
UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR
DE INGENIEROS DE TELECOMUNICACIÓN

MASTER IN
SIGNAL THEORY AND COMMUNICATIONS

MASTER THESIS

Design and Development of Continuous-Time Recurrent

Neural Networks Evolution for Cooperative Distributed

Multi-agent Systems

Rafael Sendra Arranz

2021

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR
DE INGENIEROS DE TELECOMUNICACIÓN

MASTER IN
SIGNAL THEORY AND COMMUNICATIONS

MASTER THESIS

Design and Development of Continuous-Time Recurrent

Neural Networks Evolution for Cooperative Distributed

Multi-agent Systems

Author

Rafael Sendra Arranz

Tutor

Álvaro Gutiérrez Mart́ın

2021

Abstract

Muti-agent systems are composed by multiple intelligent and distributed agents

that interact in order to solve problems that would be utterly challenging individually.

A type of multi-agent system that uses simple and locally interacting robots is swarm

robotics, a class of collective robotics inspired by societies of insects. Swarm robotics

is a field of research of constant growth and interest that combines concepts from

artificial intelligence and robotics. It studies the use of many simple distributed

robots that collectively cooperate in order to solve complex tasks. Moreover, the

design of robust yet simple communication mechanisms, that allow the cooperation

through direct interaction among robots, is an important aspect of swarm robotics

systems. This Master Thesis explores the design and implementation of a minimal

communication system, composed by a message and its underlying environmental

context. To assess the performance and versatility of the communication, four

benchmark swarm robotics tasks, that require communication at some extent, are

designed and solved. The robot controllers, defining the behavior of agents, are based

on Continuos-Time Recurrent Neural Networks (CTRNN) evolved using evolutionary

computation algorithms. In particular, Genetic Algorithm (GA) and Separable

Natural Evolution Strategies (SNES) are used and compared. All the experiments

are carried out using a simulated robotics software designed and implemented within

the frame of this Master Thesis. An important objective of this Master Thesis is

the analysis of the communication that emerges as a result of the evolution process,

in each experiment. It is shown that the swarm, whose robots are controlled by

the evolved neural controllers, is capable of successfully solving the tasks of all the

experiments. SNES outperforms GA in three of the four designed tasks, based on the

obtained mean fitness scores. Apart from a detailed analysis of the emerged behaviors

and communications, the scalability and robustness of the solutions are assessed in

each experiment. The imposed tests expose that the evolved neural controllers fulfill

both scalability and robustness properties, which are highly desired features of swarm

robotics systems. Besides, the communication mechanics resulting from evolution

are remarkably diverse. Specifically, it is shown that depending on the task, the

communication can be purely situated, abstract or a combination of both.

Keywords— Swarm Robotics, Evolutionary Computation, Continuous-Time Recurrent

Neural Networks, Recurrent Neural Networks, Minimal Communication, Emerged Communi-

cation, Genetic Algorithm, Natural Evolution Strategy, Neural Controller, Neuroevolution.

Resumen

Los sistemas multi-agente están compuestos por múltiples agentes inteligentes y distribui-

dos que interactúan con el fin de resolver problemas que seŕıan notablemente complejos

de abordar individualmente. Una clase de sistemas multi-agente que usa robots simples

e interacciones locales es la robótica de enjambre, que es un tipo de robótica colectiva

inspirada por las sociedades de insectos en la naturaleza. La robótica de enjambre es

un campo de investigación en constante crecimiento e interés, que combina conceptos de

la inteligencia artificial y de la robótica. En concreto, estudia el empleo de múltiples

robots distribuidos con interacciones locales que cooperan colectivamente para resolver tareas

complejas. Además, el diseño de mecanismos de comunicación que sean simples y robustos

al mismo tiempo es un aspecto importante en la robótica colectiva. Este Trabajo Fin de

Máster explora el diseño e implementación de un sistema de comunicación minimalista,

compuesto tanto por el mensaje como por su contexto en el entorno. Con el fin de verificar

el rendimiento y la versatilidad de la comunicación, cuatro tareas de robótica de enjambre

que requieren comunicación entre robots han sido diseñadas y resueltas. El controlador

robótico, responsable de definir el comportamiento de los agentes, está basado en redes

neuronales recurrentes en tiempo continuo evolucionadas usando algoritmos de computación

evolutiva. En particular, algoritmos genéticos (GA), y estrategias de evolución natural

separables (SNES) son usadas y comparadas. Todos los experimentos han sido realizados

usando un simulador robótico, diseñado e implementado a lo largo de este Trabajo de Fin de

Máster. Un objetivo importante es el análisis de la comunicación que, en cada experimento,

emerge como resultado del proceso de evolución. Los resultados muestran que el enjambre

de robots es capaz de resolver correctamente todas las tareas propuestas. Tomando como

referencia el valor de fitness promedio, SNES obtiene mejores resultados que GA en tres de

los cuatro experimentos propuestos. Además de un análisis detallado del comportamiento y

comunicación emergentes, la escalabilidad y robustez de las soluciones son evaluadas en cada

experimento. Las pruebas impuestas muestran que los controladores neuronales evolucionados

cumplen satisfactoriamente las propiedades de escalabilidad y robustez, que son caracteŕısticas

altamente deseadas en sistemas de robótica enjambre. Por otra parte, los mecanismos

de comunicación resultantes de la evolución son notablemente diversos. En concreto, la

comunicación puede ser situada, abstracta o una combinación de ambas, dependiendo de

la tarea a resolver.

Palabras Clave— Robótica de Enjambre, Computación Evolutiva, Redes Neuronales

Recurrentes en Tiempo Continuo, Redes Neuronales Recurrentes, Comunicación Minimalista,

Comunicación Emergente, Algoritmos Genéticos, Estrategia de Evolución Natural, Contro-

lador Neuronal, Neuroevolución.

Agradecimientos

En primer lugar me gustaŕıa agradecer

a mi tutor, Dr. Álvaro Gutiérrez, por

su dedicación y asesoramiento a lo

largo de estos meses de duro trabajo.

Álvaro, gracias por confiar en mı́ y

apoyarme en todo momento y en todos

los aspectos de este trabajo. También

quiero mostrar mi agradecimiento hacia

mi familia, en concreto mis padres, mi

hermano y mi hermana, por apoyarme

en todas mis decisiones y metas. Ellos

han sido también fundamentales para el

desarrollo y finalización de este Trabajo

Fin de Máster .

viii

Contents

Abstract v

Resumen vi

Agradecimientos vii

Index ix

List of Figures xi

List of Tables xvii

List of Algorithms xix

List of Acronyms xxi

1 Introduction 1

1.1 State of the art . 1

1.2 Objectives and contributions . 5

1.3 Document layout . 6

2 Theoretical Background 9

2.1 Continuous-time recurrent neural networks . 9

2.1.1 The neuron model . 10

2.1.2 The neural network . 10

2.1.3 Attractors . 12

2.2 Neuroevolution algorithms . 16

2.2.1 Genetic Algorithms . 16

2.2.2 Natural Evolution Strategies . 20

3 Materials and Methods 25

3.1 The environment . 25

3.2 Mobile robots . 28

3.2.1 Differential drive system . 28

3.2.2 Sensors . 30

3.2.3 Actuators . 33

3.3 Communication techniques . 34

3.3.1 Transmission . 34

3.3.2 Reception . 35

3.4 Neural controller and evolution details . 37

3.4.1 The neural controller . 37

3.4.2 The genotype and phenotype . 38

3.4.3 Evolution hyperparameters . 40

ix

x CONTENTS

4 The Simulator 41

4.1 General overview . 41

4.2 Simulator layers and interfaces . 42

4.3 Configuration files . 46

4.4 Parallelization . 48

4.5 Future improvements . 49

5 Experiments 51

5.1 Experiment A: Leader Selection . 52

5.2 Experiment B: Borderline Identification . 56

5.3 Experiment C: Orientation consensus . 58

5.4 Experiment D: Light follower . 61

6 Results 65

6.1 Experiment A: Leader Selection . 66

6.2 Experiment B: Borderline Identification . 74

6.3 Experiment C: Orientation consensus . 81

6.4 Experiment D: Light follower . 87

7 Conclusions and Future Lines 95

7.1 Conclusions . 95

7.2 Future lines . 96

Appendices 106

A Example of a configuration file 107

B Ethical, economical, social and environmental aspects 109

B.1 Introduction . 109

B.2 Description of the relevant project related problems 109

B.2.1 Social impact . 109

B.2.2 Economical impact . 109

B.2.3 Ethical impact . 109

B.2.4 Environmental impact . 110

B.3 Conclusions . 110

C Economic budget 111

List of Figures

2.1 Example of a simple CTRNN with 2 inputs (yellow), 2 hidden neurons (blue)

and 1 motor neuron (red). 11

2.2 Three experiments of the impact of external input φ(t) ∈ {0, 1}2 on two neuron

CTRNNs. The upper left plots of (a), (b) and (c) show the temporal variation

of the components of φ(t). The lower left plots are the output firing rates u(t)

of the neurons. On the right sides, state planes with the given trajectories

are depicted (colors represent present stimuli). (a) Input patterns change the

position of point attractor. (b) Input patterns alter the limit cycle attractor.

(c) Limit cycle is transformed into point attractor for different input patterns. . 14

2.3 Impact of input stimuli φ on the attractor of two different CTRNNs with 2

neurons. (a) Point attractor is translated along a curve. (b) A Hopf bifurcation

transforms point attractor into a limit cycle. 15

2.4 Diagram of canonical genetic algorithm. 18

2.5 Example of a BLX-α sampling rectangle with d = 2. 19

3.1 (a) 3D torus. (b) 2D flat torus, upper and lower sides and right and left sides

are respectively connected. 26

3.2 Example to clarify the distance dT (A,B) and the angle ^T (A,B) between

points A = (a1, a2) ∈ T and B = (b1, b2) ∈ T . The blue vector joins A and

B as it would be in R2. v(A,B), in orange, is the vector joining these points

considering that fW = W −|a1− b1| and fH = H−|a2− b2|. The virtual point

A
′

is also depicted in order to visualize more easily dT (A,B) and ^T (A,B). . . 27

3.3 Snapshot of the world using the developed simulator. As an example of the

simulator capabilities, the environment is formed by 14 robots (in green), a

black ground area and three lights of different colors (red, blue and yellow).

Height and width of the arena are 10m each, and robots, besides being

simulated as particles, are shown and black balls of radius 0.1m. 28

3.4 Differential drive system overview. 29

3.5 Example of a sectorized light sensor of a robot r with 8 sectors, representing

the sector orientations as the dashed lines and the robot heading orientation

θr as the arrow. Note that the orientation of the first sector equals the heading

of the robot. 31

3.6 Example of a sectorized light sensor of a robot. In this case, the light sensor

has 8 equispaced sectors LSj that capture the light intensity within a coverage

area. ρ` is the dT distance of the vector joining the light source position and

the center of mass of the robot. Additionally, ϕ`,j is the angle between the

aforementioned vector and the orientation of sensor of sector j (dashed lines). . 32

3.7 Noiseless coverage of a sector of LS for λLS = 0.05cm−1. Radius is expressed

in millimetres. 33

3.8 Generic architecture of the CTRNN based neural controller. 37

xi

xii LIST OF FIGURES

4.1 Example of the different robot colors to notify agent actions. 42

4.2 Designed simulator stack. 43

4.3 Neural layer data flow. 44

4.4 Interaction diagram between environment and robot layers. 45

5.1 CTRNN architecture of the leader identification controller. In order to

simplify the diagram, only the connections of the first neuron of each layer

are illustrated. The synapses from rest of neurons in the layers have the same

post synaptic neurons as the ones depicted for the first unit. The colors of

the connection arrows indicate the kind of layer to which the pre synaptic

neuron belongs to. Note that input neurons, in yellow, are placeholders of

input stimulus and not actual neuron models. The boxes on the right side

of the diagram display the firing rate decoding function. H is the Heaviside

function. 53

5.2 Comparative example of alpha shape algorithm for different values of α and

100 points. α = 0 results in the convex hull solution, increasing α leads to

more realistic borderlines. 56

5.3 CTRNN architecture of the orientation consensus controller. In order to

simplify the diagram, only the connections of the first neuron of each layer

are illustrated. The synapses from rest of neurons in the layers have the same

post synaptic neurons as the ones depicted for the first unit. The colors of

the connection arrows indicate the kind of layer to which the pre synaptic

neuron belongs to. Note that input neurons, in yellow, are placeholders of

input stimulus and not actual neuron models. The boxes on the right side

of the diagram display the firing rate decoding function. H is the Heaviside

function. 59

5.4 CTRNN architecture of the light follower controller. In order to simplify the

diagram, only the connections of the first neuron of each layer are illustrated.

The synapses from rest of neurons in the layers have the same post synaptic

neurons as the ones depicted for the first unit. The colors of the connection

arrows indicate the kind of layer to which the pre synaptic neuron belongs to.

Note that input neurons, in yellow, are placeholders of input stimulus and not

actual neuron models. The boxes on the right side of the diagram display the

firing rate decoding function. H is the Heaviside function. 62

6.1 Evolution of the fitness function with the generations of GA and SNES in the

leader selection task. In each generation, the darker curves are the sample mean

fitness scores and the upper and lower contours of the shadow areas represent

the maximum and minimum fitness values. 66

6.2 LED actions of the robots in a swarm of size 20 as time elapses in the leader

selection experiment. Horizontal black bars denote that the LED is activated.

Two phases, namely, negotiation and leader settlement, are observed. 67

6.3 Snapshots of different time steps of a leader selection simulation. Blue dots

represent robots whose LED is deactivated and red balls indicate that the

agent’s LED is turned on. Figures from (a) to (e) correspond to negotiation

phase while in (f) the leader is selected and stabilized. 68

LIST OF FIGURES xiii

6.4 Assessment of the scalability capabilities of the evolved solution for the leader election

task. For different swarm sizes, the figure shows the distribution of the percentage of

the evaluation time that only one robot claims leadership. The sample of size 50 is

represented by means of boxplots, where the orange line within the box is the median

and each box encloses samples in between the first and third quantiles, also known

as the interquartile range. The whiskers extend to the farthest data points that are

within 1.5 times the interquartile range. Outliers are shown as white dots. 68

6.5 LED actions of the robots in a swarm of size 20 as time elapses in the leader

selection experiment with leader failure. Horizontal black bars denote that the

LED is activated. Two phases, namely, negotiation and leader settlement, are

observed. 69

6.6 Assessment of the scalability capabilities of the evolved solution for the leader

election task with leader fault. For different swarm sizes, the figure shows a

sample of the distribution of the percentage of the total evaluation time that

only one robot claims leadership. The sample of size 50 is represented by means

of boxplots, where the orange line within the box is the median and each box

encloses samples in between the first and third quantile, also known as the

interquartile range. The whiskers extend to the farthest data points that are

within 1.5 times the interquartile range. Outliers are shown as white dots. . . . 70

6.7 Temporal evolution of the number of robots claiming leadership for a trajectory

in normal conditions and with leader failure. 71

6.8 Percentage of simulation time with a single leader elected when communication

stimulus are inhibited and in normal conditions. Stimulus inhibition is

performed by replacing with zeros the corresponding input stimulus at neural

level. Inhibition of the variables is performed separately and one by one. 71

6.9 (a) Spatial graph of the swarm topology, preserving positions and distances.

(b) Communication state of each robot at each time step. Horizontal black

bars correspond to state send and horizontal blank bars denote relay state. (c)

Message transmitted by the robots at each time instant. The color of the bar

at each time step corresponds to a symbol specified in the legend. 72

6.10 (a) Estimation of the proportion of times of each LED status of robots

conditioned to the communication state. (b) Count plot, gathering the times

that each symbol is emitted by any robot in the entire dataset, formed by 50

independent episodes. (c) Estimation of the proportion of times of each LED

status of robots conditioned to transmitted message. Symbols from 1 to 14

are merged into the ”Others” category due to their minimal relevance. In (a)

and (c), the point estimates are the upper sides of the bars and the confidence

interval with a confidence level of 95% is showed as the black segment. 73

6.11 Evolution of the fitness function with the generations of GA and SNES in

the border identification task. In each generation, the darker curves are the

sample mean fitness scores and the upper and lower contours of the shadow

areas represent the maximum and minimum fitness values. 74

6.12 (a) Spatial graph of the swarm, edges denote the existence of a pairwise

communication channel. Red balls represent alpha shape members and blue

dots are interior robots. (b) Spatial graph of the swarm, red balls denote

agent errors (as indicated in (d)) and green balls denote correct borderline

classifications. (c) Target borderline members according to the alpha shape.

Horizontal black bars denote frontier robots and horizontal blank bars represent

interior agents. (d) Temporal evolution of LED actions of the robots as time

elapses. Horizontal black bars denote activated LED. 75

xiv LIST OF FIGURES

6.13 Temporal evolution of true positive and negative rates in the borderline

identification experiment with 30 robots. Darker curves represent median TPR

and TNR and contours of the shadow areas are the first and third quantiles,

using a sample of size 50. 76

6.14 From (a) to (e), snapshots of the borderline identification experiment at

different simulation time steps. The balls represent the robots in the swarm.

Robots colored in red indicate that the LED is turned on at the corresponding

time step. Similarly, blue balls denote robots with the LED deactivated. Swarm

topology and robot distances are preserved in the graphs. (f) Actual alpha

shape, in purple, used as target, Note that at time step 50, once the decisions

are settled, there are only 2 errors. Moreover, both errors correspond to false

positives. 77

6.15 Temporal evolution of the accuracy of the robot’s classification in the borderline

identification experiment for diverse swarm sizes. The darker curves represent

the median of the accuracy using all 50 collected samples. Alternatively, the

shadow areas indicate, at each time instant, the first and third and quantiles

of the accuracies. 78

6.16 (Left) Target frontier members (according to alpha shape). Black bars indicate

that the robot is in the alpha shape and blank bars represent interior nodes.

(Right) Robots LED actions. The swarm topology is switched to a different

one (randomly sampled) every 200 time steps. 78

6.17 Temporal evolution of the accuracy of the robot’s classification in the borderline

identification experiment for diverse swarm sizes. Every 200 time steps the

swarm topology is changes while the neural states are preserved. The darker

curves represent the median of the accuracy using all 50 collected samples.

Alternatively, the clearer areas indicate, at each time instant, the first and

third and quantiles of the accuracies. 79

6.18 Temporal evolution of the accuracy of the robot’s classification in the borderline

identification experiment for different inhibited variables. It compares the

accuracy in a situation without inhibition (blue) and inhibiting different

communication variables (one by one). 80

6.19 Estimation of the proportion of times that the LED is activated, and thus robot

classifies itself as borderline member, conditioned to the number of neighbors

sending messages from different orientations. The upper side of the bar indicate

the proportion point estimate with its corresponding 95% confidence interval. . 80

6.20 Evolution of the fitness function with the generations of GA and SNES in

the orientation consensus task. In each generation, the darker curves are the

sample mean fitness scores and the upper and lower contours of the shadow

areas represent the maximum and minimum fitness values. 81

6.21 Temporal evolution of the orientation of the robots in a simulation with swarm

size of 20. Each curve corresponds to the orientation of one of the agents. The

orientation range of [0, 2π] is extended to the R set merely for visualization

purposes. 82

6.22 Snapshots of different time instants in a simulation of the orientation consensus

experiment. Blue dots depict the robots in the swarm and red arrows show the

orientations of the agents. 82

6.23 Temporal evolution of the misalignment metric (see Eq. 6.2) distribution using

50 simulation trials and diverse swarm sizes. The darker curves represent the

median of the misalignment using all 50 collected samples. Alternatively, the

clearer areas indicate, at each time instant, the first and third and quantiles. . 83

LIST OF FIGURES xv

6.24 (a) Temporal evolution of the orientation of the robots in a simulation with swarm

size of 10 for the robustness assessment. Each curve corresponds to the orientation

of one of the agents. At time instant 200, 4 robots become ”uncontrollable” and

point to the same orientation. The rest of the robots are controlled by the neural

controller. At time step 600, the ”uncontrollable” agents change their orientation.

Notice that the y-axis values with a difference of 2π correspond to the same physical

robot orientation. (b) Temporal evolution of the misalignment metric (see Eq. 6.2)

distribution using 50 simulation trials under the conditions specified for (a). The

simulation misalignment is tested for different quantities of ”uncontrollable” robots.

The darker curves represent the median of the misalignment using all 50 collected

samples. Alternatively, the clearer areas indicate, at each time instant, the first and

third and quantiles. 84

6.25 Temporal evolution of the misalignment metric (see Eq. 6.2) distribution using 50

simulation trials and for different inhibited communication inforamtion. The darker

curves represent the median of the misalignment using all 50 collected samples.

Alternatively, the clearer areas indicate, at each time instant, the first and third

quantiles. 85

6.26 Temporal evolution of the orientation of the robots in a simulation with

any communication variable inhibited (black) and with the message content

inhibited (red). Curves in each color represent the orientations of the robots in

the swarm in the corresponding simulation conditions. The orientation range

of [0, 2π] is extended to the R set merely for visualization purposes. 86

6.27 Violin plot of the wheel actuator (rotation) conditioned to the communication

transmission orientation (θTX) and the communication reception orientation

(θRX). A violin plot represents the kernel density estimation of each conditional

distrubution. 86

6.28 Proportion estimates and 95 % confidence intervals of the times each symbol

is transmitted conditioned to the status of pairwise communication. Pairwise

communication indicates if the sender and the receiver agents fulfill condition 6.3. 87

6.29 Evolution of the fitness function with the generations of GA and SNES in the

light follower task. In each generation, the darker curves are the sample mean

fitness scores and the upper and lower contours of the shadow areas represent

the maximum and minimum fitness values. 88

6.30 Torus distance dT of each robot in the swarm to the light source position in

(a) and to the center of mass of the swarm, in (b). 88

6.31 Snapshots of different time instants in a simulation of the light follower

experiment. Blue dots depict the robots in the swarm and red arrows show

the orientations of the agents. The red ball the is the light source, whose

coverage or area where a robot can sense its emitted light is delimited by a red

circumference. 89

6.32 Torus distance dT distribution of robots to the light source position in (a)

and to the center of mass of the swarm, in (b), using 50 trials. Darker curves

represent the median evolution and the contours of the shadows are the first

and third quantiles. In both subfigures, the black distribution encompasses the

robots that cannot sense the light, while the red distribution corresponds to

photosensitive robots. 90

6.33 Scalability assessment in the light follower experiment. In both subfigures and

for each swarm size, the darker curves represent the median evolution and the

contours of the shadows are the first and third quantiles. 91

xvi LIST OF FIGURES

6.34 Example of altered trajectory of the light source used to assess the robustness

in the light follower experiment. Red lines trace the light trajectory and black

points show the sampled xtar positions. 91

6.35 Robustness assessment. It compares the distributions of the distances to

the light for the orbit trajectory used during evolution and the new altered

trajectory (see Eq. 6.4). 92

6.36 Comparison of distance dT to the light position when different communication

variables are inhibited and in normal conditions (no inhibition). In both

subfigures and for each swarm size, the darker curves represent the median

evolution and the contours of the shadows are the first and third quantiles. . . 92

6.37 (a) Boxplots representing the distribution of awl−awr for different orientations

where maximum light intensity was measured. In the boxplots, the black line

within the box is the median and each box encloses samples in between the first

and third quantile, also known as the interquartile range. The whiskers extend

to the farthest data points that are within 1.5 times the interquartile range.

Outliers are shown as outer dots. (b) Kernel density estimate of the bivariate

distribution of awl−awr and the signal intensity of the received message. Each

color represents the contour curves of the distributions for different message

reception orientations. 93

List of Tables

3.1 Description of the available sensors. 30

3.2 Set of default parameters of the sensors. In the case of GS, the range is actually

determined by the radius of the ground area and not by the sensor. 33

3.3 Search space constrains of each of the denormalized optimization variables. . . 39

3.4 Fixed evolution hyperparameters for all the experiments 40

4.1 Queries to specify the set of parameters to be evolved by a subpopulation in

an evolutionary computation algorithm of the simulator. 47

4.2 Command line arguments of the simualtor. 48

5.1 Connection Probabilities between layers in the CTRNN architecture of Fig. 5.1 54

5.2 Connection Probabilities between layers in the CTRNN architecture of Fig. 5.4 63

C.1 Economical budget associated to the project. 111

xvii

xviii LIST OF TABLES

List of Algorithms

1 Tournament Selection . 18

2 Exponential Natural Evolution Strategy . 22

3 Separable Natural Evolution Strategy . 23

4 Message Quantization Q . 35

xix

xx LIST OF ALGORITHMS

List of Acronyms

ANN: Artificial Neural Network

CTRNN: Continuous-Time Recurrent Neural Network

ER: Evolutionary Robotics

EA: Evolutionary Algorithm

FSM: Finite State Machine

GA: Genetic Algorithm

ICC: Instantaneous Center of Curvature

IR: Infrared

JSON: JavaScript Object Notation

NES: Natural Evolution Strategy

NEAT: Neuroevolution of Augmenting Topologies

NGA: Natural Gradient Ascent

PDF: Probability Density Function

RNN: Recurrent Neural Network

RF: Radio Frequency

SR: Swarm Robotics

STDP: Spike-Timing-Dependent Plasticity

SNES: Separable Natural Evolution Strategy

TPR: True Positive Rate

TNR: True Negative Rate

WOSP: Wave Oriented Swarm Paradigm

xNES: Exponential Natural Evolution Strategy

xxi

xxii LIST OF ACRONYMS

Chapter 1

Introduction

This Master Thesis is framed within the intersection of the soft computing fields of swarm

intelligence, evolutionary computation and artificial neural networks. More specifically, a set

of cooperative tasks are proposed and solved using a swarm of distributed, self-organized

robots whose artificial neural network driven behavior is optimized using evolutionary

computation. Apart from the task resolution, we focus on the emergence and post-analysis of

the communication interactions within the swarm that arise from a minimalist, constrained

and situated communication system. This chapter starts with a detailed description of swarm

robotics basics and state of the art relevant to this work. Subsequently, the different objectives

and contributions that underline this Master Thesis are clearly stated. To conclude the

chapter, we expose in a summarized way the content and main topics of the remaining chapters

of the document.

1.1 State of the art

Swarm robotics (SR) [1] is the research field that, combining aspects of artificial intelligence

and robotics, studies the use of many simple distributed robots that collectively cooperate in

order to solve complex tasks. The tasks addressed by swarm robotics can be either intrinsically

collective problems, that can uniquely be solved through interaction, or single agent problems

whose results can be boosted in multi-agent setups. SR is widely inspired by how biological

swarms work in nature [2], exposing the emergence of complex collective behaviors from local

interactions. Some examples remarkably recurrent in swarm robotics are ant colonies, bee

colonies, flocks of birds, fish schools or slime molds, among others. In [3], the authors defined

a set of conditions that a robotics system must fulfill in order to be considered a swarm

robotics system:

- Autonomy of robots: the system is decentralized and robots can freely interact with the

environment

- Large swarm sizes: the swarms are composed by considerable amounts of agents.

- Homogeneity : the behavior, equipment and resources are the same for all the robots in

the swarm.

- Inefficiency and simplicity of single agents: robots are simple and cannot solve tasks

individually (or at least not efficiently).

- Local communication and sensing of the environment : robots in the swarm can only

sense the environment or communicate with other agents within the local surroundings.

Moreover, apart from efficiency in solving the task, scalability, robustness and flexibility

are highly desirable properties in SR systems (see [3]). These features should be taken

1

2 1. Introduction

into consideration in the design and validation stages of SR. A multi agent system is

scalable whenever its resulting performance barely decreases with the swarm size growth.

Additionally, robustness measures the system capabilities to react to unexpected and

undesired perturbations in the agents or in the environment. Finally, flexibility reflects the

ability of agents to react with different behaviors or roles under different conditions.

The most important and widely explored problems in swarm robotics are subsequently

listed and briefly explained. We refer to [4, 5, 6] for remarkably complete and detailed reviews

on the most relevant swarm robotics tasks. Some of them are summarized hereafter. In

aggregation task, all the robots in the swarm must group together so that swarm area is

compacted to small region of the environment where robots are located (see [7, 8, 9, 10]).

Additionally, flocking imitates bird flocks in nature so that robots navigate across the

environment in a coordinated and compact way, with matching motion orientation and

velocity. One of the most important contributions in the flocking task is the model proposed

by Reynolds in [11], which is composed by the three simple rules of cohesion, separation

and alignment. Flocking has been addressed in numerous works [12, 13, 14, 15], analyzing

different algorithms, robot interactions or minimal required information. Foraging task

(see [16, 17, 18, 19, 20, 21, 22] for several examples) poses a complex problem in which

robots have to transport objects from food areas, whose positions are initially unknown, to

a central nest area. Agents have to cooperate in order to solve the task proficiently. Role

allocation is a problem devoted to dynamically distribute different subtasks or agent roles

wherein the swarm members, spatially [23, 24, 25] or temporally [26, 27, 28]. Other highly

relevant swarm robotics problems are shape formation [29], leader election [30, 31, 32] or

collective object transport [33].

In swarm robotics, each robot is capable of locally sensing its environment and interacting

with it and with other agents through actions. The mapping between sensed stimuli to

actions is normally denoted as robot or agent controller. The controller, that defines

the behavior or policy of robots, is one of the principal design parts in swarm robotics.

Controllers are typically divided into two main types, namely, behavior-based and automatic

design methods (see [5]). Behavior-based design methods are the traditional and most used

design procedures in swarm robotics, in which the controller functioning is handcrafted in

response to the application requirements. Finite State Machines (FSM), either deterministic

or probabilistic, are behavior-based design methods that define a set of behavioral states of

the robots and the stimuli dependent transition conditions among states. Probabilistic FSMs

have been successfully employed to describe the functioning of controllers for foraging [19],

aggregation [8, 34] or task allocation [21]. Additionally, it is equally relevant the use of virtual

or artificial physics in the tasks involving robot motion. In artificial physics, the overall

contribution of a set of virtual forces determines the direction of motion of agents. Artificial

physics (see [35]) have been applied to solve, for instance, flocking [14, 15] and aggregation [36].

Alternatively, as the name denotes, automatic design methods use optimization algorithms in

order to tune the parameters of some mathematical models describing the controller mapping.

The optimization is usually driven by a fitness function or reward signal (depending on the

family of algorithms), defined by the researcher, that specifies the goodness and suitability

of the robot actions. Moreover, in the context of swarm robotics, the fitness is associated

to the team or group of robots and not to each individual agent. The most important, and

the procedure used in this work, is the use of evolutionary computation tools to optimize

controllers in swarm robotics, commonly referred as Evolutionary Robotics (ER), see [37].

Moreover, automatic controller design in general, and ER in particular, are frequently

coupled to Artificial Neural Networks (ANN), used as mathematical models to describe

controller functioning. The optimization of ANN parameters by means of evolutionary

computation is called neuroevolution, see e.g. [38]. Similarly, the resulting robot controllers

1.1. State of the art 3

can be denoted as neurocontrollers or neural controllers. Some examples of simple neural

controllers evolved using evolutionary algorithms, in diverse swarm robotics tasks, are the

following [7, 39, 40]. Unlike in these studies, that address the evolution of feed-forward

ANNs, the use of recurrent neural networks (RNN) is of special interest in swarm robotics.

The main reason is that they allow action generation not only based on current stimuli

being measured but also based on past experience and events. Specifically, Continuous-Time

Recurrent Neural Networks (CTRNN), see e.g. [41], have been employed as neuro-controllers

in multiple works [12, 42, 43, 44]. CTRNNs run in continuos time, making them remarkably

suitable for swarm robotics, whose principal tasks intrinsically operate in continuos time.

In [12], a CTRNN is evolved using a generational EA for the flocking of a swarm. They

designed a fitness function that reflects cohesion, separation and alignment of the swarm, as

in Reynolds’ rules. Tuci et al [42] also optimize CTRNN controllers using an EA. In this

case, they address a foraging problem, with a single nest and a single food area, in which

robots have to decide whether they assume the role of foraging or nest patrolling. Moreover

the task that they define imposes role switching within simulation to be completed correctly.

Gutiérrez et al, proposed in [43] the evolution of CTRNNs using a generational GA for the task

of heading alignment of robots. The study is firstly analyzed in simulated environments and

validated with real robots. In [44] the authors use a simple EA with roulette wheel selection

and a CTRNN controller in order to solve the problem of cooperative transportation of heavy

objects. The works listed above, in the context of evolutionary computation tools applied to

the optimization of ANNs, are either Genetic Algorithms (GA) or Evolutionary Algorithms

(EA) [45]. Other algorithms from evolutionary computation have been also employed in

swarm robotics and collecive robotics, such as differential evolution [46] or neuroevolution

of augmenting topologies (NEAT) [47, 48]. Besides, a family of algorithms that has gained

research interest in the context of single agent controllers are Natural Evolution Strategies

(NES) (see [49]). In NES, the population individuals are randomly sampled from a search

distribution whose parameters are optimized in order to maximize the expected fitness (see

Chapter 2), following the natural gradient direction. However, up to our knowledge, NES

algorithms have not been applied to the field of swarm robotics yet. In this Master Thesis we

explore the use of both GA and Separable Natural Evolution Strategies (SNES), see [50], in

order to evolve CTRNN neural controllers for different tasks.

