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Resumen

La diabetes afecta a alrededor de 422 millones de personas en el mundo, siendo

uno de los grandes problemas de salud en la actualidad. La diabetes engloba un

grupo de enfermedades que se caracteriza por tener niveles elevados de glucosa

en sangre. Este proyecto se centra en la diabetes tipo 1. Las complicaciones

de la diabetes están provocadas por las hiperglucemias e hipoglucemias. Estas

complicaciones pueden acarrear otras enfermedades tales como infartos, accidentes

cerebro-vasculares, ceguera o hasta la muerte. Sin embargo, estas complicaciones

pueden evitarse o, al menos, reducirse controlando los niveles de glucosa en un rango

normal.

El uso de un predictor de los futuros niveles de glucosa puede ayudar a los pacientes

a planificarse y a afectuar las modificaciones necesarias a su tratamiento para evitar

los eventos de hiperglucemia y de hipoglucemia. Para la implementación de este

predictor se ha optado por utilizar redes neuronales artificiales, en concreto se ha

elegido el uso de redes neuronales recurrentes.

En este Trabajo de Fin de Máster se ha diseñado un predictor basado en

redes neuronales recurrentes, espećıficamente se ha usado Long-Short Time Memory

(LSTM). Este predictor se ha desarrollado para pacientes con diabetes tipo 1, como

parámetros de entrada al predictor se han utilizado tres de ellos: los valores pasados de

glucosa proporcionados por un sensor de medición continua, las unidades de insulina

proporcionadas por una bomba de insulina y, por último, la cantidad de carbohidratos

ingerida. Además, se han establecido 4 tiempos de predicción: 5, 15, 30 y 45 minutos.

A su vez, se han considerado 3 valores para las dimensiones de entrada: 5, 20 y 50.

Para terminar, se han desarrollado 12 predictores cada uno especializado en un tiempo

de predicción y en una dimensión de entrada.

Palabras claves: Redes neuronales artificiales, Long-Short Time Memory,

LSTM, series temporales, predicción de glucosa, diabetes, diabetes tipo 1.



Abstract

Diabetes affects around 422 millions of people worldwide, making it a the current

major healthcare problem. Diabetes is a group of diseases that is characterized by

high blood sugar. This project focuses on type 1 diabetes. Diabetes complications are

caused by the occurrence of hyperglycemia and hypoglycemia. These complications

may produce other diseases such as heart attack, stroke, blindness or even death.

Nevertheless, these complications may be avoided or, at the very least, reduced by

controlling the blood glucose concentration in a normal range.

A predictor of future glucose levels may help patients plan and make necessary

modifications to their treatment to avoid hyperglycemic and hypoglycemic events.

This predictor was implemented using artificial neural networks, specifically, it uses

recurrent neural networks.

In this Master’s Thesis, a recurrent neural network based predictor that uses

Long-Short Time Memory (LSTM) was designed. This predictor is specific for type 1

diabetes patients. The input parameters of the predictor are the past glucose levels by

a continuous measurement sensor, the insulin units provided by a insulin pump, and,

lastly, the carbohydrates intake. In addition, 4 prediction times have been established:

5, 15, 30 and 45 minutes. At the same time, 3 input dimensions have been selected: 5,

20 and 50. To conclude, twelve predictors have been developed, each one is specialized

in a prediction time and an input dimension.

Key words: Artificial neural networks, Long-Short Time Memory, LSTM,

temporal series, glucose prediction concentration, diabetes, type 1 diabetes.



Acknowledges
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gustaŕıa agradecerle a mi tutor, Dr. Álvaro Gutierrez, por confiar en mı́ para hacer

este proyecto y por todo el apoyo prestado. También a los compañeros de Robolado,
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Chapter 1

Introduction

1.1 Context

Diabetes mellitus (DM), also known as diabetes, is a group of diseases characterized

by high blood sugar levels over a long period of time [17]. This disease is highly

related to insulin, a hormone that regulates blood sugar, also referred to as glucose,

in the body. The underlying cause of diabetes varies from each of the four types: type

1 diabetes, type 2 diabetes, gestational diabetes and other specific types of diabetes

[1].

Diabetes is an important health care problem. According to a global report by

the World Health Organization (WHO) [51], around 422 million adults, globally,

had diabetes in 2014. The diseases prevalence and the number of cases of diabetes

continues to increase. Diabetes was found to be the direct cause in 1.5 million deaths

in 2012. Additionally, in the same year, 2.2 million deaths were due to complications

of the disease. Possible complications caused by diabetes are heart attacks, strokes,

kidney failure, etc [65]. These complications are some of the main costs in the

healthcare system and could be reduced with better control of diabetes [15].

The treatment for this disease is blood glucose control and with it, complications

can be prevented. The objective of blood glucose control is to minimize the

occurrences of hypoglycemia and hyperglycemia, low and high blood glucose levels,

respectively. Normoglycemia is the normal concentration of blood glucose, this is

achieved when the values of glucose are between 80–130 mg/dl for the fasting plasma

glucose, and less than 180 mg/dl for one or two hours after a meal for the postprandial

plasma glucose [58]. Factors that influence the blood glucose levels are diverse,

including, but not limited to, diet, physical exercise, insulin therapy, . . . These factors

can be addressed and are often main treatments to combat diabetes.

To track and control blood sugar levels, self-monitoring by the patient is necessary

[9]. In order to do this, different types of glucometers are available in the market.

The traditional models require that the patient prick themselves to get a blood

sample (capillary blood glucose measurements), however, this method can be painful

[21]. Therefore, the capillary blood glucose measurements (CBGMs) are often not

monitored continuously throughout the day, resulting in only a few samples being

taken daily. Currently, there are also systems that provide a continuous glucose

monitoring (CGM) obtaining subcutaneous glucose measurements every few minutes.

CGM sensors, such as the Medtronic [Northridge, CA] Guardian R© [38], are
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minimally invasive systems that measure the glucose in the interstitial fluid instead of

the plasma. The measurement of glucose in the interstitial fluid is delayed with respect

to the blood glucose levels, this delay could be longer than 10 minutes [19]. The use

of a glucose predictor could provide valuable information, making the data coming

from the CGM in a time horizon more useful. Additionally, a predictor would allow a

patient to plan their actions, and therefore, deal with the disease. Although, to have a

useful predictor, two factors have to be taken into account. First, the time prediction

horizon has to be long enough so patients can adjust their actions. Secondly, according

to [49] the fact that there is a delay between the CGM system measurement and the

blood glucose value, means it is important that the time prediction horizon is longer

than the delay so the patient can anticipate any changes that may occur in his or her

blood glucose levels.

Different techniques have been followed to predict the blood glucose level as, for

instance, neural network models (NNMs), auto-regressive models (ARMs), recurrent

neural networks (RNNs), convolutional neural networks (CNNs).

[49] proposed a NNM to predict glucose in real time from two different sensors.

The model only used CGM measurements as input data. The algorithm provided

three different prediction times for 15, 30 and 45 minutes. Moreover, they compared

their model with the [62] ARM model, obtaining better results using the NNM. This

proved that the use of artificial neural networks could fit in this kind of problem.

In addition to previously mentioned approaches, [68] proposed a model that was

built from CNN layers and employed WaveNet algorithms. They used the database

OhioT1DM dataset1 developed by [35] that contains type 1 diabetes patients’ glucose

levels, insulin bolus, carbohydrate intake and time. They also used other input data

such as heart rate and temperature. However, these new parameters hindered the

performance of their model.

A RNN, proposed by [2], used input data from the previous values of a CGM

sensor. They compared their model and the model of [49]. The results showed that

the RNN architecture was better in making predictions than the NNM model.

Neural network techniques have been used in the past and having good perfor-

mance in the prediction of blood sugar levels. The use of RNN is recommended

because their feedback connections allow them to learn temporal dependencies [2].

This Master’s Thesis presents a model using long short term memory neural networks

(LSTM). LSTMs are a type of RNNs designed by [23].

1.2 Motivation and objectives

The main goal of this Thesis is to design and implement a set of predictors with the

aim of predicting the glucose level of type 1 diabetics. First, a main predictor model

developed will consist of LSTM artificial neural networks fed with previous values

of glucose, insulin bolus and meal intake. Based in the main predictor model, a set

of predictors specialized in forecasting for different prediction times (PTs) will be

deployed. Furthermore, the use of different input dimensions in the performance of

the predictors will be explored. The Master’s Thesis is based and extends the work

1Avalaible in: http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.html



1.3. Document layout 3

of [49].

To achieve the objectives described above, this Thesis will complete the following:

• Study diabetes disorder, focusing on diabetes type 1.

• Explore the basis of recurrent neural networks, and specially LSTMs neural

network and their use in forecasting.

• Design a predictor based on a LSTM architecture.

• Train the predictor to find the optimal parameters for each PT (5, 15, 30 and

45 minutes) and for each input dimension (5, 20 and 50).

• Validate the set of models specialized in predictions for each PT and each input

dimension.

1.3 Document layout

This Master’s Thesis is divided into six chapters:

• Chapter 1 presents the objectives, the motivation and the most important

aspects of each chapter.

• Chapter 2 will explain the function of insulin and glucagon and how these two

hormones helps to control the blood sugar levels. It will continue explaining the

main types of diabetes mellitus, and which is the effect of the hypoglycemia and

hyperglycemias. Lastly, it will present the main treatments for diabetes type 1

and the different devices used to control the glucose level.

• Chapter 3 will start by presenting the different paradigms of learning for

artificial neural networks (ANNs). Then, the perceptron the most basic ANN

will be presented. In addition, it will provide insight of the RNNs. It will also

introduce the back-propagation through time (BPTT) algorithm, an algorithm

to perform the training of the RNN. Moreover, it will present the limitations of

the RNN and the problem of the vanishing and exploding gradient. To conclude,

it will give an introduction to the basics concepts of LSTM neural network and

the main reasons of its creation.

• Chapter 4 will start by presenting the development environment. Then the

chapter will continue by explaining the nature of the dataset and the pre-

processing techniques used to prepare the data to feed the proposed predictor.

Furthermore, it will show the process of arrange the data for the training and

evaluation for the proposed predictor. In addition, the main architecture of the

LSTM based predictor model will be presented. Finally, it will show the search

of the optimal parameters to predict for each PT and each input dimension,

concluding with a set of predictors optimized for each PT and each input

dimension.
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• Chapter 5 will be dedicated to assess the set of predictors designed in Chapter 4.

First to be presented will be the metrics used to measure the performance of

the models. Afterwards, the results from the different studies carried out in this

chapter will be presented. To conclude, the results will be discussed.

• Chapter 6 will give the conclusions of the Thesis and outline possibilities of

future research.



Chapter 2

Background

This Chapter aims to give a brief review of the current knowledge about diabetes,

focusing on type 1 diabetes. First, it will give an introduction of the importance of

the main hormones that control the blood sugar levels: insulin and glucagon. It will

continue by classifying the different types of diabetes, the main consequences of the

diseases, and the main methods of treatment for type 1 diabetes. To conclude, it will

present some of the technology used to control diabetes. The main ideas exposed in

this Chapter comes from [26], [6] and [48].

2.1 Mechanism of blood sugar control: Insulin and

Glucagon

There are two main hormones, insulin and glucagon, that help to control blood sugar

levels in the body. Insulin is a hormone that is secreted in the pancreas, specifically,

in the beta (β) cells of the islets of Langerhans. One of the main functions of insulin is

to decrease the blood glucose level. In the alpha (α) cells of the islets of Langerhans,

glucagon is secreted. Its main function is to raise the blood glucose concentration,

therefore, it has the opposite effect of insulin.

The insulin levels of a person who is fasting are between 5 and 25 µ/ml [14]. There

are different factors that increase these levels. The secretion of insulin depends mainly

on the blood sugar level, for instance, after the absorption of the carbohydrates there

is an increase of the blood glucose levels and then the secretion of insulin grows.

Other factors that increase insulin levels of secretion include the presence of some

amino-acids in conjunction with the increase of the glycemia, or also known as blood

glucose levels. Moreover, gastrointestinal hormones, such as gastrin and secretine, are

released by the digestive tract after a meal. These hormones induce an early secretion

of insulin as a preventive action to the absorption of glucose after meals.

Glucagon and growth hormone are hormones that stimulate the secretion of

insulin. On one hand, hormones, such as Glucagon, may increase the secretion of

insulin indirectly by the strengthening of the glucose stimulus. However, during

hypoglycemic events, a stimulation of the sympathetic nervous system increases the

secretion of glucagon is produced and, at the same time, the secretion of insulin is

inhibited. On the other hand, other hormones, such as growth hormone, directly

stimulate the secretion of insulin.
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The stimulation of the parasympathetic nerves also increases secretion of insulin

during a hyperglycemia event.

Insulin impacts glucose in two ways that result in the reduction of blood glucose

levels. First, insulin promotes the glucose uptake by the cells. Glucose needs the

action of insulin to pass though the membrane cell and this way can be used for the

cells as a source of energy. There are exceptions, for instance, the brain does not need

insulin to be able to use the glucose, because brain cells are permeable to glucose

and can use glucose without the insulin intervention. Glucose is the main source of

energy for the brain, which needs a continuous input of glucose [10]. If glucose levels

decrease too much, an individual may go into coma. Other tissues that do not need

the action of insulin to use glucose are the retinas and the kidneys.

