of hypoglycemias or
hyperglycemias. Predictors with a PT of both 30 and 45 minutes will proportionate a
good range of time of action, being both useful to predict the glucose concentration.
However, predictors with a PT of 30 minutes have the best compromise between the
range of time that they provide to the patient to change their treatment and the

accuracy of the predictions.
In Section 5.2, the performance of the predictors with the same PT and different
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input dimension was compared, assessing the effect of the input dimension in the
predictor’s output. It is important to consider all the characteristics of the predictors
before to choose one. These characteristics are the input dimension, the prediction
time (PT) and the results of the metrics evaluation (see Table 5.2). Taking all this
into account, the results from Table 5.2 are very similar to each predictor at the same
PT, however the predictors with bigger input dimension have a longer initialization
time. Therefore, having all the models a similar accuracy, it would be more likely to
choose the models with less input dimensions because they starts to predict sooner.

Nevertheless, the most accurate predictors were those with an input dimension
of 50. This happen as expected because they are the models which receive the more
information. However, the results from the others models are very similar. The
improvement of adding more information in the input is small. This effect can be
explained for several reasons.

First, there are not enough data for the model to learn the long term dependencies.
In the training dataset (see Section 4.2.2), there are 36 profiles with 288 samples each
one. This is a small dataset taking into account that LSTMs have at least four more
weights and biases (see Section 3.2.2) than a multilayer perceptron. This is translated
in LSTM needing far more data for training.

Another reason that there is not enough data is based off of the nature of the
condition of type 1 diabetes patients (see Chapter 2). Patients with diabetes type
one does not segregate insulin, hence, they do not have the mechanisms that regulates
the glucose concentration. So when the glucose starts to increase the value, it does
it without control and same happens when it decreases. The LSTM neural network
are fed by the glucose concentration. The predictor could give priority to the recent
values in time because they have a bigger impact in the future values of the glucose.
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Hence, the most importance characteristic of the glucose is the tendency where the
predictor tends to ignore the oldest values that have a lower impact in the tendency
of the signal.

The mechanism that patients have to change the glucose concentration are mainly
the injection of insulin, which diminishes the glucose value, and the ingestion of
carbohydrates, that increases the glucose concentration. There are others parameters
that affects the concentration of glucose, but those parameters are not fed to the
predictors developed in this Thesis. However, the effects of both insulin and ingestion
of carbohydrates are not immediate. This arises another possible problems. Insulin
start to acts one hour after its injection and the ingestion of the carbohydrates could
take hours too. Therefore, these are the long term dependencies that the predictor
should learn to improve the prediction.

The problem states that the bolus of insulin and the food intake is presented a few
times in each profile, 3 o0 4 times on average that corresponds with main meals. Then,
considering that the training dataset only has 36 profiles. Hence there is not enough
data so the predictor can properly learn the effects of these long term dependencies
in the future glucose values. Therefore, the oldest input values are being partially
ignored.

Moreover, they may be long term dependencies in the glucose concentration
parameter. These dependencies might manifest over longer periods of time as events
that happen daily at similar hours, for example, the resistance to the insulin in
the morning. However, in the current dataset, each profile has been arranged as
independent days. Therefore, these long term dependencies could not be learnt by
the neural network. Future research with profiles longer than 1 day would be needed
to assess the impact of this long term dependencies.

Another reason is that, there are more parameters that have effect in the glucose
concentration such as the physical exercise. For example, physical exercise reduces
the glucose levels, but it also has effects after the execution (see Section 2.3.3).
These other parameters could be producing unexpected effects that might result in
a worsening of the model performance. However, a future research is needed to test
the hypotheses stated here.

Nevertheless, the twelve models presented in Section 5.2 are more accurate than
the obtained in [49], for each prediction time 15, 30 and 45 minutes, respectively. In
addition, the twelve models presented are slower in the upwards trend than the model
presented in [49]. However, the twelve models are much faster in the downwards
trends than the obtained in [49]. Actually, this may be a desirable characteristic
because diabetic patients are usually more worry about the hypoglycemias than the
hyperglycemias.

Therefore, the LSTM based architecture presented in this Thesis represents an
improvement in the RMSE and downward slope delay metrics, over the multilayer
perceptron stated in the previous study of [49]. Therefore, neural networks based on
LSTMs are appropriate for the prediction of glucose concentration in diabetes type
1. However, an increment in the size of the dataset could improve the accuracy of the
LSTM based predictor and remains for future work.



Chapter 6

Conclusions and future lines

The aims of this chapter is to present the more important conclusions and results of
this Thesis, as well as to propose future lines of research based in it.

6.1 Conclusions

The main problem of diabetes are the complications caused by the occurrences of
hyperglycemias and hypoglycemias. Therefore, the main diabetes’ treatment is to
control the glucose concentration to be between the normal values. This task is
complicated because the number of parameters that influences the blood glucose
concentration, see Section 2.3. A predictor could improve the control of the disease
allowing patients to prevent hypoglycemias and hyperglycemias.