Another critical design step in swarm robotics is the communication mechanics of the

group. Communication within the swarm refers to any kind of interaction among robots in

which information about states, actions or intentions of agents is shared across the swarm.

According to [51], inter-agent communication in swarm robotics can be split into the following

types:

- Stigmergy : or communication via the environment is, as its name suggests, an indirect

type of communication in which the environment is used as the communication medium.

In most cases, robots deposit traces, in the environment so that other agents can,

eventually, acquire knowledge about their existence. A recurrent example of stigmergy

in nature is the use of pheromones in ants to mark chemical trails to food. In swarm

robotics, stigmergy has been frequently applied to foraging in the form of virtual

pheromones (see e.g. [18, 20]).

- Interaction via state: is a type of communication in which each agent senses

its neighboring robots throughout sensors. As in stigmergy, there is no explicit

communication and the interaction is mainly due to existence awareness of other swarm

members in the local surroundings. A typical example of interaction by means of

sensing is the use of IR sensors acting as distance sensors (the sensor emits an IR ray

and captures its reflection). In this situation, an agent can know the position of other

robots relative to its own location (see [12, 13, 44, 47])

4 1. Introduction

- Direct communication: is the inter-agent interaction by means of explicitly sending

messages or information as in wireless networks. The messages can be directed to a

particular robot or broadcasted. Several examples of direct communication in SR will

be provided later. Direct communication can be combined with an interaction via the

state. For instance, the message content can be accompanied by the message context,

formed by, say, the direction of reception and the signal strength.

Additionally, a different division can be provided if the communication technology is

considered. For minimal and short range communications, infrared (IR) technology is

commonly employed (see [52]). IR sensors and emitters can be used for both distance

estimation to solid objects [44, 47, 53, 54], direct communication [55] or both [43]. Apart

from its short coverage, IR technology presents several issues such as interferences, ambient

light distortion, communication death zones, impossibility to send and receive at the same

time or low data rates (see [53, 56] for further details). However, it equally provides numerous

advantages that make IR technology highly suitable for local communication in swarms of

robots. Firstly, it is highly inexpensive and extremely low consuming, which, provided that

swarm sizes can be arbitrarily large and individual robots are notably simple, are utterly

desirable features in swarm robotics. Moreover, it allows a directionality awareness in the

communication, as in-board IR communication in mobile robots is equipped with a set of

receiver and emitters surrounding the robot perimeter. The knowledge of the direction from

where neighboring robots are interacting with the agent is highly desirable in most applications

and, more importantly, indispensable in many cases. Generally speaking, IR communication

fulfills all previously exposed requirements for swarm robotics. Alternatively, there are other

communication technologies that have been used in swarm robotics and multi-agent robotics.

RF communication, encompassing a broad spectrum of technologies and protocols, is also

a suitable communication mean when direction awareness is not an issue and long range

global communication is required (see [57, 58, 59]). Finally, as a middle range communication

alternative, several studies have addressed communication by means of sound (e.g. [60]) using

speakers and microphones to produce and capture sound beeps. In the two lattermost kinds

of communication, several of the exposed studies break the principle of locality presented at

the beginning of the section. Although in a lot of applications long range coverage is utterly

desirable, in many others it adds considerable communication overhead.

Another distinction can be highlighted in the case of direct communication. Essentially,

we can differentiate between direct communication semantics and codes that are handcrafted

by the researcher or communication semantics that arise from automatic controller design

methods (e.g. ER). In the latter scenario, it is said that communication emerges. Clearly,

the researcher still has to design and stablish the communication means and resources, albeit

the semantics and the information relevant to the emerged communication is a result from

optimization processes. Within this context, the taxonomy previously described according

to [52] can be reformulated as follows (see [61]):

- Abstract communication: is a type of communication in which only the message content

carries information. The environmental context associated to the message is either not

processed or not relevant in the emerged communication. See e.g. [31, 62] and some of

the experiments of [32].

- Situated communication: refers to communication scenarios in which both the message

content and its corresponding environmental context carry information within the

communication. Environmental context can be, for instance, the signal strength from

which the distance can be estimated or the direction from where the message was

received. Some examples of situated communication are [43, 63].

1.2. Objectives and contributions 5

1.2 Objectives and contributions

In this Master Thesis, we study the type of communication (either abstract or situated) that

emerges from evolution in a simulated environment of mobile robots. With this aim, we

propose a series of benchmark problems that, at first sight, require some sort of interaction to

be completed. The selected swarm robotics experiments are leader election, swarm frontier

identification, orientation consensus and light follower. A review of the related work will be

presented individually for each task in Chapter 5. The communication simulation resembles

IR technology, and it has a number of simulated sensors uniformly distributed along the

robot perimeter. We mentioned that the resulting communication can be either abstract

or situated because in addition to the message content, which is a quantized real vector

as it will be explained in subsequent chapters, the context underlying the message is also

provided. The context varies depending on the task to be solved (among the proposed pool

of experiments), but normally contains the signal strength, the direction of message reception

and a communication state. The communication state will be defined in detail in Section 3.3,

but, essentially, it establishes whether a robot sends its own message or relays the received

message. The robot policy is controlled by a CTRNN evolved using either GA or SNES

(both are analyzed) so that the messages are elaborated by the optimized CTRNN and the

communication (situated or abstract) emerges as a consequence. Apart from solving the tasks,

which is a secondary objective, one of our main aims is to assess the emerged communication

in each experiment under minimal communication techniques. The communication is minimal

mainly because of the following aspects:

- The communication is local, with a remarkably small communication range.

- Only one message can be received at each time instant. This means that regardless

of the number of neighbors, the robot and, thus, the CTRNN is only aware of one

neighbor at each simulation step.

- The possible directions of message reception or the number of IR sectors are restricted

to 4 sectors, highly complexifying the tasks.

- The received context corresponds uniquely to the current received message.

All experimental setups of the tasks fulfill the requirements to be considered SR (see previous

section). Moreover, in addition to an analysis of the evolved behaviors and the emerged

communication, an scalability and robustness assessments are imposed to each solution. The

main contributions are the following:

- A minimal SR system, with an utterly simple local communication is proposed. Its

performance is assessed in several benchmarking tasks.

- GA and SNES algorithms are used to evolve the parameters of neural controllers.

Although GA has been widely used in SR, SNES algorithms has not been explored,

as far as we are concerned.

- The communication that emerges as a result of evolution is analyzed. Thereafter, the

analysis reveals that sufficiently robust communication mechanics can emerge using

such a simple communication system.

- The system versatility, scalability and robustness are tested, resulting in an SR

framework that can be used in many collective robotics tasks.

- The resolution of the tasks is also an important contribution due to the robust and

scalable behaviors that emerge using highly simple robots.

6 1. Introduction

Another goal of this Master Thesis is the design and development of a robotics software

simulator that encompasses the features and functions required by the presented swarm

robotics experiments. The simulator, developed in Python programming language, is planned

to be used not only in this Master Thesis but also in further educational and research projects

in the frame of simulated robotics. Therefore, the simulator developed in this Master Thesis

constructs the basis of a simulator that merges swarm robotics, neuronal dynamics and

evolutionary computation.

1.3 Document layout

The remaining chapters of this Master Thesis are structured as follows. Chapter 2 provides

theoretical notions on CTRNNs and its underlying neuron models. The explanation is

initiated from the simplest level, where the model and dynamics of isolated point neurons are

stated. Subsequently, at the network level, the CTRNN is exposed both from an architectural

perspective, as directed graph of connected neurons, and from a dynamical perspective,

treating the CTRNN as a non linear dynamical system. The higher level is exposed using

attractor theory in dynamical systems as a tool for explaining working memory and CTRNN

functioning. In addition to CTRNNs, the evolutionary computation algorithms used in this

project, namely, GA and SNES, are also described. GA data flow and operators are explained,

focusing on the ones employed in the experiments. Alternatively, the theory of NES family

of algorithms is explained, ending with a description of SNES as a suitable algorithm for

evolving ANNs.

Chapter 3 explains the robotics simulator mechanics from a mathematical perspective.

In addition to the environment model, the robot driving system, sensors and actuators are

described. The designed communication means that the agents can harness to cooperate is

also established in detail. Moreover, the chapter provides an overview of the neural controller

and the GA and NES algorithms, highlighting the hyperparameters that are common in all

the experiments.

In contrast to Chapter 3, Chapter 4 describes the designed and developed software

simulator. More precisely, an explanation of the overall simulator structure, composed by

stacked layers and information exchange interfaces is provided. Additionally, other features

such as the configuration files, used to create and automatize experiments, the ANN data

flow and the parallelization of the execution are also exposed. This chapter ends with an

enumeration of several features to be implemented in future versions of the software.

Chapter 5 settles the mechanics of all the experiments in this Master Thesis, namely, leader

selection, borderline identification, orientation consensus and light follower. Each experiment

is split into the following functional building blocks: (i) description of the task, (ii) statement

of the precise sensors, actuators and communication context to be used, (iii) specification of

the precise neural architecture, (iv) description of related works in the literature and, lastly,

(v) presentation and explanation of the fitness function designed for each task.

Chapter 6 builds on top of the previous chapter by analyzing the evolved behaviors and

results of the tasks. In each experiment, a comparison between GA and SNES in terms of

fitness scores is revealed. Thereafter, we focus on the analysis of the results of the most

relevant solution, either in terms of fitness outperformance or emerged behavior complexity.

The overall analysis is fragmented into behavior analysis, scalability assessment, robustness

validation and emerged communication analysis.

Chapter 7 concludes the Master Thesis, highlighting the most relevant results and

comparing the different communication that emerged in the experiments. Moreover, several

future lines of research are presented. Finally, Appendix A displays an example of a

1.3. Document layout 7

configuration file used to specify the setups of each experiment. Appendix B describes the

potential impact that this Master Thesis can have in terms of social, economical, ethical and

environmental aspects. Moreover, Appendix C exposes the economic budget of this Master

Thesis.

8 1. Introduction

Chapter 2

Theoretical Background

In this chapter, a description of the mathematical concepts and theory used in this Master

Thesis is provided. The chapter is divided into two differentiated parts. Firstly, a detailed

explanation on the continuous-time recurrent neural networks is considered. Specifically, we

start exposing the neuron and the mathematical model used to describe its dynamics, as the

most basic neural unit. Subsequently, the neural network is explained from two coexisting

perspectives, namely, as a directed graph and as a non-linear dynamical system. Finally,

the dynamics of continuous-time recurrent neural networks are visualized from a higher level

point of view by studying and analyzing dynamical system attractors and their relevance in

learning and working memory formation.

The second part of the chapter shows the theory underlying the evolutionary computation

algorithms used in this Master Thesis. More precisely, genetic algorithms and natural

evolution strategies are exposed. In the case of genetic algorithms, the different steps involved

in the population updates of the evolution process are described. Moreover, the precise

operators used in the genetic algorithm are presented in detail. Apart from genetic algorithms,

natural evolution strategies are employed in the experiments. Specifically, the theoretical

background of separable natural evolution strategies is provided.

2.1 Continuous-time recurrent neural networks

Recurrent Neural Networks (RNNs) are a class of artificial neural networks capable of retaining

past events by feeding neuron outputs back through recurrent connections. In constrast

to discrete-time RNNs [64] and its variants [65, 66], Continuous-Time Recurrent Neural

Networks (CTRNNs) [41] are a type of RNNs with dynamics, stimuli and outputs operating

in continuous time. In problems and applications that are intrinsically continuous in time,

such as robotics, CTRNNs are of much more interest than their discrete-time counterparts.

Clearly, CTRNNs are executed in computers and, thus, their simulations require temporal

discretization at some extent. Nevertheless, as their dynamical systems are numerically

solved using, e.g., Euler method with a sufficiently small Euler step, their continuous-time

characteristic is approximately preserved.

Hereafter, CTRNNs are described starting from their most basic part, namely the neuron

and the employed neuron model. Subsequently, the overall neural network is explained

from two different coexisting perspectives. Finally, the concept of attractor, from dynamical

systems theory, is considered in the context of CTRNNs as a higher level description of the

neuronal dynamics.

9

10 2. Theoretical Background

2.1.1 The neuron model

As a first approach to CTRNNs, we model the dynamics of a single neuron using the firing

rate model. Firing rate models (see Chapter 11 in [67]) simplify the functioning of biologically

plausible spiking neural networks assuming rate coding schemes. Opposite to the ANN models

commonly used in machine learning and deep learning, spiking neuron models [68, 67] are

dynamical systems that generate all or none outputs known as spikes or action potentials.

Thus, the exchange of information among neurons is not directly produced by the magnitude

of the outputs, as in machine learning neural networks. On the contrary, two of the most used

theoretical neural codes state that the information resides in the precise timing of spike events

(temporal coding) or in the rate at which spikes are generated (rate coding), see Chapter 1

of [68] or [69].

Assuming rate coding, firing rate models utterly simplify spiking neurons by using a non-

linear mapping of the membrane voltage directly to the firing rate of a neuron or a population

of neurons, instead of returning single spikes. The dynamics of the firing rate model are shown

in Eqs. (2.1) and (2.2)

τ
dv(t)

dt
= −v(t) + I(t) (2.1)

u(t) = F (g(v(t) + β)) (2.2)

Let us describe the above equations. Inspired from biological neuronal dynamics, v(t)

represents the time varying membrane potential of the neuron and I(t) is the instantaneous

somatic current injected in the neuron as the contribution from all presynaptic neurons.

Additionally, τ is the membrane decaying time constant governing how rapidly v(t) reaches

stable fixed points in response to I(t). The second equation exposes the transformation of

the membrane voltage into the variable u(t) representing the neuron firing rate or activity.

F is a non-linear function that accomplishes the mentioned mapping. The most common

non-linearities, and the ones considered in this project, are the sigmoid function (see Eq. 2.3)

and the hyperbolic tangent function (see Eq. 2.4).

σ(z) =
1

1 + e−z
(2.3)

tanh(z) =
ez − e−z

ez + e−z
(2.4)

Besides, β and g are constants that define neuron dynamical properties. In the case of

β, it establishes the maximum voltage threshold that must be surpassed in order to produce

non-zero firing rate u(t). This property mimics how action potentials are, in a simplified way,

produced in spiking neuron models when the membrane voltage surpasses some maximum

threshold value. The constant g states how fast a neuron can switch from resting activity

(null or scarce activity) to maximum firing rate. Note that large values will increase the slope

of the sigmoid function within the linear region, producing a fast transition between minimum

and maximum activities.

2.1.2 The neural network

In order to describe the CTRNN, we consider two different and coexisting frameworks. On

the one hand, from an architectural point of view, the neural network is understood as a

weighted directed graph

GRNN(V, E) (2.5)

2.1. Continuous-time recurrent neural networks 11

where V is the set of ordered neurons in the network and E comprises the set synapses or

connections between neurons. For a reinforced notation, V is partitioned as

V = NI ∪NH ∪NM

where the subsets NI , NH and NM represent input, hidden and motor neurons respectively.

Note that NI elements are not actual neuron models but, instead, they are node placeholders

in the graph representing input stimuli signals. The subsets NH and NM are composed by

firing rate models with their own dynamics, as it was previously explained. The set of non

input neurons is introduced as N = NH ∪ NM. Thus, in the following, by I we refer to the

cardinality of NI representing the dimension of the input stimuli tuple. Similarly, N will

denote the cardinality of N as the number of firing rate neurons. Let W ∈ R(N+I)×(N+I) be

the weighted adjacency matrix of GRNN. Notice that the first I rows of W are zeros since input

nodes have zero in-degree. For notation convenience, the adjacency matrix is partitioned into

submatrices as follows:

W =

(
OI×I OI×N

WI WN

)
where WI ∈ RN×I is the submatrix comprising connections from input nodes in NI to

neurons in N and WN ∈ RN×N describes edges among neurons in N . OI×I and OI×N are

the zero matrices of dimension given by the subindex. Up to this point, CTRNN topologies

or architectures can be fully described by GRNN. However, its dynamics, that are not fully

defined yet, will be treated below.

As an example, consider the CTRNN in Fig. 2.1 with I = 2, and N = 3. The sets NI ,

NH and NM are colored in yellow, blue and red. The weights of the edges are attached to

each connection arrow and the ordering of the neurons is inside the vertices.

1

2

3

4

5

1

1

1

1

0.25

0.25

0.5 0.5

1

1

Figure 2.1: Example of a simple CTRNN with 2 inputs (yellow), 2 hidden neurons (blue) and

1 motor neuron (red).

For this example, the corresponding adjacency matrix is:

W =


0 0 0 0 0

0 0 0 0 0

1 1 0.25 0.5 0

1 1 0.5 0.25 0

0 0 1 1 0



12 2. Theoretical Background

and, thus, the submatrices WI and WN are:

WI =

 1 1

1 1

0 0

 , WN =

 0.25 0.5 0

0.5 0.25 0

1 1 0



In addition to the graph theory perspective, the CTRNN can be seen as an N -dimensional

non linear dynamical system. Let v(t) = (v1(t), . . . ,vN (t))> be the instantaneous membrane

voltage vector of the N neurons in GRNN and φ(t) = (φ1(t), . . . ,φI(t))
> the stimuli vector

being fed to the network. Thereafter, the dynamics of a CTRNN can be fully described as an

N -dimensional non-linear dynamical system defined by Eq. 2.6.

τ � dv(t)

dt
= −v(t) + WN F(g � (v(t) + β)) + WI φ(t) (2.6)

where WN and WI are the submatrices of the adjacency matrix of GRNN as described above.

τ = (τ1, . . . , τN)> is the vector of neuron time constants, β = (β1, . . . ,βN)> is the vector of

neuron biases and g = (g1, . . . ,gN)> is the tuple of neuron gains. β and g define the firing

behavior and nature of neurons as already seen in the previous subsection. F(z) is defined as

the element-wise function applied to vector z (see Eq. 2.7).

F(z) =

F (z1)
...

F (zN)

 (2.7)

F is commonly the sigmoid or hyperbolic tangent functions (Eqs. 2.3 and 2.4). � is the

element-wise multiplication.

Additionally, the vector of firing rates or activities is generalized from Eq. 2.2 as follows:

u(t) = F(g � (v(t) + β)) (2.8)

Eq. 2.8 is not included in the system of non-linear equations in (2.6) with the aim of

representing the CTRNN dynamics as compact as possible. Nevertheless, u(t) plays a

crucial role in the CTRNN because, apart from being the variable to be decoded into agent

actions, it will be used to represent state trajectories in the bounded state space [0, 1]N (see

Subsection 2.1.3). Finally, in order to iteratively solve the system of differential equations

in 2.6, Euler method is used. Euler method with a step size ∆t leads to the state updates in

Eq. 2.9. In this work, the initial state is always assumed to be v(0) = (0, . . . , 0)>.
v(t+ ∆t) = v(t) + τ̃ � (−v(t) + WN F(g � (v(t) + β)) + WI φ(t))

u(t+ ∆t) = F(g � (v(t+ ∆t) + β))

τ̃i =
∆t

τi
, ∀i ∈ {1, . . . , N}

(2.9)

2.1.3 Attractors

Considering the dynamics of the CTRNN presented in Eq. 2.6, we describe the concept of

attractors in dynamical systems. Given an N -dimensional system of differential equations, an

attractor is a subset, contained in the state or phase space, that is the steady state solution

of the dynamical system for all initial conditions in a neighborhood of the attractor. More

precisely, an attractor A (see Chapter 13 of [70]) is a manifold of dimension, say K, lower than

the dimension of the state space [0, 1]N and contained in it. Note that each component of the

state space is constrained to [0, 1], assuming that the non-linearity is the sigmoid activation, as

2.1. Continuous-time recurrent neural networks 13

we are using the firing rate state space instead of the voltage state space RN (see the mapping

between these vector spaces in Eq. 2.8). The attractor A is then the manifold embedded in

the state space of the CTRNN and defined by a finite set of equations; say

A ≡


M1(u1, . . . , uN) = 0

M2(u1, . . . , uN) = 0
...

MK(u1, . . . , uN) = 0

 (2.10)

For a better understanding on the concept of attractor, the basin of attraction is also

described. The basin of attraction B(A) of A is a neighborhood of the attractor so that

any initial state belonging to the basin will eventually converge to A. It should be mentioned

that, in the context of CTRNNs, the previous consequence of being in the basin of attraction

of some attractor can be avoided if a sufficiently abrupt change in the input stimuli leads

to u = (u1, . . . , uN)> escaping from the basin of attraction region. In such a case, u would

fall in the basin of attraction of another attractor A
′
. That is because all the basins of all

the attractors in a dynamical system form a partition of the state space. However, for the

moment, it is assumed that the dynamical system is autonomous. The definition of A can be

formalized as a subset of the state space [0, 1]N fulfilling the following conditions:

1. If u(t) ∈ A⇒ u(t+ T) ∈ A ∀T ∈ [0,∞)

2. If u(t) ∈ B(A)⇒ u(t+ T) ∈ B(A) ∀T ∈ [0,∞)

3. If u(t) ∈ B(A)⇒ lim
t→∞

u(t) ∈ A

There are multiple kinds of possible attractors of a dynamical system. The most common

type of attractor is called point attractor, and it is caused by stable fixed points in the system.

In contrast to point attractors, the attractor is a limit cycle when the trajectory of the state

inside A is a periodic trajectory for some period T . That is, provided that u(t) ∈ A, then

u(t+ T) = u(t) for some T > 0

Additionally, attractors can be a line, a torus or chaotic attractors, among other possibilities.

Up to this point, attractors have been described considering that the input stimuli φ(t) =

0 ∀t. Therefore, the attractor towards which the state trajectory tends can be fully determined

given an initial state u(0). More interestingly, we now describe the scenario where the input

of the system can be non-zero. In this case, the location or even the type of attractors are

altered in response to φ(t). Moreover, given that A is the attractor towards which the system

evolves at some point in the trajectory, and that the CTRNN parameters lead to multiple

attractors coexisting in the state space, a large enough stimuli variation dφ(t)
dt can cause u(t) to

escape from B(A). Figure 2.2 exemplifies the concept of attractor displacement or alteration.

It shows the state trajectories of three different two neuron CTRNNs when different input

patterns are injected. In all the cases, the bias vector is set to β = (−2.75,−1.75)>, the gains

are all fixed to 1 and the membrane time constants are 20dt. Additionally, the employed

adjacency matrices W are:

Wa =


0 0 0 0

0 0 0 0

1 1 5 3

1 1 −3 5

 Wb =


0 0 0 0

0 0 0 0

−0.2 0 4.5 1

−0.1 0.1 −1 4.5

 Wc =


0 0 0 0

0 0 0 0

1 −2, 4.5 1

−1 1 −1 4.5


The input patterns φ presented sequentially are (0, 0), (0, 1), (1, 0) and (1, 1), as exposed in

the upper left plots. The firing rates u(t) generated in response to the patterns are exposed in

14 2. Theoretical Background

0 500 1000 1500 2000 2500 3000 3500 4000
t ′

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t S
tim

ul
i

Input patterns

1(t)
2(t)

0 500 1000 1500 2000 2500 3000 3500 4000
t ′

0.0

0.2

0.4

0.6

0.8

1.0

Fi
rin

g
Ra

te

Firing rates
u1(t)
u2(t)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
u1

0.05

0.10

0.15

0.20

0.25

u 2

Phase plane

1 = (0, 0)
2 = (0, 1)
3 = (1, 0)
4 = (1, 1)
(1)
(2)
(3)
(4)

Start
End

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
t ′

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t S
tim

ul
i

Input patterns

1(t)
2(t)

0 500 1000 1500 2000 2500 3000 3500 4000
t ′

0.0

0.2

0.4

0.6

0.8

1.0

Fi
rin

g
Ra

te

Firing rates

u1(t)
u2(t)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
u1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

u 2
Phase plane

1 = (0, 0)
2 = (0, 1)
3 = (1, 0)
4 = (1, 1)
(1)
(2)
(3)
(4)

Start
End

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
t ′

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t S
tim

ul
i

Input patterns

1(t)
2(t)

0 500 1000 1500 2000 2500 3000 3500 4000
t ′

0.0

0.2

0.4

0.6

0.8

1.0

Fi
rin

g
Ra

te

Firing rates

u1(t)
u2(t)

0.0 0.2 0.4 0.6 0.8
u1

0.0

0.2

0.4

0.6

0.8

1.0

u 2

Phase plane
1 = (0, 0)
2 = (0, 1)
3 = (1, 0)
4 = (1, 1)
(1)
(2)
(3)
(4)

Start
End

(c)

Figure 2.2: Three experiments of the impact of external input φ(t) ∈ {0, 1}2 on two neuron

CTRNNs. The upper left plots of (a), (b) and (c) show the temporal variation of the

components of φ(t). The lower left plots are the output firing rates u(t) of the neurons. On

the right sides, state planes with the given trajectories are depicted (colors represent present

stimuli). (a) Input patterns change the position of point attractor. (b) Input patterns alter

the limit cycle attractor. (c) Limit cycle is transformed into point attractor for different input

patterns.

2.1. Continuous-time recurrent neural networks 15

the lower left plots. The right graphics depict the state plane and the corresponding trajectory

in each of the a, b and c scenarios. Colors represent the stimuli pattern that is being injected

into the network at a precise point in the state trajectory. In Fig. 2.2a, changes in φ result in

a translation of the point attractor in the state plane. Fig. 2.2b shows a dynamical system in

which the attractor is a limit cycle being altered by input variations. Finally, in Fig. 2.2c, the

attractor for zero input is a limit cycle that is transformed into a point attractor for different

patterns of φ.

In general, for a dynamical system driven by an external signal, such as in the CTRNN,

the notation for describing attractors can be modified as A(φ), for any A in the system, to

emphasize the dependency of A with respect to φ. In this way, the stimuli vector φ can be

treated as a parameter that modulates the steady states of the system. For a CTRNN with

two neurons and a single input φ(t) we can analyze how the parameter φ bounded in, for

example [0, 1], alters the attractor of the network. Figure 2.3 depicts this experiment for two

different two-neuron neural networks. The parameter φ is varied from zero to one with steps of

0.1 in the first plot and 0.05 in the second one. For each value of φ, the trajectory of the state

is recorded using Euler method with the same initial condition in all trials and with enough

simulation time steps to guarantee convergence. The color of the trajectories denotes the

value of φ for that trajectory, being constant in all their duration. Consequently, in Fig. 2.3a

0.1 0.2 0.3 0.4 0.5 0.6
u1

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

u 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
u1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

u 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Figure 2.3: Impact of input stimuli φ on the attractor of two different CTRNNs with 2

neurons. (a) Point attractor is translated along a curve. (b) A Hopf bifurcation transforms

point attractor into a limit cycle.

it can be observed that φ moves the point attractor along a curve (in red) in the state space.

A possible interpretation of this fact is that, although the attractor is a point when evaluated

for some input value, the general attractor for any value of φ is a curve attractor. More

interestingly, in the dynamical system of Fig. 2.3b, we show a Hopf bifurcation. It is a Hopf

bifurcation because there is a critical φc (somewhere in between 0.9 and 0.95) that causes the

transformation of a point attractor (red dots) into a limit cycle, as shown in the graphic.

Now, we return to the general case of an N -dimensional CTRNN with dynamics fixed by

W, g and β and modulated by the vector φ(t). Suppose that the system has, at most, T

attractors {A1(φ), . . . ,AT (φ)} for every φ and that the external dynamics of φ(t) work at a

much slower time scale k. This means that the trajectory of the CTRNN state has enough

time to converge to an attractor, or at least to remain in a neighborhood of the attractor of

much less area than its basin (depending on τ of the CTRNN), before φ varies again. For

16 2. Theoretical Background

a given initial attractor A(0,φ(0)) ∈ {A1(φ(0)), . . . ,AT (φ(0))} and a sequence of external

stimuli {φ(k)}∞k=0, there is a sequence of attractors as follows:

{A(k,φ(k))}∞k=0 (2.11)

Provided that the attractors are wisely optimized to store meaningful patterns of φ or a

transformation of φ in some latent space, the sequence 2.11 of attractors encodes the sequence

of stimuli patterns provided as input in the past. For instance, patterns of light intensity signal

can discretize values representing very low, low, medium, high and very high light intensity.

This sequence of attractors and their transient heteroclinic trajectories play an important role

in working memory [71, 72, 73, 74] among other cognitive tasks. Artificial recurrent neural

networks that harness and optimize the attractors of the system, their stored patterns and the

heteroclinic transitions among attractors are commonly denoted as attractor neural networks.

One of the most important contributions in this line is the Hopfield neural network [75], that

is a content addressable memory of input patterns so that, once optimized, whole patterns can

be retrieved from incomplete input samples. Additionally, [76] describes a general framework

for controlling attractor networks based on spiking neural networks.

2.2 Neuroevolution algorithms

Neuroevolution is the application of evolutionary computation algorithms to optimize the

parameters of artificial neural networks, leading to large dimensional optimization problems

(see [38]). There are multiple variants of neuroevolutionary algorithms, depending on the

evolutionary algorithm used, the genotype representation employed or the neural network

model to be evolved. Just to mention some of them, in [7, 12, 39, 40, 42, 43] ANNs are evolved

using genetic or evolutionary algorithms. Cooperative coevolutionary algorithms are proposed

in [77, 78] as optimizers of ANNs leading to multiple subpopulations of neural parameters

being evolved in parallel. Moreover not only the weights of the synapses but the neural

topology itself is evolved in [79] and its extension devoted to deep neural architectures [80].

As a final example, evolution strategies have been also explored in the context of ANN

optimization [81, 82]. This Master Thesis focuses on genetic algorithms and natural evolution

strategies as neuroevolution algorithms used to evolve CTRNN models in multi-agent robotics

tasks.

2.2.1 Genetic Algorithms

Genetic algorithms (GA) are biologically inspired population based optimization algorithms

that mimic how natural selection and survival of the fittest work in nature (see [45]).

A population of candidate solutions, namely individuals, genotypes or chromosomes, are

iteratively updated with the aim of maximizing some performance score defined by a fitness

function. Using the evaluated fitness value associated to each genotype, a set of genetic

operators are sequentially applied to the overall population in order to generate the population

of the next generation or iteration of the GA. A canonical GA is composed by the following

operators:

1. Selection: given the fitness values of the genotypes, the selection operator is responsible

of selecting the subset of individuals in the population that are used as parents

to generate offspring in subsequent operators. The selected genotypes can be

deterministically chosen using their fitness values or it can be a stochastic selection

using fitness scores to build probabilities.

2. Crossover : or recombination operator, uses the subset of selected parents to generate

new offspring individuals that will constitute the next population. Firstly, through a

2.2. Neuroevolution algorithms 17

mating strategy, that in this case is a random mating, the genotypes are, generally,

pairwise grouped. Thereafter, the alleles of each parent of the pair are combined or

merged in some way to produce the chromosome of two new individuals. It should

be mentioned that there is a parameter called crossover probability or crossover rate

pxvr representing the probability that two parents produce offspring. In absence of

descendants, the parents are directly added to the offspring set.

3. Mutation: The offspring genotypes, resulting from the recombination phase, are subject

to a mutation step that, with some mutation probability pmut, alters the genes of the

individuals. Mutation operators are mainly used as mechanisms for exploring new areas

of the search space and avoid premature convergence of the GA.

4. Elite preservation: a small subset of the population genotypes before crossover and

mutation are directly selected as individuals of the new generation population. These

elite genotypes are selectively picked in accordance with the fitness values. That is,

only the individuals with highest fitness are deterministically selected.

In this Master Thesis, the population of a genetic algorithm is defined as P(g) =

{G1, . . . ,Gλ}. It depends on the current generation g ∈ Z≥0, and it is a set containing

λ genotypes (λ is usually called the population size), where Gi is a vector. Even though

there are multiple genotype representations, recurrent neural networks are encoded using a

fixed length vector of the network optimization parameters (synapse strengths, neuron time

constants, biases and gains). More precisely, given that d is the search space dimension, the

genotype vectors as expressed as:

Gi = (Gi,1, . . . ,Gi,d)
>, i ∈ {1, . . . , λ}

Opposed to the genotype, representing the set of genes of an individual, the phenotype is

the set of developed characteristics of an individual at the evaluation level, decoded from

its corresponding genotype. For instance, in neuroevolution problems with direct genotype

representations (fixed length tuples) the genotype is the vector composed by all the synapse

strengths and the phenotype is the ANN model.