The second role of insulin consists of the storage of the glucose for later use. There

are two methods in which the glucose is stored. The insulin promotes the glycogenesis,

which is the process that stores the glucose in the form of glycogen. This glycogen

is stored in the liver to be used later in order to maintain normal blood sugar levels

in times of fasting. Glycogen is also stored in muscular cells to be used during times

of physical activity. Second method happens when the blood glucose levels are so

high, that all the glucose cannot be stored as glycogen, then insulin promotes the

conversion of glucose into fatty acids that are later converted and deposited as fats.

The deficit of insulin promotes the use of fats as an energy source, which produces

Acetyl Co-enzyme A. If this deficit is prolonged over a long period of time then the

Acetyl Co-enzyme A is used to produce ketone bodies. These ketone bodies modify

the pH of the blood and may cause ketoacidosis and possibly a coma that may end in

death. Moreover, the deficit of insulin decreases the number of proteins because there

is an increase of the catabolism of proteins and also the protein’s synthesis stops. All

this contributes to an increase of amino-acids in the blood plasma. These amino-acids

are used as a source of energy or as substrate for the gluconeogenesis, the formation of

glucose from substances other than carbohydrates. The loss of proteins can produce

an alteration of several functions of the organs.

Glucagon is the other hormone that helps to maintain the blood glucose levels

between the normal values. Its main function is opposite to the one of the insulin.

Glucagon raises the levels of blood sugar in one of two ways that glucagon promotes:

glycogenolysis and gluconeogenesis. The glycogenolysis is the extraction of glucose

from the glycogen in the liver and is the main source of glucose for short fasting

periods. In addition, the glucagon increases the gluconeogenesis in the liver and if

the fasting last for a long period of time and glycogen reserves are depleted, the

gluconeogenesis is the only source of glucose [54].

2.2 Diabetes mellitus

Diabetes mellitus, also known as diabetes, is a major healthcare problem [63].

According to the global report by the World Health Organization (WHO) [51], around

422 million adults had diabetes in 2014 and the number of cases and the prevalence

are increasing. Diabetes was the direct caused in 1.5 million deaths and 2.2 million

deaths were due to complications of the disease in 2012. Possible complications are

heart attacks, strokes, kidneys failure, among others [65]. These complications are
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some of the main costs in the healthcare system. These costs could be avoided with

a better control of diabetes. [15].

Diabetes is a chronic disease that occurs when the pancreas does not produce

enough insulin or when the body has a resistance to the insulin that it produces [51].

Insulin is essential for glucose to function properly in the metabolism, as can be seen

in Section 2.1.

2.2.1 Types of diabetes

There are different types of diabetes and the underlying cause of diabetes varies from

type to type. Diabetes is classified in four different groups: type 1 diabetes, type 2

diabetes, gestational diabetes and other specific types of diabetes [1].

2.2.1.1 Type 1 diabetes

Type 1 diabetes, also known as juvenile diabetes or insulin-dependent diabetes, is a

chronic condition. The usual onset age of type 1 diabetes is puberty, but can start at

any age [17].

Type 1 diabetes can be caused by injury of β cells in the pancreas or by diseases

that impair insulin production. The causes of the destruction to β cells include,

but are not limited to, autoimmune diseases and viral infections. Moreover, genetic

inheritance and environmental factors also play an important role in the degeneration

of β cells [26].

The main symptoms that patients can suffer are related to the high levels of

blood sugar. These symptoms include, but are not limited to: dry mouth, constant

urination, extreme fatigue and quick weight loss, etc [17].

2.2.1.2 Type 2 diabetes

Type 2 diabetes is the most frequent case of diabetes. According to [17], around 90 %

of all cases of diabetes are type 2 diabetes. In most cases, type 2 diabetes is seen in

adults older than 50 years old, although it seems to be an increase in the number of

cases in younger ages. The causes of type 2 diabetes are not completely understood,

however, it has a strong relation with obesity, sedentary lifestyle, age and genetic

inheritance [17].

Type 2 diabetes is due to an insulin resistance in the patient’s cells in addition to

the pancreas not being able to make enough insulin to overcome this resistance [26].

The symptoms may be identical to the symptoms on the type 1 diabetes, although,

the onset of the type 2 diabetes is slower and patients can live for long periods of

times without the acute symptoms of the disease[17].

The most common treatment of type 2 diabetes is exercise, diet control, weight

reduction and pharmacological treatment. This all helps to control the disease without

insulin injections [26]. This treatment helps to remit or improve the patient condition.

2.2.1.3 Gestational diabetes

According to [17] Gestational diabetes is a temporary condition that occurs in

pregnancy and it resolves when pregnancy ends. However, it can also carry the
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long-term risk of type 2 diabetes. Moreover, after birth, those children also have a

higher risk to develop type 2 diabetes. Gestational diabetes is usually diagnosed in

the second and the third trimester, although it also can be detected in the first one

[17].

2.2.1.4 Other specific types of diabetes

This last type of diabetes is made up of less common causes where the cause that

leads to diabetes is identified in a particular form [1]. This group includes, but is not

limited to: pancreatopathy, infections, genetic syndromes among others [65].

2.2.2 Hypoglycemia and hyperglycemia events

The normal concentration of blood glucose, normoglycemia, is achieved when the

values of glucose are between 80–130 mg/dl for the fasting plasma glucose, and less

than 180 mg/dl one or two hours after a meal for the postprandial plasma glucose

[58]. The postprandial plasma glucose is the concentration of blood sugar after a

meal. Type 1 diabetics cannot achieve these values without external help because

they have a deficit of insulin production, that is what causes the hypoglycemia and

hyperglycemia events.

Hypoglycemia and hyperglycemia are the two majors consequences of diabetes,

and they provoke most of the complications associated with the disease [48].

Hypoglycemia happens when the blood sugar is below 70 mg/dl [4]. As stated

in Section 2.1, the main source of energy for the brain is glucose. Therefore,

hypoglycemia causes severe dysfunction in the nervous system, including coma and

death [65].

According to [65], a hypoglycemia can occur for different reasons. One of the

causes can be the use of more than the needed insulin, these could reduce the blood

sugar below the normal levels. Moreover, physical activity can lead to a hypoglycemic

event, in addition to fasting for long periods, such as a night sleep. Not eating a proper

meal may turn out to be the cause of low blood glucose level too [65].

Hyperglycemia is a higher blood glucose level than the normoglycemia values. A

value higher than 180 mg/dl two hours after a meal is considered hyperglycemia [3].

A prolonged hyperglycemia over time can cause damage in the tissues. This damage

may produce macrovascular and microvascular diseases, such as atherosclerosis

and retinopathy, respectively [65]. Another disease caused by hyperglycemia is

ketoacidosis [48].

2.3 Management of type 1 diabetes

Currently, the most utilized therapy to manage type 1 diabetes is intensive therapy.

This intensive therapy tries to maintain the blood glucose levels in the normoglycemia

range and it consists of the following: control of the glucose levels, intensive insulin

therapy, nutritional therapy and physical exercise [65]. Furthermore, it is essential

that the patients are trained and educated about diabetes, so they can self-manage

it and develop the skills necessary for diabetes self-care [6].
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2.3.1 Glycemic control

The glycemic control is used to adjust the patient treatment. The hemoglobin A1C

test assess the necessary changes in the patient’s treatment in the long term. In

the other hand, the self-monitoring of blood glucose is used to adjust the patient

treatment in the short term.

The value of the hemoglobin A1C test is a percentage that represents the blood

sugar levels over the last two to three months [65]. It is used by the clinician to

evaluate the glycemic control in the long term and to assess the treatment [6].

The self-monitoring of blood glucose is mostly used by the patients. The patients

have been trained to use this value to make the necessary adjustment to their

treatment. Therefore, the value of blood glucose levels is of high importance in

the treatment of diabetes type 1. The number of measurements of the patient’s

capillary blood glucose is assessed by a clinician. In addition to capillary blood glucose

monitoring, there is also evidences that the use of continuous glucose monitoring

sensors are helpful for glycemic control [28].

[6] recommends the following glycemic values of the previous tests for adults with

diabetes, with the exception of pregnant women. These values can be different for

each person depending of their situation and their clinician’s judgment:

• Hemoglobin A1C less than 7%.

• Fasting plasma glucose: 80 - 130 mg/dl.

• Postprandial plasma glucose: less than 180 mg/dl.

2.3.2 Insulin therapy

In intensive therapy to manage diabetes, the insulin treatment applied is also an

intensive insulin therapy. This insulin therapy tries to emulate the functioning of

a healthy pancreas, which is accomplished using multiple insulin injections or with

insulin pumps. In this therapy, there are two kinds of bolus. The basal bolus that

emulates the secretion of the pancreas in fasting periods and the postprandial to

control hyperglycemia after the meal.

It is important to emphasize the importance of training and education of the

patient on the disease, as it allows the patient to modify the bolus in function of the

meals, exercise, and other parameters that can affect their blood sugar levels.

According to [12], insulin can also be classified by its pharmacokinetics. There are

three factors that help characterize insulin. First, the onset defines the absorption

time of the insulin by the body. Secondly, the peak states the moment of maximum

effect of the inulin. Lastly, the duration establishes the time that insulin remains in the

patient’s body. Four types of insulin are defined in relation to the pharmacokinetics:

rapid-acting insulin, intermediate-acting insulin, long-acting insulin and biphasic

insulin [12]. Figure 2.1 shows a simulation of the different pharmacokinetics insulin

types.

As stated before, there are two types of insulin bolus. For the basal bolus,

intermediate-acting insulin and long-acting insulin are used. On the other hand,
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Figure 2.1: Simulation of different pharmacokinetics insulin types.

the postprandial bolus are performed with rapid-acting insulin. Biphasic insulin are

used to perform both insulin bolus in only one injection [12].

2.3.3 Nutritional therapy and physical exercise

The objective of this treatment is to modify the diet to improve glycemic control

[6]. The recommended diet is a balanced and healthy diet [11]. In addition, planned

intake of carbohydrates improve blood glucose levels and the quality of life [34].

Physical exercise is another important part of the treatment against diabetes. It

improves glycemic control because during exercise the motor cells are able to uptake

glucose without the action of insulin and in this way, it reduces the blood sugar

levels [26]. In addition, physical exercise increases the insulin sensitivity, so less

insulin is needed to have the same effect in the patient. This should be considered

in order to prevent the occurrence of a hypoglycemia. Moreover, it helps to decrease

cardiovascular risk factors and helps to lose weight. It is recommended to do 150

minutes of moderate aerobic exercise per week, distributed over at least 3 to 5 days

[6].

2.4 Diabetes technology

According to [5], diabetes technology refers to the devices and, also, software that

helps to manage the diabetes disease. This classification is going to be divided in two

main categories insulin delivery and blood glucose monitoring [5].
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2.4.1 Insulin delivery

The most used methods to deliver insulin are insulin syringes and insulin pens. Insulin

syringes are the traditional way to deliver insulin and consists of the syringe and the

vial with the insulin. Insulin pens combine the syringe and the vial in one device.

The use of insulin pens have some benefits. It is easier to use and may help people

with lack of dexterity skills [45].

(a) Syringe and vial (b) Pen

Figure 2.2: (a) Insulin syringe [60] and (b) Lantus R© SoloStar R© insulin pen [56]

systems to deliver insulin therapy.

Insulin pumps are also widely used in intensive insulin therapy. Insulin pumps try

to emulate the secretion of a healthy pancreas, therefore, there are two different types

of injections: basal insulin and insulin bolus. Insulin pumps only deliver one type of

rapid-acting insulin. The basal insulin injections are small quantities of insulin that

emulate the secretion of pancreas in the fasting periods. The insulin bolus emulates

the pancreas secretion after a meal, this bolus is calculated and programmed by the

patient before each meal. The use of insulin pumps improve the glycemic control and

reduce the number of hypoglycemia occurrences [66].

2.4.2 Blood glucose monitoring

Individual self-monitoring of blood glucose is an important part of diabetes treatment

and is even more important if the patient is using an intensive insulin therapy.

To accomplish the self-monitoring of blood glucose, an important device called a

glucometer is used. Glucometers are devices that measure the capillary blood glucose

levels. The information provided by the blood glucose monitor helps patients make

better decisions about their treatment.

Continuous glucose monitor sensors provide information about the trend, rate

of change and concentration of glucose in the patient [48]. In this Master’s Thesis,

glucose data is provided by the Guardian R© Real-Time CGM System, a CGM sensor

that measures the glucose in the interstitial fluid every 5 minutes. In Section 4.2, the

dataset will be furthered explained.
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Figure 2.3: MiniMed
TM

670G insulin pump [39].

Figure 2.4: Accu-Check R© Aviva Glucometer [50].

Figure 2.5: Guardian
TM

Sensor 3 CGM System [40].



Chapter 3

Recurrent Neural Networks

This Chapter is a brief summary of recurrent neural networks that will be used in

the predictor of this Master’s Thesis. The main aspects discussed here are from [25],

[16], [42] and [59].

First, a brief introduction of artificial neural networks (ANNs) and types of

learning will be given.