The aim of this Thesis was to continue the work presented in previous studies [49]
with the design of LSTM based predictors. The evaluation of the predictors was done
at four different prediction times (PT) 5, 15, 30 and 45 minutes and the predictors
were fed with three different input dimensions 5, 20 and 50. To achieve these tasks,
a main architecture based on LSTMs was developed to create the basic model of
the future predictors. From this architecture twelve predictors were deployed, each
one specialized in a PT with a specific input dimension. PyTorch was the selected
framework to implement the designed predictors.

The predictors with PT of 5 minutes and 15 minutes were the most accurate
models. However, these prediction times are too short for a patient to prevent a
hypoglycemia or a hyperglycemia, but they may have others uses where the accuracy
is much more important than a long prediction time.

Predictors with a PT of both 30 and 45 minutes provide enough time to do the
necessary modifications in the treatment to prevent the occurrences of hypoglycemias
or hyperglycemias, being both PT practical in usual terms. Nevertheless, predictors
with a PT of 30 minutes provides the best compromise between the amount of time
that provides the patient to modify his or her treatment and the performance of the
model predictions.

Comparing the models with the same PT and different input dimension, the
most accurate and with best performance was the model with an input dimension
of 50. However, the models with an input dimension of 5 and 20 also had a
similar performance to the model of input dimension of 50. Therefore, it would
be more recommendable to use an input dimension of 5 because it has a much shorter
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initialization time.

Taking all this into consideration, the most suitable predictor may be the predictor
with a input dimension of 5 and a prediction time of 30. Although the rest of the
models may be also used depending of the necessity of prediction that want to be
covered.

The twelve predictors proposed present a good accuracy in the performance and
a suitable fit to the original glucose to be predicted. In addition, these predictors
surpasses the model presented in [49] as was the main objective stated in this Thesis.
The results obtained are encouraging and support the use of LSTM for predictions of
glucose concentration in patients with diabetes type 1.

6.2 Future lines

The work presented in this Thesis opens new lines of research and future works to
improve the results obtained by the predictors, some of them are introduced:

e The use of Convolutional Neural Networks in tandem with the architecture
presented in this Thesis could enhance the performance of the predictors.

e In this Thesis only three parameters are used to calculate the futures values
of glucose, these are the past values of glucose provided by a CGM sensor,
the insulin injected by the patients and the food intake. However, the process
that regulates the glucose concentration is a complex mechanism and other
parameters such as physical exercise have an impact. Therefore, another
future research is to add new parameters to feed the predictors and assess the
importance of these parameters in the performance of the predictor.

e The process of tuning the parameters in Section 4.4 may be done using novel
ideas such as Bayesian optimization [61] or using AutoML, an example is
presented in [18].

e The glucose from the CGM sensor have several artifacts, see Section 4.2.1.1. In
this Thesis, a manual approach has been followed to correct them. However, a
more novel approach may be followed using an ANN that performs this task.
This ANN could correct the distortions caused by the calibrations, the missing
samples and filter the signal.

e To conclude, some causes has been proposed to explain why the different input
dimension gives such a similar results, see Section 5.3. The most probable
cause is the necessity of more data to train the predictor based on LSTMs.
Therefore, two approaches may be followed: first, it is the acquisition of more
data from real patients. However, this is a very difficult task because there
are a lot of requirements to fulfill and patients may not follow the instructions.
Moreover, this approach is very expensive. The second approach consists of
using the paradigm of few-shot learning, where the models are trained with
small amounts of data, [32] and [67] present works in this direction.
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Appendix A

Impact

Diabetes is an important health care problem. According to a global report by World
Health Organization (WHO) [51], around 422 million adults, globally, had diabetes
in 2014. Diabetes is one the main expenditures of the national healthcare system,
most of the expenditure are caused by the complications associated to the disease [15].
The main complications of this disease comes from the occurrences of hypoglycemias
and hyperglycemias. These complications could be avoided or reduced with control
of the blood glucose levels. This project aims to help achieve this goal. Therefore,
the impact of this project strives for a reduction of diabetes complications due to a
better control of the blood glucose concentration.

e Social impact: this project will have a direct impact on patients with
diabetes type 1 and also to their relatives. Patients may prevent the diabetes
complications, avoiding diseases that lead to high dependency such as heart
attacks, strokes, kidney failure, blindness, etc. This results in a better quality
of life for patients and their relatives.

e Economical impact: this project will have a direct economical impact for
patient and for the national healthcare system. The expenses of the national
healthcare system would be reduced due to the decrease of medical emergencies
and the treatment of the diabetes complications. Moreover, patients will
reduce the expenditure of the treatments in the diseases caused by diabetes

complications.