Besides, the fitness value of a genotype is defined as the result of the following function,

f : Rd −→ R
G 7−→ F

The precise function depends on each particular application and will be exposed, task by

task, in Chapter 5. In fields such as robotics or reinforcement learning, the fitness evaluation

is costly obtained by simulating the task during an episode of length TE . In these cases,

the computed fitness is an estimator of the true unknown expected fitness of the genotype

using the sample mean of sample size equal to the number of evaluation trials (or episodes).

There must be a tradeoff between variance reduction of the estimation and computational cost

reduction. Another important aspect to be pointed out is the initialization of the population

genotypes at g = 0. The genes are randomly initialized according to a uniform distribution

with higher and lower user defined bounds of the CTRNN parameters (see Chapter 3). Fig. 2.4

exposes the diagram of the canonical GA with the mentioned steps. The stopping criteria can

be either reaching a solution whose fitness distance to the optimal solution F ∗ is lower than

a small value ε or fixing a maximum number of generations G (or the combination of both).

In the remaining part of this section, the precise genetic operators to be used are described.

Selection operator: Tournament Selection

Tournament selection is used as selection operator in this Master Thesis (see [83]). Let

µ ∈ {1, . . . , λ} be the number of genotypes to be selected as parents. In tournament selection,

18 2. Theoretical Background

Crossover

Selection

Mutation

Fitness
Evaluation

Initialization

Elite selection

Stopping criterion

End
Evolution

YES NO

Figure 2.4: Diagram of canonical genetic algorithm.

µ different groups of K individuals are randomly chosen from the current population. Every

individual has the same probability to be in a tournament, regardless of their estimated

fitness. For each group or tournament, a winner is established as the genotype in the group

with highest fitness. The set of winners from all tournaments are gathered to form the set of

selected genotypes Psel ⊂ P. Algorithm 1 summarizes tournament selection process in GAs.

Algorithm 1: Tournament Selection

input: P, f(G) ∀G ∈ P, K

output: Psel
for i = 1, . . . , µ do

Select randomly a tournament of K individuals Ti = {Gk}Kk=1 from P
Set tournament winner as the genotype with highest fitness argmax

G∈Ti
{f(G)}

Add winner to selected individuals set Psel
end

Tournament selection is suitable for reducing premature convergence chances as it reduces

selective pressure (if tournament size K is sufficiently small).

Crossover operator: BLX-α

BLX-α, as the crossover operator used, selects offspring chromosomes stochastically in the

neighborhood of the parents (see [84, 85]). Let Ga and Gb be two population individuals

to be recombined to generate two novel offspring genotypes. Additionally, let vectors Gmin,

Gmax ∈ Rd be the gene-wise minimum and maximum vectors of the selected parents, whose

components are defined as:

Gmin,i = min{Ga,i,Gb,i}, Gmax,i = max{Ga,i,Gb,i}, ∀i ∈ {1, . . . , d}

2.2. Neuroevolution algorithms 19

The hyperrectangle C is constructed as:

C =

d∏
i=1

[ci,di] = [c1,d1]× · · · × [cd,dd]

where c and d are computed as follows,

c = Gmin − α |Ga − Gb|

d = Gmax + α |Ga − Gb|

where α is a fixed hyperparameter that establishes the area of exploration. Thereafter, the

offspring genotypes G
′

a and G
′

b , resulting from crossover, are uniformly sampled from C:

G
′

a = (u1, . . . , ud)
>, G

′

b = (v1, . . . , vd)
> | ui, vi ∼ U(ci,di), ∀i ∈ {1, . . . , d}

Note that more than two children can be obtained by sampling new genotypes. By exploration

Figure 2.5: Example of a BLX-α sampling rectangle with d = 2.

and exploitation regions we denote the following. Let Cxpt be another hyperrectagle, defining

the exploitation area,

Cxpt = [Gmin,1,Gmax,1]× · · · × [Gmin,d,Gmax,d]

so that Cxpt is equal to C when α = 0, resulting in a non-exploration recombination. Sampled

genotypes belonging to Cxpt exploit the known parents’ alleles, increasing genetic drift. On

the contrary the exploration region is Cxpl = C \ Cxpt, whose points promote exploration of

new solutions and population diversity. As an example, Fig. 2.5 shows the sampling area of

BLX-α for a search space of dimension d = 2. The exploitation area is colored in purple and

the exploration area is the red region.

Mutation operator: Gaussian mutation

20 2. Theoretical Background

Mutation operators allow slight alterations on the genotypes so that unexplored regions

of the search space can be reached. Mutation probability pmut sets the balance between

exploration and exploitation. Gaussian mutation is a common choice in the case of real coded

GA. Gaussian mutation essentially adds a normally distributed noise to the genes with some

probability pmut. Letting σ2
mut be the mutation noise variance, the gaussian mutation can

be also seen as resampling the gene g ∈ R from N (g, σ2
mut) with probability pmut. Formally,

given genotype G subject to mutation the mutation is expressed as in Eq. 2.12.

Gmut = G + pmut � εmut (2.12)

where εmut ∼ N (0, σ2
mutI), being I the identity matrix and pmut is a boolean mask denoting

the genes that are subject to mutation. Its elements are sampled from Bernoulli distribution

B(pmut), so that each gene has a probability pmut of mutation in each generation. Finally, �
represents the element-wise product.

2.2.2 Natural Evolution Strategies

In addition to GA, Natural Evolution Strategies are described in this subsection. Natural

Evolution Strategies (NES) are a family of evolutionary computation algorithms that, instead

of directly evolving the population of individuals or genotypes, it updates a parametrized

Probability Density Function (PDF) that is used to sample genotypes. NES have recently

proved to be competitive alternatives to deep reinforcement learning, tested in known

benchmark problems such as Atari games or humanoid locomotion(see [82, 81]). In this Master

Thesis, Separable Natural Evolution Strategy (SNES) algorithm(see [50]) is used to evolve

CTRNN controllers. Thus, in the following, a brief introduction to NES family of algorithms

is provided and, in particular, SNES is described at the end of the subsection, building on top

of other NES methods. For a simplified description of NES we are following [49]. We refer to

this paper for a highly detailed and complete description of NES methods.

Let J(θ) be the expected fitness under genotype generator PDF or search distribution

parametrized by θ and defined as in Eq. 2.13. π(G | θ) denotes the mentioned search

distribution, f(G) is the fitness function of a genotype and Eθ means the expected value

under a given parametrization.

J(θ) = Eθ [f(G)] =

∫
f(G)π(G | θ) dG (2.13)

The basis of NES is to find the parameters θ that maximize the expected fitness J(θ). In

order to accomplish this task, it uses the natural gradient ascent (NGA) instead of the regular

gradient ascent using the plain gradient. Before describing NGA updates, the gradient of the

expected fitness with respect to θ can be conveniently specified as in Eq. 2.14 using the

’log-likelihood trick’.

∇θJ(θ) = Eθ [f(G)∇θ log(π(G | θ))] (2.14)

Moreover, the sample estimate of the gradient using λ samples is exposed in Eq. 2.15.

Analogous to genetic algorithms, λ represents the population size. Moreover, the population

is sampled from the parametrized PDF so that Gi ∼ π(G | θ), ∀i ∈ {1, . . . , λ}

∇̂θJ(θ) =
1

λ

λ∑
i=1

f(Gi)∇θ log(π(Gi | θ)) (2.15)

The main difference between NES algorithms and search gradient algorithms, using the

plain gradient estimation for gradient ascent, is that NES use the natural gradient (see [86])

estimate for updating the search distribution parameters. The natural gradient can be

computed as,

∇̃θJ(θ) = F−1∇θJ(θ) (2.16)

2.2. Neuroevolution algorithms 21

where F is the Fisher information matrix of the search distribution defined as in Eq. 2.17.

F = E
[
∇θ log(π(G | θ))∇θ log(π(G | θ))>

]
(2.17)

The Fisher information matrix can be estimated from samples as:

F̂ =
1

λ

λ∑
i=1

∇θ log(π(Gi | θ))∇θ log(π(Gi | θ))> (2.18)

The estimates of F and ∇θJ(θ) lead to the NGA update of the distribution parameters

displayed in Eq. 2.19, where ηθ is some constant learning rate, and g denotes the current

generation or iteration. This parameter update defines the core of the Canonical NES

algorithm (see [49]).

θg+1 = θg + ηθ F̂−1g ∇̃θJ(θg) (2.19)

The updates of the canonical NES algorithm can be utterly costly as the problem

dimension increases. It is because of the Fisher information matrix estimation and inverse

computation. Particularizing to the multivariate gaussian search distributions N (µ,Σ),

exponential natural evolution strategy (xNES) is one of proposed extensions for efficient NES

(see [87]). The main improvements of xNES are summarized as follows.

Firstly, in order to guarantee positive definiteness, the covariance matrix Σ is represented

as the exponential map

Σ =

∞∑
n=0

Mn

n!

Moreover, in order to estimate the natural gradient in a computationally efficient way, the

parameters are expressed in a new coordinate system where the search distribution is N (0, I).

Parameter updates are then performed in this local natural coordinate system where the fisher

information matrix equals the identity matrix. In each generation, natural gradients with

respect to the parameters are computed in the local natural coordinates (δ,M) (respecting the

notation of the xNES paper). Thereafter, the updated parameters in the global coordinates

(see [87] or [49]) are

(δ,M) 7−→
(
µ

′
,A

′
)

=

(
µ+ Aδ,A exp

{
1

2
M

})
(2.20)

where Σ = AA> is the Cholesky decomposition of the covariance matrix.

22 2. Theoretical Background

Algorithm 2: Exponential Natural Evolution Strategy

input: f , µinit, σinit, Binit

output: µG, σG, BG

for g = 0, . . . , G do

for i = 1, . . . , λ do
si ∼ N (0, I)

Gi ← µg + σg Bg si
Evaluate genotypes and compute fitness f(Gi);

end

Sort genotypes {Gi}λi=1 | f(Gi) ≥ f(Gj), ∀j ∈ {i, . . . , λ}

u(Gi)←
max{0, log(

λ

2
+ 1)− log(i))}∑λ

j=1 max{0, log(
λ

2
+ 1)− log(j))}

− 1

λ

∇δJ =
∑λ
i=1 u(Gi) si

∇MJ =
∑λ
i=1 u(Gi) (sis

>
i − I)

∇σJ =
tr(∇MJ)

d
∇BJ = ∇MJ −∇σJ I

µg+1 ← µg + ηδ σg Bg∇δJ

σg+1 ← σg exp
{ησ

2
∇σJ

}
Bg+1 ← Bg exp

{ηB
2
∇BJ

}
end

The xNES algorithm is exposed in Algorithm 2, where, for each generation g, the following

main steps are accomplished:

1. λ genotypes are sampled from N (µg, σ
2
gBgB

>
g) by firstly sampling si from N (0, I) for

all i ∈ {1, . . . , λ} and then transforming it to the final chromosomes as Gi = µg +

σgBgsi. Note that Ag is again decomposed into σgBg, representing the step size of the

’mutations’ and the normalization of Ag with determinant equal to 1, respectively.

2. The sampled genotypes are evaluated into the task, swarm robotics simulated problems

in our context, and a fitness value is associated to each genotype. The genotypes are

ranked by their fitness values, resulting in a utility value u(Gi) of each individual. This

procedure, known as fitness shaping, computes the utilities as exposed in the algorithm

(see also [49]).

3. Natural gradients of the expected fitness with respect to the parameters in the local

natural coordinate system (∇δJ and ∇MJ) are computed for (δ,M) = (0, 0). ∇σJ
and ∇BJ are also obtained given ∇δJ and ∇MJ . In the computation of ∇σJ , tr is the

trace of a matrix and d is the genotype length or search space dimension.

4. Search distribution parameters are updated using NGA (see Eq. 2.19) and the

mapping 2.20. Note that exp{ηB
2
∇BJ} is the matrix exponential.

Building on top of xNES, Separable Natural Evolution Strategy (SNES), see [50], particu-

larizes the algorithm to multivariate normal distributions with diagonal covariance matrix

Σ = σ I, with σ ∈ Rd>0. This simplification is utterly suitable when dealing with

large dimensional problems such as in neuroevolution. On the one hand, the use of the

simplified covariance matrix drastically reduces the number of parameters to be optimized

and, thus, requires much less fitness evaluations and generations. Moreover, it alleviates the

computational cost of parameter updates. Therefore, SNES is the algorithm from the family

of NES used in this Master Thesis due to its suitability in evolving ANN models.

2.2. Neuroevolution algorithms 23

Algorithm 3: Separable Natural Evolution Strategy

input: f , µinit, σinit
output: µG, σG
for g = 0, . . . , G do

for i = 1, . . . , λ do
si ∼ N (0, I)

Gi ← µg + σg � si
Evaluate genotypes and compute fitness f(Gi);

end

Sort genotypes {Gi}λi=1 | f(Gi) ≥ f(Gj), ∀j ∈ {i, . . . , λ}

u(Gi)←
max{0, log(

λ

2
+ 1)− log(i))}∑λ

j=1 max{0, log(
λ

2
+ 1)− log(j))}

− 1

λ

∇µJ =
∑λ
i=1 u(Gi) si

∇σJ =
∑λ
i=1 u(Gi) (s2i − I)

µg+1 ← µg + ηµ σg∇µJ

σg+1 ← σg exp
{ησ

2
∇σJ

}
end

The description of SNES will be remarkably short as it mostly uses the concepts and tools

already explained in xNES. The pseudocode of SNES is gathered in Algorithm 3. It can be

observed that only two parameters, namely the distribution center µ and the diagonal of

the covariance matrix σ, are optimized. The natural gradient computations and parameter

updates result from the ones in Algorithm 2 for diagonal Σ.

24 2. Theoretical Background

Chapter 3

Materials and Methods

This chapter describes the mathematical formulation of the robotics simulator designed and

implemented in this Master Thesis. It is initialized by formally defining the environment

where the experiments are carried out. Subsequently, the simulated mobile robots are exposed,

highlighting the differential drive system responsible of agent motion, the sensor models used

to acquire insight of the environment and the actuators used to interact with other robots

and with the environment. Moreover, in this chapter, the minimal communication system

that robots can use to cooperate is fully described. The explanation is partitioned into

the transmission and reception sides of the communication. Finally, the neural controller

and evolution experimental setups are displayed from a general perspective. It specifies the

hyperparameters that are common to all the experiments.

3.1 The environment

The environment where the experiments will take place is modelled as a mathematical torus.

Let us define the rectangle R ⊂ R2 of sizes W and H. For simplicity, and without loss of

generality, R := [0,W]× [0, H]. Therefore, the functions fW and fH are defined as:

fW : R× R −→ R+ ∪ {0}
((a1, a2), (b1, b2)) 7−→ min{W − |a1 − b1|, |a1 − b1|}

fH : R× R −→ R+ ∪ {0}
((a1, a2), (b1, b2)) 7−→ min{H − |a2 − b2|, |a2 − b2|}

Once the torus is established, a binary relation R, namely for A,B ∈ R, is defined as

AR B ⇐⇒ fW (A,B) = fH(A,B) = 0.

In this situation, a quotient set T is defined as T := R/R, which is referred as torus

hereafter. The equivalence classes in this quotient set are defined as follows. LetA = (a, b) ∈ R

and its equivalence class, denoted by [A], be

[A] =


{A} if A ∈ (0,W)× (0, H)

{(a, 0), (a,H)} if A ∈ (0,W)× {0, H}
{(0, b), (W, b)} if A ∈ {0,W} × (0, H)

{(0, 0), (0, H), (W, 0), (W,H)} if A ∈ {0,W} × {0, H}

Note that T is a representation of the torus obtained when folding the rectangle R (see

Fig. 3.1). Intuitively speaking,

25

26 3. Materials and Methods

(a)
(b)

Figure 3.1: (a) 3D torus. (b) 2D flat torus, upper and lower sides and right and left sides are

respectively connected.

1. the points in the interior of R are not associated with other points

2. each point on a vertical side of R is associated with the corresponding point, at the

same height, on the opposite vertical side of R.

3. each point on an horizontal side of R is associated with the corresponding point, at the

same distance of the y axis, on the opposite horizontal side of R.

4. the four vertices of R are associated.

In the following, taking into account this informal description, we simplify the notation by

omitting the square brackets when referring to the elements in the torus T . Now, we introduce

the distance (see e.g. page 331 in [88])

dT : T 2 −→ R+ ∪ {0}
(A,B) 7−→

√
fW (A,B)2 + fH(A,B)2

Therefore, in the following, we will be working in the metric space (T ,dT).

In addition to the notion of distance between two points in T , a definition of the angle

between a vector joining two points and a reference vector will be required. For this purpose,

the vector (fH(A,B), fW (A,B)) is associated to a new vector v(A,B) defined as,

v(A,B) = (εW fW , εHfH)
>

(3.1)

where

εW =

{
sign(a1 − b1), if fW = |a1 − b1|
−sign(a1 − b1), if fW = W − |a1 − b1|

εH =

{
sign(a2 − b2), if fH = |a2 − b2|
−sign(a2 − b2), if fH = H − |a2 − b2|

with A 6= B. Thus, provided that A,B ∈ T , the angle between the vector v(A,B) and a

reference vector u = (1, 0)> is defined as the angle ^T between these vectors in the Euclidean

space R2:

^T (A,B) = arccos

(
εW fW (A,B)

dT

)
(3.2)

Note that the expression to which the arccos is applied belongs to the closed interval [−1, 1].

3.1. The environment 27

Figure 3.2: Example to clarify the distance dT (A,B) and the angle ^T (A,B) between points

A = (a1, a2) ∈ T and B = (b1, b2) ∈ T . The blue vector joins A and B as it would be in R2.

v(A,B), in orange, is the vector joining these points considering that fW = W − |a1 − b1| and

fH = H − |a2 − b2|. The virtual point A
′

is also depicted in order to visualize more easily

dT (A,B) and ^T (A,B).

Fig. 3.2 depicts the idea behind the notions of ^T (A,B) and dT (A,B) with an example.

It shows in orange color the vector v(A,B) and in blue the vector AB as it would be in R2.

Intuitively, the vector v(A,B) can be more clearly visualized by representing a virtual point A
′

as in the figure and plotting the vector A′B. However, notice that this is just a representation

for understanding since it is not formally correct, as A
′
/∈ T .

In addition, the environment is composed by a set of world entities. In an experiment,

the set of robots will be denoted as R and the set of lights as L. Although there may

be other kind of objects (for instance ground areas), all the experiments in the following

chapters will uniquely involve robots and lights. Anyhow, all entities instantiated in the

environment will have a time varying position belonging to T . Thereafter, distances between

objects are computed using dT . Collisions, forces and other physics simulations are not

implemented among robots because they are not explored in any of the experiments defined

in this Master Thesis. Therefore, agents are physically treated as intangible point particles.

This simplification can lead to the scenario of multiple robots with the same position. In such

a case, it should be clarified that, even though their positions are the same in T , the robots

in R are different elements of the set. Fig. 3.3 shows a snapshot of the simulated world with

14 mobile robots, a red light, a yellow light, a blue light and a black ground area. Height and

width of the arena are fixed to 10m in all the experiments. Although robots are modelled as

particles, they are represented as black circles of radius 0.1m. The orientation of the robots

is indicated using a black bar salient from the robot body.

28 3. Materials and Methods

Figure 3.3: Snapshot of the world using the developed simulator. As an example of the

simulator capabilities, the environment is formed by 14 robots (in green), a black ground area

and three lights of different colors (red, blue and yellow). Height and width of the arena are

10m each, and robots, besides being simulated as particles, are shown and black balls of radius

0.1m.

3.2 Mobile robots

Agents are modelled as circular mobile robots with a differential drive system, a set of

actuators and a set of sectorized sensors. Moreover, robots are equipped with an isotropic

communication transmitter and a directional communication receiver that allow cooperation

throughout communication among agents. The details of the communication will be exposed

in Subsection 3.3. Within the metric space (T ,dT) defined in the previous section, a robot

r ∈ R is determined by a position xr(k) ∈ T . We introduce k as the time variable of the

environment. Note that while k moves in its domain, xr(k) describes the trajectory of robot

r within the torus T . Moreover, a mobile robot also has a time dependent orientation θr(k)

of its heading that will impact on its kinematics (see Subsection 3.2.1) and the receptive

fields of sensors (see Subsection 3.2.2). In Fig. 3.3, the orientation θr(k) is represented by

the small black segment attached to the robots and defining its heading. Each robot has

an attached controller program that establishes the sensors and actuators to be used and

that maps stimuli measured by the sensors to actions to be performed using the actuators.

In all the experiments, evolved neural controllers are employed to accomplish this task (see

Section 3.4).

3.2.1 Differential drive system

Robots are able to move and explore the environment by means of a differential drive

system, controlling two wheels sharing a common rotation axis. Let awr(k) ∈ [−ωmax, ωmax]

3.2. Mobile robots 29

and aw`(k) ∈ [−ωmax, ωmax] represent the robot actions for controlling the right and left

wheels, respectively. In all the experiments, ωmax is fixed to 10cm/s. In both wheels, the

upper limit denotes maximum rotation speed clockwise, lower limit means maximum rotation

counterclockwise and aw` = 0 or awr = 0 results in no wheel rotation. Furthermore, let

ICC(k) be the Instantaneous Center of Curvature, ρICC(k) the distance from the center of

mass of the robot to ICC(k) and Lw the distance between wheels along rotation axis. Finally,

ω(k) is the instantaneous angular speed of the robot around ICC(k). ρICC(k), ω(k) and

ICC(k) can be obtained using Eqs. (3.3), (3.4) and (3.5). These variables can be visualized in

Fig. 3.4a. Notice that, when awr = aw`, the computation of ρICC is simply awr(k) ∆k, and,

in this situation, there is no rotation ω(k).

ρICC(k) =


Lw(awr(k) + aw`(k))

2 (awr(k)− aw`(k))
if awr(k) 6= aw`(k)

awr(k) ∆k if awr(k) = aw`(k)

(3.3)

ω(k) =
awr(k)− aw`(k)

Lw
(3.4)

ICC(k) = xr(k) + ρICC(k)

(
− sin (θr(k))

cos (θr(k))

)
(3.5)

Finally, fixing an Euler step ∆k, the position and orientation updates are stated in

Eq. (3.6).

xr(k + ∆k) =

(
cos(ω(k) ∆k) − sin(ω(k) ∆k)

sin(ω(k) ∆k) cos(ω(k) ∆k)

)
(xr(k)− ICC(k)) + ICC(k)

θr(k + ∆k) = θr(k) + ω(k) ∆k

 (3.6)

Fig. 3.4b shows the update of position and orientation of robots under the previously

described model.

(a) Diagram of mobile robot drive system. (b) Diagram of mobile robot kinematics step.

Figure 3.4: Differential drive system overview.

30 3. Materials and Methods

3.2.2 Sensors

Agents are endowed with a set of sensors that can be used to partially observe the environment.

The partial observability of the environment is due, mainly, to two reasons. On the one hand,

robots are not able to acquire knowledge about their general positions and orientations xr(k),

θr(k) in T . On the other hand, sensors can merely capture information within a ball of radius

much smaller than H and W . This means that robots are capable of sensing the environment

locally. Among the set of sensors, formed by the light sensor (LS), distance sensor (DS),

ground sensor (GS) and communication receiver (RX), the agent controller is responsible

of specifying the subset of sensors that should be activated in a particular experiment or

problem. For instance, a single agent light follower task will only require LS information and

a task that requires cooperation will employ RX sensor for being solved. Table 3.1 gathers a

brief description of the currently implemented sensors. It should be mentioned that, although

GS will not be used in the experiments of this Master Thesis, for completeness reasons, we

have decided to include it as part of the simulator.

Sensor Description

LS Measures the light intensity emitted from light

sources. The sensor can be sensitive to different light

colors.

DS Measures the distance to nearest neighboring robots.

GS Measures whether the robot is placed on a colored

area in the environment. GS can be sensitive to a

particular ground color.

Table 3.1: Description of the available sensors.

For an experiment E, and naming S = {LS,DS,GS,RX}, the subset of enabled sensors

will be denoted as SE ⊆ S. Sensors can be split into equiareal sectors so that the agent

can distinguish the orientation from where a measurement is sensed. In these cases, the

sensors with orientation awareness are called sectorized or directional sensors. Furthermore,

for each s ∈ SE , let Ns (e.g. NLS or NDS) be the number of sectors of the sensor type s.

Thus, the possible angles in [0, 2π] are discretized into Ns possible measurement orientations.

The quantization error of the acquired reading orientation can be reduced by increasing the

number of sectors. Among the implemented sensors in the simulator, solely the ground sensor

GS is not a sectorized sensor as it just detects the ground areas underneath the robot body.

In the following, in order to avoid confusion, by sensor we refer to the overall sensing device

encompassing the sub-sensors of all the sectors. On the contrary, a sector of a sensor will

denote only the sub-sensor device pointing to the corresponding orientation of the sector. As

an example, a light sensor with NLS sectors would be the union of the photodiodes in all the

sectors, and sector LSj would be interpreted as the j-th photodiode.

Subsequently, let θr,LSj (k) be the orientation of the j-th sector of LS at time instant k,

which is defined as in Eq. (3.7). Notice that the orientation of sectors is relative to the robot

orientation θr(k) and, in fact, θr,LS1(k) = θr(k) (see Fig. 3.5). Despite the particularization

of Eq. 3.7 to the case of LS, the same expression can be applied to any other sectorized sensor

in S.

θr,LSj (k) = θr(k) + (j − 1)
2π

NLS
, ∀j ∈ {1, . . . , NLS} (3.7)

3.2. Mobile robots 31

Robot

Figure 3.5: Example of a sectorized light sensor of a robot r with 8 sectors, representing the

sector orientations as the dashed lines and the robot heading orientation θr as the arrow. Note

that the orientation of the first sector equals the heading of the robot.

Apart from the communication receiver, that will be treated individually in Subsection 3.3,

each sensor will result in a measurement tuple φs(k) ∈ [0, 1]Ns ,∀s ∈ S \ {RX} (for instance,

φLS(k) in the case of the light sensor) so that its components are the measured values of each

sector.

The overall reading vector is denoted as φ(k) and it is the vector concatenation of the

measurements of all the enabled sensors in SE , as in Eq. (3.8).

φ(k) = vecconcat ({φs(k), ∀s ∈ SE}) (3.8)

where, assuming some fixed ordering of the elements of SE , vecconcat is defined as the vector

concatenation of the vectors in {φs(k), ∀s ∈ SE}. Then φ(k) is the final tuple that will be

provided to the controller to generate consequent actions.

The computation of the reading φs(k) of each sector will be explained in the remaining

part of this subsection. Firstly, φGS(k) is taken as one if a ground area is detected underneath

the robot and zero otherwise. Alternatively, the readings of LS sensor are modeled using

Eq. (3.9) for each sector j ∈ {1, . . . , NLS}.

φLS,j(k) =
∑
`∈L

c`

(
e−λ

ρ
LS ρ`(k)−λ

ϕ
LS ϕ`,j(k) + εLS

)
(3.9)

where,

- ρ` = dT (xr,x`) is the distance between the agent position and the position of light

source `.

- ϕ`,j(k) relates the angle ^T between the vector joining the agent position (xr) and the

position of ` (x`) with the orientation of the j-th sector (θr,LSj (k)). More precisely, it

is defined as,

ϕ`,j(k) = min
{
|θr,LSj (k)− ^T (xr(k),xl(k))|, 2π − |θr,LSj (k)− ^T (xr(k),xl(k))|

}
(3.10)

32 3. Materials and Methods

Essentially, it measures the misalignment of the measured light beam with respect to

the sector orientation.

- λρLS is a decaying constant to calibrate the distance attenuation.

- λϕLS is a decaying constant to calibrate the misalignment attenuation. Notice that

large values of λϕLS produce overlapped coverage between contiguous sectors while small

values may produce blind spots.

- εLS ∼ N (0, σ2
LS) is the white noise attached to the measurement, where N denotes the

normal distribution.

- c` ∈ {0, 1} is a bit stating if the received light is of the same color as the one towards

which LS is sensitive (c` = 1).

Figure 3.6: Example of a sectorized light sensor of a robot. In this case, the light sensor has

8 equispaced sectors LSj that capture the light intensity within a coverage area. ρ` is the dT
distance of the vector joining the light source position and the center of mass of the robot.

Additionally, ϕ`,j is the angle between the aforementioned vector and the orientation of sensor

of sector j (dashed lines).

The meaning of ϕ`,j(k) and ρ` is clearly illustrated in Fig. 3.6, where an example of a light

mostly incident on sectors 2 and 3 is shown. Finally, notice that the contributions of light

sources are added to the final reading. In order to bound the measurement between 0 and

1, the reading is saturated at φLS,j(k) = 1 (not shown in the formula). Fig. 3.7 displays the

noiseless coverage of a sector of LS for λρLS = 0.05cm−1 and λϕLS = 1 rad−1.

The simulation of DS sensor is remarkably similar to LS model. In this case, the reading

of DS, is computed as in Eq. 3.11.

φDS,j(k) = max
r∈R

{
e−λ

ρ
DS ρr(k)−λ

ϕ
DS ϕr,j(k)

}
+ εDS (3.11)

where ρr(k) and ϕr,j(k) mean almost the same as ρ`(k) and ϕ`,j(k) in Eq. 3.9. More

precisely, the only difference is that the former variables are computed using a robot r as

3.2. Mobile robots 33

0°

45°

90°

135°

180°

225°

270°

315°

25 50 75 100125150175200

Coverage of light sensor for a sector.

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

Figure 3.7: Noiseless coverage of a sector of LS for λLS = 0.05cm−1. Radius is expressed in

millimetres.

target and the latter ones use a light source ` as target object. Similarly, λρDS , λϕDS and

εDS ∼ N (0, σ2
DS) will be adjusted in order to simulate the behavior of IR sensors. The most

noticeable difference between Eqs. 3.9 and 3.11 is that only the nearest robot to a sector is

used to construct the reading, as opposed to LS where all contributions are added.

In order to conclude the description of the simulated sensors, Table 3.2 gathers the default

parameters of each sensor. These parameters will be used in subsequent experiments unless

otherwise specified.

Sensor Range Num. Sectors
Distance

decaying constant

Misalignment

decaying constant
Noise variance

LS 80cm 6 0.05cm−1 1 rad−1 0.1

DS 60cm 4 0.05cm−1 1 rad−1 0.1

GS 100cm - - - 0

Table 3.2: Set of default parameters of the sensors. In the case of GS, the range is actually

determined by the radius of the ground area and not by the sensor.

3.2.3 Actuators

Actuators provide agents with the capability of interacting with the environment or with

other robots. For this purpose, the implemented actuators are wheel actuator (WA), LED

actuator (LED) and wireless transmitter (TX). Analogous to the sensor set S, the set of

the mentioned actuators will be referred as A = {WA, LED, TX}. Similarly, the subset of

actuators enabled by a controller in an experiment E is denoted as AE ⊆ A.

The agent controller interacts with the actuators through actions. For instance, the wheel

actuator WA controls the robot wheel angular speeds, that define the robot kinematics (see

34 3. Materials and Methods

Subsection 3.2.1), by means of the action vector

aWA(k) = (awr(k), aw`(k))> ∈ [−1, 1]2

Additionally, the LED actuator, is controlled with the action aLED(k) ∈ {0, . . . , C}, where

C is the number of colors. In this situation, aLED(k) = 0 turns off the LED and non zero

values of aLED(k) turn on the LED photodiode with one of the C possible colors. If only one

color is considered (C = 1), then aLED(k) ∈ {0, 1}. LED actuators do not aim at serving

as communication means. Their objective is to notify the individual solution of the agent

to the collective task to be solved. An example of this statement is the task of selecting a

leader of the group, in which robots can claim leadership by turning the LED on. Other

robots will only be able to know that decision if the mentioned agent decides to correlate

the communication transmitter action with the LED actuator state. The communication

transmitter will be explained in more detail in the next section.

To conclude the actuator description, the overall action vector resulting from the vector

concatenation of all enabled actuators in an experiment is shown in Equality 3.12. It is the

vector concatenation a(k) of the actions of the previously mentioned actuators.

a(k) = vecconcat ({an(k), ∀n ∈ AE}) (3.12)

3.3 Communication techniques

This section describes the simulated communication techniques that the robots can harness

in order to solve cooperative multi-agent problems. Agents can isotropically emit an M

dimensional message that can be received by other robots in a low range. Receiver agents

can be aware of the orientation from where the message was received, as they have a separate

receiver in each sector. It should be mentioned that this directional communication is based

on IR photodiodes for both transmission and reception. An agent can be either in send mode

or in relay mode. Send mode means that the robot controller creates a novel message, based

on the incoming message from its neighborhood, and broadcasts it to its vicinity. On the

contrary, relay mode refers to broadcasting a copy of the input message. The commutation

among these states will be performed by the agent controller. Specifically, provided that

the robot is controlled by a CTRNN, the next state is managed by a motor neuron of the

network. A maximum number of hops is fixed so that old messages eventually stop from being

relayed. Moreover, messages have an attached identifier of the robot that initially generated

the message content in send mode. Therefore, an agent avoids receiving echoes of its own

messages by filtering out incoming packets with its own identifier.