The recurrent neural networks (RNN) will be exposed and the main ideas behind

these networks. Then, the algorithm of back-propagation through time to train

recurrent neural networks will be explored and the limitations of RNNs will be

explained. To conclude, the long-short term memory (LSTM) neural networks, a

type of RNN that were designed to overcome their limitations, will be presented.

3.1 Introduction

ANNs are inspired in a simple abstraction of the neurons of the brain [16]. These

ANNs receive some inputs to generate outputs. The inputs to the ANN can be

different kinds of data, for example, images, signals to be processed, time series, etc,

so the ANN can produce the desired output. ANNs learn by examples, that are in

training datasets, to solve a specific task. The process of learning is based on the

modifications of the weights and biases in the neurons. These learning processes can

be classified in three different paradigms: supervised learning, unsupervised learning

and reinforcement learning ([57] [7]).

In supervised learning, the dataset used for training is labeled, so each input data

has his correspondent output, also called target. Being (I = {i1, i2, ..., in}) the inputs
that produce the correspondent labelled output or target (T = {t1, t2, ..., tn}). An

error function that measures the predictions of the ANN with the targets associated

to the input data has to be defined. These error functions are propagated by the

neural network model, in this way, the ANN learns from past experiences. There

is also necessary a test dataset used to validate the performance of the model built

with ANN. The most popular supervised learning algorithm to train ANN is the

back-propagation algorithm [55].

On the other hand, in unsupervised learning the training dataset is not labeled;

so the model only trains in response to its inputs. One of the most used unsupervised

learning methods is the cluster analysis, which is used to find hidden patterns in the

data or for clustering the data. Evaluating the performance of these models is less
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straightforward than in the supervised learning. Some examples are Adjusted Rand

Index, H criterion and Mutual Information, among others [64].

To conclude this classification, it is important to note the reinforcement learning

rule. The model is provided with a grade for each different input value to the network.

This grade or score is the performance of the model, and the model trains to maximize

this score [16].

ANNs have proved successful in solving problems that are highly non-linear, where

variables vary over time, or to detect patterns and trends that are complex and hidden,

among others. Several examples of these solutions in different fields may be cited:

in the image classification, ANN have been used for medical image analysis [33], on

natural language processing ([13], [27]), and for audio signal processing [47]. The

use of ANNs to predict the blood glucose levels may be a good approach as shown in

Section 1.1. The forecast of blood glucose levels will be a supervised learning problem.

One of the simplest ANN is the perceptron [53], and it will be used in this Thesis as

the final layer of the proposed predictor, see Section 4.3. The perceptron formulation

is shown in Equation 3.1.

y = ϕ (Wx+ b) (3.1)

The internal parameters of neural networks are the weight matrix (W ) and the

vector bias (b). These internal parameters are applied to the input vector to the

perceptron (x). The activation function (ϕ) is applied to the results of applying

the internal parameters to the input vector. This produces the output vector with

predictions made by the perceptron (y). The activation function may be linear or

non-linear. The choice of a specific activation function is determined by the specific

problem to solve, see Figure 3.1.

3.2 Recurrent Neural Networks

The choice of the type of the network architecture is strongly influenced by the type

of problem to be solved. In this Master’s Thesis, a forecast time-series is stated thus

a LSTM architecture has been chosen as the most optimal solution. LSTM are a type

of recurrent neural networks, and it would be explained further in this Chapter (see

section 3.2.2). Recurrent neural networks (RNN) are designed to process sequences.

They excel in processing sequential data because they have recurrences that provide

memory to the RNN [25]. This memory enables the RNN to learn sequential or

temporal patterns.

There are several ways to build RNNs, because most recurrent functions can be

considered a RNN [25]. To show how a RNN works, a recurrent neural network is

presented in Eq 3.2.

hk = ϕ (Wxk + Uhk−1 + b) (3.2)

where k stands for the time step and hk is the output of the RNN. Moreover, xk is

the input vector that is a sequence of values from k = {1, ..., τ}, being τ a number of

time steps that belongs to N. In addition to the internal parameters W and b, the
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Figure 3.1: (a) Linear, (b) ReLU, (c) sigmoid and (d) tanh activation functions.

RNNs include the weight matrix (U) that is applied to the former output of the RNN

hk−1.

The unfolding of a RNN consists of converting the RNN in a multilayer perceptron

with as many layers as the length of the sequence input (τ time steps). The multilayer

perceptron [41] is the generalization of the perceptron (see Equation 3.1) for the case

of multiple layers. Figure 3.3 shows a representation of the unfolding of Figure 3.2

for a τ = 2. By using Equation 3.2 the process is shown in Equation 3.3.

hk = ϕ


Wxk + U


ϕ (Wxk−1 + Uhk−2 + b)︸ ︷︷ ︸

hk−1


+ b


 (3.3)

3.2.1 Back-propagation through time

The internal parameters of the ANN are initialized with a random value. Therefore,

the objective of training an ANN is to modify its internal parameters (weights and

bias) to produce a system’s output that approximates closely to the desired value. The

back-propagation algorithm [55] is a method to find the local minimum of a function.

Therefore, to train the ANN is needed a function that assess the performance of
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Figure 3.2: Computational graph of a RNN [59].

Figure 3.3: Unfolding of a single layer RNN [59].
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the model. This performance function is also called loss function. Finding the

minimum of this loss function, provides the optimal internal parameters to the ANN

and consequently it will perform better in the assigned task. The most common loss

function (L) applied in the back-propagation is the mean square error (MSE).

The back-propagation algorithm propagates the error from the loss function (L) by

computing the gradient of L. Then, it updates the weights and biases correspondingly

to the gradient of L using the stochastic gradient descent (SGD), more sophisticated

methods are stated in 4.4.2. In addition to the gradients, it is needed a coefficient

called the learning rate (α) to update the parameters, as shown in Equation 3.4. The

learning rate (α) is a decisive parameter to train the ANN, its value determines the

time it takes to reach the minimum of the function. In addition, a value of α too high

may end with the algorithm not being able to converge to find a solution.




W (r + 1) = W (r)− α ∂L

∂W (r)

b(r + 1) = b(r)− α ∂L
∂b(r)

(3.4)

However, RNNs cannot be trained directly with the back-propagation algorithm

[55] because the gradients cannot be computed with it. Real-time current learning

(RTRL) and back-propagation-through-time (BPTT) are two modified methods of the

back-propagation algorithm that are available to train RNN. Both methods provide

the same gradients, the main difference is the process followed to calculate them. This

Thesis will focus in the BPTT algorithm.

The BPTT algorithm can be seen as applying the back-propagation algorithm to

the unfolded RNN [25]. To see how the BPTT behaves, it will be applied to the single

layer RNN defined by the Equation 3.2.

The steps are the same as in the back-propagation algorithm [55]. However, now

the input vector (xk) is a sequence from k = {1, . . . , τ} and the output vector is hk.

The BPTT starts the calculation of the gradient at the last point of the sequence τ ,

and then it continues working backwards through the whole sequence. The BPTT

as the back-propagation algorithm is resolved in three steps: the calculation of the

loss function, the application of the chain rule to calculate the gradients and, lastly,

the updating of the RNN parameters. The back-propagation algorithm is a iterative

process that stops when the minimum of the loss function is founded and the index r

denotes the actual iteration, see Equation 3.4.

The first step consists in compute the loss function. The loss function assess the

error between the predictions made by the ANN and the correspondent targets (see

Section 3.1). In this Thesis, it has been selected the mean square error (MSE), see

Equation 3.5.

L =
1

N

N∑

n=1

(l(n))2 (3.5)

where l(n) = [t(n)− h(n)], is the vector that measures the error of the predicted

output of the RNN (h(n)) and the correspondent target (t(n)), being n the specific

sample [59].
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Before continuing, let A ◦B be defined as the element wise product of matrices A

and B of same dimension, with elements given by:

(A ◦B)ij = (A)ij(B)ij (3.6)

Next step consists of back-propagating the error through the network. The chain

rule of calculus is used to compute the gradients of the error because the parameters

of the RNN are an indirect function of the loss function [16]. Then, the gradients of

L are calculated as shown in Eq 3.7.





∂L
∂W (r) = δ(r)xk(r)

∂L
∂U(r) = δ(r)hk−1(r)

∂L
∂b(r) = δ(r)

(3.7)

where hk−1(r) is the output of the time step (k-1) at the iteration r, k = {1, . . . , τ}.
δτ (r) is the sensitivity at the last time step. The sensitivity can be thought of as

an intermediate variable that simplifies the calculus and the notation in the back-

propagation algorithm, and is computed as shown in Eq 3.8:




δτ (r) = −2(lk(r)) ◦ Ḟτ (zτ (r)) , for k = τ

δk(r) =
(
Ḟk (zk(r)) ◦ (U(r))T

)
δk+1(r) , for k = {τ − 1, . . . , 1}

(3.8)

where being zk(r) the output of the RNN in the k time step without the activation

function, as shown in Eq 3.9:

zk = Wxk + Uhk−1 + b (3.9)

where Ḟk(zk(r)) is the diagonal matrix shown in the Equation 3.10, being ϕ̇ the

derivative of the activation function in Eq 3.2.

Ḟk =




ϕ̇ (z1) · · · · · · 0
... ϕ̇ (z2) · · · 0
...

... · · · ...

0 0 · · · ϕ̇ (zδk)




(3.10)

Once the sensitivities are calculated, the last step is to update the parameters of

the RNN:





W (r + 1) = W (r)− α
(∑τ

k=1 δk(r) (xk(r))
T
)

U(r + 1) = U(r)− α
(∑τ

k=1 δk(r)(hk−1(r))
T
)

b(r + 1) = b(r)− α (
∑τ

k=1 δk(r))

(3.11)
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It is possible to notice in Equation 3.11 that the gradients for the parameters are

summed at each time step, because the parameters are shared across the time steps

[25].

Finally, it is important to note the problem of long-term dependencies that were

explored by [22] and [8]. When the gradients are propagated over too many time steps,

the gradients tend to vanish (very small value) or to become unstable (becoming a

very huge value). This problem makes it very difficult to learn long dependencies for

the RNNs.

In RNNs, the same activation function is applied during multiples times. It

produces a highly non-linear behavior. There are some activation functions that

produces this non-linear behavior that boost the vanishing and exploding gradient

phenomenon, for example, the sigmoid and the tanh, see Fig 3.1c and Fig 3.1d

respectively.

3.2.2 Long Short-Term Memory neural networks

The long short-term memory neural network were introduced by [23]. LSTMs are

a special type of RNN developed specifically to solve the vanishing and exploding

gradient problem. Thus, being able to learn long-term dependencies as well as short-

term dependencies. An LSTM cell (see Fig 3.4) is composed of 4 layers, also called

gates, that interact with the cell state (ck), the output of the LSTM (hk), also called

the hidden state, and between them.

The cell state is the memory of the cell and maintains the information through

the unfolding of the LSTM cell. The inputs to the four gates are the correspondent

xk vector, where k is a sequence from k = 1, . . . , τ , and the previous outputs (hidden

states) from the LSTM (hk−1).

The four gates are the forget gate (fk), the input gate (ik), the new cell state

candidate gate (c̃k) and the output gate (ok). Each gate has its own parameters,

biases (b), weight for the input value (W ) and weight for the hidden state value (U),

and the sub-index used denotes to what gate corresponds. The behaviour of a LSTM

cell is the following:

1. The forget layer decides what percentage of the information from the cell state

has to be left behind and which should remains in it. The activation function of

this gate is a sigmoid (σ) (see Fig 3.1c). Therefore, the output of the forget layer

is between 0 and 1. The output of the forget layer (fk) is multiplied element-

wise (see Eq 3.6) to the cell state (ck). This process is the one that erases the

information of the cell state. This process is the same in the input and output

gate that also have a sigmoid as activation function.

fk = σ (Wfxk + Ufhk−1 + bf ) (3.12)

cfk = fk ◦ ck−1 (3.13)
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2. The next step consists of updating the new information to the cell state, cik .

The new cell state candidate gate (c̃k) proposes the new information that may

be added to the memory of the cell (see Equation 3.15). The activation function

is a hyperbolic tangent (tanh)(see fig 3.1d), so this gate is, also known as the

tanh gate. The input gate decides what percentage of the new information is

going to be stored in the memory of the cell. This is done through an element

wise multiplication such as in the previous step (see Equation 3.14). The result

from these operations is the new information, see Equation 3.16.

ik = σ (Wixk + Uihk−1 + bi) (3.14)

c̃k = tanh (Wixk + Uihk−1 + bi) (3.15)

cik = ik ◦ c̃k (3.16)

3. The new cell state is updated with the information provided by the two previous

steps, as shown in Equation 3.17.

ck = cfk + cik (3.17)

4. The output hk is obtained through two mechanisms. First, the cell state (ck) is

modified with an hyperbolic tangent (tanh) activation function. To conclude,

the output gate selects the percentage of the data that is going to be output by

the cell.

ok = σ (Woxk + Uohk−1 + bo) (3.18)

hk = ok ◦ tanh (ck) (3.19)
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Figure 3.4: Computational graph of a LSTM cell [59].
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Chapter 4

Design Process

This chapter describes the design process of this Master’s Thesis. First, it presents

the development environment used to develop the glucose predictor and the concept

of computational graph.