¢ Environmental impact: this project will also have an environmental impact.
Thanks to a better control of the blood glucose concentration, the medical waste
related with the treatment of diabetes complications will be reduced.
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Appendix B

Budget

This project has been developed during four months in the Escuela Técnica Superior
de Ingenieros de Telecomunicaciéon from the Universidad Politécnica de Madrid
using some of its resources. An approximate budget was calculated by taking into
consideration of the cost of human resources, and software and technical equipment:

e Costs derived from Human resources:

This section of the budget considers the salaries of the staff involved in this
project: project manager (engineer) and the engineer student, author of this
Thesis, as shown on Table B.1.

Cost per hour (€) Working hours Total cost (€)

Project manager 22 85 1870
Engineering student 15 600 9000
TOTAL 10870

Table B.1: Costs derived from Human resources

e Costs derived from Software and technical equipment:

This section of the budget takes into account the software and technical
equipment used in the development of this Thesis, see Table B.2. The total
cost has been calculated by the product of the depreciation cost per month and

the time of use.

Lifetime " Cost Depreciation Time used Total cost
nits
(years) (€) (€/months) (months) (€)
GTX 1080 Ti 4 1 1000 20.83 4 83.32
Personal
5 1 800 13.33 4 53.32
computer
MATLAB
] 1 1 2000 166.66 4 664
License
TOTAL 803.49

Table B.2: Costs derived from Software and technical equipment
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Considering both parts of the budget, the total cost of this Thesis amounts to
116873.3.



Appendix C

Additional results

This appendix shows the performance of the twelve predictors for the profiles 29, 30,
48 and 50. This is a continuation of the figures shown in the Chapter 5.

The results for the twelve predictors for the profile 29 are shown in the

Figures C.1, C.2, C.3 and C.4. The results of applying all the input dimensions
in a same PT are shown in Figure C.5.
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Figure C.1: Predictions for profile 29 made a 5 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50
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Figure C.2: Predictions for profile 29 made a 15 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50

Figures C.6, C.7, C.8 and C.9 show the prediction made by the 12 models.
Figure C.10 show the results of applying all the input dimensions in a same PT.
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Figure C.3: Predictions for profile 29 made a 30 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50
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Figure C.4: Predictions for profile 29 made a 45 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50

The results for the twelve predictors for the profile 48 are shown in the
Figures C.11, C.12, C.13 and C.14. The results of applying all the input dimensions
in a same PT are shown in Figure C.15.

Figures C.16, C.17, C.18 and C.19 show the prediction made by the 12 models.
Figure C.20 show the results of applying all the input dimensions in a same PT.
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Figure C.5: Predictions for profile 29 with the three dimension inputs (5, 20 and 50)
and a PT of: (a) 5 min, (b) 15 min, (c¢) 30 min and (d) 45 min

300

N
o
=}

200

Glucose (mg/dl)

-
u
=]

100

Profile 30 Profile 30

—— original 3001 — original
—— prediction —— prediction

12\3‘250

o

£

9200

o

S

2

(G}

150

0 5 10 15 20 25
Time (hours)

(a)

100

0 5 10 15 20
Time (hours)

(b)

25

300

N
a
o

Glucose (mg/dl)
N
5]
o

150

Profile 30

—— original
——— prediction

0 5 10 15 20
Time (hours)

()

Figure C.6: Predictions for profile 30 made a 5 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50

25



78

C. Additional results

100

Profile 30
—— original ’
prediction ;»\
[l
A
I\ \‘ ,/\/\ g
AN A [
S \\ |
0 5 10 15 20 25

Time (hours)

(a)

Profile 30
3004 —— original
prediction ‘,)\
T 250 |
=)
€ \
& 200 A | An y
<] "\ | /V Y
S J \ \/ \ /
3 WA f
© 150 \ /7 \ | |
\ : /
100
0 5 10 15 20 25

Time (hours)

(b)

Figure C.7: Predictions for profile 30 made a 15 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50
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Figure C.8: Predictions for profile 30 made a 30 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50
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Figure C.10: Predictions for profile 30 with the three dimension inputs (5, 20 and 50)
and a PT of: (a) 5 min, (b) 15 min, (c¢) 30 min and (d) 45 min
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Figure C.11: Predictions for profile 48 made a 5 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50
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Figure C.12: Predictions for profile 48 made a 15 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50
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Figure C.13: Predictions for profile 48 made a 30 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50
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Figure C.14: Predictions for profile 48 made a 45 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50
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Figure C.15: Predictions for profile 48 with the three dimension inputs (5, 20 and 50)
and a PT of: (a) 5 min, (b) 15 min, (c¢) 30 min and (d) 45 min
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Figure C.17: Predictions for profile 50 made a 15 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50
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Figure C.18: Predictions for profile 50 made a 30 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50
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Figure C.19: Predictions for profile 50 made a 45 minutes by the model with an input
dimension of: (a) 5, (b) 20 and (c) 50
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Figure C.20: Predictions for profile 50 with the three dimension inputs (5, 20 and 50)
and a PT of: (a) 5 min, (b) 15 min, (c¢) 30 min and (d) 45 min