3.3.1 Transmission

Each robot is capable of sending, isotropically, a vector message at each environment

simulation cycle. The transmitted information is emitted with a simulated limited power,

so that it can be received up to a fixed range with a bit error rate lower than a threshold.

Let aTX(k) ∈ [0, 1]M be the communication action directly generated by the robot neural

controller in response to input sensed stimuli. aTX(k) represents the elaborated message of

length M . As a postprocessing stage before emitting the message, aTX(k) is quantized in

order to be represented as one fixed cluster or symbol in a finite set. In this situation, let M∗

be the number of symbols to be considered in the experiment. Then, we introduce the set C
of possible symbols as the square lattice,

C =

{
0,

1

K − 1
, . . . ,

K − 2

K − 1
, 1

}M
(3.13)

3.3. Communication techniques 35

where K =
⌈
M
√
M∗
⌉
.

For every time step k, the message quantization is defined as the following transformation,

Q : [0, 1]M −→ C
aTX(k) 7−→ mTX(k)

where Q is fully described in Algorithm 4. The selected symbol for a raw message aTX(k) is

stochastically selected using the categorical distribution on the elements of C and probabilities

of each element p. Element probabilities are the result of a softmax function defined as follows.

For every z ∈ RJ ,

softmax(z)i =
ezi∑J
j=1 e

zj
, ∀i ∈ {1, . . . , J} (3.14)

Algorithm 4: Message Quantization Q
input: aTX(t), C, β
output: mTX(t)

di = ‖aTX(k)− ci‖2 , ∀i ∈ {1, . . . ,#(C)}
p = softmax

(
β ·
(

1− d√
M

))
mTX(k) ∼ Cat(C,p)

In this case, let β be a constant that controls the balance between the element

probabilities. Then the components of the vector

z = β · (1− d/
√
M) ∈ [0, 1]#(C),

provided as input of the softmax transformation, will be inversely proportional to the

Euclidean distances d to the symbols in C. #(C) denotes the cardinality of the set C.
Thereafter, the nearest symbols to aTX will have largest probabilities to be selected. β

is a constant that controls the balance among the element probabilities. Under the frame

of the currently described communication, β can modulate the noise of the transmission

medium. If β → 0, the symbol probabilities will tend to 1/#(C), resulting in a purely noisy

communication. In contrast, provided that β → ∞, the probabilities will tend to be sparse

and the chosen symbol will approximate to the one whose Euclidean distance to the raw

message is minimum:

argmin
c∈C

{‖aTX(k)− c‖2}

Therefore, the aim of using the softmax function as cluster probabilities instead of a

deterministic selection of the nearest symbol is twofold. Firstly, it allows a more realistic

transmission simulation by tuning β and producing classification errors among near symbols.

Additionally, when message generation is evolved or learnt, it provides a mechanism for

promoting the exploration of new coding schemes, trying to avoid local optima.

3.3.2 Reception

As described in the previous subsection, agents are able to emit an omnidirectional message

mr
TX(k) ∈ C (notice that superindex r is introduced in order to emphasize that the message

has been emitted by the robot r). Messages can be received by other neighboring robots to

the sender that capture incoming messages by means of a sectorized communication sensor.

Thereafter, an agent can be aware of the sector where the sender is positioned. Thus, the

robot perimeter is split into NRX equiareal sectors, so that each of them will perceive only the

message of the nearest neighbor within the corresponding sector coverage. Now, we formally

introduce the definition of the message received in sector j. Let Rj be the subset of R

36 3. Materials and Methods

containing the robots in the coverage area of sector j. Furthermore, if Rj 6= ∅, we define rj as

the robot in Rj whose sent message’s normalized signal intensity is maximum (see Eq. 3.11).

Then, the received message is defined as

mRX,j =


m
rj
TX if Rj 6= ∅

(0, . . . , 0︸ ︷︷ ︸
M times

)T if Rj = ∅

Among the received messages from all sectors, only one of them is finally selected as sensor

measurement. This restriction is established with the aim of mimicking, as far as possible,

real swarm robotics communications with technologies such as IR. Therefore, some selection

mechanism has to be fixed. The selection scheme consists in randomly choosing an input

message from those whose sender agent identifier differs from the receiving robot identifier.

This utterly avoids sensing echoed messages previously emitted (recall that a robot can relay

messages). If no incoming messages are sensed, then a zero vector is received.

The outcome of the previously described message selection scheme will be the sector j
′

whose message mRX,j′ (k) was picked. For simplicity, the selected message is just denoted

as mRX(k) = mRX,j′ (k). It was already mentioned in Chapter 1 that the aim is to

design a set communication mechanics that allow the emergence of both abstract and

situated communication, depending on the optimization. Therefore, the received message

is accompanied by a set of communication variables that contextualize the message content

within the environment. These context variables are the signal strength, the orientation of

the sector from where the message was received (θRX), the orientation of the sector of the

sender robot rj′ from where the message was transmitted (θTX) and the communication state

or mode, that can be either relay or send. Firstly, owing to the fact that the communication

simulates IR technology, the signal strength φDS of the received message is computed using

the distance sensor reading for sector j
′

as exposed in Eq. 3.11. Additionally, θRX and θTX
correspond to the orientations of the corresponding sector according to Eq. 3.7, using the

receiver and transmitter robots with the corresponding sensing and sending sectors. Both

angles are encoded as the unit 2D vectors:

Reception orientation −→ (cos(θRX(k)), sin(θRX(k)))>

Transmission orientation −→ (cos(θTX(k)), sin(θTX(k)))>

Equality 3.15 shows the overall reading of the communication receiver φRX that is

provided to the neural controller. Notice that it is the concatenation of the message content

and the context variables.

φRX(k) =



mRX(k)

φDS(k)

cos(θRX(k))

sin(θRX(k))

cos(θTX(k))

sin(θTX(k))

MODE


(3.15)

It should be clarified that each experiment uses different context information depending on

the task mechanics and requirements. Chapter 5 settles the precise communication variables

used in each problem.

3.4. Neural controller and evolution details 37

3.4 Neural controller and evolution details

3.4.1 The neural controller

A robot controller can be described as a black box that receives states measured by sensors as

inputs and returns actions as outputs. In general, this state-action mapping can be any kind

of transformation that defines how the agent should behave. Formally, the controller can be

defined as,

a(k) = controller (φ(k)) (3.16)

Despite the fact that a robot controller can be handcrafted, such as controllers using the

Reynold rules [11] for the emergence of biologically inspired bird flocking, special attention

is payed to the neural controllers. A neural controller implements the mapping exposed in

Eq. 3.16 with an optimized artificial neural network. Specifically, continuous-time recurrent

neural networks (see Chapter 2) are used as neural controllers in this Master Thesis. The

CTRNN will perform a non-linear time-dependent transformation of the input state φ(k)

to the action vector a(k). CTRNN model can harness its dynamical properties to generate

actions not only based on current stimuli but also using recent past events. The generic neural

architecture is displayed in Fig. 3.8.

Input neurons
Hidden neurons
Motor neurons

Figure 3.8: Generic architecture of the CTRNN based neural controller.

It is composed by an set of input nodes NI representing the stimuli vector, an ensemble of

hidden neurons NH as main processing units and an output layer formed by motor neurons

NM. NI are connected to NH, NH outputs feed NM neurons and NM are fed back to

the hidden ensemble. Both NM and NH have self recurrent synapses. The architecture

presented in Fig. 3.8 is a generic structure that will be particularized in each of the experiments

presented in Chapter 5. Firstly, the most noticeable alteration between experiments is that

the number of input and motor neurons will depend on the set of sensors SE and actuators AE
enabled. Additionally, the number of hidden units H (cardinality of NH) and the connectivity

pc of the neural network will be equally established in the experiments. pijc defines the

probability of connection between presynaptic j-th neuron and postsynaptic i-th neuron with

38 3. Materials and Methods

an existing synapse between them. If two neurons do not share a synapse in the depicted

architecture, their probability of connection is zero (for instance, input neurons cannot be

directly connected to motor neurons). The implementation of pijc allows the reduction of the

number of synapses accordingly to the decrease of pijc probabilities. Clearly, the unweighted

adjacency matrix of the CTRNN, defining its connections, is stochastically sampled from

Bernoulli distribution B(pijc) ∀i ∈ {1, . . . , N} ∀j ∈ {1, . . . , N + I} only once. Thereafter a

seed is fixed and the same connections are kept throughout all the trials of an experiment.

Decoders or decoding functions fdec transform the motor neuron activities into actions. Wheel

actions and wireless transmitter actions will basically use an identity decoder while LED

action and communication state action (relay or send) are sampled stochastically using the

neuron activities as probabilities (using Bernoulli on the sigmoid outputs if action is boolean

or softmax if there is more than one LED color).

The simulator experiments operate at two different time scales. k is the time variable of the

environment, so that, at each time instant of k, the agents read the current partially observable

state using their sensors and perform actions. On the contrary, t is the time variable at the

neuronal dynamics time scale. Taking into account the concept of attractors in dynamical

systems (see Chapter 2) and considering that the random selection of input messages produces

a high frequency stimuli signal, it is reasonable to set the neuronal dynamics at a much faster

time scale than the world dynamics. In general, the relation between time scales is:

t = δ k, δ > 1

This condition permits the membrane voltages v(t) of the CTRNN reaching the attractor, if

any, corresponding to the current input stimuli vector. The action at each world time step of

k is decoded using the activities of the motor neurons at instants t = δk using fdec. Similarly,

the input stimuli is maintained constant in between sampling instants of the environment:

φ(t+ 1) = φ(t), ∀t ∈ [δ k, δ (k + 1)− 1), ∀k ∈ [0, ∞)

In all the experiments, δ is set to 20 so that during each environment step, the CTRNN

dynamics are updated 20 times. Considering a real hardware implementation of the controller,

the δ steps of the CTRNN can be scheduled in between sensor and actuator executions when

the microcontroller would be idle otherwise.

3.4.2 The genotype and phenotype

The parameters of the CTRNN to be evolved are the synapse strengths in W, the neuron

time constants τ , the neuron biases β and the neuron gains g. These optimization parameters

are merged into a single vector to generate a genotype G stored as an individual in the

evolved population. In contrast, the phenotype is the complete CTRNN. Before defining

the phenotype to genotype transformation and its inverse, we consider the distinction

between unconnected neurons and synapses whose evolved strengths tend to zero. Let

M ∈ {0, 1}N×(N+I) be the fixed unweighted adjacency matrix that describes the CTRNN

topology. It is not evolved and its components are sampled as Mij ∼ B(pijc), where pijc is

the above mentioned connection probability between neurons. The non-zero elements of the

element-wise multiplication M �W indicate the weights to be evolved. More precisely, the

vector formed by all the evolvable weights ϑ is,

ϑ = vectorize ({Wij |Mij �Wij > 0 ∀i ∈ {1, . . . , N} ∀j ∈ {1, . . . , N + I}})

The search space is constrained to a hypercube by defining maximum and minimum values

of each optimization variable. Using these minimum and maximum bounds, ϑ, τ , g and β

3.4. Neural controller and evolution details 39

are normalized to the [0, 1] range. The mentioned normalization is as follows:

ϑ̂ =
ϑ− wmin

wmax − wmin
, ĝ =

g − gmin
gmax − gmin

, β̂ =
β − βmin

βmax − βmin
, τ̂ =

log(0.5 · τ)− τmin
τmax − τmin

Notice that the search space of τ is logarithmic as membrane time constants can range from

few milliseconds to hundreds of seconds. The final genotype is the vector concatenation

exposed in Equality 3.17.

G =


ϑ̂

ĝ

τ̂

β̂

 (3.17)

When using a genetic algorithm, genotypes in a population are sampled from U(0, 1)

(initialization is performed in the genotype space). Alternatively, when a natural evolution

strategy is used, the initial mean parameter µinit of the NES is fixed to center of the search

space (0.5, . . . , 0.5)T and σ is initialized as σinit = (0.2, . . . , 0.2)>. The population genotypes

are generated from N (µ,σ).

Once the phenotype to genotype transformation is defined, its inverse has to be

determined. In particular, the genotype vector G is denormalized as shown in the following

set of equations:

ϑ = ϑ̂ · (wmax − wmin) + wmin, g = ĝ · (gmax − gmin) + gmin
β = β̂ · (βmax − βmin) + βmin, τ = 2 · 10τ̂ ·(τmax−τmin)+τmin

where ϑ̂, ĝ, τ̂ and β̂ are extracted from G . These denormalized vectors are converted into

a CTRNN to create the phenotype. It should be mentioned that the same phenotype is

used as neural controller for all robots in the experiments (homogeneity principle of swarm

robotics). Finally, Table 3.3 exposes the search space bounds of each variable vector subject

to evolution. The [−1, 0.75] range of τ is mapped to [2 · 10−1, 2 · 100.75] = [0.2, 11.25]

seconds. Equivalently, the time constant search space is more suitably represented in terms of

the Euler step of the CTRNN as [2∆t, 112.5∆t]. This search space of time constants allows

the existence of a variety of neuronal regimes. For example, low time constants allow the

rapid reaction to abrupt changes in the input stimuli, while large time constants permit the

formation of working memory at a much slower time scale. The weights are constrained to

Variable Min. Max.

ϑ -3 3

τ -1 0.75

β -1.5 1.5

g 0.05 5

Table 3.3: Search space constrains of each of the denormalized optimization variables.

the interval [−3, 3], because we heuristically found this range to be a good tradeoff between

strong amplification and saturation avoidance. Note that synapse weights are both positive

and negative because inhibition is as important as excitation in dynamical neural networks

for the generation of complex dynamics. Similarly the search space of biases is designed

according to the same argument. Finally, the gain values are restricted uniquely to positive

values, avoiding the scenario of zero gain. Moreover, the upper bound is 5, as larger gains

would produce an utterly discontinuous neuron activation (tending to a Heaviside activation).

40 3. Materials and Methods

3.4.3 Evolution hyperparameters

As already mentioned in previous chapters, the neural controller of each task or experiment

will be evolved using various soft computing algorithms. Specifically, genetic algorithms and

natural evolution strategies are explored. In the case of natural evolution strategies, SNES

algorithm is used as a suitable evolution strategy for high dimensional optimization problems

as neuroevolution. Most of the hyperparameters of these algorithms will be fixed and the same

for all the experiments unless otherwise specified. Table 3.4 gathers the hyperparameters of

GA and SNES (see Chapter 2 for a detailed explanation of these parameters). Fistly, the

GA SNES

P 100 P 100

pmut 0.05 ηµ 1

pcx 0.9 ησ
3 + log(d)

5
√
d

Nelites 3 µinit (0.5, . . . , 0.5)>

Selection Tournament σinit (0.2, . . . , 0.2)>

Crossover BLX-α

Mutation N (0, 0.3)

Table 3.4: Fixed evolution hyperparameters for all the experiments

genetic algorithm operators are the tournament selection scheme with a tournament size of

3 individuals, a BLX-α recombination with α = 0.5 and a gaussian mutation centered at the

genes and with a variance of 0.3. In contrast, regarding SNES, the learning rates ηµ and ησ
are based on commonly used configurations as proposed in [49, 50], being d is the genotype

length. Considering that the constrained search space of µ and σ is the hypercube [0, 1]d in

both cases, µinit and σinit, shown in the table, are the initial solution candidates. Recall that

µ and σ are not the genotypes but the parametrization of the random distribution used to

generate genotypes. In both GA and SNES, the population size P is fixed to 100 in all the

experiments.

Chapter 4

The Simulator

4.1 General overview

This chapter presents the software simulator developed in Python programming language for

the simulation of swarm robotics experiments. The implemented code has been uploaded

to Github 1, where it can be consulted. The simulated robots are principally controlled

using recurrent neural networks, albeit other non neural controllers can be also implemented.

Another pillar of the simulator is the use of evolutionary computation for the optimization

of the neural controller parameters. Both artificial neural networks and evolutionary

computation algorithms are implemented from zero and molded to fulfill the requirements

of the simulator. Moreover, an important remark is that the simulator is mainly focused on

the use of spiking neural networks and biologically plausible neuron models, albeit these kind

of RNNs are not explored in this Master Thesis. Therefore, many aspects and design decisions

of the software are adapted to fullfil the particular functioning of spiking neural networks.

The main aim of the simulator is to serve as a resource for research and academic purposes.

Consequently, the version presented in this Master Thesis can be considered as a first version

of the project that will be improved in future research works. Bearing in mind the purpose of

the simulator, it is important to clarify the reason behind the decision of developing a software

simulator from zero. The main reason is that the simulator merges different soft computing

fields (SR, evolutionary computation and ANNs) and thus, the available software suitably

covers merely one of the fields. For instance, Gazebo [89], Webots [90] and ARGoS [91]

are examples of popular robotics simulators, Nengo [92], Brian [93] and BindsNET [94] and

examples of spiking neural network simulation libraries and DEAP [95] is a Python library

oriented to evolutionary computation. The combination of these libraries and frameworks

is a challenging task due to the different paradigms of functioning. Moreover, there are

several functional requirements of our simulator that were not found in these packages. For

instance, most of the SR simulators are based on visual interfaces and encompass many

functionalities and features that are not relevant for this Master Thesis. These issues lead to

a noticeable slowdown of the evolution or training stage. Another important reason is that

the simulator was designed, at least for its first version, as a fast solution to evolution in SR,

restricted to the sole use of Python standard libraries. For instance, all the mathematical

computations are accomplished by means of the numpy 2 Python library, which is an utterly

fast scientific computing package built on top of C language implementations. Furthermore,

as it is described later on this chapter, a parallelization of the evolutionary computation

algorithms is performed on the simulator, which would have been a highly complex task if

other simulation libraries were used.

1https://github.com/r-sendra/SpikeSwarmSim
2https://numpy.org/

41

42 4. The Simulator

Robot A

Robot B

Robot C

Robot D

Robot E

Robot A
LED turned on (white contour)
Message(0)=1 (blue)
Message(1)=1 (blue)

Robot B
LED turned on (white contour)
Message(0)=1 (blue)
Message(1)=0.5 (yellow)

Robot C
LED turned off (green contour)
Message(0)=0.5 (yellow)
Message(1)=0.5 (yellow)

Robot D
LED turned off (green contour)
Message(0)=0 (black)
Message(1)=0 (black)

Robot E
Faulty robot (red contour)
Message(0)=1 (black)
Message(1)=1 (black)

Figure 4.1: Example of the different robot colors to notify agent actions.

The simulated 2D robotics environments (described mathematically in Chapter 3), can be

executed in a visual or render mode for observing the simulation at runtime. A snapshot

of the simulated environment was already illustrated in Fig. 3.3. For visualization purposes,

each robot notifies its actions by means of several colors. Fig. 4.2 shows a simulation snapshot

with several examples of these colors. The contour of the robot indicates the status of the

robot’s LED. Green contour means that the LED is deactivated and white contour means

that the LED is turned on (assuming only one LED color). The inner circle, divided in two

semicircles, indicates the message transmitted by the robot (when the message vector has two

components). The color of the upper semicircle denotes the first component of the message

while the semicircle at the bottom part depicts the second component of the message. In

the example, for simplification purposes, we considered that each message component has

three possible values {0, 0.5, 1} that are mapped to the shown colors {black, yellow, blue}.
Finally, faulty robots (see Experiment 5.1) are represented with red contours, simulating

failure notification through the LED.

4.2 Simulator layers and interfaces

The simulator is designed as a stack of layers and interfaces to interconnect them and

exchange relevant data. Fig. 4.2 illustrates the stack of layers and interfaces interconnecting

them. The green boxes represent the different layers of the simulator while the blue boxes are

the interfaces. Firstly, the different layers and the main functional role within the simulator

are listed below:

- Algorithm layer: the outermost layer is responsible of specifying the optimization

algorithm and its update rules and equations. Even though in this Master Thesis we

focus on two evolutionary computation algorithms, this layer can accept any kind of

optimization procedure. For instance, a future feature to be included in this layer is the

implementation of algorithms from the family of reinforcement learning. The algorithm

layer is also in charge of initializing, iterating and resetting the environment and its

dynamics. Moreover, at the end of each simulation, the fitness function is computed

in this layer. Another feature to be highlighted is that it allows executions in either

learning or evaluation modes. In learning mode, the corresponding algorithm saves a

checkpoint of the optimization variables and states, while in evaluation mode, diverse

trial variables are gathered and stored in a dataset for a subsequent behavioral analysis.

4.2. Simulator layers and interfaces 43

Algorithm Layer

Environment
Layer

Entity Interface

Phenotype-
Genotype
Interface

Neural Coding
Interface

Evaluation Interface

Populations

World Entities
World Topology

Synapses
Neurons

Configuration File Checkpoints

Controller LogicController Layer

Neural Layer

Render Engine
Physics Engine

Robot Layer

Controller Interface

Sensors
Actuators

Figure 4.2: Designed simulator stack. Green boxes represent simulator layers and blue boxes

indicate the interfaces.

- Environment layer: implements the environment dynamics and mechanics as

explained in Chapter 3. It contains the instances of all the entities belonging to the

environment and it is responsible of updating the dynamics of each of them when

specified by the algorithm layer. In the case of the robot entities, the environment

gathers the actions and states of each agent and relays it to the algorithm layer

throughout the evaluation interface. Additionally, in order to update the dynamics

and controllers of environment entities, information about other objects belonging to

the environment has to be provided. For instance, the distance sensor of a robot has

to know the positions of the other agents in its vicinity. Furthermore, robot sensors

have to iterate through all the supplied entities in the environment in each simulation

cycle, resulting in an inefficient implementation. Thereafter, in order to simplify the

complexity of the updates of the robots’ sensing process, an undirected graph is built

with environment entities as nodes. Within this graph, two robots are connected if

their distance is less than the IR range. Similarly, a light source is connected to

a robot is their distance is less than the light coverage range. Clearly, this edge

conditions are adjusted to the currently implemented entities and sensors. The graph

interconnecting environment entities has to be updated in each iteration. Using this

graph, only the neighborhood of a robot is provided to the next layer in order to compute

44 4. The Simulator

the sensor readings, resulting in a much more efficient implementation. Besides, it is

worth mentioning that the environment layer is also responsible of the rendering and

physics simulations. However, due to the early stage of the simulator, a very basic

implementation of these features is provided in this version of the software. As a future

work in subsequent versions, these functionalities have been designed as a query process

to physics and render engines.

- Robot layer: implements the functioning of robot entities within the environment

that instantiates them. Robots have access to a set of sensors and actuators that

allow the insight acquisition and interaction with the environment. See Chapter 3

for a detailed explanation of sensors and actuators from a mathematical perspective.

In each simulation cycle, the main steps of this layer are: (i) the reading of sensor

measurements using information from the robot’s neighborhood, (ii) the mapping of

sensor readings to actions using the robot controller and (iii) the conversion of agent

actions into environment interactions, by means of its actuators. As it is explained

in the environment-robot interface later, some actions have to be validated by the

environment layer before being accomplished by the actuator. The most noticeable

example of this transaction is the collision management and control that, although it

is not relevant in the experiments of this Master Thesis, it will play an important role

in future projects. The step of mapping sensor measurements to actions is carried out

by the next layer.

- Controller layer: defines the policy and behavior of robots within the environment

by transforming sensor readings into robot actions. This layer by itself is remarkably

simple in the sense that it only defines the controller logic and mechanics. In the

situation in which the controller is not a neural controller, this layer is the innermost

building block of the stack (e.g. when the controller is a FSM).

- Neural layer: extends the controller layer in the scenarios where actions are generated

by a neural network. A diagram illustrating the functioning of this stage is shown in

Fig. 4.3.

Encoding DecodingSynapses step Neurons step
, ,

Figure 4.3: Neural layer data flow.

There, it can be observed that the process is composed by 4 main stages. The encoding

and decoding phases are responsible of processing the observed state and decoding

neuron firing rates into actions, respectively. These processes are considered as part

of the neural coding interface (see Fig. 4.2) and, consequently, a deeper explanation

is provided in the description of this interface below. Besides, it can be seen in the

diagram that a RNN step is mainly composed of the sequential updates of synapses

and neuron models’ states. The variables within the boxes are the parameters of the

synapses and neurons in the case of CTRNNs. Other types of synapse and neuron

models would lead to different parameters. Moreover, even though the synapse model

used in this Master Thesis is static and merely modelled as a linear transformation of

the previous states and present inputs into somatic currents, there are more biologically

4.2. Simulator layers and interfaces 45

plausible synapse models. Specifically, synapses are governed by differential equations

whose parameters state whether the connection is excitatory or inhibitory (see Chapter

7 of [67]). Furthermore, in some cases, propagation delays are also included in the

synapse model for a more accurate representation. These realistic synapse models are

also implemented in the simulator and used when the neural controller is based on

spiking neural networks.

In addition to the described stack of layers, the simulator architecture also presents a set

of interfaces that interconnect pairs of layers in order to exchange information (see Fig. 4.2).

The data exchange, that is described subsequently, is related to the execution of software

during the simulation phase. There is also an initialization stage in which the configuration

specified through a configuration file is propagated from the uppermost algorithm layer to

the neural layer in order to set up all the parameters and variables. Besides, the interfaces

and their role in the simulator are the following:

- Evaluation interface: interconnects the algorithm and environment layers. Firstly,

it sends instructions from the algorithm layer to the environment to start, reset

and update the dynamics of the environment. On the other hand, the environment

responses, in each simulation, cycle with the variables containing the actions and

states performed by the robots. Moreover, depending on the task to be solved, the

environment can also provide spatial information about the robots (e.g. their positions

or their orientation). These variables are required by the algorithm in order to compute

the fitness.

- Entity interface: Each robot belonging to the environment has an entity interface

through which it receives information about neighboring entities. This information of

the vicinity, which was also presented in the description of the environment layer, is

used by the robots to compute the sensor readings. Subsequently, each robot transmits

its state or sensor readings and the actions to be performed to the environment layer.

Lastly, there is another stage in which the environment sends a validation signal of the

action planned by the robot. If the validation is positive, the robot performs the action

through the actuator. Fig. 4.4 shows a diagram illustrating the mentioned interaction.

Environment Robot

Neighborhood of Robot

Action Validation

(State, Action)

All the robot actions

are received

Time

Figure 4.4: Interaction diagram between environment and robot layers.

46 4. The Simulator

- Controller interface: the controller interface transmits the measured sensor readings

from the robot to the controller. Alternatively, the controller response is the set of

actions resulting from the transformation of the state.

- Neural Coding interface: this interface performs two critical steps on the simulator.

Firstly, it converts the state measured by the sensors to a data format that can be

understood by the RNN. This process, known as neural encoding, is not addressed in

this Master Thesis (although it is implemented in the software simulator) as it mainly

involves the mapping of continuous state variables into binary spike events that can be

processed by spiking neuron models. In the case of CTRNNs and firing rate neuron

models, their functioning is intrinsically continuos and, thus, they do not require a

state encoding. However, the neural coding interface also encompasses any sort of

preprocessing of the state (e.g. dimensionality reduction or basis expansion) before

being fed to the RNN. On the contrary, when the RNN step has been accomplished,

this interface is also in charge of decoding the neuron firing rates (or outputs, more

generally) into actions. In Chapter 3 and 5 this decoding process is mentioned as

fdec. The decoding can be, for instance, a Heaviside function that maps outputs in the

interval [0, 1] to binary actions in {0, 1}.

- Phenotype-Genotype interface: is an special interface as it is the only one that

bypasses all the layers in order to directly connect the algorithm layer with the neural

layer. As its name suggests, it is responsible of performing the bidirectional mapping

between genotype vectors stored in the populations of the evolutionary algorithm to the

phenotype CTRNNs in the neural layer. Note that this interface is explicitly designed

for evolutionary computation algorithms. Thus, other optimization algorithms to be

included in the future (e.g. RL algorithms) will require another interface.

4.3 Configuration files

All the details of the experiments in the simulator can be fully specified and gathered in

JavaScript Object Notation (JSON) configuration files. This procedure implies an utterly

clean, straightforward and compact manner to automatize experiments and tasks. An example

of configuration file is exposed in Appendix A. There, it can be observed that the configuration

file is mainly divided into topology, where all the RNN details are exposed, algorithm,

for the specification of the optimization details and world, devoted to the declaration of

the environment setup and entities to be instantiated. It is important to remark that, in

the algorithm section of the configuration file, there is a JSON field called populations in

which different evolutionary subpopulations can be specified. Even though this feature is not

harnessed in the experiments of this Master Thesis, it allows the use of cooperative coevolution

(see [77, 96]). In cooperative coevolution the overall genotype is segmented into different

parts, so that each segment belongs to a different subpopulation being evolved independently.

Subpopulations only interact when their genotype segments are combined to produce the

phenotype to be evaluated. An example of usage of subpopulations in the JSON configuration

file is the following:

1 "populations" : {
2 "p1" : {
3 "objects" : ["synapses:weights:all"],

4 "max_vals" : 3,

5 "min_vals" : -3,

6 "encoding" : "real",

7 "selection_operator" : "tournament",

8 "crossover_operator" : "blxalpha",

9 "mutation_operator" : "gaussian",

4.3. Configuration files 47

10 "mating_operator" : "random",

11 "mutation_prob" : 0.05,

12 "crossover_prob" : 0.9,

13 "num_elite" : 3

14 },
15 "p2" : {
16 "objects" : ["neurons:bias:all", "neurons:gains:all",

↪→ "neurons:tau:all"],

17 "max_vals" : [1.5, 5, 0.75],

18 "min_vals" : [-1.5, 0.05, -1],

19 "encoding" : "real",

20 "selection_operator" : "tournament",

21 "crossover_operator" : "blxalpha",

22 "mutation_operator" : "gaussian",

23 "mating_operator" : "random",

24 "mutation_prob" : 0.05,

25 "crossover_prob" : 0.9,

26 "num_elite" : 3

27 },
28 }

Note that there are two subpopulations, one of them devoted to the evolution of the

CTRNN weights and the other responsible of the bias, gains and time constant of neurons.

Moreover, each subpopulation can be evolved using different GA operators (or optimization

hyperparameters in general), albeit in the example the configurations are the same. The field

objects of the configuration of each subpopulation conveniently leads to the next issue to be

explained. Essentially, objects specifies the segment of the genotype to be addressed by the

corresponding subpopulation. It is based on simple queries of parts of the CTRNN parameters

with the shown semantics. Table 4.1 gathers all the possible queries that can be performed

Query Description

synapses:weights:all The weights of all the synapses in the RNN.

synapses:weights:sensory The weights of the synapses whose presynaptic

neuron is an input node.

synapses:weights:hidden The weights of the synapses whose presynaptic

neuron is a hidden neuron.

synapses:weights:motor The weights of the synapses whose presynaptic

neuron is a motor neuron.

synapses:weights:NAME The weights of the synapses whose presynaptic

neuron belongs to ensemble with name NAME,

neurons:bias:all The biases of all the neurons.

neurons:tau:all The time constants of all the neurons.

neurons:gain:all The gains of all the neurons.

neurons:decoding:all The decoding weights when spiking neuron models

are used (not discussed in this Master Thesis).

Table 4.1: Queries to specify the set of parameters to be evolved by a subpopulation in an

evolutionary computation algorithm of the simulator.

in this version of the simulator. The code implementation of the query system is sustained

by two principal steps. Firstly, the synapse base class and the neuron model base class have

a set of methods devoted to get, set, and initialize the pertaining parameter variable. Within

these methods, there is a Python decorator that states how the query should be performed

and stores the mapping between the query name and the corresponding method in a global

dictionary. An example of the final query, which is not visible in the configuration file, would

48 4. The Simulator

be

- Get all weights of the RNN =⇒ GET synapses:weights:all

- Set weights to the values =⇒ SET synapses:weights:all new_weights

in the array variable new_weights

This query system is the basis of the phenotype-genotype interface presented in previous

sections.

Finally, it should be mentioned that there are some configuration options that can be

directly stated when launching the simulator from the command line. For instance, the

following instruction executes the simulator with the configuration of the experiment gathered

in the file leader selection exp . json, resuming a previously saved checkpoint of the evolution

and with 12 cores:

$ python main.py --cfg leader_selection_exp --resume --ncpu 12

Table 4.2 displays all the currently implemented command line arguments with their

corresponding meaning. It also shows the expected argument data type and the default

value.

Argument Arg. Type Default Value Description

cfg String checkpoint Name of the JSON configuration

file to be used.

ncpu Integer 1 Number of cores to be used.

resume Boolean False Whether to resume stored

checkpoint or not.

render Boolean True Whether to run simulator

in visual mode or console mode.

eval Boolean False Whether to run simulator evaluation

mode or optimization mode.