Then, the dataset used in this thesis is presented. Moreover, the pre-processing

techniques used and how the data is arranged to train and validate the model proposed

is also presented. The neural network architecture proposed for the glucose predictor

is shown as well. To conclude, the process of searching the optimal parameters of the

neural network is presented.

4.1 Development environment

The chosen framework to implement the predictor is PyTorch [44]. PyTorch is an open

source platform to develop neural network models and it is deeply integrated with

python. Two main features from PyTorch are worth noting: tensors and dynamic

computational graphs.

The PyTorch tensors are represented similarly to NumPy [43] as n-dimensional

arrays. One of the advantages is that PyTorch tensors can be computed on Graphical

Processing Units (GPU) with the Compute Unified Device Architecture (CUDA) and

this can help to reduce computational time.

First, let’s explain what is a computational graph. A according to [59]

computational graph represents a mathematical expression and is composed of the

mathematical operations, the inputs and the outputs. Mathematical operations are

represented by nodes, inputs are the variables that feed the mathematical expression

and outputs are the solutions of the mathematical operations [59]. The computational

graphs paradigm is implemented in two ways. First, static computational graphs,

and second, dynamics computational graphs. In the static computational graph

approach, the graph is created before running the program. This is the approach

used in frameworks such as TensorFlow. In contrast, PyTorch uses the dynamic

computational graph paradigm. In PyTorch, the computational graph is declared

with the Autograd package. Autograd creates the computational graph automatically

when model operations are performed. This automatic process is known as a dynamic

computational graph. Therefore, the dynamic computational graph can be different

at each iteration because it is created on each iteration.

Computational graphs are used by the framework to calculate the back-propagation
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algorithm [52] [55]. The Listing 4.1 and Listing 4.2 show how PyTorch computes the

back-propagation algorithm for a simple neural network example. In this example, it

is possible to see that the computational graph is created in the moment of the

forward propagation (MLP(x)), the first step of the back-propagation algorithm.

Once the gradients are calculated (second step of the back-propagation algorithm)

with ( loss .backward()), the computational graph is freed. The final step of the

algorithm is when the parameters are updated with (optimizer.step()). Also, it would

be possible to update the parameters by implementing the expression with tensors.

Prior to presenting the example of how the back-propagation algorithm is carried out,

following sections will demonstrate the different ways to create ANNs in PyTorch.

PyTorch allows ANNs to be developed from scratch using Tensors, but also

includes torch.nn class that provides built-in functions and classes to create ANNs

with a more comprehensible, concise and scalable approach. It also includes built-in

activation functions, such as ReLU, sigmoid and tanh (see Fig 3.1), and loss functions,

among others features. To analyze the different approaches, a multilayer perceptron

with two layers, 12 inputs and 1 output will be built. The first layer will have a sigmoid

activation function and the second layer will have a linear activation function. This

neural network will be built from scratch, using the built-in functions and classes from

the torch.nn class, and, will conclude by using the sequential class of the torch.nn

class. Notice that these approaches are not mutually exclusive.

First, let’s present the model done from scratch just using PyTorch tensors,

see Listing 4.1. It is important to note that the tensors need to activate the

parameter requires grad=True, so the Pytorch can calculate the gradients for the

back-propagation. In this approach the parameters (weights and biases), the

activation function (sigmoid), the forward propagation and the updating of the

parameters of the ANN have to be specified.
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Listing 4.1: Multilayer perceptron and Back-propagation from scratch

import torch

class MLP scratch :

def i n i t ( s e l f ) :

s e l f . we ight s 1 = torch . randn (12 , 2 , r e qu i r e s g r ad=True )

s e l f . b i a s 1 = torch . z e r o s (2 , r e qu i r e s g r ad=True )

s e l f . we ight s 2 = torch . randn (2 , 1 , r e qu i r e s g r ad=True )

s e l f . b i a s 2 = torch . z e r o s (1 , r e qu i r e s g r ad=True )

def s igmoid ( s e l f , x ) :

return 1 . / ( 1 . + torch . exp(−x ) )

def c a l l ( s e l f , input ) :

l a y e r 1 = input @ s e l f . we ight s 1 + s e l f . b i a s 1

l a y e r 1 = s e l f . s igmoid ( l a y e r 1 )

output = l ay e r 1 @ s e l f . we ight s 2 + s e l f . b i a s 2

return output

# I n i t i a l i z a t i o n

mlp = MLP scratch ( ) # de f i n i n g the ANN

x = torch . randn (12) # input

t a r g e t = torch . t en so r ( [ 1 . ] ) # ta r g e t o f the ANN

Los s func t = nn .MSELoss ( ) # Def ines the l o s s f unc t i on

l r = 0 .01 # lea rn ing ra t e

# Backpropagation

output = mlp (x ) # Output from the model

l o s s = Los s func t ( output , t a r g e t ) # the l o s s i s computed

l o s s . backward ( ) # Backpropagate the g r ad i en t s

# Parameter updat ing

with torch . no grad ( ) :

mlp . we ight s 1 −= mlp . we ight s 1 . grad ∗ l r

mlp . b i a s 1 −= mlp . b i a s 1 . grad ∗ l r

mlp . we ight s 2 −= mlp . we ight s 2 . grad ∗ l r

mlp . b i a s 2 −= mlp . b i a s 2 . grad ∗ l r

mlp . we ight s 1 . grad . z e r o ( ) # Reset the g r ad i en t s

mlp . b i a s 1 . grad . z e r o ( )

mlp . we ight s 2 . grad . z e r o ( )

mlp . b i a s 2 . grad . z e r o ( )

Another way to deploy an ANN in Pytorch is using the nn.Module class, see

Listing 4.2. This allows more facilities to create more complex ANNs, whose

resulting ANN is more readable. In addition to the functions and classes provided

by the nn.Module, PyTorch also allows the creation of custom functions and layers.

nn.Linear provides a linear layer with the expected number of inputs and outputs,

and nn.Sigmoid() provides the sigmoid activation function. In addition, the use of the

optimizer simplifies the process of parameter updating.
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Listing 4.2: Multilayer perceptron and back-propagation using PyTorch classes

import torch

import torch . optim as optim

import torch . nn as nn

class MLP functional (nn . Module ) :

def i n i t ( s e l f ) :

super ( ) . i n i t ( )

s e l f . L inear 1 = nn . Linear (12 , 2)

s e l f . s igmoid = nn . Sigmoid ( )

s e l f . L inear 2 = nn . Linear (2 , 1)

def forward ( s e l f , input ) :

l a y e r 1 = s e l f . s igmoid ( s e l f . L inear 1 ( input ) )

output = s e l f . L inear 2 ( l a y e r 1 )

return output

# I n i t i a l i z a t i o n

mlp = MLP functional ( ) # de f i n i n g the ANN

x = torch . randn (12) # input

t a r g e t = torch . t en so r ( [ 1 . ] ) # ta r g e t o f the ANN

opt imize r = optim .SGD(mlp . parameters ( ) , l r =0.01)

Los s func t = nn .MSELoss ( ) # Define the l o s s f unc t i on

# Backpropagation

opt imize r . z e ro g rad ( ) # Reset the g r ad i en t s

output = mlp (x ) # Output from the model

l o s s = Los s func t ( output , t a r g e t ) # the l o s s i s computed

l o s s . backward ( ) # Backpropagate the g r ad i en t s

opt imize r . s t ep ( ) # Updates the parameters

To conclude, let’s present another class that is inside the torch.nn class, the

sequential class. The sequential class creates the ANN by adding the modules

sequentially. This approach presents a more simple way to write the ANN, see

Listing 4.3. The back-propagation algorithm is similar to the Listing 4.2 to calculate.

Listing 4.3: Multilayer perceptron using sequential class

import torch

import torch . nn as nn

MLP = nn . Sequent i a l (

nn . Linear (12 , 2 ) ,

nn . Sigmoid ( ) ,

nn . Linear (2 , 1 ) )

The approach to create ANN with Tensors is very flexible and it allows the creation

of any kind of ANN. However, this approach is complex and very prone to error. On

the other hand, the use of the sequential class is very readable and easy to use,

although the creation of a more complex ANN could be challenging. The nn.Module

class allows enough flexibility to create complex ANNs and, at the same time, provides

a comprehensible, concise and scalable way to build ANNs. Therefore, it is the

selected approach.

Other libraries used in the development of this Master’s Thesis are: Numpy [43],
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Matplotlib [24] and Pandas [37]. Numpy is used to implement some of the metrics to

validate the predictors and also because it was needed as intermediary values between

PyTorch and the other two libraries. Matplotlib is used to display the figures that are

in this Master’s Thesis. Moreover, Pandas is used to access and modify the dataset

used in this Master’s Thesis. To conclude, MATLAB [36] has been used to develop

the filter that was applied to the signal, see Section 4.2.1.1.

4.2 Dataset

In order to develop and train our glucose level predictor based on LSTMs, a dataset

is needed. In this section, the dataset used and a brief introduction of how the data

was acquired is presented. This experiment and the analysis of the data was made

after the collection of the data done in [48]. The dataset utilized in this Master’s

Thesis is the Dataset 2 [48]. This dataset was also used in [49].

The experiment is implemented as a three weeks randomized crossover with the

participation of twelve patients, six men and six women. Three variables were

acquired from the subjects: glucose levels that were obtained from a CGM sensor

(Guardian R© Real Time, see Table 4.1) and from a glucometer, insulin bolus from

their insulin pump and the food intake. The devices used in the study were the

Guardian R© Real Time, a glucometer to do the calibrations for the CGM sensor, the

insulin pump owned by the subject and a PDA or a paper sheet to record the food

intake. The phases of the experiment were: training, experimental, shift and control.

Guardian R© Real Time Medtronic-Minimed

Type of sensor Minimally invasive

Applied technology Glucose oxidase enzyme (Enzymatic)

Calibrations required 2 per day

Life time 72 hours on average

Sampling period 5 minutes

Measurement frequency Continuous

Table 4.1: Main characteristics of Guardian R© Real Time [48]

After the experiment, all the data from the twelve patients was gathered and

analyzed. The data from the CGM sensor, Guardian R© Real Time, was directly

downloaded from the sensor so the experimenter could assume the data as reliable.

The same happened with the data from the insulin pump. However, the food intake

data was filled manually so it needed a study to validate if the data was reliable. That

study compared the insulin bolus from the insulin pump with the food intake in order

to verify if the data was reliable. According to this study, some of the registers from

the food intake were missing, and others were unreliable. For the missing data, the

main meals were estimated using the information of the insulin bolus. However, not

all the information could be estimated so all the information that was missing and

unreliable data were eliminated.

After validating the information, the database had 58 complete profiles from eight
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different patients with information about the glucose levels from the CGM sensor,

the capillary glucose blood levels from the glucometer (used for the calibration of the

CGM sensor), the insulin data from the insulin pumps and the food intake converted

into grams of carbohydrates (see a patient example in Figure 4.1). Each profile has

the information of one whole day. Each day has 288 samples with a sampling period

of 5 minutes, see Table 4.1.

The implementation of the glucose level predictor is the objective of this Master’s

Thesis. Three parameters from the previous experiment will be used in this thesis: the

glucose levels from the CGM sensor, the insulin data from the insulin pump and the

the food intake converted into grams of carbohydrates. The glucose values from the

glucometer will be used automatically by the Guardian R© Real Time to calibrate the

output. These three parameters are selected because they are the mains parameters

to control the glucose concentration in the body, see Chapter 2. Another important

parameter not involved in the experiment, was physical exercise. This data was not

recorded. Another issue to note is that all these variables are time dependent. The

three parameters provided have the same sampling period, 5 minutes, and are acquired

simultaneously. Therefore, the time will not be fed to the predictor because RNNs

are able to learn the time dependency by themselves.

The database obtained from the previous experiment has the variability needed

to train and evaluate a prediction model [48]. The variability among patients is

wide enough to provide different situations to the predictor proposed in this Master’s

Thesis.

4.2.1 Data preprocessing

The predictor proposed was fed with three parameters: the glucose data from the

CGM sensor, the insulin data from the insulin pumps, and the food intake, see

Figure 4.2. In this Section, these three parameters and the pre-processing techniques

applied to the raw data provided are presented.

Data pre-processing is a different set of techniques that transform raw data into

a suitable form needed to increase the performance of ANN. The raw data obtained

is often incomplete or it is not suitable to train the ANN. That is why data pre-

processing is almost always necessary when working with ANN. Another issue to

consider is that the pre-processing techniques have the risk of eliminating the relevant

information presented in the data.

4.2.1.1 Glucose preprocessing

There are three main artifacts that can be highlighted in the raw glucose data. There

are missing values (values equal to zero, see Figure 4.3), jumps in the signal due to

the calibration (see Figure 4.4) and noise in the CGM signal. Therefore, to use the

glucose data, the missing data from the sensor needs to be recovered and the impact

of the calibrations needs to be reduced, as well as the noise distortions.

First, let us focus on the missing values of the signal. According to [48], this

loss data may be caused by a number of factors. One of these factors could be a

problem with the connection between the CGM sensor and the receptor. Another

factor could be a problem that happens during the calibration. For example, if the
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Figure 4.1: Representation of profile 9 of the Patient 2 from the database
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Figure 4.2: Representation of the raw parameters to feed the RNN

sensor measurement is far from capillary blood glucose level then it stops sending

measurements until it calibrates itself. The selected method to correct the missing

values is the interpolation [48].

Figure 4.3 represents a profile with missing values and its interpolation.

According to [48], the Guardian R© Real Time needs at least two calibrations during

the day, see Table 4.1. These calibrations are the blood glucose concentration mea-

sured by a glucometer. Users are responsible to upload the calibration measurements

into the device. Once the calibration is inserted, the internal parameters of the CGM

sensor starts to update to the approximate output of the blood glucose concentration

measurements from the glucometer. This process may produce some discontinuities

in the signal, which impairs the performance of the predictor [48], see Figure 4.4.

To compensate these distortions, a threshold of 30 mg/dl has been defined. Only

jumps bigger than or equal to the threshold are compensated. The process is done

empirically, and it proceeds as follows: if a distortion that is bigger than or equal to

the threshold is found, then it checks if there is an associated calibration value that has

produced this distortion. Once a calibration value corresponds with an artifact, then

a linear transformation is applied to the signal to correct the distortion. Figure 4.5

shows an example of the results of the process.

When performing this process, the following conclusion has been reached: the

57th profile, that corresponds to the patient 10, has been dropped from the study

because it did not have calibration data and the distortions could not be corrected.

The CGM signal is very noisy, so to reduce the noise and smooth the data from

CGM signal, a moving average filter is applied. The Equation 4.1 shows the formula

of the moving average filter. Let N be the length of the window where the averaging
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Figure 4.5: Results after correction of the discontinuities caused by the calibration

is applied, x the raw signal, and x̂ the filtered signal. The moving average filter is a

finite impulse response (FIR) filter, so it only depends on the input parameters and

it is a time dependent filter. There are two things to keep in mind when a filter is

applied. First, the signal is not modified excessively, so the relevant information is

still presented in the signal. Second, the filter provokes a delay in the signal applied.

Nevertheless, the benefits of applying a filter outweigh the disadvantages of using it.

Taking all this into account, the chosen moving average filter has a length N = 5.

This allows the signal to be cleaned and avoids deleting relevant information (see

Figure 4.6).

x̂ (i) =
1

N

N−1∑

n=0

x(i− n) (4.1)

4.2.1.2 Insulin preprocessing

Insulin pumps have two kinds of insulin injections: basal insulin and bolus insulin (see

Section 2.4.1). The bolus insulin for the meals is several orders of magnitude bigger

than the basal insulin. The insulin bolus are represented as an impulse function or

Dirac delta function (see Figure 4.7). This may produce the RNN to ignore the value

of the bolus of insulin or another unforeseen behaviour. Therefore, a pre-processing

technique is needed.

The chosen solution is to transform the bolus of insulin, that is an impulse

function, into a rectangular function with the same area. The insulin bolus is
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Figure 4.6: Comparison between the raw CGM and the filtered CGM signal

distributed during 12 samples that correspond to 1 hour, because rapid acting insulin

used in insulin pumps, tends to acts during 1 hour on average. In addition, the basal

insulin is not transformed and it behaves as before. Figure 4.8 shows the results of

the pre-processing technique applied.

4.2.1.3 Food intake preprocessing

The food intake was manually provided by the patient. These values were transformed

to grams of carbohydrates, representing the amount of carbohydrates eaten by the

patient in the meal. Each registered meal is represented with only one value. The

representation of this parameter shows that the food intake is also represented as a

impulse function or Dirac delta function, see Figure 4.9. The problem is similar to

the one stated in the Section 4.2.1.2. Therefore, the solution is also similar.

The food intake parameter is transformed into a rectangular function with the

same area that the impulse function had with 12 samples equivalent to one hour. The

value of one hour is being established as the average absorption time of glucose for the

different types of carbohydrates. Figure 4.10 shows the results of the pre-processing

technique applied.

4.2.1.4 Normalization

The predictor proposed in the Thesis is based on LSTMs, which are a type of RNN

that have sigmoid and tanh activation functions in their gates (see Section 3.2.2).

The value of the sigmoid output is in the range between 0 and 1 (see Figure 3.1c).

Therefore, the output of the sigmoid saturate in 1 and into 0. Something similar
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36 4. Design Process

happens with the tanh function, but in this case their range is between -1 and 1 (see

Figure 3.1d). It is important to note that the range from the sigmoid (0, 1) is more

restrictive than the range of the tanh. Therefore, the input parameters to the RNN:

glucose from the CGM sensor, the insulin and the food intake, should be in the range

of 0 to 1 to prevent unforeseen results and to facilitate the proper learning of the

neural network. Moreover, this process is also done to the targets of the RNN model.

Sections 3.1 and 4.2.2 explain the targets.

There are multiple ways to normalize the data in order to train an ANN, some

examples are: logarithmic normalization, standard normalization or min-max feature

scaling. The chosen method has been the min-max feature scaling, because it

guarantees the normalized values will be in the range of (0, 1). This method proceeds

as follow:

1. For each parameter of the network, it has to be found the minimum value in

the dataset for that specific parameter, xmin.

2. Similarly, the procedure is the same for the maximum value in the dataset for

that parameter, xmax.

3. Once that the previous steps are complete, the normalization is applied:

x̄i =
xi − xmin

xmax − xmin
(4.2)

Let xi correspond to the value of the specific parameter, that is being

normalized. Where i ∈ {1, ..., N} being N the numbers of samples in the dataset.

4.2.2 Data arrangement

After finalizing the pre-processing process described in Section 4.2.1 the parameters

are prepared to be fed into the RNN. In this section, the process of preparing the

data to train and evaluate the predictor based in LSTMs will be presented.

The paradigm of learning used, as previously stated, is supervised learning (see

Section 3.1). Then, the data is to be arranged in inputs, I = {i1, . . . , in}, and targets,

T = {t1, . . . , tn}. This dataset consists of a time-series of 288 samples distributed

every 5 minutes that has already been pre-processed. These time-series are: the

glucose (X), the insulin (C) and the food intake (Z). These time series have to be

converted in a supervised learning problem, this may be done in a variety of methods.

However, for this Thesis, the sliding window or windowing ([29] and [31]) has been

selected and it has been applied as follows:

1. Prior to the explanation of the windowing method, it is important to define

some important terminology. The input dimension, also known as the sequence

of values, determines how many past values of glucose, insulin or food intake

are fed as an input to the predictor. The prediction time (PT) states the time

at which the prediction will be made. PT states the time of the prediction in

minutes, but notice that the data is sampled every 5 minutes, so the prediction

time will be a multiple of 5.
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Figure 4.11: Parameters after normalization

2. Additionally, it is important to understand the functions of the glucose

parameter. The past values of glucose are an input to the predictor and, also,

the future values of glucose are the target of the predictor. Therefore, the time

series has to be re-arranged in input values and in target values. The insulin

and the food intake parameters are only inputs to the system, so they only have

to be re-arranged as input values.

3. To illustrate the process, let the input dimension be 5 and the PT be 10 minutes,

which is equivalent to 2 samples, the time series of glucose X = {x1, x2, . . . , xn},
the insulin, w = {w1, w2, . . . , wn}, and the food intake, Z = {z1, z2, . . . , zn}.
Then, the data is arranged as illustrated in Figures 4.12 and 4.13, where I are the

inputs (see Figure 4.12) and T are the corresponding targets (see Figure 4.13).

Note that I is a three dimension tensor, where the first one is the new size of

the dataset after the arrangement with the sliding window method. The second

dimension is the input dimension, that is the number of past values that will

feed the predictor. Finally, the third one is the number of input parameters,

in this case, three. T is a single dimension tensor with correspondent future

glucose value for each row of the Inputs (see Figure 4.12). The inputs may be

also represented as in Eq 4.3.

I = {I1, I2, . . . , Ii, . . .In} (4.3)

where each Ii is a tensor, that represents an input value to the predictor. Being
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Figure 4.12: Three dimension input tensor that feed the predictor.
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Figure 4.13: Correspondent targets.

Ii a sequence of values from k = {1, ..., τ}, being τ equal to the input dimension,

in this example, 5 time steps, as shown in Eq 4.4.

Ii =




xi xi+1 xi+2 xi+3 xi+4

wi wi+1 wi+2 wi+3 wi+4

zi zi+1 zi+2 zi+3 zi+4


 (4.4)

To simplify, let ik be the input vector for the time step k (see Equation 4.5).

Then, Ik is represented as shown in Eq 4.6

ik =




ik

wk

zk


 (4.5)

Ik =
[
ik . . . iτ

]
(4.6)

Once the data in the dataset is converted in a supervised learning problem, the

next step is to arrange the dataset into three smaller subsets: training, validation, and

the test datasets. It is important to note that the data in each subset only belongs
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to that subset, and does not appear in the others. The training dataset holds the

data that is used to train the ANN. The ANN makes predictions with the inputs that

it receives. Then it compares this prediction with the targets using the defined loss

function to calculate the error. Finally, back-propagates the error through the ANN

and updates the parameters (see Equation 3.4). The training dataset is the only one

where the back-propagation algorithm is applied. Therefore, the training dataset has

a great importance because the ANN only learns from this data, thus the training

dataset hold the majority of the data.

The validation dataset is also used during the training process to test the

performance of the model for unseen data. In this way it prevents overfitting.

Overfitting is the overspecialization of the ANN for the data presented in the training

dataset, which causes poor performance when different data is presented. The process

followed in this thesis is to stop the training when the performance for the validation

dataset begins to worsen, this method is called early stopping [46] (see Figure 4.14).

The validation data only uses a small portion of the whole dataset.
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Figure 4.14: Example of the early stopping method.

The purpose of the Test dataset is to evaluate the performance of the fully trained

ANN for unseen data. The targets in the test dataset, as well as in the validation

dataset, are only used to compare the predictions made by the ANN with the expected

targets. There are different metrics used to evaluate the performance of the ANN in

the test dataset (see Section 5.1). The amount of data in the test subset should be

long enough to ensure that the ANN could be evaluated properly, but leaving enough

data for the training dataset.

At the moment the data is distributed in each subset, it is important to note that

the data belonging to each patient should be only in one of the datasets, because this

data is correlated among them and this could bring misleading results as the data

would be biased. Therefore, to ensure the independence of the findings done in this

Thesis, the data would be arranged according to that.
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Another important issue to consider is that the distribution of the data should

be balanced between the number of hard and easy cases to predict. This means

that each set (Training, Validation and Test) should have a similar proportional

relation between the difficulty of the cases to predict. If this is not addressed, the

different subsets will not be representative of the dataset and will not fully comply

with their function. In addition to the balance, the different subsets should be

as representative as possible of the phenomenon to predict, in this case, glucose

concentration. Therefore, each subset has cases with different hypoglycemic and

hyperglycemic events, different quantities and times of food intake and insulin

injections, and different glucose concentrations, tendency and speed of change in each

period of time.

Taking all of this into consideration, the different subsets are distributed as follows:

training dataset has 36 profiles from patients 1, 2, 3, 5 and 7, validation dataset has

6 profiles from patient 10 and test dataset has 15 profiles from patients 6 and 9.

4.3 Neural network architecture

In this Section the architecture of the proposed predictor will be presented. The

proposed predictor is based in LSTM neural networks, see Section 3.2.2. Here a

generic version of the model is presented, and in Section 4.4 the parameters of the

model are tuned for each prediction time (PT) proposed. Four forecasts are done, one

at each proposed PT: 5 minutes, 15 minutes, 30 minutes and 45 minutes. Notice that

the PT at 5 minutes does not have much value for a patient due to its very short notice,

so the patient cannot take actions to prevent an hyperglycemia or hypoglycemia.

Nevertheless, it is helpful to the designer to give an insight of the best performance

that can be achieved.

Furthermore, in this study three values of input dimensions are set: 5 samples,

20 samples and 50 samples. The input dimension is related to the unfolding, as

explained in Section 3.2. The input dimension states the number of times that the

RNN is unfolded. Therefore, our input tensor (Ii) will be a sequence of values from

k = {1, ..., τ}, assuming τ equal to the stated input dimension. This input dimension

states how many past samples are taken into account by the model to made the

prediction so, 5 samples are equivalent to 20 minutes in the past, 20 samples are

equivalent to 1 hour and 30 minutes in the past and, to conclude, 50 samples are

equivalent to 4 hours and 10 minutes in the past.

The predictor proposed in the Figure 4.15, is composed of three layers, two LSTM

layers and one final linear layer. The LSTM layers (see Section 3.2.2) has 50 neurons

each and the linear layer is a perceptron with only 1 neuron (see Equation 3.1) and

a linear activation function (see Figure 3.1a). The optimizer algorithm to update the

parameters is the Adam [30] and a chosen learning rate of 0.001. These parameters,

are also called hyper-parameters and will be optimized in Section 4.4. Only the linear

layer will remain as stated in this Section.

Figure 4.15 also presents the unfolding and the data flow of the model. First,

the input sequence (Ii) comes in the first LSTM layer. In this layer the unfolding is

processed and the output (h1k) is the input to the following LSTM layer. Note that

the superscript denotes the layer of the model. The second LSTM layer processes
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Figure 4.15: Generic architecture version of the predictor proposed.

the information, and provides its output for the last value of the sequence, h2τ to the

Linear layer. Finally, the linear layer computes the h2τ to produce the expected value

of glucose concentration at the desired PT, yPT .