Table 4.2: Command line arguments of the simualtor.

4.4 Parallelization

Evolutionary algorithms applied to black box optimization problems generally require a large

amount of time and computational cost. The bottleneck is usually the evaluation of the

genotypes in the population, because it is a sequential process that commonly implies a large

amount of simulation time steps and several trials to improve the reliability. Moreover, this

problem is particularly critical in the case of SR, where there is a copy of the ANN phenotype

per each swarm member. Thus, each single evaluation involves the concurrent execution of

many ANNs.

In order to enhance the computational efficiency of the simulator and alleviate the

mentioned problems, parallelization of the simulator is implemented. From a superficial

perspective, we consider two levels of parallel computing in SR:

- Population level parallelization: is responsible of parallelizing the evolutionary

algorithm so that each core evaluates a different genotype of the population in isolation

to other computing units. Therefore, a copy of the environment is distributed to each

4.5. Future improvements 49

CPU core, that evaluates the corresponding genotype in it. This kind of parallelization

in EAs is highly common as population sizes can be arbitrarily large and there are

no shared variables or resources among different genotype evaluations. Clearly, if the

population size is greater than the number of cores, the population is partitioned into

mini batches that are uniformly distributed along cores. Population level parallelization

is accomplished throughout CPU parallelization. The main disadvantage is that the

speedup cannot be harnessed in evaluation mode.

- Swarm level parallelization: is responsible of assigning a different core to a different

agent in the swarm in each evaluation. Thereafter, although genotypes have to be

evaluated sequentially, each simulation of the environment is utterly fast due to the use

of a dedicated core to each robot and, thus, to each RNN. The main issue of this kind

of parallelization is that there must be a precise and accurate control of the shared

resources among cores. Swarm level parallelization is specially suitable when swarm

sizes are extremely large. As in the previous parallelization level, in this case, the

parallel computing is also accomplished via CPU.

For this Master Thesis, the developed simulator only implements the population level

parallelization because of its simplicity, lack of shared resources and remarkable computation

speedup. Besides, swarm level parallelization was also discarded because swarm sizes are not

very large during evolution in the proposed experiments. The parallelization is implemented

by means of two alternative frameworks, namely, the multiprocessing Python library 3 and

the Message Passing Interface (MPI) Python implementation 4. Although both options are

implemented and tested, multiprocessing is the one being used in the experiments of this

Master Thesis. MPI is more suitable for parallelization in computer clusters.

The resulting speedup of a generation of the GA, defined as the ratio between the compute

time without parallelization and the compute time with parallel computing, with 12 cores is:

speedup =
622.15 s

115.64 s
= 5.38

The speedup was computed using 10 robots, a population size of 100, 500 simulation steps

and a single evaluation trial. Note that, in this situation, each core is responsible of evaluating

9 individuals (except one core that only has 1 genotype).

4.5 Future improvements

The current version of the simulator correctly covers all the requirements and needs for the

experiments of this Master Thesis. However, it is thought to be used in future research

projects and works or academic activities. Therefore, apart from a continuous improvement

and refinement, there are several planned features to be implemented in future versions. These

upgrades will be exposed in this section, following the layer order previously presented.

Firstly, an important improvement of the simulator concerns the addition of a wider

variety of optimization algorithms, both evolutionary and from other artificial intelligence

fields. For instance, reinforcement learning algorithms are an important improvement of

the simulator and will be considered in the future for the assessment of its suitability in

solving SR problems. Environment layer is the part of the simulator with most features

to be refined or added. The most clear one is the incorporation of physics and collisions

within the environment for a more realistic simulation. Similarly, other render options will

be implemented, mainly covering the simulation of 3D graphics and more detailed robots.

3https://docs.python.org/3/library/multiprocessing.html
4https://mpi4py.readthedocs.io/en/stable/

50 4. The Simulator

Furthermore, as mentioned in the previous section, parallelization at the swarm level is also an

interesting feature to be explored. Besides, one of the main future upgrades regarding mobile

robots is the use of URDF 5 files for the accurate definition of different types of commercial

robots (e.g. the epuck 6). Regarding the controller and neural layers, the exploration of new

controllers, neural models and neural coding schemes will be in continuous growth, provided

that new research activities involving the simulator are carried out.

5http://wiki.ros.org/urdf
6http://www.e-puck.org

Chapter 5

Experiments

In this chapter, the different tasks or experiments considered in this Master Thesis are defined

and described. Each experiment will be splitted into 6 items describing different aspects of

its functioning and parameter setup. These blocks are built on top of the concepts and tools

treated in Chapters 2 and 3, and are summarized as follows:

• Task description: each experiment starts with a description of the task functioning,

mechanics and constrains.

• Initialization: exposes the commonly random initialization of each robot within the

environment. It should be mentioned that, for a fair fitness evaluation, the same

initialization seed is used for all the individuals in a generation of the GA or NES.

Thus, their fitness is assessed under the same conditions. Different generations and

trial evaluations have different seeds.

• Sensors, actuators and communication: establishes the set of sensors and actuators

enabled in each experiment. Special attention is paid to their role in solving the task, the

dimension and domain of its measurements or actions, among other characteristics that

depend on the application. In particular, the communication receiver and transmitter

will be described in more detail, specifying the dimension of the message, the number of

sensing sectors and the subset of the communication context variables to be used from

those defined in Eq. 3.15 (not all experiments will require the same input information).

• Neural controller and evolution hyperparameters: particularizes the neural controller

architecture depicted in Section 3.4 to fulfill the requirements of each experiment.

The number of layers, hidden neurons, connection probability, input dimension and

output dimension will be exposed. Furthermore, several evolution hyperparameters,

such as the evaluation time steps or the number of trials, will be set in this point.

The hyperparameters that are common to all the experiments are not discussed in

this chapter (see Section 3.4). It is also important to recall that all the agents in the

experiment executions have a copy of the same CTRNN phenotype to be evaluated.

• Related work : a collection and description of related work addressing a similar

experiment or task is provided, in the context of swarm robotics.

• Fitness function: sets and explains the fitness function of each experiment devoted to

map genotypes into performance measures. The fitness function has to be handcrafted

specifically for each task and it is one of the most critical design stages in GA and NES.

An important consideration to be highlighted is that the fitness function will reward

or penalize the robot behaviors as a group and not as sole agents. Therefore, a poor

performance of one agent within the swarm penalizes the overall group performance.

Finally, the fitness functions are the result of a trial average and a temporal average

51

52 5. Experiments

of instantaneous fitness functions. By temporal average we refer to evaluating the

genotypes in a task for TE simulation time steps, computing the reward of the swarm at

each instant, and computing the mean reward value along the duration of the execution.

Moreover, trial average means that, instead of relying on a single sample of the fitness

value, we reevaluate the genotypes NE times in order to reduce estimation variance.

The final fitness score estimate is the sample mean of the resulting fitness scores in

each trial or episode. Clearly, the experiment environment and neuronal dynamics are

reset and new world initialization is provided in each trial. In general, we compute the

fitness as follows,

F =
1

NE TE

NE∑
n=1

TE∑
k=1

f(G , k, n) (5.1)

so that f is the actual fitness function to be designed in each experiment. n and k

represent the episode and time step index variables.

It should be clarified that, in several cases, some of the mentioned building blocks will be

the same in multiple experiments. In these situations, the explanation is provided only once.

Thereafter, experiments with repeated behaviors or hyperparametrization will refer to the

first occurrence in previous experiments.

5.1 Experiment A: Leader Selection

Task Description: The first experiment that is considered is the leader selection and

preservation in a swarm of static robots. The objective is to find a cooperative behavior

in which just a single agent claims the leadership of the group during the evaluation period.

Cooperative solutions resulting in the swarm leader being the same during consecutive time

instants will be rewarded, trying to avoid unnecessary switching of the leadership. However,

it is highly desirable to find a swarm behavior capable of reacting to leader fault or loss by

selecting a substitute. In order to guide evolution towards this behavioral feature, a robot

becomes faulty if it has been the unique leader for 50 consecutive simulation cycles. In this

context, a faulty robot means that the agent can only relay input messages (it is always in

relay mode) and it cannot claim leadership. As communication is still operative after failure,

the swarm graph cannot be broken or disconnected due to leader failure. Moreover, in order

to avoid convergence to a solution in which the leader is constantly commuted, and robot

failure is avoided as a consequence, the fitness function rewards the group proportionally to

the consecutive time steps with the same leader (see fitness function description below). The

size of the swarm or the number of robots in R is set to 10, albeit there is a post evolution

scalability analysis assessing the task for different swarm sizes.

Initialization: The initialization of the swarm of robots’ positions is carried out using a

random spatial graph generator. By spatial graph, we refer to the fact that nodes belong to

a position in the environment and the graph edges’ existance is conditioned to the distance

between nodes. The algorithm, which is not described in this Master Thesis because it is out

of its scope, allows the formation of random compact spatial graphs with the guarantee that

no isolated nodes arise. Thus, the specialization to a particular swarm topology is avoided.

Less importantly, the robot orientations are initialized by sampling from U(0, 2π) for each

agent.

Sensors, Actuators and Communication: Agents can claim their leadership by means

of turning their LED actuator on. As it was explained in Section 3.2.3, the LED actuator is

controlled by action aLED generated by the controller’s CTRNN. In this scenario, the LED

can be either on (aLED = 1) or off (aLED = 0). Agents can communicate with other robots in

5.1. Experiment A: Leader Selection 53

their vicinity using a minimal communication system with local interaction. As we exposed in

Section 3.3, the communication sensor can provide diverse communication information, about

the message context, depending on the application requirements. Summarizing, the possible

communication variables to which robots can access are the received message vector, the

signal intensity of the reception, the orientation of the sensor’s sector capturing the message

(receiving orientation or θRX), the orientation of the sensor’s sector of the robot emitting the

message (sending orientation or θTX) and the communication mode or state. Moreover, as it

was stated in the corresponding section, the receiving orientation and the sending orientation

are encoded in a 2-dimensional vector (see Eq. 3.15). In this experiment, only the message,

the receiving orientation and the communication state are used. The signal strength of the

sensed message is not utilized because the graph is static during episodes. The dimension of

the message vector is fixed to 2 with K = 4 (see Section 3.3), resulting in a total of 24 = 16

different symbols. Therefore, the subsets of sensors and actuators employed in this experiment

are the following:

SEA = {RX}, AEA = {LED, TX}

Neural Controller and evolution hyperparameters: It has been previously said that

the unique sensor in this experiment is the RX communication receiver and that the actuators

are the LED actuator and the IR transmitter TX. Furthermore, the communication variables

are the received message mRX ∈ C2, the communication state (MODE) with values in {0, 1}
and the receiving orientation θRX , which is encoded as a vector in the unit circumference

with values in [−1, 1]2.

Input neurons
Hidden neurons
Motor neurons

Layer
 10 neurons

Layer
 10 neurons

Figure 5.1: CTRNN architecture of the leader identification controller. In order to simplify the

diagram, only the connections of the first neuron of each layer are illustrated. The synapses

from rest of neurons in the layers have the same post synaptic neurons as the ones depicted

for the first unit. The colors of the connection arrows indicate the kind of layer to which the

pre synaptic neuron belongs to. Note that input neurons, in yellow, are placeholders of input

stimulus and not actual neuron models. The boxes on the right side of the diagram display

the firing rate decoding function. H is the Heaviside function.

54 5. Experiments

Similarly, the output message elaborated by the CTRNN and to be transmitted is aTX ∈
[0, 1]2, being consistent with the notation exposed in Section 3.3. It should be mentioned that

the message aTX has not been subject to quantization (see Alg. 4) yet. Thereafter, the total

stimuli fed to the CTRNN is φ(t) ∈ C2 × {0, 1} × [−1, 1]2 and the total output action vector

is a(t) ∈ {0, 1}2 × [0, 1]2, leading to a CTRNN architecture with 5 input nodes and 4 motor

neurons.

Fig. 5.1 shows the CTRNN architecture used in this experiment. The hidden neurons

of the CTRNN are partitioned into two ensembles or hidden layers H1 and H2 with 10

neurons each. Therefore, the CTRNN has 24 neurons and 5 inputs in total. Note that

the hidden layer H2 adds an additional processing step for the message generation, using

the output of H1. On the contrary, the LED motor neuron is directly connected from

H1. Moreover, all the ensembles have recurrent connections among their neurons and motor

outputs are fed back to the neurons in layer H1, as it can be observed in the figure. An

important remark to be pointed out is that connections are randomly created between any

pair of neurons i and j with some probability pijc (see Section 3.4). The synapses that are

not shown in Fig. 5.1 have zero probability by definition of the architecture. In contrast,

in a scenario in which all the connection probabilities between any pair of neurons is 1,

the architecture would correspond exactly to the one exposed in the diagram of the figure.

Table 5.1 gathers the connection probabilities between layer neurons. Note that the feed

forward connections are established with probability 1 while the recurrent synapses are created

with reduced probabilities. Finally, there are only few details to be defined in relation to the

Presynaptic Layer Postsynaptic Layer Connection Probability

Input Layer Hidden H1 1

Hidden H1 Hidden H2 1

Hidden H1 Hidden H1 0.7

Hidden H2 Hidden H2 0.7

Hidden H1 Motor LED 1

Hidden H2 Motor Message 1

Hidden H2 Motor Comm. State 1

Motor LED Hidden H1 0.85

Motor Message Hidden H1 0.85

Motor Comm. State Hidden H1 0.85

Table 5.1: Connection Probabilities between layers in the CTRNN architecture of Fig. 5.1

evolutionary optimization hyperparameters. The genotype length resulting from the random

architecture generation is 403. This number incorporates the synapse strengths and the time

constants, biases and gains of neurons. The number of evaluation time steps fixed for this

experiment is of 300 time instants, which is a sufficient amount of time for efficient task

completion (see Chapter 6). Each genotype is evaluated in 5 independent trials with different

random initialization, as a tradeoff between costly evaluation and fitness estimate variance.

The number of generations in this experiment, for both GA and SNES, is settled to 1000

generations.

Related Work: The leader selection is an interesting problem in swarm robotics as

the existence of a leader of the group, or from a more general perspective different assigned

roles in the swarm, eases the resolution of multiple collective tasks, such as flocking [14, 97],

5.1. Experiment A: Leader Selection 55

foraging [42], coordinated movement [98] or goal navigation [99] among others. The selection

of a leader of a swarm of agents can be understood as a role allocation problem with two roles,

the leader and the followers. The election of a leader has been treated in several works [30, 31,

32, 55]. Firstly, the leader selection procedure in [30] avoids the usage of direct communication

among robots as it only employs the positions of other agents in the neighborhood. A robot

becomes a leader whenever all the other robots in its vicinity lie on the same quadrant,

considering the robot’s position as the origin of coordinates. In [31], the authors designed

a voting algorithm based on local communication in a static swarm for the leader election,

among other cooperative tasks. The results of their experiments successfully show consensus

in the selection in most cases. Alternatively, one of the multiple experiments in [32] is the

leader election. They employ Wave Oriented Swarm Paradigm (WOSP) techniques in order

to trigger the emergence of collective behaviors, such as leader election, with local binary

information exchange. The controllers are also handcrafted as outstandingly simple and

compact finite state machines. Nevertheless, in these papers, the communication information

is received from all possible orientations at the same time, as opposed to our experiments, that

assess task completion with minimal communication resources. Moreover, neither evolution

nor neural controllers are explored in these papers. On the contrary, in [55], the leader

selection and role allocation problems are faced using neural controllers and evolutionary

computation. The swarm members communicate locally through a communication system

and a robot can assume the role of leader by directly maximizing its communication output.

Fitness Function: The fitness function rewards two main aspects of the swarm behavior

in this problem, namely, leader identification and its preservation. On the one hand, the

instantaneous fitness score increases at each time step when there is uniquely one leader in

the group. On the other hand, the reward rises proportionally to the number of consecutive

time steps that the leadership has been assumed by the same robot. The fitness function at

each simulation instant is exposed in Eq. 5.2.

fA(G , k) = w(k)>aLED(k) δ

(
1−

∑
r∈R

ar,LED(k)

)
(5.2)

The vector aLED(k) gathers the LED actions performed by all the agents in the swarm at

time step k, subject to genotype G . Moreover, ar,LED(k) is the scalar LED action of the

robot r in the group (which is one of the components of aLED(k)). The vector w(k) is a

credit assignment vector that represents the number of consecutive time steps that a robot

has been the leader.

w(k) =


min{w(k − 1) + 0.1 aLED(k), 5}

If
∑
r∈R aLED(k, r) = 1

and w(k − 1)>aLED(k) > 0

(0, . . . , 0︸ ︷︷ ︸
R times

)> Otherwise
(5.3)

Specifically, Eq. 5.3 describes the computation of w(k). Note that the components

corresponding to activated LEDs are increased 0.1 up to a maximum of 5. This increment

is only performed if there is only one leader (i.e. only one LED action to 1) and the current

leader is the same as the previous one, as specified in the condition of the equation. Provided

that none of the former conditions are fulfilled, the credit assignment vector is reset to zeros.

With the meaning of w(k) in mind, we can resume the explanation of Eq. 5.2. Clearly, the dot

product w(k)>aLED(k) will be higher as the credit assignment of a leader grows. Moreover,

the leadership of a single agent is verified using the Kronecker delta δ(z), whose result is one

if and only if z = 0, and zero otherwise.

The fitness score of a trial is computed as the temporal average of the instantaneous

56 5. Experiments

fitness value of each evaluation time step:

FA =
1

TE

TE∑
k=1

fA(G , k)

The minimum achievable fitness score is 0. Similarly, recalling that a leader fault occurs after

50 consecutive time steps of leadership, the maximum achievable fitness with a simulation

duration TE of 300 time steps is:

F ∗A =
6

300

49∑
i=0

min{0.1 i, 5} =
6 · 122.5

300
= 2.45

However, reaching the maximum score is highly difficult in practice, as it would require a

perfect leadership and an instantaneous recovery after leader fault. Finally, each genotype is

evaluated 5 independent times so that multiple fitness samples are used to construct the final

expected fitness estimate (see Eq. 5.1).

5.2 Experiment B: Borderline Identification

Task Description: Borderline or frontier identification of a swarm of robots is the problem

of detecting which nodes in a cluster surround the others. More formally, given a set of

points P ⊂ T , the aim is to find the subset of these points PB such that there is a closed

polygon joining all elements in PB ⊂ P whose area contains all the other points in P \ PB .

This boundary is approximated, for arbitrary and randomly generated node distributions,

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Alpha Shape with = 0
Interior
Borderline

(a) α = 0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Alpha Shape with = 1
Interior
Borderline

(b) α = 1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Alpha Shape with = 5
Interior
Borderline

(c) α = 5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Alpha Shape with = 10
Interior
Borderline

(d) α = 10

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Alpha Shape with = 15
Interior
Borderline

(e) α = 15

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Alpha Shape with = 20
Interior
Borderline

(f) α = 20

Figure 5.2: Comparative example of alpha shape algorithm for different values of α and

100 points. α = 0 results in the convex hull solution, increasing α leads to more realistic

borderlines.

using the alpha shape algorithm, as a generalization of convex hulls (see [100]). In order to

understand the meaning and importance of the parameter α, Fig. 5.2 shows the alpha shape

5.2. Experiment B: Borderline Identification 57

of a randomly generated set of 100 points with different values of the parameter α. When α

is zero, the alpha shape is the same as the convex hull (see Fig. 5.2a). Increasing α leads to

more realistic and well defined shapes of the border. Large values of the parameter can lead to

incorrect shapes as exemplified in Fig. 5.2f. After several tests for different point distributions

and multiple number of points, we heuristically concluded that a value of α = 15 is suitable

for our mobile robot application. The borderline points (PB) are those points belonging to

the obtained alpha shape. The interior points are the remaining nodes in the swarm, that

are not considered extremities. Only those agents belonging to the alpha shape of the swarm

should identify themselves as borderline. Therefore, at each simulation cycle, the experiment

can be understood as a binary classification problem in which agents have to decide if they

belong to the boundary or not. Alpha shape is used to generate target values that increase

the fitness of the swarm if classification is correct. In the experiment proposed here, the target

alpha shape is the same during the entire simulation period because of the stationarity of the

swam. In practice, the lack of a large number of points, in our case robots, leads to highly

probable scenarios where the borderline polygon is not closed (for instance, a swarm forming

a line or a V-shape). In this case, all the robots in the swarm would belong to the frontier

(PB = P).

Initialization: The initialization of this experiment is exactly the same as the one

described in Experiment A (see Section 5.1). The random graph initialization allows the

reaching of a generalized solution capable of detecting the border regardless of the swarm

distribution.

Sensors, Actuators and Communication: The sensors, actuators and communication

of the borderline identification task are the same as in the leader selection experiment

(Experiment A). The main difference to be pointed out is that a robot uses the binary LED

action to announce its decision of identifying itself as a frontier member within the group (by

turning the LED on). The communication setup is also shared with Experiment A, using the

same communication information and maintaining the message dimension as 2. The sets of

enabled sensors and actuators are:

SEB = {RX}, AEB = {LED, TX}

Neural Controller: Similar to the previous building block, the neural controller is

exactly the same as in Experiment A with the CTRNN architecture exposed in Fig. 5.1 due

to the use of the same sensors and actuator. The number of layers, neurons per layer and

connection probabilities (see Table 5.1) are also preserved. Furthermore, the same seed is

employed for creating the synapses and, consequently, the unweighted adjacency matrix is a

copy of the one sampled in the leader selection task. Regarding the evolution hyperparameters,

there are 5 independent evaluation trials, 1000 generations and 300 simulation time steps per

trial.

Related Work: The task of borderline identification of a swarm is a relevant problem in

the context of collective task such as flocking, aggregation or shape formation. The awareness

of the limits of the swarm can refine these task and potentially aid the avoidance of swarm

disconnection. As far as we are concerned, only Varughese et al [32] have treated the problem

of boundary identification in the context of swarm robotics. They use minimalistic robot

behaviors and binary communication using Wave Oriented Swarm Paradigm (WOSP).

Fitness Function: At each time step, the instantaneous fitness function will be higher

as the number of correct LED decisions increase. A correct decision means that either a

borderline member activates its LED (true positive) or that an interior robot turns off its

LED (true negative). Let RB ⊂ R be the subset of robots belonging to the swarm borderline

or frontier (note that there is a bijective correspondence between the elements of RB and

58 5. Experiments

PB). On the contrary, the subset of robots belonging to the interior of the swarm is denoted

as RI = R \ RB . The instantaneous fitness function is displayed in Eq. 5.4. The function

has two terms that are combined as a product. The first term corresponds to the number of

borderline robots successfully identified divided by the number of borderline members. The

second part is the number of correct classifications of interior agents divided by the number

of interior robots. RB and RI denote the cardinality of the sets RB and RI , respectively.

fB(G , k) =
1

RB RI

(∑
r∈RB

ar,LED(t)

)
·

(
RI −

∑
r∈RI

ar,LED(t)

)
(5.4)

From a different perspective, the terms measure separately the true positive rate (TPR) and

the true negative rate (TNR) instead of computing the directly the total accuracy of the

swarm. This fitness breakup is principally performed because the number of borderline and

interior agents (RB and RI) are highly unbalanced in most of the random initializations of

the swarm topology. This leads to naive and utterly suboptimal solutions in which all robots

identify themselves as interior or borderline due to the high overall accuracy. As in all the

experiments, the fitness score of a trial is computed as the average of the instantaneous fitness

values of each time step:

FB =
1

TE

TE∑
k=1

fB(G , k)

Similarly, 5 trials are accomplished, computing the final expected fitness estimate as the

sample mean of all the episode fitness scores. The fitness maximum and minimum achievable

values are 0 and 1 respectively.

5.3 Experiment C: Orientation consensus

Task Description: The objective of this experiment is to evolve a cooperative behavior of

a group of robots capable of solving the problem of orientation consensus. By orientation

consensus we refer to the task in which all the robots in a group have to point to the same

direction. Thereafter, the orientations of all robots θr(t) have to converge to the same value

for reaching the maximum fitness. The positions of the agents are fixed during the evaluation

period so that the overall swarm graph is always the same. Alternatively, robots can alter their

orientation by means of rotation movements at an angular speed modulated by the neural

controller. Robots do not have any common absolute reference (for instance be a light source

or a compass) that would utterly ease the orientation consensus achievement. Agents must

infer the orientation of their neighbors relative to its own orientation merely using the minimal

communication system exposed in Section 3.3, which makes it a challenging experiment.

Initialization: The initialization of this experiment is exactly the same as the one

described in Experiment A (see Section 5.1). Furthermore, random uniform initialization

of the agents makes it impossible for the robot’s CTRNN to memorize the orientation of

other individuals based on the initialization. Therefore, as in the other experiments, the

initialization promotes the emergence of solutions that highly generalize for any starting

conditions of the system.

Sensors, Actuators and Communication: The only sensor to be used in this

experiment is, as in the previous ones, the communication receiver. However, in addition

to the message vector and the receiving orientation θRX , the orientation or sector from which

the message was transmitted by the neighboring robot sender, θTX , is also provided (see

Section 3.3 for more details). We found that this variable is essential in order to reach

acceptable results in this experiment, under the defined experimental setup and minimal

communication means. The main reason is that agents must discover the heading orientation

5.3. Experiment C: Orientation consensus 59

of, at least, its neighborhood relative to its own orientation. Alternatively, the enabled

actuators are the communication transmitter (TX) and the wheel actuator (WA). In order

to restrict movements to rotations, the corresponding CTRNN output only controls the

right wheel through scalar action awr ∈ [−1, 1] (which is scaled by the maximum wheel

rotation ωmax afterwards). Thereafter, the final wheel action vector is constructed as

aWA = (awr, awl)
> = (awr,−awr)> so that only rotation movements can be accomplished.

The sign of the action defines whether the spin is clockwise or counterclockwise. Additionally,

the absolute value of the action defines the rotation velocity in the sense specified by the sign.

Finally, regarding the communication parameters, the message dimension is fixed to 2 and

K = 4, leading to 16 possible symbols. The sets of enabled sensors and actuators are:

SEC = {RX}, AEC = {WA, TX}

Input neurons
Hidden neurons
Motor neurons

Layer
 10 neurons

Layer
 10 neurons

Figure 5.3: CTRNN architecture of the orientation consensus controller. In order to simplify

the diagram, only the connections of the first neuron of each layer are illustrated. The synapses

from rest of neurons in the layers have the same post synaptic neurons as the ones depicted

for the first unit. The colors of the connection arrows indicate the kind of layer to which the

pre synaptic neuron belongs to. Note that input neurons, in yellow, are placeholders of input

stimulus and not actual neuron models. The boxes on the right side of the diagram display

the firing rate decoding function. H is the Heaviside function.

Neural Controller and evolution hyperparameters: Figure 5.3 shows the CTRNN

architecture used in this experiment. As it can be observed, it is highly similar to the

architecture displayed in Fig. 5.1, excluding the input and motor layers. The stimuli vector fed

to the CTRNN is of dimension 7. It is formed by the communication information described

in the previous paragraph, with the addition of the encoded θTX , taking values in [−1, 1]2.

The overall stimuli vector is φ(t) ∈ C2 × {0, 1} × [−1, 1]4. There are a total of 4 motor

neurons, devoted to the generation of the right wheel action (awr ∈ [−1, 1]), the message vector

60 5. Experiments

(aTX ∈ [0, 1]2) to be transmitted and the next communication state (in {0, 1}). Thus, the total

action vector is a(t) ∈ [−1, 1]× [0, 1]2×{0, 1}. The decoding of the motor neuron’s firing rate

into actions is the identity mapping in the case of the wheel action and the message content.

The heaviside function centered at 0.5 is alternatively used to decode the communication state

MODE. Furthermore, in order to produce neuron outputs, of the wheel motor neuron, in

the interval [−1, 1], the activation of the neuron controlling action awr is the tanh function.

The connection probability between layers is as in Table 5.1 with a slight alteration to fit the

current architecture. Specifically, Motor LED is replaced by Motor Right Wheel in rows 5

and 8, maintaining the same connection probabilities.

The total genotype length after the random synapse creation is fixed to 435. The genotype

evaluations are executed during 600 time steps and a total of 5 trials per evaluations are

established to compute the sample fitness estimate. The number of generations is settled to

1000 generations.

Related Work: Orientation consensus is an important and widely explored cooperative

task as it is one of the pillars of flocking behaviors according to Reynolds’ rules [11]. Therefore,

the problem of heading alignment has been principally studied and assessed in the context

of flocking experiments. Heading alignment is addressed in [13] for self-organized flocking in

mobile robot swarms using a virtual heading sensor. Each robot senses its own orientation with

respect to the North reference, using a digital compass, and broadcasts it to its neighborhood.

In [15], the authors propose heading alignment behavior in which a only subset of robots,

called informed, are aware of a common objective direction. Informed agents communicate

goal direction to its neighboring robots while uninformed agents relay the average incoming

message from its vicinity. Robots correctly achieve alignment with their heading pointing to

the goal direction. The swarm members know an absolute reference throughout measuring

the light intensity emitted by a light source. In a more recent work, the authors of [12]

successfully evolve neural controllers for flocking behaviors. Their fitness is composed by

cohesion, separation and alignment terms. Focusing on alignment, robots have an alignment

sensor that measures its orientation relative to the average orientation of its neighborhood.

Additionally, in this work we focus on the limits of minimal local direct communication in

which robots do not share any absolute reference. This conditions are similar to those used in

[43], where an evolutionary algorithm optimizes the parameters of a recurrent neural network.

The emerged behavior employed a situated communication as it did not harness the message

information itself but the physical conditions of the communication.

Fitness Function: The fitness function is composed by two terms that are merged in a

multiplicative manner. The instantaneous fitness function is shown in Eq. 5.5.

fC(G , k) =
1

R

∑
r∈R

(
1− min{2π − |θr(k)− θ(k)|, |θr(k)− θ(k)}

π

)
· (1− ‖awr(k)‖1) (5.5)

The first term measures the mean orientation deviation or misalignment of each robot with

respect to the mean orientation. The mean orientation is defined as:

θ(t) =
1

R

∑
r∈R

min {θr(t), 2π − θr(t)} (5.6)

Note that, the term has a lower limit of 0 because of the division by π, which is the maximum

orientation misalignment.

The second part of the fitness function rewards robots for reducing their rotation velocity.

In order to punctuate this behavioral property, the vector of right wheel actions at each

time step awr(k) is considered. awr(k) is a vector of dimension equal to the swarm size that

collects the actions controlling right wheel of all the robots. Consequently, the L1 norm is

directly used to map robot velocities to fitness scores. The motivation behind this term is

5.4. Experiment D: Light follower 61

that, after several evolution optimization attempts, the swarm was capable of solving the

task by matching the vicinity’s phase and rotation speed. Thereafter, the entire swarm was

approximately aligned, but the rotation was utterly appreciable.

5.4 Experiment D: Light follower

Task description: As the last experiment to be explored in this Master Thesis, the light

following task is presented. As the name indicates, it consists in following a mobile light

source as closely as possible. The experiment is called light follower because the target entity

is a mobile light source. However, the task can be generalized to the object following problem.

Moreover, the entity to be followed can be another robot acting as, say, leader of the swarm.

In order to hinder the experiment, the following constrain is applied: only a small subset of

robots in the swarm are capable of sensing the light source within a range of vision. The

rest of the agents are unable to perceive the presence and location of the light. Hereafter,

we denote the former subset of robots as photosensitive agents and the latter group as non-

photosensitive robots. The sole mechanism of non-photosensitive agents to accomplish the

task is throughout communication with photosensitive robots, either abstract or situated

communication. During the optimization stage, only two agents are granted with the ability

of measuring input light source. Although the remaining robots are equipped with light

sensors, their measurement is always zero.

The movement of the light source is a simple orbit around the central coordinates

(W/2, H/2) of the torus. The kinematics of the light are, therefore, summarized in Eqs. 5.7

and 5.8. We express the position update in polar coordinates ϑ and r dependent on the

simulation cycle k:
ϑ(k + 1) = ϑ(k) + γ(k) ∆ϑ

r(k + 1) = r(k) +
(R− r(k))

50

 (5.7)

where γ(k) ∼ B(10−2) is a Bernoulli random variable that states the rotation sense of the

light at each time step. Thereafter, with a very small probability, the orbit sense is inverted.