4.4 Parameter optimization

This section is devoted to find the optimal parameters for the proposed predictor.

There are different approaches that may be followed to find the optimal parameters

of the neural network. For instance, some of these approaches are: experimental

search, Bayesian optimization [61] or using another ANN that performs the parameter

optimization, which is another field of the machine learning called AutoML. An

example of this is presented in [18].

In this Master’s Thesis the chosen method is the experimental search, leaving the

others for future research. The proposed method is as follows. For each of the input

dimensions selected for the study (5, 20 and 50) and for each of the PT selected (5, 15,

30 and 45 minutes), a number of combinations of the different parameters are stated

and then it searches the parameters that produces the best performance. These are

considered the optimal parameters for that input dimension and PT. In Section 5.2,
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the models with these parameters are trained and assessed, and the results of their

performance are shown.

Two metrics are selected to compare the performance of the different parameters.

The first one is the error distribution e shown in Equation 4.7 [59]. The other metric

used is the root mean square error (RMSE) (Equation 4.8).

e = (|t1 − y1|, . . . , |tn − yn|) (4.7)

RMSE =

√√√√ 1

N

N∑

i=1

(ti − yi)
2 (4.8)

where ti is the expected output (target) and yi is the prediction made by the model.

To help illustrate the differences between the parameter box-plots that are used

to display the error distribution e and bar charts are used to represented the RMSE

for each combination of parameters.

The search of the optimal parameters is divided in two parts, the architecture

parameters and the parameters related to the training of the proposed predictor.

First, the purpose of the architecture parameters search is to find the optimal number

of neurons and layers for the predictor. In the search of the training parameters, it will

find the best optimizer to update the parameters in the back-propagation algorithm

and the optimal learning rate (α) that improves the performance of the model.

4.4.1 Architecture parameters

Once the main architecture is defined and the types of ANN are used, the architecture

parameters that define the structure of the proposed model are the number of neurons

and the numbers of layers.

In this study, the optimal parameters for the architecture presented in Section 4.3

will be searched. The linear layer will not be modified, its composition remains in 1

layer with 1 neuron, so during this Section when reference is made to the number of

layers or neurons, it refers to the LSTM layers of the model.

Each LSTM layer will have the same number of neurons. The number of neurons

that are considered in this study are: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. While

the numbers of LSTM layers are 1, 2 and 3. This gives a total of 30 combinations

that are searched to find the best performance for the prediction time (PT) stated (5

min, 15 min, 30 min and 45 min). In addition, a learning rate of 0.001 and the Adam

optimizer [30] have been chosen. This processes is repeated for the three different

input dimensions chosen 5, 20 and 50.

The distribution error e is shown in Figures 4.16, 4.17 and 4.18 for the input

dimension of 5, 20 and 50, respectively. In addition, in Figure 4.19 shows the RMSE

for each PT and each input dimension. Figures 4.16, 4.17 and 4.18 show a very similar

distribution error e for each model. In addition, Figure 4.19 also shows a very similar

performance for each model, however, there some cases where the error is higher.

Taken into account the results from both metrics, the best parameters are presented

in Table 4.2 with all the optimal parameters.
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Figure 4.16: Box-plots for the e for the different architecture parameters for a input

dimension of 5, being PT (a) 5 min (b) 15 min (c) 30 min (d) 45 min.

4.4.2 Training parameters

Once that the architecture parameters are selected, the next step is to find the optimal

combination of parameters involved in the training. The parameters that are included

in this search are the optimizer and the learning rate (α) used in the back-propagation

algorithm. The selection of these parameters is crucial to achieve the finest training.

The more accurate the training of the ANN is, then its performance will be increased

in the evaluation when new data is presented.

Two optimizers are chosen to train the proposed predictor: RMSprop [20] and

Adam [30]. These optimizers are used to update the weights and biases of the ANN

in the back-propagation algorithm. They are an alternative to the SGD explained

in Chapter 3.2.1. Therefore, both RMSprop and Adam algorithm use a variation

of Equation 3.4. On the other hand, five different learning rates (α) are considered

α = [0.0001, 0.0005, 0.001, 0.005, 0.01] to search the best parameters for the training

of the ANN. This makes the total of 10 combinations to calculate.

[20] proposes the RMSprop algorithm. This algorithm presents a modification of

the SGD that adapt the learning rate depending on the moving average of the squared

gradients, g(r). Where g(r) and the updating of the weights and biases is calculated

as shown in Equation 4.9.
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Figure 4.17: Box-plots for the e for the different architecture parameters for a input

dimension of 20, being PT (a) 5 min (b) 15 min (c) 30 min (d) 45 min.





gw(r) = βgw(r − 1) + (1− β)
(

∂L
∂Wm(r)

)2

gb(r) = βgb(r − 1) + (1− β)
(

∂L
∂bm(r)

)2

Wm+1(r + 1) = Wm(r)− α√
gw(r)+ǫ

∂L
∂Wm(r)

bm+1(r + 1) = bm(r)− α√
g
b
(r)+ǫ

∂L
∂bm(r)

(4.9)

where the subscript b and w indicates the gradients for the biases and weights in

g. β is constant, the value chosen is 0.99, and ǫ is another constant that prevents

the division by zero, with a chosen value of 10−8. Finally, the index r denotes the

iteration.

The Adam algorithm, proposed by [30], in contrast to the RMSprop algorithm uses

two moving averages. First, it keeps the moving average of the gradient (m(r)), as a

biased estimator of the mean of the gradient. Similarly to the RMSprop algorithm, it

calculates the moving average of the squared of the gradient (v(r)) and it is a biased

estimator of the variance of the gradient. Their formulas are shown in Equation 4.10.

Note that the subscript b and w indicates the gradients for the biases and the weights

and that β1 and β2 are two constants defined by the user.
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Figure 4.18: Box-plots for the e for the different architecture parameters for a input

dimension of 50, being PT (a) 5 min (b) 15 min (c) 30 min (d) 45 min.





mw(r) = β1mw(r − 1) + (1 + β1)α
∂L

∂Wm(r)

vw(r) = β2mw(r − 1) + (1 + β2)α
(

∂L
∂Wm(r)

)2

mb(r) = β1mb(r − 1) + (1 + β1)α
∂L

∂bm(r)

vb(r) = β2mb(r − 1) + (1 + β2)α
(

∂L
∂bm(r)

)2

(4.10)

To update the weights and the biases, the unbiased estimators of the mean (m̂(r))

and the variance (v̂(r)) of the gradient are needed, see Equation 4.11.





m̂w(r) =
mw(r)
1−(β)r

v̂w(r) =
vw(r)
1−(β)r

m̂b(r) =
mb(r)
1−(β)r

v̂b(r) =
vb(r)

1−(β)r

(4.11)

Once the previous steps are calculated, the weights and biases of the ANN are

calculated as shown in the Equation 4.12. In this thesis, β1 and β2 have the values

of 0.9 and 0.999, respectively, as it is stated by the authors .In addition, ǫ is fixed to

10−8.
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Figure 4.19: Chart graph with the RMSE for the different architecture parameters

and grouped by the number of input dimension (a) 5, (b) 20 and (c) 50.
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Figure 4.20: Box-plots for the e for the different training parameters for a input

dimension of 5, being PT (a) 5 min (b) 15 min (c) 30 min (d) 45 min.




Wm+1(r + 1) = Wm(r)− α√

v̂w(r)+ǫ
m̂(r)

bm+1(r + 1) = bm(r)− α√
v̂b(r)+ǫ

m̂(r)
(4.12)

The procedure is analogous to Section 4.4.1. The distribution error e is shown in

Figures 4.20, 4.21 and 4.22 for the input dimension of 5, 20 and 50, respectively. In

addition, in Figure 4.23 shows and the RMSE for each PT and each input dimension.

Taken into account the results from both metrics, the best parameters are presented

in Table 4.2 with all the optimal parameters. RMSprop has a good performance in

many of the models with a few exceptions. However, The Adam optimizer has the

best performance for all the models. The learning rates of 0,0001, 0.0005 and 0.001

are the ones that give the best performances. In total, twelve different models are

selected where each one is specialized for a input dimension and a PT.
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Figure 4.21: Box-plots for the e for the different training parameters for a input

dimension of 20, being PT (a) 5 min (b) 15 min (c) 30 min (d) 45 min.

Input dimension PT (min) LSTM layers Neurons optimizer α

5 5 2 60 Adam 0.001

5 15 3 10 Adam 0.001

5 30 2 10 Adam 0.0001

5 45 3 10 Adam 0.0005

20 5 2 80 Adam 0.0005

20 15 1 70 Adam 0.001

20 30 3 10 Adam 0.0001

20 45 3 90 Adam 0.0005

50 5 3 30 Adam 0.0001

50 15 2 10 Adam 0.0001

50 30 2 10 Adam 0.001

50 45 2 20 Adam 0.001

Table 4.2: Optimal parameters for each input dimension and PT. All these models

have a Linear layer with 1 neuron in top of the last of the LSTM layer, see Section 4.3
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Figure 4.22: Box-plots for the e for the different training parameters for a input

dimension of 50, being PT (a) 5 min (b) 15 min (c) 30 min (d) 45 min.
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Figure 4.23: Chart graph with the RMSE for the different training parameters and

grouped by the number of input dimension (a) 5, (b) 20 and (c) 50.



Chapter 5

Results

This chapter is devoted to present the evaluation metrics used to train and evaluate

the predictors presented in Section 4.4. In addition, the results of these metrics and

the performance of the models will be presented. To conclude, the results will be

discused.

5.1 Metrics

In order to evaluate the performance of the predictors proposed in Section 4.4, as

well as to define the loss function used in the BPTT algorithm to train the RNN, see

Section 3.2.1, it is necessary to define a series of metrics. The metrics presented in this

section are selected for their convenience to evaluate glucose prediction [48] and time

series, in general [59]. The metrics stated in this Thesis measure the error made in the

prediction and the correlation between the predicted signal and the targets. Another

metric is presented that measures the delay associated to the prediction with respect

to the original glucose signal. Let the prediction made by the proposed predictor be

Y = {y1, . . . , yn}, the correspondent expected output or targets T = {t1, . . . , tn}, and
N the number of samples to be evaluated.

First, let us define the loss function used in the back-propagation algorithm. The

selected loss function is the mean squared error (MSE), see Equation 5.1. As the

selected loss function MSE is mainly used for training the predictor.

MSE =
1

N

N∑

i=1

(ti − yi)
2 (5.1)

The following metrics are used in the evaluation of the performance of the proposed

predictor. The first evaluation metric is the RMSE. It was already presented in

Section 4.4 (see Equation 4.8). The RMSE, unlike the MSE, presents the error in the

same unit that the variables that is evaluating. The RMSE provides an insight of the

accuracy of the model predictions.

The next metric that will be discussed is the Pearson correlation coefficient

(rt,y) [48], see Equation 5.2. This coefficient gives information about the similarities

between the target signal and the predicted signal.
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Figure 5.1: Example of the delay calculation, each percentage is calculate for the

length of each slope. For the rising slope Pr is the lowest point and P
′

r is the highest

point. In the falling slope Pf is the highest point and P
′

f is the lowest point.

rt,y =

∑N
i=1 (ti − t̄) (yi − ȳ)√∑N

i=1 (ti − t̄)2
√∑N

i=1 (yi − ȳ)2
(5.2)

where t̄ and ȳ are the mean defined as t̄ = 1
N

∑n
i=1 t and ȳ = 1

N

∑n
i=1 y.

The final metric is the calculation of the delay associated to the prediction. This

metric was presented and developed by [49] and [48]. The purpose of this metric is to

assess the lag produced in the prediction with respect to the original glucose signal

from the CGM sensor. This metric measures the delay in the positive and negative

slopes individually. Therefore, there are two values for this metric, one corresponds

with the rising trend (upward delay) and the other with the falling trend (downward

delay). The delay is calculated at 25%, 50% and 75% of the slope length. Being the

slope length defined as the difference between the lowest point and the highest point.

The upward and downward delay are finally computed as the average of all rising

trends and all the falling trends, respectively. Figure 5.1 shows an example of how to

calculate the delay.

As stated by the authors [49] to calculate the metric, it has been applied a first-

order low-pass filter to the predicted signal and to the glucose original signal.

5.2 Results

In Section 4.4 twelve predictors were tuned to predict the glucose concentration by

using three input parameters: glucose concentration from a CGM sensor, insulin, and
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Figure 5.2: Example of the effect initialization time and the prediction in the

illustration

the food intake. Each of the twelve predictors have an input dimension and a PT.

There are three input dimensions: 5, 20 and 50. In addition, there are four PT: 5,

15, 30 and 45 minutes. The architecture and the parameters for each predictor are

summarized in Table 4.2.

This study is divided in two parts. The first part consists of an evaluation of the

accuracy of the 12 different predictors for their corresponding PT. After the models

are evaluated individually, the second part assesses the effect of the prediction of using

a different input dimension.

In the first half of the study, these twelve predictors are evaluated by the test

dataset, see Section 4.2.2, and the metrics stated in Section 5.1. Moreover, to show

that overfitting did not occur, the twelve predictors are also assessed with those

metrics for the training dataset. The results from this metrics are displayed in

Table 5.1 for the training dataset and in Table 5.2 for the evaluation dataset. In

addition, the prediction for a profile of the test dataset for each model are displayed.