∆ϑ represents the angular displacement of the light’s position within the orbit at each time

step k. This constant increment was fixed to 0.01 radians per simulation step. The radius r

is initialized at zero and tends to the constant value R = 2m as time steps are elapsed. The

previous polar coordinates are converted into a cartesian position of the light as in Eq. 5.8,

where the center of the orbit is clearly established.

x`(k + 1) = r(k + 1)

(
cos(ϑ(k + 1))

sin(ϑ(k + 1))

)
+

(
W/2

H/2

)
(5.8)

The initial values of the light dynamics are always fixed as,

ϑ(0) = 0, r(0) = 0⇒ x`(0) =

(
W

2
,
H

2

)>
In short, the light source is initialized at position (W/2, H/2) and it follows a spiral trajectory,

with increasing radius, until r(k) ≈ R. Afterwards, it orbits around the previously mentioned

initial position, with a low probability of inverting is rotation sense.

Initialization: The initialization of the robot’s positions is addressed by randomly

sampling from a square centered at the center of the torus. More precisely, the sampling

of the position of each robot r is as follows,

xr(0) = (x(0), y(0))> ⇒ x(0) ∼ U
(
W −A

2
,
W +A

2

)
, y(0) ∼ U

(
H −A

2
,
H +A

2

)

62 5. Experiments

where U is the uniform distribution and W , H are the dimensions of the flattened torus (see

Section 3.1), which are fixed to 10m. A is the length of the sides of the square from where

positions are initialized. Alternatively, orientations are sampled uniformly from U(0, 2π).

Sensors, Actuators and Communication: The sensors enabled for this experiment are

the ambient light sensors and the communication receiver. The communication information

harnessed is the 2 dimensional message, the communication state, the orientation from where

the message was sensed and, finally, the signal intensity. Recall that signal intensity is called

φDS because it actually uses the IR distance sensor measurement in the direction of the

incoming message. Moreover, we do not include the entire distance sensor measurement, so

that the CTRNN can only be aware of one neighbor at the same time. This restriction is

imposed because we want to constrain as much as possible the environment information and

swarm interactions. In addition to the communication information, the light sensor produces

a vector of 6 components, corresponding to the instantaneous measurement in each of the

6 sectors. The actuators that allow agent interaction with the environment and with other

robots are the wheel actuator and the communication transmitter. In contrast to orientation

consensus experiment, the wheel actuator controls both right and left wheels as both rotation

and translation movements are allowed. The sets of enabled sensors and actuators are:

SED = {RX,LS}, AED = {WA, TX}

Neural Controller and evolution hyperparameters Fig. 5.4 depicts the precise

neural architecture used in this experiment.

Input neurons
Hidden neurons
Motor neurons

Layer
 10 neurons

Layer
 10 neurons

Light
Sensor

Communication
Receiver

Communication
Transmitter

Wheel
Actuator

Figure 5.4: CTRNN architecture of the light follower controller. In order to simplify the

diagram, only the connections of the first neuron of each layer are illustrated. The synapses

from rest of neurons in the layers have the same post synaptic neurons as the ones depicted

for the first unit. The colors of the connection arrows indicate the kind of layer to which the

pre synaptic neuron belongs to. Note that input neurons, in yellow, are placeholders of input

stimulus and not actual neuron models. The boxes on the right side of the diagram display

the firing rate decoding function. H is the Heaviside function.

5.4. Experiment D: Light follower 63

The principal distinction with former architectures is that a new input layer is added,

representing light intensity stimuli to be fed. This layer has 6 nodes, each corresponding

to the light intensity measured in one sector of the light sensor. The overall light intensity

stimuli φLS is bounded in [0, 1]6. The input nodes wherein light measurements are injected

are connected to the neurons of hidden ensemble H1. Regarding the input layer devoted

to communication receiver information, the signal strength being measured φDS ∈ [0, 1] is

included. We simplify the notation of this variable, as introduced in Sec. 3.2.2, to denote

the signal strength measured by the distance sensor in sector corresponding to angle θTX .

The total number of input nodes is 12 as indicated in the figure, leading to the final stimuli

vector φ(t) ∈ C2 × {0, 1} × [−1, 1]2 × [0, 1]7. The hidden layers H1 and H2 are remained

untouched and only connections with other ensembles differ from previous sections. Lastly,

the motor neurons generate actions corresponding to the elaborated message aTX ∈ [0, 1]2,

the communication mode MODE ∈ {0, 1} (with 0 corresponding to relay and 1 to send

modes) and the left and right wheel actions aWA = (awr, awl)
> ∈ [−1, 1]2. Then, the total

action vector is a(t) ∈ [−1, 1]2 × [0, 1]2 × {0, 1} (5 motor neurons). Table 5.2 gathers the

connection probabilities of neurons between layers.

Presynaptic Layer Postsynaptic Layer Connection Probability

Input Communication Hidden H1 1

Input Light Hidden H1 1

Hidden H1 Hidden H2 1

Hidden H1 Hidden H1 0.7

Hidden H2 Hidden H2 0.7

Hidden H1 Motor Wheels 1

Hidden H2 Motor Message 1

Hidden H2 Motor Comm. State 1

Motor Wheels Hidden H1 0.85

Motor Message Hidden H1 0.85

Motor Comm. State Hidden H1 0.85

Table 5.2: Connection Probabilities between layers in the CTRNN architecture of Fig. 5.4

The resulting genotypes have a length of 542. Additionally, the evaluation duration is,

opposed to other experiments, of a duration of 1000 time steps. Each genotype evaluation

consists of 5 independent episodes and there are 650 generations.

Related work: As it was already mentioned in the task description, the problem of

light following can be labelled as object following, more broadly covered in the literature.

Baldassarre et al. [40] evolved mobile robots controlled by neural controllers on the task

moving towards light sources while preserving group compactness through aggregation.

Robots were equipped with ambient light sensors, IR sensors to perceive neighboring robots

at the close range and directional microphones and speakers for the wide range interaction.

They observed the emergence of a broad variety of formations and coordinated movement

strategies to preserve clustering, while moving towards the target light. Several works have

treated the problem from the perspective of leader following [14, 30, 97] under the framework

of flocking (note that there is an obvious overlap of the references with Section 5.1). A recent

example of leader following is presented in [30]. There, after it is elected, a leader navigates

towards a goal position. The rest of the robots must follow the leader in order to reach the

64 5. Experiments

goal. The authors of [99] address a similar problem as the one considered here. They optimize

ANNs through neuroevolution for the task of swarm navigation to a goal location. Within

the swarm, only a subset of leader agents that know the goal location is controlled by an

ANN. The navigation of the rest of the group is driven by the Reynolds’s rules of flocking.

Therefore the task of the leaders is both to move towards the goal location while guiding the

other agents. The neural controller of the leader is fed with the relative polar coordinates of

the goal and the center of mass of the group. Note that regardless of the similarities in the

task formulation, the experiment presented in this Master Thesis involves different objectives

and imposes tighter constrains in order to assess the limits of minimal communication.

Fitness function: The fitness function applied at each instant has a unique term as

exposed in Eq. 5.9.

fD(G , k) =
1

R

∑
r∈R
H (ρl − dT (xr(t)− xl(t))) (5.9)

Essentially, for each robot, the function computes, through the Heaviside function, if the

robot is inside of a ball centered at the light position (see Eq. 5.10) and of radius ρl.

H (ρl − dT (xr(t)− xl(t))) =

{
1, if dT (xr(t)− xl(t)) ≤ ρl
0, otherwise

(5.10)

The value of ρl is fixed to 0.8m. Thereafter, the fitness at each evaluation cycle is the mean

value of the results from the Heaviside mapping. From a different perspective, the fitness

score is proportional to the number of robots inside the ball dT (xr(t) − xl(t)) ≤ ρl. This

fitness avoids the emergence of naive individual behaviors in which only the photosensitive

agents outperform in the problem. The overall trial fitness value is the temporal average of

the instantaneous fitness outcomes:

FD =
1

TE

TE∑
k=1

fD(G , k)

Moreover, in a similar way as in the rest of the tasks, the fitness is evaluated in 5 independent

trials and the final expected fitness estimate is obtained as the trial average. Clearly, the fitness

is bounded between 0 and 1 in this task, albeit maximum values are nearly impossible.

Chapter 6

Results

In this chapter, the behaviors evolved using the GA and NES algorithms, employing the

experimental setup established in the previous chapter, are exhaustively analyzed for each

task. For each experiment, a comparison between optimization algorithms will be provided

based on their fitness results. Thereafter, we focus on the solution, either from GA or NES,

whose communication mechanics are richer and more complex for solving the task. The

emerged agent interaction is analyzed and assessed considering the following main aspects:

- Behavior: Firstly, the emerged behavior and the resulting performance are discussed.

Several figures, showing the swarm actions and the goodness of the solution, are shown

to demonstrate the performance. A general overview of the behavior mechanisms is

provided, excluding the emerged communication as it is described in a different block.

- Scalability: An important feature of multi agent systems in robotics is their ability

to scale properly in performance as the swarm size increases. Therefore, in each

experiment, the behavior is assessed for different swarm sizes.

- Robustness: Another desired property of swarm intelligence systems is the robustness

of the system under perturbations or unexpected events during the execution process.

The robustness is evaluated by means of introducing an alteration in the task at some

point in time during the simulation. Therefore, the agents have to react in response to

the environmental change.

- Communication: Finally, the emerged communication is described for each problem.

Principally, the relevant communication information is figured out, highlighting the

type of communication that has emerged (e.g. situated or abstract communication), if

any.

In order to present the results in the previous items, tools from descriptive statistics are

considered. More precisely, 50 independent trials with random initialization are executed and

gathered into a dataset. Afterwards, the dataset with 50 samples is used to support most of

the figures and results of the experiments.

65

66 6. Results

6.1 Experiment A: Leader Selection

0 200 400 600 800 1000
Generation

0.0

0.5

1.0

1.5

2.0

Fi
tn

es
s

GA
SNES

Figure 6.1: Evolution of the fitness function with the generations of GA and SNES in the

leader selection task. In each generation, the darker curves are the sample mean fitness scores

and the upper and lower contours of the shadow areas represent the maximum and minimum

fitness values.

Firstly, Fig. 6.1 illustrates the fitness evolution as generations are elapsed. For each generation,

it shows the sample mean fitness score (darker curves) and the maximum and minimum fitness

values (upper and lower contours of the shadow areas). The SNES outperforms GA both in

terms of the convergence speed and the reached fitness for a large number of generations.

Moreover, GA is not able to solve the task correctly at the end of the evolution process. Thus,

hereafter, the analysis of the behavior and communication in this experiment is focused on

the solution provided by SNES.

Behavior: Genotypes sampled from optimized NES search distributions exhibit an

interesting behavior for selecting and preserving leaders of the swarm. We observed two stages

during the evaluation process. Firstly, agents carry out a negotiation phase in order to select

a leader. Essentially, all the robots claim the leadership at the beginning of the negotiation

process by turing their LEDs on. Thereafter, each robot being the leader eventually turns off

its LED in order to yield leadership to other members of the swarm. The negotiation process

can be understood as a winner takes all competition between agents, so that each potential

leader inhibits the others through the communication system. Consequently, the winner of

the negotiation, and thus the leader, is the robot whose LED remains turned on. The second

phase of the behavior is achieved if an agent is the unique leader of the swarm or, at least, if it

does not receive any communication information specifying the opposite. In such a situation,

a stable solution is reached and remains still unless a perturbation is introduced in the system.

Agents are aware of other robots claiming leadership by means of the communication system.

The discussion on the emerged communication is retrieved and elaborated in detail later.

6.1. Experiment A: Leader Selection 67

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

Time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Ro
bo

t

LED actions

Figure 6.2: LED actions of the robots in a swarm of size 20 as time elapses in the leader

selection experiment. Horizontal black bars denote that the LED is activated. Two phases,

namely, negotiation and leader settlement, are observed.

Fig. 6.2 shows an example of the emerged behavior, clearly displaying both negotiation and

stable leader identification. It shows the LED actions of the agents in a swarm of size 20 as

execution time elapses. Black bars indicate that the LED of the corresponding robot in the

ordinate axis is turned on. There is no leader fault in this figure as it will be discussed in the

robustness analysis below. The results of the figure closely resemble the behavior previously

described. The negotiation stage, starting at time step 0 and concluding approximately at

simulation cycle 40, exposes the winner takes all process in which LED actions are constantly

being deactivated. Nonetheless, the plot shows an unsuccessful negotiation scenario whereby

all the robot LEDs are turned off and no leader is selected. In such a case, it can be observed

that another negotiation process, of much shorter duration, is initiated with less contestants.

Finally, as a result of the second competition, a unique leader is identified and a stable

behavior is settled until the simulation ends. The results can be observed in Fig. 6.3 from a

different perspective. The figure illustrates different frames of a simulation of this experiment.

The red balls represent robots whose LED is turned on and the blue balls show agents with

deactivated LED. Only instants previous to time step 20 are shown. After this time instant,

leader is settled and stable. The last resource to observe the behavior of robots within this

task is provided as a video recoding the simulation 1.

1https://youtu.be/ahBlVf9jAbw

68 6. Results

(a) Time step 1 (b) Time step 3 (c) Time step 5

(d) Time step 10 (e) Time step 15 (f) Time step 20

Figure 6.3: Snapshots of different time steps of a leader selection simulation. Blue dots

represent robots whose LED is deactivated and red balls indicate that the agent’s LED is

turned on. Figures from (a) to (e) correspond to negotiation phase while in (f) the leader is

selected and stabilized.

5 10 15 20 30 40 50
Number of robots

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
im

e
on

e
le

ad
er

Figure 6.4: Assessment of the scalability capabilities of the evolved solution for the leader election

task. For different swarm sizes, the figure shows the distribution of the percentage of the evaluation

time that only one robot claims leadership. The sample of size 50 is represented by means of boxplots,

where the orange line within the box is the median and each box encloses samples in between the first

and third quantiles, also known as the interquartile range. The whiskers extend to the farthest data

points that are within 1.5 times the interquartile range. Outliers are shown as white dots.

6.1. Experiment A: Leader Selection 69

Scalability: The scalability of the solution is assessed by simulating the experiment with

different swarm sizes. Moreover, instead of depicting the results for a single trial, as in the

performance evaluation, we collect a total of 50 independent simulations in order to gather

a statistically significant number of observations. Note that multiple trials are required for

the generation of reliable results because there is randomness in the initialization process.

Fig. 6.4 shows the impact of the swarm size on the leader selection experiment. For each

of the 50 episodes, the percentage of the total simulation time in which just a single robot

claims leadership is computed and represented in boxplots. There is a clear degradation as

the number of robots increase. Moreover, this degradation is not only in terms of median

degradation but also in terms of interquartile range increase. In general, the SR system for

the leader selection experiment scales correctly as the number of robots grow, up to swarm

sizes of about 30 agents.

Robustness: In order to verify the system ability to react to unexpected perturbations

during runtime, we incorporate the leader fault already introduced in Section 5.1. A leader

becomes a faulty robot if it has been the unique leader during 50 consecutive time steps. A

defective agent cannot claim leadership nor send its own messages. It can only relay incoming

messages from its neighborhood in order to preserve graph compactness.

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

Time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Ro
bo

t

LED actions

Figure 6.5: LED actions of the robots in a swarm of size 20 as time elapses in the leader

selection experiment with leader failure. Horizontal black bars denote that the LED is

activated. Two phases, namely, negotiation and leader settlement, are observed.

Firstly, Fig. 6.5 shows the LED actions of each robot with failure perturbations. Again, black

bars denote activated LEDs while blank spaces mean that the LED is turned off. It can be

observed that agents are totally capable of reacting against previous leader fault. In this

situation, an additional phase can be added to the negotiation and stable leader stages. More

70 6. Results

precisely, after robot failure, there is a time gap of approximate duration of 10 time instants

when all the robots are silent before noticing leader disconnection. Summarizing, in the shown

simulation example, robots start with a negotiation as usual. After leader is settled and 50

time steps have elapsed without other leadership claims, the leader fails and the silent period

starts. Thereafter, another negotiation is initiated and the process is repeated.

5 10 15 20 30 40 50
Number of robots

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f t
im

e
on

e
le

ad
er

Figure 6.6: Assessment of the scalability capabilities of the evolved solution for the leader

election task with leader fault. For different swarm sizes, the figure shows a sample of the

distribution of the percentage of the total evaluation time that only one robot claims leadership.

The sample of size 50 is represented by means of boxplots, where the orange line within the

box is the median and each box encloses samples in between the first and third quantile, also

known as the interquartile range. The whiskers extend to the farthest data points that are

within 1.5 times the interquartile range. Outliers are shown as white dots.

Fig. 6.6 displays the boxplots of the percentage of time with a single leader in the case of

leader fault. All the median estimates are considerably decreased with respect to the ones in

Fig 6.4. Furthermore, the results start to decrease drastically with more than 30 robots. It

should be mentioned that the general worsening of the performance is acceptable owing to

the fact that there is a negotiation and a silent period per leader switch. In fact, assuming

that the silent period is 10 time steps and negotiation phase lasts 20 time steps (if successfully

accomplished), then every 50 time instants of leadership there are 30 unavoidable time steps of

leader reelection. Consequently, the results shown in the boxplots are much more outstanding

considering this fact. In the light of the previous figures, it can be stated that the solution

reached by SNES in the leader selection task correctly fulfills the robustness requirement

(under the imposed test).

Finally, Fig. 6.7 displays the temporal evolution of the number of agents claiming

leadership with and without leader fault. Note that in the negotiation phases, corresponding

to the peaks, there is a drastic rise of the potential leaders followed by an exponential decay

due to the winner takes all competition. The leadership stage corresponds to the curve regions

with a single stable leader.

6.1. Experiment A: Leader Selection 71

0 50 100 150 200 250 300
Time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Nu
m

be
r o

f r
ob

ot
s c

la
im

in
g

le
ad

er
sh

ip

Without leader fault
With leader fault

Figure 6.7: Temporal evolution of the number of robots claiming leadership for a trajectory in

normal conditions and with leader failure.

Communication: To complement the behavior mechanics previously exposed and

analyzed, the communication procedures that emerged from evolution to solve the task

are studied. Firstly, in order to gain a general insight on the input variables that are

actually harnessed to accomplish leader identification, we performed the following test: for

each communication input being fed to the CTRNN, we inhibited the input variable and

observed the consequent results. The process to inhibit neural stimulus is straightforwardly

accomplished by replacing the input by zeros.

No Inhibition Communication Reception
 Orientation InhibitedCommunication Variable Inhibited

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
im

e
on

e
le

ad
er

Message Inhibited

Figure 6.8: Percentage of simulation time with a single leader elected when communication

stimulus are inhibited and in normal conditions. Stimulus inhibition is performed by replacing

with zeros the corresponding input stimulus at neural level. Inhibition of the variables is

performed separately and one by one.

Figure 6.8 shows the resulting performance of the solution in terms of percentage of time with

72 6. Results

elected leader when variables are inhibited. Interestingly, the algorithm uses the message

content, albeit the orientation from where the message was received seems to be irrelevant.

This results are utterly important as they reflect that the message reception orientation could

have been omitted in the architecture.

0 1

2

3
4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

(a) Swarm topology

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

Time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Ro
bo

t

(b) Communication State

0 25 50 75 100 125 150 175 200 225 250 275
Time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Ro
bo

t

Symbol 15=(1.0, 1.0)

Symbol 14=(0.67, 1.0)

Symbol 13=(0.33, 1.0)

Symbol 12=(0.0, 1.0)

Symbol 11=(1.0, 0.67)

Symbol 10=(0.67, 0.67)

Symbol 9=(0.33, 0.67)

Symbol 8=(0.0, 0.67)

Symbol 7=(1.0, 0.33)

Symbol 6=(0.67, 0.33)

Symbol 5=(0.33, 0.33)

Symbol 4=(0.0, 0.33)

Symbol 3=(1.0, 0.0)

Symbol 2=(0.67, 0.0)

Symbol 1=(0.33, 0.0)

Symbol 0=(0.0, 0.0)

(c) Transmitted Message

Figure 6.9: (a) Spatial graph of the swarm topology, preserving positions and distances. (b)

Communication state of each robot at each time step. Horizontal black bars correspond to

state send and horizontal blank bars denote relay state. (c) Message transmitted by the robots

at each time instant. The color of the bar at each time step corresponds to a symbol specified

in the legend.

In the light of the previous observations, hereafter, attention is paid to the message

vector content and to the communication state in order to understand the mechanics of

the agents interactions. Figs. 6.9a shows the swarm spatial configuration, while Fig. 6.9b

displays the communication state of each robot at each time step. Black bars indicate that

the corresponding agent in the ordinate axis is in send mode and blank spaces mean relay

mode of the robot. Note that there is a clear correlation between the communication mode of

6.1. Experiment A: Leader Selection 73

the robots and their LED action. Specifically, most of the time that robots are in send mode,

the LED claiming leadership is turned on (see Fig. 6.2). Additionally, Figs. 6.9c displays the

message sent or relayed at each time step. The legend shows the possible symbols and the

corresponding 2-dimensional vector. Provided that Figs. 6.9b and c are analyzed jointly, the

following communication mechanics can be assumed.

- If an agent claims leadership, its communication state settles as send state. On the

contrary, non leader robots enter into relay mode.

- Agents in send mode mostly emit symbol 15, corresponding to message (1, 1)>.

- The message sent by the potential leaders is spread around the entire swarm, resembling

a wave-like propagation. In fact, Fig. 6.9a clarify that the agents sending symbol 15

more frequently are those with less number of hops to the leader (node 7).

- Messages between symbols 0 and 15 are essentially transient messages caused during

the rise time of the motor neuron firing rate. This implies that only symbols 0 and 15

are actually relevant for the communication, and, therefore, there is no need to include

more than 2 symbols in the communication of this experiment. More precisely, it is a

signalling based communication.

RELAY SEND
Communication State

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 P
ro

po
rti

on

LED
OFF
ON

(a)

0 1 2 4 5 6 8 9 10 11 14 15
 symbol

0

50000

100000

150000

200000

250000

co
un

t

7

(b)

0 Others
 symbol

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 P
ro

po
rti

on

LED
OFF
ON

15

(c)

Figure 6.10: (a) Estimation of the proportion of times of each LED status of robots conditioned

to the communication state. (b) Count plot, gathering the times that each symbol is emitted

by any robot in the entire dataset, formed by 50 independent episodes. (c) Estimation of the

proportion of times of each LED status of robots conditioned to transmitted message. Symbols

from 1 to 14 are merged into the ”Others” category due to their minimal relevance. In (a)

and (c), the point estimates are the upper sides of the bars and the confidence interval with a

confidence level of 95% is showed as the black segment.

We reinforce the previous statements with an statistically significant sample of simulation

trajectories. Fig. 6.10a shows a barplot depicting the estimated proportion of time that a

robot that claims leadership conditioned to being in each of the communication states. The

point estimates of the proportions, corresponding to the upper side of the bars, show that

almost in the totality of times that a robot is in relay mode, it turns off the LED. On the

contrary, the majority of robots in send mode have their LED activated. These results match

with the observation in Fig. 6.9. In addition to the estimate shown as the top line of each bar,

a confidence interval of the proportion estimate is also provided. The interval is computed as:

CI(p)α = p̂± zα/2

√
p̂ (1− p̂)

n
(6.1)

where p̂ is the proportion estimate, n is the sample size and zα/2 is the upper α/2 percentage

point of the standard normal distribution. The significance level α is set to 0.05, leading to

74 6. Results

a confidence level of 95%. All the proportion estimation in the remaining of the chapter will

use this significance level. Figure 6.10b gathers the number of times that each message is

sent by any robot in the entire dataset of collected simulations. Clearly, the most frequent

symbols, and thus the most meaningful ones, are symbols 0 and 15 (corresponding to (0, 0)>

and (1, 1)>, respectively). In the light of this fact, the remaining symbols are merged into

the Others category in Fig. 6.10c in order to clarify the results. It shows the point estimates

of the proportion of times of LED actions conditioned to the transmitted symbol. Only the

symbols emitted when the communication is in send state are considered. It also depicts the

confidence intervals with 95% of confidence level. The bars in the plot highly corroborate the

previous assumptions stating that leader communicates its lead role to the swarm by sending

symbol 15. Moreover, it also indicates that non leader robots mainly transmit symbol 0 and

there is no statistical evidence suggesting that the rest of the symbols have an impact on the

LED action.

6.2 Experiment B: Borderline Identification

0 200 400 600 800 1000
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

GA
SNES

Figure 6.11: Evolution of the fitness function with the generations of GA and SNES in the

border identification task. In each generation, the darker curves are the sample mean fitness

scores and the upper and lower contours of the shadow areas represent the maximum and

minimum fitness values.

Fig. 6.11 illustrates the evolution of the fitness value with the generations of both GA and

SNES. It shows the sample mean fitness among all the genotypes of each generation as the

darker curves. Moreover, the maximum and minimum fitness scores are additionally displayed

as the contours of the shadow areas. It is worth mentioning that the high variability is not

only caused by variability of the GA genotypes or the stochastic sampling of individuals in

SNES but also because of the random episode initialization. It can be observed that both

algorithms approximately converge to the same mean fitness value with a sufficient amount

of generations. The main difference in the evolution is that, in this experiment, GA converges

6.2. Experiment B: Borderline Identification 75

in less generations than SNES. In terms of behavior and communication complexity, which

is analyzed hereafter, the solutions of both algorithms present similar characteristics. We

decided to focus on GA’s solution because of its fast convergence, but the analysis results are

also applicable to SNES.

0

1

2
3

4

5

6
7

8910
11

12

13

14

15

16

17 18

1920

21

22

23

24

25

26
27 28

29

(a) Swarm topology graph, alpha shape highlighted

0

1

2
3

4

5

6
7

8910
11

12

13

14

15

16

17 18

1920

21

22

23

24

25

26
27 28

29

(b) Swarm graph, successes and errors highlighted

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

timestep

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

ro
bo

t

Ground Truth borderline (alpha shape)

(c) Alpha shape

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

timestep

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

ro
bo

t

LED actions

(d) LED actions

Figure 6.12: (a) Spatial graph of the swarm, edges denote the existence of a pairwise

communication channel. Red balls represent alpha shape members and blue dots are interior

robots. (b) Spatial graph of the swarm, red balls denote agent errors (as indicated in (d)) and

green balls denote correct borderline classifications. (c) Target borderline members according

to the alpha shape. Horizontal black bars denote frontier robots and horizontal blank bars

represent interior agents. (d) Temporal evolution of LED actions of the robots as time elapses.

Horizontal black bars denote activated LED.

Behavior: In order to assess the correct functioning of the evolved solution, Fig 6.12

shows the behavior of the robots in a trial with 30 agents. Firstly, Fig 6.12a, illustrates the

swarm spatial distribution and pairwise communication channels. Red balls represent robots

belonging to the alpha shape with α = 15 (see Section 5.2) and blue dots represent interior

nodes. For the depicted graph, Fig 6.12c exposes the target LED actions or target alpha

shape that the robots should perform in order to correctly identify the swarm borderline.

Thus, the robots with horizontal black bars are members of the borderline according to the

alpha shape algorithm. Additionally, Fig 6.12d shows the actual LED actions of the robots,

76 6. Results

indicating if they are in the frontier or in the interior. Fig 6.12b displays, in the spatial

swarm distribution, the correct frontier classifications (in green) and the errors (in red). The

actions of Fig 6.12b correspond to a snapshot at time instant 480. The results are, in general,

remarkably outstanding, albeit there are some robots whose decision is incorrect. Specifically,

there are about 2 or 3 robots, depending on the observed time step, whose classification is

wrong. It can be observed that there are some agents whose LED actions are remarkably

stable (e.g. robots 2, 3 or 10) while the decisions of other robots are much more undefined

(e.g. nodes 9, 26 or 28). A common observable feature is that agents with a robust decision

generally have only few neighbors (1 or 2). On the contrary, unstable robots mainly belong to

a dense part of the graph, with many neighbors (3, 4 or 5). Thereafter, the errors principally

occur when the agents have many neighboring robots, leading to the naive classification of

being interior node (which is an incorrect assumption in some cases).

0 100 200 300 400 500
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f s

uc
ce

ss
fu

l c
la

ss
ifi

ca
tio

ns

True Positive Rate
True Negative Rate

Figure 6.13: Temporal evolution of true positive and negative rates in the borderline

identification experiment with 30 robots. Darker curves represent median TPR and TNR

and contours of the shadow areas are the first and third quantiles, using a sample of size 50.

Furthermore, another interesting observation is that errors are more likely to appear as false

positives as it can be observed in Fig. 6.13, where the true positive rate (TPR) is slightly

inferior than the true negative rate (TNR). At the initial time steps of the simulation, the

TPR and the TNR are respectively 1 and 0 because, at the simulation startup, all the agents

identify themselves as frontier nodes (see Figure. 6.12d).

To observe the behavior in a more visual manner, Figure 6.14 collects snapshots of a

sample trial at different time instants of the simulation. At the initial time step, all robots

consider themselves as extremities (red balls). Subsequently, as time elapses, the solution is

corrected until the final decision is settled (approximately at time instant 50). The actual

alpha shape of the example is shown in purple in Figure 6.14f. The final classification of

this example results in two errors, corresponding to false positives in both cases. Finally, the

behavior of the solution to this experiment can be observed in video format 2.

2https://youtu.be/tGytXx2BM2w

6.2. Experiment B: Borderline Identification 77

(a) Time step 1 (b) Time step 10 (c) Time step 15

(d) Time step 30 (e) Time step 50 (f) True alpha shape

Figure 6.14: From (a) to (e), snapshots of the borderline identification experiment at different

simulation time steps. The balls represent the robots in the swarm. Robots colored in red

indicate that the LED is turned on at the corresponding time step. Similarly, blue balls denote

robots with the LED deactivated. Swarm topology and robot distances are preserved in the

graphs. (f) Actual alpha shape, in purple, used as target, Note that at time step 50, once

the decisions are settled, there are only 2 errors. Moreover, both errors correspond to false

positives.

Scalability: In Fig. 6.15, the scalability of the system is evaluated by The results are

presented using a sample of size 50 with independent simulation executions. For each swarm

size, it shows the accuracy of each time step, defined as the number of agents correctly

identified as frontier or interior divided by the swarm size. The curves represent the time

dependent median of the accuracy using all the collected samples. Alternatively, the shadow

areas indicate, at each time instant, the first and third and quantiles of the accuracies. It

can be observed that the solution scales utterly well as swarm size increases. Indeed, there

is no statistically significant degradation in accuracy as the number of robot grows, up to 50

agents. Consequently, the scalability of the system is clearly fulfilled.

Robustness: The robustness capabilities are evaluated by reinitializing the robots spatial

graph, defining their positions, every 200 time steps. However, the states of the CTRNNs of

all the robots are maintained untouched regardless of the position resampling. This causes an

abrupt change in the swarm topology, leading to agents being forced to reconsider if they are in

the borderline subset. We decided to switch the topology with this procedure in order to avoid

robot movement that would be of complex implementation and does not guarantee swarm

compactness. Fig. 6.16 displays both target borderline temporal evolution (left) and robots

LED actions (right). Note that the borderline switches every 200 time steps. Although there

are several erroneous decisions, robots are generally able to respond successfully to topological

78 6. Results

0 50 100 150 200 250
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

10 Robots
15 Robots
20 Robots
30 Robots
50 Robots

Figure 6.15: Temporal evolution of the accuracy of the robot’s classification in the borderline

identification experiment for diverse swarm sizes. The darker curves represent the median of

the accuracy using all 50 collected samples. Alternatively, the shadow areas indicate, at each

time instant, the first and third and quantiles of the accuracies.

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

timestep

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

ro
bo

t

Ground Truth borderline (alpha shape)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

timestep

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

ro
bo

t

LED actions

Figure 6.16: (Left) Target frontier members (according to alpha shape). Black bars indicate

that the robot is in the alpha shape and blank bars represent interior nodes. (Right) Robots

LED actions. The swarm topology is switched to a different one (randomly sampled) every

200 time steps.

alterations. Evidently, there is a short transient period of time required by the agents to notice

the swarm changes and alter its neural states as a consequence.

6.2. Experiment B: Borderline Identification 79

100 200 300 400 500
Time

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

10 Robots
15 Robots
20 Robots
30 Robots
50 Robots

Figure 6.17: Temporal evolution of the accuracy of the robot’s classification in the borderline

identification experiment for diverse swarm sizes. Every 200 time steps the swarm topology

is changes while the neural states are preserved. The darker curves represent the median of

the accuracy using all 50 collected samples. Alternatively, the clearer areas indicate, at each

time instant, the first and third and quantiles of the accuracies.

To complement the previous figures, Fig. 6.17 represents the accuracy distributions for

different swarm sizes under the above mentioned topology alterations. As in Figure 6.15,

the shadow area indicates the first and third quantiles of the accuracy at each time instant,

while the darker curves highlight the median. The resampling of robot positions result in

discontinuous accuracy drop as the alpha shape and, thus, the robots in the borderline,

change. Agents are able to detect the changes and almost correctly solve the task for the

unexpected swarm redistribution. Exactly as in Fig 6.15, the accuracy is equivalent as swarm

size grows. Moreover, the transient reaction time after topology change is remarkably similar

regardless of the number of robots.