It is important to note that from this architecture, see Section 4.3, the prediction

starts once that the first input dimension values are fed. An example of this is

presented in Figure 5.2 with an input dimension of 5 and a PT of 45 min, the model

will start to predict when receives the first 5 values. Therefore, being the samples

separated by 5 minutes, the model of an input dimension of 5 will wait 25 minutes to

begin the predictions. Once the model has done the first prediction, the model will

forecast when a new input value is received.

First, it is important to verify that the models do not incur in overfitting. Table 5.1

and Table 5.2 show the results for the training and evaluation datasets, respectively.

The RMSE is very similar for both datasets, being slightly lower for the training
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Model ID PT (min) RMSE (mg/dl) rt,y U. delay (min) D. delay (min)

60-60-1 5 5 1.03 0.99 0 0

10-10-10-1 5 15 4.4 0.99 5 5

10-10-1 5 30 12 0.96 15 10

10-10-10-1 5 45 20.06 0.9 30 15

80-80-1 20 5 0.9 0.99 0 0

70-1 20 15 4.39 0.99 5 0

10-10-10-1 20 30 11.97 0.96 15 5

90-90-90-1 20 45 19.6 0.9 25 10

30-30-30-1 50 5 0.86 0.99 0 0

10-10-1 50 15 3.66 0.99 5 0

10-10-1 50 30 11.59 0.96 15 5

20-20-1 50 45 17.94 0.90 25 10

Table 5.1: Metrics for all the models for the training dataset. The models are

identified by the numbers of neurons in each layer and ID stands for Input dimension.

U. delay and D. delay are defined as the upwards delay and the downward delay,

respectively.
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Figure 5.3: Predictions made a 5 minutes by the model with an input dimension of:

(a) 5 , (b) 20 and (c) 50

dataset. There are some exceptions where the evaluation dataset is slightly lower,

these cases are the models for PT 5 and 15 minutes. The other metrics also have

similar results for both datasets. Therefore, this is a good indicator that there has

not been overfitting in our models.

A complete set of figures for the 12 combinations of predictors for profiles 29,

30, 48 and 50 can be found in Appendix C. The following figures will use a different

profile for each prediction time for illustrative purposes.

There are three models specialized in the prediction of each PT. Firstly, let assess

the performance of the models that predict in a PT of 5 min. Figure 5.3 shows

the prediction made by the predictor with input dimension 5, 20 and 50, respectively.

These three models have a high accuracy with error lower than 1 mg/dl, see Table 5.2,

and the time series is almost identical. There is not delay for these models.

The performance of the models with a prediction time of 15 min is shown in

Figure 5.4, for a predictor with input dimension 5, 20 and 50, respectively. These

models improve the RMSE results presented in [49] for a prediction time of 15 min
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Model ID PT (min) RMSE (mg/dl) rt,y U. delay (min) D. delay (min)

60-60-1 5 5 0.96 0.99 0 0

10-10-10-1 5 15 4.34 0.99 5 5

10-10-1 5 30 12.6 0.96 15 10

10-10-10-1 5 45 21.40 0.89 30 15

80-80-1 20 5 0.86 0.99 0 0

70-1 20 15 4.23 0.99 5 0

10-10-10-1 20 30 12.51 0.96 15 5

90-90-90-1 20 45 21.52 0.89 25 20

30-30-30-1 50 5 0.85 0.99 0 0

10-10-1 50 15 3.67 0.99 5 0

10-10-1 50 30 12.20 0.96 15 10

20-20-1 50 45 20.76 0.88 25 15

Table 5.2: Metrics for all the models for the evaluation dataset. The models are

identified by the numbers of neurons in each layer and ID stands for Input dimension.

U. delay and D. delay are defined as the upwards delay and the downward delay,

respectively.
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Figure 5.4: Predictions made a 15 minutes by the model with an input dimension of:

(a) 5 , (b) 20 and (c) 50
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Figure 5.5: Predictions made a 30 minutes by the model with an input dimension of:

(a) 5 , (b) 20 and (c) 50
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Figure 5.6: Predictions made a 45 minutes by the model with an input dimension of:

(a) 5 , (b) 20 and (c) 50

in a 55.44%, 56.57% and 62.32%, respectively. Moreover, Figure 5.4 shows that the

predicted glucose signals resemble with the original values from the CGM sensor.

This idea is reinforced by the value of the correlation, rt,y, that is very close to 1

(see Table 5.2). Furthermore, the models present a delay of 5 minutes in the upward

slopes. However, the model is faster in the downward slopes, which explains the

models for input dimensions 20 and 50 do not have this kind of delay.

The glucose predictions made for a time of 30 min are shown in Figure 5.5 for

a predictor with input dimension 5, 20 and 50, respectively. Comparing the results

with those obtained in [49] for a PT of 30 min, these predictors improve the RMSE

in a 27.79%, 28.31% and 30.09%, respectively. To conclude, the rt,y is very close to

1 (see Table 5.2), saying that the predicted signal is very close to the original from

the Guardian R© Real Time. The delays are similar for all the models that predict for

that PT.

Lastly, the models with a PT of 45 min are shown in Figure 5.6. The results from

these predictors, see Table 5.2, improves the RMSE obtained in [49] by a 17.54%,

16.98% and 20.53%, respectively. The similarity between the predicted signal and

the original from the CGM sensor have worsened with regard to the previous cases

where the rt,y was very close to 1. To conclude, the presented models are faster in

the falling slopes than in the upward slopes.

After the study of the performance of all the predictors, the most accurate models

are the ones with an input dimension of 50 (see Table 5.2). Moreover, these models

are the faster in both rising and falling slopes. This result was as expected because it

is the model that receives more information in their inputs. However, the evaluation

metrics in Table 5.2 present very similar performance between models with the same

PT, independently of the input dimension.

Figures 5.7, 5.8, 5.9 and 5.10 also present a high similitude between the prediction

at the same PT. Some differences start to appear when the PT is 30 min or 45

min between the performance of the model. Specifically, the differences are better

appreciated when there is an steep slope. In these cases, the predictors with input

dimensions of 5 and 20 tend to overshoot a bit more than the predictors with input

dimensions of 50. Nevertheless, these differences are difficult to appreciate and are

not very pronounced.

Another issue that was previously commented, but it is more noticeable in

Figures 5.7, 5.8, 5.9 and 5.10, it is that depending of the input dimension each
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predictor has a time of initialization to start the predictions. This initialization time

is longer if the input dimension is bigger.

0 5 10 15 20 25
Time (hours)

100

150

200

250

300

Gl
uc
os
e 
(m

g/
dl
)

Profile 29 
original
prediction_Input_D_5
prediction_Input_D_20
prediction_Input_D_50

Figure 5.7: Predictions made a 5 minutes by the models with an input dimension of

5, 20 and 50

5.3 Discussion

Twelve models have been deployed to achieve the objective of predicting glucose

concentration in patients with diabetes type 1. These models may be grouped by

their PT, being then four groups in function of their prediction time: 5 min, 15 min,

30 min and 45 min.

However, these predictors are practical if they give enough time to the patient

to make the necessary modification to his or her treatment [49]. Consequently, the

predictors with a PT of 5 min are not very suitable for this task, even if they are the

most accurate models.

Predictors specialized to forecast at 15 min are still short of time to be practical

in usual terms. Although, these models may be useful in some cases due to their

high accuracy. A prediction time of 30 minutes or longer is wide enough to allow a

patient to do the necessary changes to prevent the occurrences of hypoglycemias or

hyperglycemias. Predictors with a PT of both 30 and 45 minutes will proportionate a

good range of time of action, being both useful to predict the glucose concentration.

However, predictors with a PT of 30 minutes have the best compromise between the

range of time that they provide to the patient to change their treatment and the

accuracy of the predictions.

In Section 5.2, the performance of the predictors with the same PT and different
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Figure 5.8: Predictions made a 15 minutes by the models with an input dimension of

5, 20 and 50
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Figure 5.9: Predictions made a 30 minutes by the models with an input dimension of

5, 20 and 50
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Figure 5.10: Predictions made a 45 minutes by the models with an input dimension

of 5, 20 and 50

input dimension was compared, assessing the effect of the input dimension in the

predictor’s output. It is important to consider all the characteristics of the predictors

before to choose one. These characteristics are the input dimension, the prediction

time (PT) and the results of the metrics evaluation (see Table 5.2). Taking all this

into account, the results from Table 5.2 are very similar to each predictor at the same

PT, however the predictors with bigger input dimension have a longer initialization

time. Therefore, having all the models a similar accuracy, it would be more likely to

choose the models with less input dimensions because they starts to predict sooner.

Nevertheless, the most accurate predictors were those with an input dimension

of 50. This happen as expected because they are the models which receive the more

information. However, the results from the others models are very similar. The

improvement of adding more information in the input is small. This effect can be

explained for several reasons.

First, there are not enough data for the model to learn the long term dependencies.

In the training dataset (see Section 4.2.2), there are 36 profiles with 288 samples each

one. This is a small dataset taking into account that LSTMs have at least four more

weights and biases (see Section 3.2.2) than a multilayer perceptron. This is translated

in LSTM needing far more data for training.

Another reason that there is not enough data is based off of the nature of the

condition of type 1 diabetes patients (see Chapter 2). Patients with diabetes type

one does not segregate insulin, hence, they do not have the mechanisms that regulates

the glucose concentration. So when the glucose starts to increase the value, it does

it without control and same happens when it decreases. The LSTM neural network

are fed by the glucose concentration. The predictor could give priority to the recent

values in time because they have a bigger impact in the future values of the glucose.
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Hence, the most importance characteristic of the glucose is the tendency where the

predictor tends to ignore the oldest values that have a lower impact in the tendency

of the signal.

The mechanism that patients have to change the glucose concentration are mainly

the injection of insulin, which diminishes the glucose value, and the ingestion of

carbohydrates, that increases the glucose concentration. There are others parameters

that affects the concentration of glucose, but those parameters are not fed to the

predictors developed in this Thesis. However, the effects of both insulin and ingestion

of carbohydrates are not immediate. This arises another possible problems. Insulin

start to acts one hour after its injection and the ingestion of the carbohydrates could

take hours too. Therefore, these are the long term dependencies that the predictor

should learn to improve the prediction.

The problem states that the bolus of insulin and the food intake is presented a few

times in each profile, 3 o 4 times on average that corresponds with main meals. Then,

considering that the training dataset only has 36 profiles. Hence there is not enough

data so the predictor can properly learn the effects of these long term dependencies

in the future glucose values. Therefore, the oldest input values are being partially

ignored.

Moreover, they may be long term dependencies in the glucose concentration

parameter. These dependencies might manifest over longer periods of time as events

that happen daily at similar hours, for example, the resistance to the insulin in

the morning. However, in the current dataset, each profile has been arranged as

independent days. Therefore, these long term dependencies could not be learnt by

the neural network. Future research with profiles longer than 1 day would be needed

to assess the impact of this long term dependencies.

Another reason is that, there are more parameters that have effect in the glucose

concentration such as the physical exercise. For example, physical exercise reduces

the glucose levels, but it also has effects after the execution (see Section 2.3.3).

These other parameters could be producing unexpected effects that might result in

a worsening of the model performance. However, a future research is needed to test

the hypotheses stated here.

Nevertheless, the twelve models presented in Section 5.2 are more accurate than

the obtained in [49], for each prediction time 15, 30 and 45 minutes, respectively. In

addition, the twelve models presented are slower in the upwards trend than the model

presented in [49]. However, the twelve models are much faster in the downwards

trends than the obtained in [49]. Actually, this may be a desirable characteristic

because diabetic patients are usually more worry about the hypoglycemias than the

hyperglycemias.

Therefore, the LSTM based architecture presented in this Thesis represents an

improvement in the RMSE and downward slope delay metrics, over the multilayer

perceptron stated in the previous study of [49]. Therefore, neural networks based on

LSTMs are appropriate for the prediction of glucose concentration in diabetes type

1. However, an increment in the size of the dataset could improve the accuracy of the

LSTM based predictor and remains for future work.



Chapter 6

Conclusions and future lines

The aims of this chapter is to present the more important conclusions and results of

this Thesis, as well as to propose future lines of research based in it.

6.1 Conclusions

The main problem of diabetes are the complications caused by the occurrences of

hyperglycemias and hypoglycemias. Therefore, the main diabetes’ treatment is to

control the glucose concentration to be between the normal values. This task is

complicated because the number of parameters that influences the blood glucose

concentration, see Section 2.3. A predictor could improve the control of the disease

allowing patients to prevent hypoglycemias and hyperglycemias.

The aim of this Thesis was to continue the work presented in previous studies [49]

with the design of LSTM based predictors. The evaluation of the predictors was done

at four different prediction times (PT) 5, 15, 30 and 45 minutes and the predictors

were fed with three different input dimensions 5, 20 and 50. To achieve these tasks,

a main architecture based on LSTMs was developed to create the basic model of

the future predictors. From this architecture twelve predictors were deployed, each

one specialized in a PT with a specific input dimension. PyTorch was the selected

framework to implement the designed predictors.