Communication: With the aim of studying the communication that emerges as a result

of evolution, Fig. 6.18 analyzes the importance of the communication variables in solving the

task. Specifically, in the figure, it can be observed the accuracy comparison among a scenario

with no inhibition and when different communication variables are inhibited. Each inhibition

is performed one by one and consists of replacing the value of the corresponding variable with

zeros at the input of the CTRNN. The comparison of the figure reveals that the information

about the orientation from where the message was sensed is a highly relevant context variable,

whose deletion causes system breakdown. On the contrary, provided that the system accuracy

is not significantly decreased, the results indicate that the message is not harnessed in this

experiments. This leads to a solution to the task with purely situational communication, in

which only the context underlying the message carries information. The communication state

was not included because we observed that the CTRNN of the robots always settle the state

to send mode. In relation to the message reception orientation, it is remarkably challenging

to find out the precise functioning and usage of its information. However, Fig. 6.19 illustrates

the estimate of the proportion of the time that robots have their LED turned on conditioned

to the number of neighbors. The plot equally shows the confidence interval with a confidence

level of 95% (see Eq. 6.1). It can be directly observed that when an agent has four neighbors,

80 6. Results

50 100 150 200 250 300
Time

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

No Inhibition
Message Inhibited
Reception Orientation Inhibited

Figure 6.18: Temporal evolution of the accuracy of the robot’s classification in the borderline

identification experiment for different inhibited variables. It compares the accuracy in a

situation without inhibition (blue) and inhibiting different communication variables (one by

one).

1 2 3 4
Number of neighbors

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 P
ro

po
rti

on

LED
OFF
ON

Figure 6.19: Estimation of the proportion of times that the LED is activated, and thus robot

classifies itself as borderline member, conditioned to the number of neighbors sending messages

from different orientations. The upper side of the bar indicate the proportion point estimate

with its corresponding 95% confidence interval.

it identifies itself as an interior member in the absolute majority of times. Alternatively, when

it has one or two neighboring robots, it clearly assumes its membership to the borderline of the

swarm. In the case of three neighbors, the agent also decides to turn the LED in most of the

cases, albeit the number of LED deactivations are increased with respect to the situation with

two neighbors. It is worth mentioning that the number of neighbors as stated in Fig. 6.19

is not computed directly based on distances between robots. Alternatively, it is obtained

using the number of messages that a robot receives from different orientations within a time

window. Moreover, it must be kept in mind the noticeable fact that only one message is

received at each simulation cycle. This means that, in order to gain insight into the number

of neighboring robots, the CTRNN of the agent must retain in memory information about

the message context at previous time steps.

6.3. Experiment C: Orientation consensus 81

6.3 Experiment C: Orientation consensus

0 200 400 600 800 1000
Generation

0.0

0.2

0.4

0.6

0.8

1.0
Fi

tn
es

s

GA
SNES

Figure 6.20: Evolution of the fitness function with the generations of GA and SNES in the

orientation consensus task. In each generation, the darker curves are the sample mean fitness

scores and the upper and lower contours of the shadow areas represent the maximum and

minimum fitness values.

A comparison of the performance, in terms of achieved fitness scores, between GA and SNES

is provided in Fig. 6.20. It displays how the fitness of the individuals evolves as generations

elapse. Darker curves indicate the sample mean fitness values and the upper and lower limits

of the shadow areas indicate the maximum and minimum fitness scores in each generation.

The genotypes reached by SNES are clearly superior in terms convergence speed and steady

state fitness achieved once convergence is reached. Moreover, SNES starts to increase the

fitness of its individuals at early generations, while GA elapses about 170 generations with

nearly zero fitness solutions. For all these reasons, we focus on the solution provided by SNES

for the detailed behavioral and communication analysis.

Behavior: In the light of the fitness function results previously shown, the assessment

of the behavior is presented. As it is exposed below, the evolved agents successfully solve the

task of orientation consensus under the minimal communication capabilities at their disposal.

Fig. 6.21 displays an example of the results with a simulation with 20 robots. Each curve

represents the instantaneous orientation in radians of the robots. We do not include a legend

clarifying which curve corresponds to which agent because it is not actually relevant for the

figure interpretation and would ruin the graph due to the large swarm size. Robots are

randomly initialized at diverging orientations. After a transient period of about 100 time

steps, the robots tend to reach the orientation consensus by matching their heading direction

with the orientation of its neighborhood. It should be mentioned that, even though consensus

is approximately fulfilled, robots still rotate with very low angular speed in order to preserve

orientation agreement. This residual rotation can be observed in the figure as the slope in

the orientations of the robots, albeit we remark that the slope is merely about 0.01 radians

82 6. Results

per time step.

0 200 400 600 800 1000
Time

7.5

5.0

2.5

0.0

2.5

5.0

Or
ie

nt
at

io
n

(ra
d)

Figure 6.21: Temporal evolution of the orientation of the robots in a simulation with swarm

size of 20. Each curve corresponds to the orientation of one of the agents. The orientation

range of [0, 2π] is extended to the R set merely for visualization purposes.

(a) Time step 1 (b) Time step 10 (c) Time step 30

(d) Time step 50 (e) Time step 100 (f) Time step 500

Figure 6.22: Snapshots of different time instants in a simulation of the orientation consensus

experiment. Blue dots depict the robots in the swarm and red arrows show the orientations of

the agents.

The goodness of the collective behavior can be equivalently observed in Fig 6.22, where

snapshots of the orientations of the robots at different time steps of the simulation are

plotted. Blue balls represent the robots in the swarm and red segments illustrate the heading

orientation of the robots. Finally, the behavior of the solution to this experiment can be

observed in video format 3.

Scalability: We now assess the scalability properties of the collective behavior. Moreover,

as in pervious experiments, the results exposed in Fig. 6.21, that uniquely represent one

sample that could be biased, are reinforced by collecting and using 50 trial simulations for

constructing reliable assessments.

3https://youtu.be/bTY2x9Aw9s4

6.3. Experiment C: Orientation consensus 83

0 200 400 600 800
Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
isa

lig
nm

en
t

 50 Robots
 Robots

3 Robots
5 Robots
10 Robots
15 Robots
30

Figure 6.23: Temporal evolution of the misalignment metric (see Eq. 6.2) distribution using

50 simulation trials and diverse swarm sizes. The darker curves represent the median of the

misalignment using all 50 collected samples. Alternatively, the clearer areas indicate, at each

time instant, the first and third and quantiles.

Thereafter, Fig. 6.23 visualizes the performance with diverse swarm sizes and using the 50

samples. Before commenting the figure, we introduce the misalignment metric defined as in

Eq. 6.2. Note that it is included in one of the terms of the fitness function in Eq. 5.5, albeit

it is now formally introduced as a metric for performance assessment.

Mθ(t) =
1

R

∑
r∈R

min
{
|θr(t)− θ(t)|, 2π − |θr(t)− θ(t)|

}
(6.2)

It essentially measures the mean orientation deviation of each robot with respect to the mean

orientation of all robots. Similarly, the mean orientation θ is computed as:

θ(t) =
1

R

∑
r∈R

min {θr(t), 2π − θr(t)}

Once the misalignment metric is defined, the interpretation of Figure 6.23 is resumed. At

each time instant, the darker curves denote the sample median of the misalignments of the

50 trials. Moreover, the shadow areas are delimited by the first and third sample quantiles

of the misalignment metric. In contrast to the border identification experiment, the results

show a clear degradation of the misalignment as the swarm size increases. The worsen is

noticeable in both transient time required to reach orientation consensus and in steady state

misalignment. Nonetheless, the degradation starts to be noticeable somewhere in between

swarm sizes of 30 and 50. Thus, it can be stated, that although not perfect, the scalability

properly is correctly fulfilled.

Robustness: The unexpected perturbation introduced during the evaluation simulation,

with the aim of testing the robustness, is the following. At time step 200, a subset of the

robots in the swarm becomes ”uncontrollable” in the sense that their wheel actuator is not

managed by the neural controller anymore. More precisely, the robots in this state rotate at

constant angular velocity until they reach a precise orientation. All these agents tend to the

same orientation, arbitrarily chosen by us. Moreover, at time step 600, the objective of the

”uncontrollable” robots changes to a different fixed direction, so that these agents start to

84 6. Results

0 200 400 600 800 1000
Time

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0
12.5

Or
ie

nt
at

io
n

(ra
d)

2π

2π

2π

(a)

0 200 400 600 800 1000 1200
Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
isa

lig
nm

en
t

Number of non-controllable robots
1 Robots
2 Robots

3 Robots
4 Robots

(b)

Figure 6.24: (a) Temporal evolution of the orientation of the robots in a simulation with swarm size

of 10 for the robustness assessment. Each curve corresponds to the orientation of one of the agents.

At time instant 200, 4 robots become ”uncontrollable” and point to the same orientation. The rest of

the robots are controlled by the neural controller. At time step 600, the ”uncontrollable” agents change

their orientation. Notice that the y-axis values with a difference of 2π correspond to the same physical

robot orientation. (b) Temporal evolution of the misalignment metric (see Eq. 6.2) distribution using

50 simulation trials under the conditions specified for (a). The simulation misalignment is tested

for different quantities of ”uncontrollable” robots. The darker curves represent the median of the

misalignment using all 50 collected samples. Alternatively, the clearer areas indicate, at each time

instant, the first and third and quantiles.

rotate again until they reach the new goal. Fig 6.24a shows the orientation of all the robots

with the mentioned mechanic included. There are 4 robots that become ”uncontrollable”,

corresponding to the curves with constant orientation in the previously specified time intervals.

Notice that these curves start to vary for about 50 time instants at constant slope, until they

reach the corresponding reference. Before we interpret the figure, it is important to clarify

that the y axis distances highlighted by arrows are of 2π radians and, therefore, the curves

with this separation correspond to the same physical orientation. In Fig 6.24a it can be

seen how robots that are not affected by the imposed constrains are capable of reacting to

the drastic orientation switch of the leaders. Furthermore, this modification outstandingly

improves the solution as agents tend to maintain their heading orientation more robustly

than in the vanilla experiment (see Fig. 6.21). For instance, in the last 200 time steps, it is

clearly visible that the robots correctly preserve their orientation, facing towards the direction

imposed by the ”uncontrollable” agents. From a general perspective, Fig 6.24b displays

the misalignment metric using 50 simulation trials and varying the number of robots that

belong to the ”uncontrollable” subset of agents. Firstly, note that there is a misalignment

increase at time steps 200 and 600, due to the goal direction introduction and alteration,

respectively. Interestingly, as the number of robots subject to the new mechanics increase,

the misalignment metric improves. In fact, 4 uncontrollable robots generally results in the

lowest misalignment, albeit the time needed to reach steady state is longer. The reason of

this observation is that a small number of robots changing their orientation are not enough

to change the group orientation consensus. Apart from serving as a robustness evaluation

method, the implemented alteration tries to simulate a scenario in which some leading robots

are aware of a goal location and rotate until their headings point to the objective. In this

way, they indirectly communicate the location of some objective with its orientation. Then,

the rest of the robots mimic the heading direction of the leaders in order to reach orientation

6.3. Experiment C: Orientation consensus 85

consensus. Alternatively, this condition is also suitable for accomplishing one of the principal

pillars of flocking, in which several robots decide the movement direction of the flock.

100 200 300 400 500 600 700
Time

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
isa

lig
nm

en
t

Message Inhibited
Reception Orientation Inhibited
Transmission Orientation Inhibited

No Inhibition

Figure 6.25: Temporal evolution of the misalignment metric (see Eq. 6.2) distribution using 50

simulation trials and for different inhibited communication inforamtion. The darker curves represent

the median of the misalignment using all 50 collected samples. Alternatively, the clearer areas indicate,

at each time instant, the first and third quantiles.

Communication: We now analyze the emerged communication mechanics and the com-

munication information that is relevant for solving the task. Firstly, Fig. 6.25 shows the

misalignment evolution when different variables are suppressed. As in previous figures, the

darker curves denote the median sample estimate and the extremities of the shadows indicate

the first and third quantiles. The deletion of the message, the transmission orientation and the

reception orientation are considered by replacing by zeros the variable content at the CTRNN

input level. The state of the communication was not studied because we observed that all

the robots are always in the send mode. The curves in the figure indicate that the reception

and transmission orientations are both crucial for solving the problem. On the contrary, it

can be visualized that the message suppression leads to an equivalent misalignment evolution

compared to the normal conditions. Therefore, apparently, this fact suggests that the message

content by itself is not relevant for the experiment.

However, Fig. 6.26 provides a different perspective that refutes the previous statement.

It compares the orientation temporal evolution for a trial. Black curves represent the

orientations of the robots in the trial with normal conditions and, alternatively, red curves

depict simulations with message content deleted. Clearly, the message content is used by the

optimized CTRNN for drastically reducing the angular velocity of rotation while preserving

the alignment with other agents (compare the slopes of the curve bundles). This property is

not reflected in the misalignment metric and, thus, Fig. 6.26 incorrectly shows the message

usefulness. To summarize, while the message reception and transmission orientations are

principally used to fulfill the orientation consensus, the message content is complementarily

harnessed for reducing the robots velocity, once aligned.

The violin plots displayed in Fig. 6.27 illustrate how the reception and transmission

orientations are used to reach alignment. A violin plot is a descriptive statistics tool mainly

used for visualizing the kernel density plots of continuous variables conditioned to the classes

of categorical variables. In this case, each violin plot shows the estimated PDF of the wheel

86 6. Results

0 100 200 300 400 500 600 700
Time

15.0
12.5
10.0
7.5
5.0
2.5
0.0
2.5
5.0

Or
ie

nt
at

io
n

(ra
d)

Message Inhibited
No Inhibition

Figure 6.26: Temporal evolution of the orientation of the robots in a simulation with any

communication variable inhibited (black) and with the message content inhibited (red). Curves

in each color represent the orientations of the robots in the swarm in the corresponding

simulation conditions. The orientation range of [0, 2π] is extended to the R set merely for

visualization purposes.

0 90 180 270
Communication Reception Orientation

0.2

0.1

0.0

0.1

0.2

W
he

el
 A

ct
ua

to
r

Communication Transmission Orientation
0
90
180
270

Figure 6.27: Violin plot of the wheel actuator (rotation) conditioned to the communication

transmission orientation (θTX) and the communication reception orientation (θRX). A violin

plot represents the kernel density estimation of each conditional distrubution.

action generated by the CTRNN conditioned by the orientations from where the input message

was received and sent. All the conditioned distributions have enough samples to construct

reliable kernel density estimates. Firstly, it is important to remark that an agent is aligned

with the robot that transmitted the input message when the following condition is met:

|θTX − θRX | = 180 (6.3)

Note that all the violin plots that fulfill this condition have a similar kernel density estimate,

6.4. Experiment D: Light follower 87

whose samples are mainly gathered around 0 and -0.05. This observation indicates that when

the robot is aligned, its wheel action tends to be zero (and thus the robot stops its rotation).

In the other cases, the action is positive or negative, meaning clockwise or counterclockwise

rotation, depending on whether the difference |θTX − θRX | is lower or greater than 180. For

instance, provided that the reception orientation is 270°, the action is positive when the

transmission orientation is 180° and negative when it is 0°.

False True
Pairwise Orientation Consesnus

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Es
tim

at
ed

 P
ro

po
rti

on

Transmitted Message
0.0
0.33

Figure 6.28: Proportion estimates and 95 % confidence intervals of the times each symbol

is transmitted conditioned to the status of pairwise communication. Pairwise communication

indicates if the sender and the receiver agents fulfill condition 6.3.

Regarding the exact role of the message content in the communication, Fig. 6.28 exposes the

estimate of the proportion of times that a robot transits each symbol message when pairwise

alignment is fulfilled. The CTRNN only generates symbols (0, 0)> and (0.33, 0.33)> and,

thus, only those symbols are depicted in the figure. In addition to the point estimates, the

plot additionally illustrates the confidence intervals with 95% of confidence level (see 6.1).

By pairwise orientation consensus or alignment we refer to the situation in which, for a time

instant, the sender and receiver agents fulfill the condition 6.3. It can be observed that

when pairwise orientation consensus is reached, the symbol (0.33, 0.33)> is mostly generated.

Alternatively, when robots are not aligned, there is not statistically significant difference

in the proportion of times that each symbol is generated. This information matches with

the observations of Fig. 6.26, indicating the relevance of the message content once orientation

consensus is achieved. Nonetheless, a finer and more detailed statistical analysis of the precise

communication mechanics is left as future work.

6.4 Experiment D: Light follower

The generational evolution of the achieved fitness in the light follower experiment is presented

in Fig. 6.29. As in previous sections, it shows the mean, maximum and minimum fitness values

in each generation for both GA and SNES. Clearly, SNES outperforms GA with a convergence

average fitness of 0.7. Therefore, in the behavioral and communication analysis, the solution

provided by SNES is addressed in detail.

Behavior: The emerged behavior that is observed in the experiment of light or objective

follower correctly solves the task. However, it involves several issues that are described

88 6. Results

0 100 200 300 400 500 600
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

GA
SNES

Figure 6.29: Evolution of the fitness function with the generations of GA and SNES in the

light follower task. In each generation, the darker curves are the sample mean fitness scores

and the upper and lower contours of the shadow areas represent the maximum and minimum

fitness values.

subsequently. If the small subset of robots that can sense the light enter into the light source

range, they instantaneously approach and reach the goal position. Moreover, these agents

maintain a highly reliable tracking of the light once they capture it. The main issue is that

the behavior of seeking the light source when they do not sense it has not emerged at all. A

highly probable reason is that any agent measuring zero light intensity throughout its sensors

considers itself as a non photosensitive robot, albeit it may not be the case. Alternatively, the

observed behavior of agents whose light sensor is disabled is that they tend to cluster with

neighboring agents. Therefore, a behavior of agent aggregation, which is also an interesting

problem, has emerged from a light follower experiment. Agents that cannot sense the light

source tend to the position of their potentially photosensitive neighbors, that could act as

guides to the light source. Fig. 6.30 exemplifies this behavior by means of plotting the Torus

0 200 400 600 800
Time

0.0

0.5

1.0

1.5

2.0

Di
st

an
ce

 to
 li

gh
t s

ou
rc

e
(m

)

Robots not sensitive to light
Robot sensitive to light

(a) Distances of robots to light source position

0 200 400 600
Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Di
st

an
ce

 sw
ar

m
 c

en
te

r o
f m

as
s (

m
)

Robots not sensitive to light

Robot sensitive to light

(b) Distances of robots to swarm center of mass

Figure 6.30: Torus distance dT of each robot in the swarm to the light source position in (a)

and to the center of mass of the swarm, in (b).

6.4. Experiment D: Light follower 89

distance dT of each robot to the light source position, in (a), and to the center of mass of the

swarm, in (b). We distinguish between photosensitive (red) and non photosensitive (black)

robots. In this case, there are 10 robots, from which only 2 of them can sense the light. In

Fig. 6.30a, photosensitive robots’ distance to the light is utterly low, albeit there are short

periods of time when they momentarily move away from light. Nonetheless, these periods,

that also correspond to the rest of robots approaching to the light source, happen because

the light source reverts its movement direction (recall from Section 5.4 that the light source

describes a circular trajectory whose rotation sense can be inverted with small probability).

The sense inversion results in a drastic rotation (of 180 degrees) of the robots in order to

follow the light source in the opposite direction. Regarding the non-photosensitive robots,

their distance to the light is much larger, being generally about 1m, at most (note that

0.8m is the sensing range of the light sensor in this experiment). Alternatively, Fig. 6.30b

displays the distances to the center of mass of the swarm. Opposite to Fig. 6.30a, this

plot shows that photosensitive robots are the farthest agents to the center of the group.

Essentially, robots represented by red curves closely follow the target light while the rest of

the swarm group together and follow the photosensitive agents from the distance. Although

(a) Time step 1 (b) Time step 10 (c) Time step 30 (d) Time step 50

(e) Time step 80 (f) Time step 100 (g) Time step 200 (h) Time step 300

(i) Time step 500 (j) Time step 600 (k) Time step 700 (l) Time step 800

Figure 6.31: Snapshots of different time instants in a simulation of the light follower

experiment. Blue dots depict the robots in the swarm and red arrows show the orientations

of the agents. The red ball the is the light source, whose coverage or area where a robot can

sense its emitted light is delimited by a red circumference.

it is not depicted in the figure, it is also important to mention that there are trials in which

90 6. Results

the aggregated agents lose communication with the photosensitive robots, resulting in the

breakup of the swarm compactness. Figure 6.31 shows frames of a simulation trajectory in

this experiment. Blue balls denote robots with light sensor disabled and black ball represents

the photosensitive agent (in this trial there is a single robot of this kind). Red segments

illustrate robot’s orientation and the red ball depicts the moving light source. Additionally,

the red circumference delimits the farthest position from where light can be measured by

any agent. As in previous experiments, a significant sample of simulation trials is collected.

0 200 400 600
Time

0.0

0.5

1.0

1.5

2.0

Di
st

an
ce

 to
 li

gh
t s

ou
rc

e
(m

)

Robots not sensitive to light
Robots sensitive to light

(a) Distances of robots to light source position

0 200 400 600 800
Time

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Di
st

an
ce

 to
 c

en
te

r o
f m

as
s (

m
)

Robots not sensitive to light
Robots sensitive to light

(b) Distances of robots to swarm center of mass

Figure 6.32: Torus distance dT distribution of robots to the light source position in (a) and

to the center of mass of the swarm, in (b), using 50 trials. Darker curves represent the

median evolution and the contours of the shadows are the first and third quantiles. In both

subfigures, the black distribution encompasses the robots that cannot sense the light, while the

red distribution corresponds to photosensitive robots.

Fig. 6.32 represents the sampled distribution of the mean distance to the light source (a) and

to the center of mass of the swarm (b) of the robots. The darker lines illustrate the sample

median values and the shadow areas’ contours show the first and third quantiles. Finally, the

behavior of the solution to this experiment can be observed in video format 4.

Scalability: The number of robots is varied in order to assess the scalability of the

solution. Fig. 6.33 gathers the results for 5, 10, 15 and 20 swarm sizes. In this case, Fig. 6.33a

illustrates the distribution of the mean distance of the agents with light sensor disabled to

the light source and Fig. 6.33b shows the distribution of the mean distance of photosensitive

robots. Again, dark curves and shadow areas expose the median values and quantiles. It

can be observed that the performance worsens in the case of non-photosensitive robots as

swarm size increases. This degradation is principally caused by the fact that robots tend to

aggregate and ignore photosensitive agents due to the large swarm size. In the case of agents

sensitive to light, there is no evident degradation as the number of robots increase.

Robustness: In order to verify the robustness capabilities, we consider the following test.

The trajectory followed by the light, used during the evolution phase, is replaced by a different

one. The motivation of this modification is to validate that the light follower agents’ behavior

is not overfitted to the exposed light movement patterns. The novel trajectory described by

the light is as follows. Every 50 time steps, a target position xtar is randomly sampled within

the torus. Thereafter, the position of the light is updated as,

xl(k + 1) = xl(k) + α (xtar(k)− xl(k)) (6.4)

4https://youtu.be/HXLStH5za6Q

6.4. Experiment D: Light follower 91

0 200 400 600
Time

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Di

st
an

ce
 to

 li
gh

t s
ou

rc
e

(m
)

5 Robots
10 Robots
15 Robots
20 Robots

(a) Distances of non-photosensitive robots to

light source position

0 200 400 600
Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Di
st

an
ce

 to
 li

gh
t s

ou
rc

e
(m

)

5 Robots
10 Robots
15 Robots
20 Robots

(b) Distances photosensitive robots to light source

position

Figure 6.33: Scalability assessment in the light follower experiment. In both subfigures and

for each swarm size, the darker curves represent the median evolution and the contours of the

shadows are the first and third quantiles.

4.0 4.5 5.0 5.5 6.0
x

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

y

Figure 6.34: Example of altered trajectory of the light source used to assess the robustness in

the light follower experiment. Red lines trace the light trajectory and black points show the

sampled xtar positions.

where α is a step size. More intuitively, the light source will describe linear trajectories

between sampled xtar points. When it reaches xtar position, the light source oscillates around

the target coordinates until a new position is sampled. Fig. 6.34 shows an example of the new

trajectory of the light source, highlighting in black the sampled target positions. Once the

trajectory is described, Figure 6.35 compares the performance in terms of the mean distance

of the robots to the light for the novel and former trajectories. Curiously, the results show

that the performance is slightly increased in the case of the robots with light sensor disabled

and decreased when showing the distances of the photosensitive agents. However, in the light

of the figures, it can be stated that the swarm behavior is generalizes properly with new light

movement patters. It is also worth mentioning that the use of just few robots capable of

sensing light is itself an evidence of robustness. Specifically, provided that there is at least

one active photosensitive robot in the swarm, the group of robots can acceptably solve the

task when a robot failure happens.

Communication: The communication mechanisms underlying the swarm behavior are

92 6. Results

100 200 300 400 500 600 700
Time

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Di
st

an
ce

 to
 li

gh
t s

ou
rc

e
(m

)

Normal Trajectory
Altered Trajectory

(a) Distances of non-photosensitive robots to

light source position

0 200 400 600
Time

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Di
st

an
ce

 to
 li

gh
t s

ou
rc

e
(m

)

Normal Trajectory
Altered Trajectory

(b) Distances of photosensitive robots to light

source position

Figure 6.35: Robustness assessment. It compares the distributions of the distances to the light

for the orbit trajectory used during evolution and the new altered trajectory (see Eq. 6.4).

0 100 200 300 400 500 600 700
Time

0.5

1.0

1.5

2.0

2.5

3.0

Di
st

an
ce

 to
 li

gh
t s

ou
rc

e
(m

)

Direction Inhibited
Signal Intensity Inhibited

No Inhibition
Message Inhibited

(a) Distances of non-photosensitive robots to light

source position

0 100 200 300 400 500 600 700 800
Time

0.0

0.5

1.0

1.5

2.0

Di
st

an
ce

 to
 li

gh
t s

ou
rc

e
(m

)

No Inhibition
Message Inhibited

Direction Inhibited
Signal Intensity Inhibited

(b) Distances of photosensitive robots to light

source position

Figure 6.36: Comparison of distance dT to the light position when different communication

variables are inhibited and in normal conditions (no inhibition). In both subfigures and for

each swarm size, the darker curves represent the median evolution and the contours of the

shadows are the first and third quantiles.

exposed hereafter. Firstly, the performance is tested when inhibiting or canceling each

communication variable at CTRNN level. Fig. 6.36 shows how the deletion of the inputs

affects on the mean distance to the light. Fig. 6.36a includes the robots that cannot sense the

light while Fig. 6.36b depicts the photosensitive agent mean distances. The curves suggest

that the message content is not relevant for solving the problem. In the light of the green and

red curves, the orientation from where the message was received and the signal strength sensed

are important communication variables used by the CTRNN in some manner. It should be

mentioned that the state of the communication is not shown in the figure because it is set to

send mode in the totality of the samples.

In order to analyze the relation between the communication information and the wheel

actions, the difference between the right wheel action and the left wheel action, defined as

awl − awr is considered. Thereafter, taking into account the fact that, in this experiment,

awl, awr ∈ [0, 1] the following scenarios describe the possible robot movement patterns:

6.4. Experiment D: Light follower 93

• If awl − awr ≈ 0 then the robot approximately moves forward.

• If awl − awr < 0 then the robot turns to the left.

• If awl − awr > 0 then the robot turns to the right.

• In the two latter cases, the rotation will be more abrupt for larger values of |awl−awr|.

Fig. 6.37a shows boxplots representing the distribution of the wheel difference awl − awr
conditioned to the orientation from where the maximum light intensity was sensed. Only

the data recorded from photosensible agents is used. Reasonably, when the agent measures

maximum light intensity from its heading direction, at 0°, it goes forward. In the other

situations, the wheel actions generally conduct the robot rotation in the correct direction,

albeit there is high variance in the distributions. Moreover, Fig. 6.37b illustrates the joint

0 60 120 180 240 300
Orientation max. light sensed (degrees)

1.0

0.5

0.0

0.5

1.0

a w
l

a w
r

(a)

0.0 0.2 0.4 0.6 0.8 1.0Signal Intensity
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
a w

l -
a w

r

(b)

Figure 6.37: (a) Boxplots representing the distribution of awl − awr for different orientations

where maximum light intensity was measured. In the boxplots, the black line within the box is

the median and each box encloses samples in between the first and third quantile, also known

as the interquartile range. The whiskers extend to the farthest data points that are within 1.5

times the interquartile range. Outliers are shown as outer dots. (b) Kernel density estimate

of the bivariate distribution of awl − awr and the signal intensity of the received message.

Each color represents the contour curves of the distributions for different message reception

orientations.

distribution of the signal intensity of the received message and the wheel action difference

conditioned to the orientation from where the message was received. The distributions,

represented as contour plots, are approximated as the kernel density estimates. The curves

located at the upper and right sides depict the estimations of the marginal distributions. The

figure clearly shows that when the message sender is in front of the robot (blue contours),

the agent moves straight forward in order to reach the sender’s position. Alternatively, if the

emitter is on its right side (in red) it turns right and when the sender is on its left side (in

magenta) it turns left.

94 6. Results

Chapter 7

Conclusions and Future Lines

7.1 Conclusions

This Master Thesis is framed within the intersection of the soft computing fields of swarm

intelligence, evolutionary computation and artificial neural networks. Specifically, a set of

robotics tasks were proposed and solved using a swarm of homogeneous simulated robots,

controlled by Continuos-Time Recurrent Neural Networks (CTRNN). The neural controllers

are optimized using the following evolutionary computation algorithms: genetic algorithm

(GA) and Separable Natural Evolution Strategies (SNES). The experiments faced were the

leader selection, swarm borderline identification, orientation consensus and light following

tasks. The proposed experiments required, at some extent, the cooperative interaction

and communication among robots, that are incapable of solving the problem individually.

Therefore, we proposed a minimal communication system and, as one of the main objectives of

the Master Thesis, analysed the emerged communication mechanics that result from evolution.

In addition to the quantized real vector message, the communication also carries the context

of the message (signal strength, orientation, and so on). Moreover, a communication state was

designed so that an agent can decide on whether it sends its own message or relays the message

that was received. The communication is minimal for several reasons: the communication is

local in the sense an agent can only interact with other robots within a small neighboring

range. Additionally, an agent can only communicate with one robot per time step and

only the context information of the corresponding message can be acquired. Besides, the

context information related to the orientation from where the message was sensed is highly

discretized to four possible angles, utterly complexifying the interaction. All the required

functionalities, robotics simulations, algorithms and neural models were also implemented in

a software simulator as part of this Master Thesis.

The evolved controllers successfully solved each of the designed tasks with both GA and

SNES. The only exception is the GA algorithm used in the leader selection experiment,

which was not able to reach a good enough solution. SNES solved all the tasks with

outstanding performance, and outperformed GA, in terms of mean fitness score, in all the

experiments except in the borderline identification problem. In each experiment, apart from

the behavior of the evolved swarm and its performance, we assessed the scalability and

robustness capabilities of the solutions. These properties are utterly desirable in swarm

robotics systems. The scalability was tested by varying the number of robots and observing

the consequent behavioral and performance alterations. For the robustness, we designed a

task specific perturbation or failure (e.g. robot fault or abrupt swarm topology change) and

observed how the system responses and adapts to such undesired perturbations. In all the

tasks, both scalability and robustness properties were, in general, correctly acquired, leading

to a remarkably complete swarm robotics system that uses minimal communication means.

95

96 7. Conclusions and Future Lines

Furthermore, the communication that emerged from evolution was studied both using a single

simulation trial and harnessing statistical tools with a large number of simulations, for the

generation of reliable results. From this study, different types of communication emerged

in each experiment. In the leader election task, the robots absolutely ignored the message

context and purely rely on the communication state and the message, albeit the message is

uniquely used as a binary flag to communicate that the robot is claiming the leadership.

Subsequently, the observed communication in the case of the borderline identification is

purely situated as only the context carries information. Within the orientation consensus

problem the resulting interaction seems to rely both on the message and its context. It was

observed that the context is employed by the CTRNN to match the heading orientation with

its vicinity, while the message is harnessed for reducing the rotation speed once orientation

consensus is achieved. Finally, the light follower task was accomplished with purely situated

communication in which only the context of the message orientation and signal strength carry

information.

7.2 Future lines

Several future lines of research have appeared during the development of this Master Thesis.

Therefore, this subsection is dedicated to the enumeration and brief description of these

improvements. We envision three bifurcations that lead to the progress of this work from

different perspectives:

- Cognitive and communication improvements: encompasses the future lines

devoted to explore the SR interaction capabilities, with minimalistic communication

systems, and the limits of swarm robot’s behaviors. Firstly, as it was already mentioned

in Chapter 6, a deeper analysis of the precise communication mechanics that emerged

in the experiments of this Master Thesis has been left as future work, paying special

attention to the orientation consensus experiment. Besides, we have assessed the

suitability of using almost the same neural controller in all the experiments, but with

different and independent evolution trajectories. However, a remarkably interesting

extension is the experiment of evolving the same recurrent neural network for all the

proposed tasks, sequentially. This assessment would explore the limits of evolution and

generalization capabilities of swarm neural controllers. Additionally, another important

improvement is the addition of new SR tasks that require more abstract and complex

communication mechanics and semantics. Finally, a research line to be faced in the

future is related to the deepen into attractor theory and tools in recurrent neural

networks. Although we already used the described theory of attractors in Chapter 2

for the justification of the two different time scales (environment and neuronal), there

is still plenty of future research to be constructed on top of the presented theoretical

concepts. We distinguish two different work trajectories under the frame of attractors.

Firstly, the analysis of the emerged behaviors and communication at the neuronal level

by observing the attractors and the attractor transitions within the state space of the

network. Alternatively, a more appealing and challenging research line involves the

design and implementation of learning or evolution algorithms that directly optimize

the RNN at the attractor level.

- Algorithmic improvements: this bifurcation considers all the system enhancements

related to the employment of new optimization algorithms and artificial neural

networks. A particularly attractive evolution algorithm to be explored is the Neu-

roEvolution of Augmenting Topologies (NEAT) algorithm (see [79]), which optimizes

not only the weights of the synapses but also the neural architecture itself. Note that

the use of NEAT can be combined with the previously mentioned future line of evolving

7.2. Future lines 97

the same neural controller for task generalization. In this situation, it could be studied

how the algorithm extends or reduces the neural architecture in order to adapt its

policy to new tasks. Another important algorithm addition that is worth exploring

is the use of novelty search (see [47] and [81]) for the emergence of richer and more

complex swarm behaviors. Novelty search rewards agents for exploring new areas of the

behavioral space instead of using the fitness function as usual. Apart from the research

lines related to other evolutionary computation algorithms, the exploration of other

recurrent neural networks is also important. Specifically, building and evolving neural

controllers of spiking neural networks is a remarkable future line. Firslty, spiking neural

networks have been scarcely explored in swarm robotics and reinforcement learning

experiments. Furthermore, they are biologically realistic, highly powerful in tasks where

time is present and can be outstandingly efficient and fast in dedicated neuromorphic

hardware [101]. Spiking neural networks lead to the last algorithmic future line to

be considered, which is the combination of evolution with lifetime development of

the individuals, from a Baldwinian prospect. The lifetime learning in spiking neural

networks can be accomplished by means of local Hebbian based rules, such as Spike-

Timing-Dependent Plasticity (STDP) or three factor rules.

- Software improvements: the upgrades of the software simulator to be considered

in future versions are exposed in detail in Section 4.5. The most relevant ones are

the incorporation of 3D graphics and 3D physics, the exploration of new optimization

algorithms and the addition of other parallelization mechanics.

98 7. Conclusions and Future Lines

Bibliography

[1] Gerardo Beni. From swarm intelligence to swarm robotics. SAB’04, page 1–9, Berlin,

Heidelberg, 2004. Springer-Verlag.

[2] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. From Natural to Artificial Swarm

Intelligence. Oxford University Press, Inc., USA, 1999.

[3] Erol Sahin. Swarm robotics: From sources of inspiration to domains of application. In

Swarm Robotics, pages 10–20, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[4] Levent Bayındır. A review of swarm robotics tasks. Neurocomputing, 172:292 – 321,

2016.

[5] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm

robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7:1–41,

03 2013.

[6] Ying Tan and Zhong yang Zheng. Research advance in swarm robotics. Defence

Technology, 9(1):18 – 39, 2013.

[7] Vito Trianni, Roderich Gross, Thomas H. Labella, Erol Sahin, and Marco Dorigo.

Evolving aggregation behaviors in a swarm of robots. In Advances in Artificial Life,

pages 865–874, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[8] O. Soysal and E. Sahin. Probabilistic aggregation strategies in swarm robotic systems.

In Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., pages 325–

332, 2005.

[9] Melvin Gauci, Jianing Chen, Tony J. Dodd, and Roderich Gross. Evolving aggregation

behaviors in multi-robot systems with binary sensors. In Distributed Autonomous

Robotic Systems, pages 355–367, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[10] Ziya Firat, Eliseo Ferrante, Yannick Gillet, and Elio Tuci. On self-organised

aggregation dynamics in swarms of robots with informed robots. Neural Computing

and Applications, 32(17):13825–13841, 2020.

[11] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model.

SIGGRAPH Comput. Graph., 21(4):25–34, 1987.

[12] Rita Parada Ramos, Sancho Moura Oliveira, Susana Margarida Vieira, and

Anders Lyhne Christensen. Evolving flocking in embodied agents based on local and

global application of reynolds’ rules. PLOS ONE, 14(10):1–16, 10 2019.

[13] Ali Turgut, Hande Çelikkanat, Fatih Gökçe, and Erol Sahin. Self-organized flocking in

mobile robot swarms. Swarm Intelligence, 2:97–120, 12 2008.

99

100 BIBLIOGRAPHY

[14] Alfio Borz̀ı and Suttida Wongkaew. Modeling and control through leadership of a refined

flocking system. Mathematical Models and Methods in Applied Sciences, 25:255–282, 02

2015.

[15] Eliseo Ferrante, Ali Emre Turgut, Nithin Mathews, Mauro Birattari, and Marco Dorigo.

Flocking in stationary and non-stationary environments: A novel communication

strategy for heading alignment. In Parallel Problem Solving from Nature, PPSN XI,

pages 331–340, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[16] Joshua P. Hecker and Melanie E. Moses. Beyond pheromones: evolving error-tolerant,

flexible, and scalable ant-inspired robot swarms. Swarm Intelligence, 9:43–70, 2015.

[17] J. Ericksen, M. Moses, and S. Forrest. Automatically evolving a general controller for

robot swarms. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI),

pages 1–8, 2017.

[18] Yong Song, Xing Fang, Bing Liu, Caihong Li, Yibin Li, and Simon X. Yang. A novel

foraging algorithm for swarm robotics based on virtual pheromones and neural network.

Applied Soft Computing, 90:106156, 2020.

[19] Alexandre Campo and Marco Dorigo. Efficient multi-foraging in swarm robotics. In

Advances in Artificial Life, pages 696–705, Berlin, Heidelberg, 2007. Springer Berlin

Heidelberg.

[20] Alexandre Campo, Álvaro Gutiérrez, Shervin Nouyan, Carlo Pinciroli, Valentin

Longchamp, Simon Garnier, and Marco Dorigo. Artificial pheromone for path selection

by a foraging swarm of robots. Biological Cybernetics, 103:339–352, 2010.

[21] Thomas H. Labella, Marco Dorigo, and Jean-Louis Deneubourg. Division of labor in a

group of robots inspired by ants’ foraging behavior. ACM Trans. Auton. Adapt. Syst.,

1(1):4–25, 2006.

[22] James Wilson, Jon Timmis, and Andy Tyrrell. A hormone arbitration system for

energy efficient foraging in robot swarms. In Towards Autonomous Robotic Systems,

pages 305–316, Cham, 2018. Springer International Publishing.

[23] Javier de Lope, Daŕıo Maravall, and Yadira Quiñonez. Self-organizing techniques

to improve the decentralized multi-task distribution in multi-robot systems.

Neurocomputing, 163:47–55, 2015.

[24] Giovanni Pini, Arne Brutschy, Marco Frison, Andrea Roli, Marco Dorigo, and Mauro

Birattari. Task partitioning in swarms of robots: an adaptive method for strategy

selection. Swarm Intelligence, 5:283–304, 2011.

[25] B. Pang, C. Zhang, Y. Song, and H. Wang. Self-organized task allocation in swarm

robotics foraging based on dynamical response threshold approach. In 2017 18th

International Conference on Advanced Robotics (ICAR), pages 256–261, 2017.

[26] Lorenzo Garattoni and Mauro Birattari. Autonomous task sequencing in a robot swarm.

Science Robotics, 3(20), 2018.

[27] Arne Brutschy, Giovanni Pini, Carlo Pinciroli, Mauro Birattari, and Marco Dorigo.

Self-organized task allocation to sequentially interdependent tasks in swarm robotics.

Autonomous Agents and Multi-Agent Systems, 28:101–125, 2014.

BIBLIOGRAPHY 101

[28] Manuel Castillo-Cagigal, Arne Brutschy, Alvaro Gutiérrez, and Mauro Birattari.

Temporal task allocation in periodic environments. In Swarm Intelligence, pages 182–

193, Cham, 2014. Springer International Publishing.

[29] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-

assembly in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

[30] Mehmet Serdar Güzel and Hakan Kayakökü. A collective behaviour framework for

multi-agent systems. In Mechatronics and Robotics Engineering for Advanced and

Intelligent Manufacturing, pages 61–71, Cham, 2017. Springer International Publishing.

[31] Valery Karpov and Irina Karpova. Leader election algorithms for static swarms.

Biologically Inspired Cognitive Architectures, 12:54 – 64, 2015.

[32] Joshua Cherian Varughese, Hannes Hornischer, Payam Zahadat, Ronald Thenius, Franz

Wotawa, and Thomas Schmickl. A swarm design paradigm unifying swarm behaviors

using minimalistic communication. Bioinspiration & Biomimetics, 15(3):036005, 2020.

[33] Michael Rubenstein, Adrian Cabrera, Justin Werfel, Golnaz Habibi, James McLurkin,

and Radhika Nagpal. Collective transport of complex objects by simple robots:

Theory and experiments. In Proceedings of the 2013 International Conference on

Autonomous Agents and Multi-Agent Systems, AAMAS ’13, page 47–54, Richland, SC,

2013. International Foundation for Autonomous Agents and Multiagent Systems.

[34] Serge Kernbach, Dagmar Häbe, Olga Kernbach, Ronald Thenius, Gerald Radspieler,

Toshifumi Kimura, and Thomas Schmickl. Adaptive collective decision making in

limited robot swarms without communication. The International Journal of Robotics

Research, 32:35–55, 01 2013.

[35] William M. Spears, Diana F. Spears, Jerry C. Hamann, and Rodney Heil. Distributed,

physics-based control of swarms of vehicles. Autonomous Robots, 17:137–162, 2004.

[36] Attilio Priolo. Swarm aggregation algorithms for multi-robot systems. PhD thesis,

University of Roma Tre, 2013.

[37] Stefano Nolfi and Dario Floreano. Evolutionary Robotics: The Biology, Intelligence,

and Technology of Self-Organizing Machines. The MIT Press, Cambridge, MA., 2000.

[38] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architectures

to learning. Evolutionary Intelligence, 1(1):47–62, 2008.

[39] G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and S. Nolfi.

Self-organized coordinated motion in groups of physically connected robots. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(1):224–239,

2007.

[40] Gianluca Baldassarre, Stefano Nolfi, and Domenico Parisi. Evolving mobile robots able

to display collective behaviors. Artificial life, 9:255–67, 02 2003.

[41] Randall D. Beer and John C. Gallagher. Evolving dynamical neural networks for

adaptive behavior. Adapt Behav, 1(1):91–122, 1992.

[42] Elio Tuci, Boris Mitavskiy, Stefano Benedettini, and Gianpiero Francesca. On

the evolution of self-organised role-allocation and role-switching behaviour in swarm

robotics: a case study. pages 379–386, 12 2012.

102 BIBLIOGRAPHY

[43] Alvaro Gutiérrez, Elio Tuci, and Alexandre Campo. Evolution of neuro-controllers

for robots’ alignment using local communication. International Journal of Advanced

Robotic Systems, 6, 03 2009.

[44] Muhanad Alkilabi, Aparajit Narayan, and Elio Tuci. Cooperative object transport with

a swarm of e-puck robots: robustness and scalability of evolved collective strategies.

Swarm Intelligence, 11:185–209, 2017.

[45] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc., USA, 1989.

[46] Eric Medvet, Stefano Seriani, Alberto Bartoli, and Paolo Gallina. Design of

powered floor systems for mobile robots with differential evolution. In Applications

of Evolutionary Computation, pages 19–32, Cham, 2019. Springer International

Publishing.

[47] Jorge Gomes, Paulo Urbano, and Anders Lyhne Christensen. Introducing novelty search

in evolutionary swarm robotics. In Swarm Intelligence, pages 85–96, Berlin, Heidelberg,

2012. Springer Berlin Heidelberg.

[48] Miguel Duarte, Jorge Gomes, Vasco Costa, Sancho Moura Oliveira, and Anders Lyhne

Christensen. Hybrid control for a real swarm robotics system in an intruder detection

task. In Applications of Evolutionary Computation, pages 213–230, Cham, 2016.

Springer International Publishing.

[49] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen

Schmidhuber. Natural evolution strategies. J. Mach. Learn. Res., 15(1):949–980, 2014.

[50] Tom Schaul, Tobias Glasmachers, and Jürgen Schmidhuber. High dimensions and heavy

tails for natural evolution strategies. In Proceedings of the 13th Annual Conference on

Genetic and Evolutionary Computation, GECCO ’11, page 845–852. Association for

Computing Machinery, 2011.

[51] Y. Uny Cao, Alex S. Fukunaga, and Kahng Andrew. Cooperative mobile robotics:

antecedents and directions. Autonomous Robots, 4:7–27, 1997.

[52] Farshad Arvin, Khairulmizam Samsudin, and Abdul Ramli. Development of ir-based

short-range communication techniques for swarm robot applications. Advances in

Electrical and Computer Engineering, 10(4):61–68, 2010.

[53] Serge Kornienko, Olga Kornienko, and P. Levi. Ir-based communication and perception

in microrobotic swarms. IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS’05), 2005.

[54] Gutiérrez Alvaro, Alexandre Campo, Marco Dorigo, Amor Daniel, Luis Magdalena,

and Monasterio-Huelin Félix. An open localization and local communication embodied

sensor. Sensors, 8:7545–7563, 2008.

[55] Onofrio Gigliotta, Marco Mirolli, and Stefano Nolfi. Communication based dynamic role

allocation in a group of homogeneous robots. Natural Computing, 13:391–402, 2014.

[56] S. Kornienko, O. Kornienko, and P. Levi. Collective ai: Context awareness via

communication. In Proceedings of the 19th International Joint Conference on Artificial

Intelligence, IJCAI’05, page 1464–1470, San Francisco, CA, USA, 2005. Morgan

Kaufmann Publishers Inc.

BIBLIOGRAPHY 103

[57] Baoding Zhang and Shulan Gao. The study of zigbee technology’s application in

swarm robotics system. In 2011 2nd International Conference on Artificial Intelligence,

Management Science and Electronic Commerce (AIMSEC), pages 1763–1766, 2011.

[58] Ulf Witkowski and Reza Zandian. Novel method of communication in swarm robotics

based on the nfc technology. pages 377–389, 06 2014.

[59] Türker Türkoral, Özgür Tamer, Suat Yetiş, and Levent Çetin. Indoor localization for

swarm robotics with communication metrics without initial position information. In

Mechatronics and Robotics Engineering for Advanced and Intelligent Manufacturing,

pages 207–215, Cham, 2017. Springer International Publishing.

[60] Elio Tuci and Christos Ampatzis. Evolution of acoustic communication between two

cooperating robots. volume 4648, pages 395–404, 09 2007.

[61] Kasper Støy. Using situated communication in distributed autonomous mobile robotics.

In Proceedings of the Seventh Scandinavian Conference on Artificial Intelligence, SCAI

’01, page 44–52, NLD, 2001. IOS Press.

[62] Joachim de Greeff and Stefano Nolfi. Evolution of Implicit and Explicit Communication

in Mobile Robots, pages 179–214. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[63] Tiago Rodrigues, Miguel Duarte, Sancho Oliveira, and Anders Lyhne Christensen.

Beyond onboard sensors in robotic swarms. In Proceedings of the International

Conference on Agents and Artificial Intelligence - Volume 2, ICAART 2015, page

111–118, Setubal, PRT, 2015. SCITEPRESS - Science and Technology Publications,

Lda.

[64] Ah Chung Tsoi and Andrew Back. Discrete time recurrent neural network architectures:

A unifying review. Neurocomputing, 15(3):183–223, 1997.

[65] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9:1735–80, 12 1997.

[66] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation, 2014.

[67] Bard Ermentrout and David Terman. The Mathematical Foundations of Neuroscience,

volume 35. 07 2010.

[68] Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press, 2002.

[69] Gabriel Kreiman. Neural coding: computational and biophysical perspectives. Physics

of Life Reviews, 1(2):71–102, 2004.

[70] Simon S. Haykin. Neural Networks and Learning Machines. Pearson Education, third

edition, 2009.

[71] R. Chaudhuri and I Fiete. Computational principles of memory. Nature Neuroscience,

19(3):394–403, 2016.

[72] Razvan Pascanu and Herbert Jaeger. A neurodynamical model for working memory.

Neural Networks, 24(2):199 – 207, 2011.

104 BIBLIOGRAPHY

[73] Mikhail Rabinovich and Pablo Varona. Robust transient dynamics and brain functions.

Frontiers in Computational Neuroscience, 5:24, 2011.

[74] Mikhail I. Rabinovich and Pablo Varona. Discrete sequential information coding:

Heteroclinic cognitive dynamics. Frontiers in Computational Neuroscience, 12:73, 2018.

[75] J J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences,

79(8):2554–2558, 1982.

[76] C. Eliasmith. A unified approach to building and controlling spiking attractor networks.

Neural Computation, 17(6):1276–1314, 2005.

[77] Faustino Gomez, Jürgen Schmidhuber, and Risto Miikkulainen. Efficient non-linear

control through neuroevolution. In Machine Learning: ECML 2006, pages 654–662,

Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[78] Faustino J. Gomez. Robust Non-Linear Control through Neuroevolution. PhD thesis,

Department of Computer Sciences, The University of Texas at Austin, 2003.

[79] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through

augmenting topologies. Evol. Comput., 10(2):99–127, 2002.

[80] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. A hypercube-based

encoding for evolving large-scale neural networks. Artif. Life, 15(2):185–212, 2009.

[81] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth

Stanley, and Jeff Clune. Improving exploration in evolution strategies for deep

reinforcement learning via a population of novelty-seeking agents. In Advances in Neural

Information Processing Systems, volume 31, pages 5027–5038. Curran Associates, Inc.,

2018.

[82] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution

strategies as a scalable alternative to reinforcement learning, 2017.

[83] B. Miller and D. Goldberg. Genetic algorithms, tournament selection, and the effects

of noise. Complex Syst., 9, 1995.

[84] Larry J. Eshelman and J. David Schaffer. Real-coded genetic algorithms and interval-

schemata. In Foundations of Genetic Algorithms, volume 2, pages 187 – 202. Elsevier,

1993.

[85] Francisco Herrera, Manuel Lozano, E. Pérez, A. M. Sánchez, and P. Villar. Multiple

crossover per couple with selection of the two best offspring: An experimental study

with the blx-alpha crossover operator for real-coded genetic algorithms. In Proceedings

of the 8th Ibero-American Conference on AI: Advances in Artificial Intelligence, page

392–401, 2002.

[86] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Comput.,

10(2):251–276, 1998.

[87] Tobias Glasmachers, Tom Schaul, Sun Yi, Daan Wierstra, and Jürgen Schmidhuber.

Exponential natural evolution strategies. In Proceedings of the 12th Annual Conference

on Genetic and Evolutionary Computation, GECCO ’10, page 393–400. Association for

Computing Machinery, 2010.

BIBLIOGRAPHY 105

[88] Michel Marie Deza and Elena Deza. Encyclopedia of Distances. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2009.

[89] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-

robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154, 2004.

[90] Olivier Michel. Cyberbotics ltd. webots�: Professional mobile robot simulation.

International Journal of Advanced Robotic Systems, 1(1):5, 2004.

[91] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele

Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick Ducatelle,

Mauro Birattari, Luca Maria Gambardella, and Marco Dorigo. Argos: a modular,

parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4):271–

295, 2012.

[92] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence Stewart,

Daniel Rasmussen, Xuan Choo, Aaron Voelker, and Chris Eliasmith. Nengo: a python

tool for building large-scale functional brain models. Frontiers in Neuroinformatics,

7:48, 2014.

[93] Dan Goodman and Romain Brette. The brian simulator. Frontiers in Neuroscience,

3:26, 2009.

[94] Hananel Hazan, Daniel J. Saunders, Hassaan Khan, Devdhar Patel, Darpan T.

Sanghavi, Hava T. Siegelmann, and Robert Kozma. Bindsnet: A machine learning-

oriented spiking neural networks library in python. Frontiers in Neuroinformatics,

12:89, 2018.

[95] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner Gardner,

Marc Parizeau, and Christian Gagné. Deap: Evolutionary algorithms made easy. J.

Mach. Learn. Res., 13(1):2171–2175, July 2012.

[96] David E. Moriarty. Symbiotic Evolution Of Neural Networks In Sequential Decision

Tasks. PhD thesis, Department of Computer Sciences, The University of Texas at

Austin, 1997.

[97] Jackie Shen. Cucker–smale flocking under hierarchical leadership. SIAM Journal of

Applied Mathematics, 68:694–719, 01 2007.

[98] Matt Quinn, Lincoln Smith, Giles Mayley, and Phil Husbands. Evolving controllers

for a homogeneous system of physical robots: Structured cooperation with minimal

sensors. Philosophical transactions. Series A, Mathematical, physical, and engineering

sciences, 361:2321–43, 11 2003.

[99] Ovunc Tuzel, Gilberto Marcon dos Santos, Chloë Fleming, and Julie A. Adams.

Learning based leadership in swarm navigation. In Swarm Intelligence, pages 385–394,

Cham, 2018. Springer International Publishing.

[100] Herbert Edelsbrunner. Alpha shapes—a survey. Tessellations in the Sciences, 01 2010.

[101] A. R. Young, M. E. Dean, J. S. Plank, and G. S. Rose. A review of spiking neuromorphic

hardware communication systems. IEEE Access, 7:135606–135620, 2019.

[102] Robin Murphy, Satoshi Tadokoro, Daniele Nardi, Adam Jacoff, Paolo Fiorini, Howie

Choset, and Aydan Erkmen. Search and Rescue Robotics, pages 1151–1173. 01 2008.

106 BIBLIOGRAPHY

[103] M. Bakhshipour, M. Jabbari Ghadi, and F. Namdari. Swarm robotics search and rescue:

A novel artificial intelligence-inspired optimization approach. Applied Soft Computing,

57:708 – 726, 2017.

[104] Mauro S. Innocente and Paolo Grasso. Self-organising swarms of firefighting drones:

Harnessing the power of collective intelligence in decentralised multi-robot systems.

Journal of Computational Science, 34:80 – 101, 2019.

[105] Gustavo Pessin, DanielO Sales, Mauricio Dias, Rafael Klaser, DenisF Wolf, Jó Ueyama,

Fernando Osorio, and PatŕıciaA Vargas. Swarm intelligence and the quest to solve a

garbage and recycling collection problem. Soft Computing, 17:1–15, 2013.

Appendix A

Example of a configuration file

1 "checkpoint_file" : "chk_border_GA",

2 "topology" : {
3 "dt" : 0.1,

4 "time_scale" : 30,

5 "stimuli": {
6 "InputA" : {"n" : 2, "sensor" : "wireless_receiver:msg"},
7 "InputB" : {"n" : 1, "sensor" : "wireless_receiver:state"},
8 "InputC" : {"n" : 2, "sensor" : "wireless_receiver:receiving_direction"}
9 },

10 "encoding" : {
11 "InputA" :{"scheme" : "IdentityEncoding"},
12 "InputB" :{"scheme" : "IdentityEncoding"},
13 "InputC" :{"scheme" : "IdentityEncoding"}
14 },
15 "neurons" : {"model": "ctrnn"},
16 "ensembles": {
17 "H1" : {"n" : 10, "activation":"sigmoid"},
18 "H2" : {"n" : 10, "activation":"sigmoid"},
19 "OUT_COMM" : {"n" : 2, "activation":"sigmoid"},
20 "OUT_COMM_STATE" : {"n" : 1, "activation":"sigmoid"},
21 "OUT_LED" : {"n" : 1, "activation":"sigmoid"}
22 },
23 "outputs" : {
24 "outA" : {"ensemble" : ["OUT_COMM"], "actuator" : "wireless_transmitter",

↪→ "enc": "real"},
25 "outC" : {"ensemble" : ["OUT_COMM_STATE"], "actuator" :

↪→ "wireless_transmitter:state", "enc": "cat"},
26 "outB" : {"ensemble" : ["OUT_LED"], "actuator" : "led_actuator", "enc": "cat"}
27 },
28 "synapses" : {
29 "IA -H1" : {"pre":"InputA","post":"H1", "trainable":true , "p":1},
30 "IB -H1" : {"pre":"InputB","post":"H1", "trainable":true , "p":1},
31 "IC -H1" : {"pre":"InputC","post":"H1", "trainable":true , "p":1},
32 "IA -H2" : {"pre":"InputA","post":"H2", "trainable":true , "p":1},
33 "IB -H2" : {"pre":"InputB","post":"H2", "trainable":true , "p":1},
34 "IC -H2" : {"pre":"InputC","post":"H2", "trainable":true , "p":1},
35 "H1 -H1" : {"pre":"H1","post":"H1", "trainable":true , "p":0.7},
36 "H2 -H2" : {"pre":"H2","post":"H2", "trainable":true , "p":0.7},
37 "H1 -H2" : {"pre":"H1","post":"H2", "trainable":true , "p":0.7},
38 "H1 -led" : {"pre":"H1","post":"OUT_LED", "trainable":true , "p":1},
39 "H2 -comm" : {"pre":"H2","post":"OUT_COMM", "trainable":true , "p":1},
40 "H2 -st" : {"pre":"H2","post":"OUT_COMM_STATE", "trainable":true , "p":1},
41 "comm -H1" : {"pre":"OUT_COMM","post":"H1", "trainable":true , "p":0.85},
42 "led -H1" : {"pre":"OUT_LED","post":"H1", "trainable":true , "p":0.85},
43 "st -H1" : {"pre":"OUT_COMM_STATE","post":"H1", "trainable":true , "p":0.85},
44 "comm -comm" : {"pre":"OUT_COMM","post":"OUT_COMM", "trainable":true , "p":1}
45 },
46 "decoding" : {
47 "outA" : {"scheme" : "IdentityDecoding", "params" : {"is_cat" : false}},
48 "outC" : {"scheme" : "ThresholdDecoding", "params" : {"is_cat" : true}},
49 "outB" : {"scheme" : "ThresholdDecoding", "params" : {"is_cat" : true}}
50 }
51 },
52 "algorithm" : {
53 "name" : "GA",

54 "evolvable_object" : "robotA",

55 "population_size" : 100,

56 "generations" : 1000,

107

108 A. Example of a configuration file

57 "evaluation_steps" : 600,

58 "num_evaluations" : 5,

59 "fitness_function" : "identify_borderline",

60 "populations" : {
61 "p1" : {
62 "objects" : ["synapses:weights:all", "neurons:bias:all",

↪→ "neurons:tau:all"],

63 "max_vals" : [3, 2, 0.75],

64 "min_vals" : [-3, -2, -1],

65 "encoding" : "real",

66 "selection_operator" : "tournament",

67 "crossover_operator" : "blxalpha",

68 "mutation_operator" : "gaussian",

69 "mating_operator" : "random",

70 "mutation_prob" : 0.05,

71 "crossover_prob" : 0.9,

72 "num_elite" : 3

73 }
74 }
75 },
76 "world":{
77 "world_delay" : 1,

78 "render_connections":true ,

79 "height" : 1000,

80 "width" : 1000,

81 "objects" : {
82 "robotA" : {
83 "type" : "robot",

84 "num_instances" : 20,

85 "controller" : "neural_controller",

86 "sensors" : {"wireless_receiver" : {"n_sectors" : 4, "range" : 80,
↪→ "msg_length" : 2}},

87 "actuators" : {"led_actuator" : {}, "wireless_transmitter" : {"quantize":
↪→ true , "range" : 80, "msg_length":2}},

88 "initializers" : {
89 "positions" : {"name" : "random_graph", "params" : {"max_rad":100,

↪→ "initial_pos" : [500, 500]}},
90 "orientations" : {"name" : "random_uniform", "params" : {"low" : 0,

↪→ "high" : 6.28, "size" : 1}}
91 },
92 "params" : {"trainable" : true}
93 }
94 }
95 }
96 }

Appendix B

Ethical, economical, social and

environmental aspects

B.1 Introduction

This Appendix describes the potential impacts that this Master Thesis can have in terms of

ethical, economical, social and environmental aspects. Note that, owing to the fact that

this Master Thesis is envisioned from a theoretical perspective, and all the experiments

are simulated, it is difficult to highlight direct impacts of this work. Clearly, there is a

direct impact on educational and research aspects due to the designed SR framework and

the implemented software simulator. Furthermore, the designed communication system and

the recurrent neural network evolution can be used in the future to build reliable and robust

robotic systems that directly impact on the society.

B.2 Description of the relevant project related problems

B.2.1 Social impact

The use of the designed swarm robotics paradigm can have a straight social impact because

it can improve existing swarm robotics tasks of seek and rescue (see e.g. [102] and [103]). In

these tasks, swarms of robots generally have to coordinate in order to seek and rescue victims

of a disaster. Note that the tasks addressed here, such as leader election and orientation

consensus, are highly relevant for the efficient accomplishment of the seek and rescue problem.

Additionally, other potential uses of our work devoted to cover social requirements are

transportation, food supply or surveillance, among others.

B.2.2 Economical impact

The use of our designed SR system (communication, controller optimization, and so on) has

a clear economical impact. Specifically, as stated throughout all this document, the system

is designed to be simple yet robust and scalable, leading to potential cost reduction of mobile

robotics systems (hardware and software). Moreover, multiple swarm robotics applications

are related to task automation, highly reducing the operative costs.

B.2.3 Ethical impact

Although we are not aware of potential applications of our work in the ethical aspect, it is

expected that several ideas and use cases arise in the future due to the constant growth of

109

110 B. Ethical, economical, social and environmental aspects

swarm robotics field.

B.2.4 Environmental impact

There are also plenty of examples of use cases of our system that can pertain environmental

impact. Firstly, applications devoted to fire prevention or contingency (see e.g. [104]) in

forests are a notable example. Another example is garbage collection using swarm of robots

(see e.g. [105]), which is equally environmentally impactful.

B.3 Conclusions

As it has been exposed, the use of the swarm robotics system designed and elaborated in

this Master Thesis has multiple potential use cases that can remarkably impact on social,

economical and environmental aspects. Moreover, there is also a clear contribution to the

research of swarm robotics and multi-agent systems. Similarly, the designed and implemented

robotics simulator can have great impact on the educational aspect.

Appendix C

Economic budget

Table. C.1 displays the economical budget associated to this Master Thesis.

Cost of labor (Direct cost)

Hours Price/hour Total

400 30e 12.000 e

Material costs (Direct cost)

Price Use in months Amortization (years) Total

Compute server 4000 6 4 500 e

Total material costs 500 e

Total Costs

Cost of labor 12.000 e

Material costs 500 e

General expenses

(Indirect cost)
15% of direct cost 1.875 e

Industrial benefits
6% of direct and

indirect costs
862,5 e

IVA (21%) 3.199,875 e

Total 18.437,38 e

Table C.1: Economical budget associated to the project.

111

112 C. Economic budget

	Abstract
	Resumen
	Agradecimientos
	Index
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	State of the art
	Objectives and contributions
	Document layout

	Theoretical Background
	Continuous-time recurrent neural networks
	The neuron model
	The neural network
	Attractors

	Neuroevolution algorithms
	Genetic Algorithms
	Natural Evolution Strategies

	Materials and Methods
	The environment
	Mobile robots
	Differential drive system
	Sensors
	Actuators

	Communication techniques
	Transmission
	Reception

	Neural controller and evolution details
	The neural controller
	The genotype and phenotype
	Evolution hyperparameters

	The Simulator
	General overview
	Simulator layers and interfaces
	Configuration files
	Parallelization
	Future improvements

	Experiments
	Experiment A: Leader Selection
	Experiment B: Borderline Identification
	Experiment C: Orientation consensus
	Experiment D: Light follower

	Results
	Experiment A: Leader Selection
	Experiment B: Borderline Identification
	Experiment C: Orientation consensus
	Experiment D: Light follower

	Conclusions and Future Lines
	Conclusions
	Future lines

	Appendices
	Example of a configuration file
	Ethical, economical, social and environmental aspects
	Introduction
	Description of the relevant project related problems
	Social impact
	Economical impact
	Ethical impact
	Environmental impact

	Conclusions

	Economic budget