The predictors with PT of 5 minutes and 15 minutes were the most accurate

models. However, these prediction times are too short for a patient to prevent a

hypoglycemia or a hyperglycemia, but they may have others uses where the accuracy

is much more important than a long prediction time.

Predictors with a PT of both 30 and 45 minutes provide enough time to do the

necessary modifications in the treatment to prevent the occurrences of hypoglycemias

or hyperglycemias, being both PT practical in usual terms. Nevertheless, predictors

with a PT of 30 minutes provides the best compromise between the amount of time

that provides the patient to modify his or her treatment and the performance of the

model predictions.

Comparing the models with the same PT and different input dimension, the

most accurate and with best performance was the model with an input dimension

of 50. However, the models with an input dimension of 5 and 20 also had a

similar performance to the model of input dimension of 50. Therefore, it would

be more recommendable to use an input dimension of 5 because it has a much shorter
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initialization time.

Taking all this into consideration, the most suitable predictor may be the predictor

with a input dimension of 5 and a prediction time of 30. Although the rest of the

models may be also used depending of the necessity of prediction that want to be

covered.

The twelve predictors proposed present a good accuracy in the performance and

a suitable fit to the original glucose to be predicted. In addition, these predictors

surpasses the model presented in [49] as was the main objective stated in this Thesis.

The results obtained are encouraging and support the use of LSTM for predictions of

glucose concentration in patients with diabetes type 1.

6.2 Future lines

The work presented in this Thesis opens new lines of research and future works to

improve the results obtained by the predictors, some of them are introduced:

• The use of Convolutional Neural Networks in tandem with the architecture

presented in this Thesis could enhance the performance of the predictors.

• In this Thesis only three parameters are used to calculate the futures values

of glucose, these are the past values of glucose provided by a CGM sensor,

the insulin injected by the patients and the food intake. However, the process

that regulates the glucose concentration is a complex mechanism and other

parameters such as physical exercise have an impact. Therefore, another

future research is to add new parameters to feed the predictors and assess the

importance of these parameters in the performance of the predictor.

• The process of tuning the parameters in Section 4.4 may be done using novel

ideas such as Bayesian optimization [61] or using AutoML, an example is

presented in [18].

• The glucose from the CGM sensor have several artifacts, see Section 4.2.1.1. In

this Thesis, a manual approach has been followed to correct them. However, a

more novel approach may be followed using an ANN that performs this task.

This ANN could correct the distortions caused by the calibrations, the missing

samples and filter the signal.

• To conclude, some causes has been proposed to explain why the different input

dimension gives such a similar results, see Section 5.3. The most probable

cause is the necessity of more data to train the predictor based on LSTMs.

Therefore, two approaches may be followed: first, it is the acquisition of more

data from real patients. However, this is a very difficult task because there

are a lot of requirements to fulfill and patients may not follow the instructions.

Moreover, this approach is very expensive. The second approach consists of

using the paradigm of few-shot learning, where the models are trained with

small amounts of data, [32] and [67] present works in this direction.
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[16] H. B. Demuth, M. H. Beale, O. De Jesus, and M. T. Hagan. Neural Network

Design. Martin Hagan, USA, 2nd edition, 2014.

[17] I. D. Federation. IDF Diabetes Atlas. Brussels, Belgium, eighth edition edition,

2017.

[18] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter.

Efficient and Robust Automated Machine Learning. In C. Cortes, N. D.

Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural

Information Processing Systems 28, pages 2962–2970. Curran Associates, Inc.,

2015.

[19] S. K. Garg, H. K. Hoff, and H. P. Chase. The role of continuous glucose sensors

in diabetes care. Endocrinology and Metabolism Clinics of North America,

33(1):163–173, Mar. 2004.

[20] Geoffrey Hinton, N Srivastava, and Kevin Swersky. Neural Networks for Machine

Learning - Lecture 6a - Overview of mini-batch gradient descent. https://www.

cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf, 2012.

[Accessed May 30, 2019].

[21] L. Heinemann. Finger Pricking and Pain: A Never Ending Story. Journal of

Diabetes Science and Technology, 2(5):919–921, Sept. 2008.

[22] S. Hochreiter. The Vanishing Gradient Problem During Learning Recurrent

Neural Nets and Problem Solutions. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, 06(02):107–116, Apr. 1998.

[23] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Comput.,

9(8):1735–1780, Nov. 1997.

[24] J. D. Hunter. Matplotlib: A 2d Graphics Environment. Computing in Science

& Engineering, 9(3):90–95, May 2007.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016.



BIBLIOGRAPHY 67

[26] John E. Hall. Guyton and Hall Textbook of Medical Physiology. Elsevier,

Philadelphia, PA, 13th edition edition, 2016.

[27] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen,

N. Thorat, F. Viégas, M. Wattenberg, G. Corrado, M. Hughes, and J. Dean.

Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot

Translation. Transactions of the Association for Computational Linguistics,

5:339–351, Dec. 2017.

[28] Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study

Group, W. V. Tamborlane, R. W. Beck, B. W. Bode, B. Buckingham, H. P.

Chase, R. Clemons, R. Fiallo-Scharer, L. A. Fox, L. K. Gilliam, I. B. Hirsch, E. S.

Huang, C. Kollman, A. J. Kowalski, L. Laffel, J. M. Lawrence, J. Lee, N. Mauras,

M. O’Grady, K. J. Ruedy, M. Tansey, E. Tsalikian, S. Weinzimer, D. M. Wilson,

H. Wolpert, T. Wysocki, and D. Xing. Continuous glucose monitoring and

intensive treatment of type 1 diabetes. The New England Journal of Medicine,

359(14):1464–1476, Oct. 2008.

[29] P. Kapoor and S. S. Bedi. Weather Forecasting Using Sliding Window Algorithm.

ISRN Signal Processing, 2013:1–5, 2013.

[30] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs], Dec. 2014. arXiv: 1412.6980.

[31] V. Kotu and B. Deshpande. Chapter 12 - Time Series Forecasting. In V. Kotu and

B. Deshpande, editors, Data Science (Second Edition), pages 395–445. Morgan

Kaufmann, Jan. 2019.

[32] Z. Li, F. Zhou, F. Chen, and H. Li. Meta-SGD: Learning to Learn Quickly for

Few-Shot Learning. arXiv:1707.09835 [cs], July 2017. arXiv: 1707.09835.

[33] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian,

J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez. A survey on

deep learning in medical image analysis. Medical Image Analysis, 42:60–88, Dec.

2017.

[34] J. Lowe, S. Linjawi, M. Mensch, K. James, and J. Attia. Flexible eating and

flexible insulin dosing in patients with diabetes: Results of an intensive self-

management course. Diabetes Research and Clinical Practice, 80(3):439–443,

June 2008.

[35] C. R. Marling and R. C. Bunescu. The OhioT1dm Dataset For Blood Glucose

Level Prediction. In KHD@IJCAI, 2018.

[36] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc, Natick,

Massachusetts, 2010.

[37] W. McKinney. Data Structures for Statistical Computing in Python. In

S. van der Walt and J. Millman, editors, Proceedings of the 9th Python in Science

Conference, pages 51–56, 2010.



68 BIBLIOGRAPHY

[38] Medtronic. Medical Technology, Services, and Solutions Global Leader. https:

//www.medtronic.com/us-en/index.html. [Accessed May 27, 2019].

[39] Medtronic. MiniMed 670g Insulin Pump System | Medtronic

Diabetes. https://www.medtronicdiabetes.com/products/

minimed-670g-insulin-pump-system, 2018. [Accessed May 27, 2019].

[40] Medtronic. Guardian Sensor 3 | Medtronic Diabetes. https://www.

medtronicdiabetes.com/products/guardian-sensor-3, 2019. [Accessed May

27, 2019].

[41] J. M. Nazzal, I. M. El-Emary, and S. A. Najim. Multilayer Perceptron Neural

Network (MLPs) For Analyzing the Properties of Jordan Oil Shale. World

Applied Sciences Journal, page 7, 2008.

[42] C. Olah. Understanding LSTM Networks – colah’s blog. http://colah.github.

io/posts/2015-08-Understanding-LSTMs/, Aug. 2015. [Accessed May 15,

2019].

[43] T. E. Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[44] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in PyTorch.

NIPS-W, Oct. 2017.
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Appendix A

Impact

Diabetes is an important health care problem. According to a global report by World

Health Organization (WHO) [51], around 422 million adults, globally, had diabetes

in 2014. Diabetes is one the main expenditures of the national healthcare system,

most of the expenditure are caused by the complications associated to the disease [15].

The main complications of this disease comes from the occurrences of hypoglycemias

and hyperglycemias. These complications could be avoided or reduced with control

of the blood glucose levels. This project aims to help achieve this goal. Therefore,

the impact of this project strives for a reduction of diabetes complications due to a

better control of the blood glucose concentration.

• Social impact: this project will have a direct impact on patients with

diabetes type 1 and also to their relatives. Patients may prevent the diabetes

complications, avoiding diseases that lead to high dependency such as heart

attacks, strokes, kidney failure, blindness, etc. This results in a better quality

of life for patients and their relatives.

• Economical impact: this project will have a direct economical impact for

patient and for the national healthcare system. The expenses of the national

healthcare system would be reduced due to the decrease of medical emergencies

and the treatment of the diabetes complications. Moreover, patients will

reduce the expenditure of the treatments in the diseases caused by diabetes

complications.

• Environmental impact: this project will also have an environmental impact.

Thanks to a better control of the blood glucose concentration, the medical waste

related with the treatment of diabetes complications will be reduced.
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Appendix B

Budget

This project has been developed during four months in the Escuela Técnica Superior

de Ingenieros de Telecomunicación from the Universidad Politécnica de Madrid

using some of its resources. An approximate budget was calculated by taking into

consideration of the cost of human resources, and software and technical equipment:

• Costs derived from Human resources:

This section of the budget considers the salaries of the staff involved in this

project: project manager (engineer) and the engineer student, author of this

Thesis, as shown on Table B.1.

Cost per hour (e) Working hours Total cost (e)

Project manager 22 85 1870

Engineering student 15 600 9000

TOTAL 10870

Table B.1: Costs derived from Human resources

• Costs derived from Software and technical equipment:

This section of the budget takes into account the software and technical

equipment used in the development of this Thesis, see Table B.2. The total

cost has been calculated by the product of the depreciation cost per month and

the time of use.

Lifetime
Units

Cost Depreciation Time used Total cost

(years) (e) (e/months) (months) (e)

GTX 1080 Ti 4 1 1000 20.83 4 83.32

Personal
5 1 800 13.33 4 53.32

computer

MATLAB
1 1 2000 166.66 4 664

License

TOTAL 803.49

Table B.2: Costs derived from Software and technical equipment
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Considering both parts of the budget, the total cost of this Thesis amounts to

116873.3.



Appendix C

Additional results

This appendix shows the performance of the twelve predictors for the profiles 29, 30,

48 and 50. This is a continuation of the figures shown in the Chapter 5.

The results for the twelve predictors for the profile 29 are shown in the

Figures C.1, C.2, C.3 and C.4. The results of applying all the input dimensions

in a same PT are shown in Figure C.5.
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Figure C.1: Predictions for profile 29 made a 5 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.2: Predictions for profile 29 made a 15 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50

Figures C.6, C.7, C.8 and C.9 show the prediction made by the 12 models.

Figure C.10 show the results of applying all the input dimensions in a same PT.
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Figure C.3: Predictions for profile 29 made a 30 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.4: Predictions for profile 29 made a 45 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50

The results for the twelve predictors for the profile 48 are shown in the

Figures C.11, C.12, C.13 and C.14. The results of applying all the input dimensions

in a same PT are shown in Figure C.15.

Figures C.16, C.17, C.18 and C.19 show the prediction made by the 12 models.

Figure C.20 show the results of applying all the input dimensions in a same PT.
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Figure C.5: Predictions for profile 29 with the three dimension inputs (5, 20 and 50)

and a PT of: (a) 5 min, (b) 15 min, (c) 30 min and (d) 45 min
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Figure C.6: Predictions for profile 30 made a 5 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.7: Predictions for profile 30 made a 15 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.8: Predictions for profile 30 made a 30 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.9: Predictions for profile 30 made a 45 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.10: Predictions for profile 30 with the three dimension inputs (5, 20 and 50)

and a PT of: (a) 5 min, (b) 15 min, (c) 30 min and (d) 45 min
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Figure C.11: Predictions for profile 48 made a 5 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.12: Predictions for profile 48 made a 15 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.13: Predictions for profile 48 made a 30 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.14: Predictions for profile 48 made a 45 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.15: Predictions for profile 48 with the three dimension inputs (5, 20 and 50)

and a PT of: (a) 5 min, (b) 15 min, (c) 30 min and (d) 45 min
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Figure C.16: Predictions for profile 50 made a 5 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.17: Predictions for profile 50 made a 15 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.18: Predictions for profile 50 made a 30 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.19: Predictions for profile 50 made a 45 minutes by the model with an input

dimension of: (a) 5 , (b) 20 and (c) 50
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Figure C.20: Predictions for profile 50 with the three dimension inputs (5, 20 and 50)

and a PT of: (a) 5 min, (b) 15 min, (c) 30 min and (d) 45 min


