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BIOMÉDICA
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Resumen

Las lesiones cerebrales traumáticas suponen un gran reto económico, social y

sanitario en todo el mundo. La llamada “pandemia silenciosa” afecta a millones

de individuos cada año, dando lugar a una creciente población de pacientes que

viven con importantes discapacidades directamente relacionadas con este trastorno y

que, a consecuencia de ellas, presentan dificultades para la realización de actividades

básicas de la vida diaria y para la reintegración. La pérdida de movilidad derivada

de esta afección está considerada por muchos como la pérdida de actividad más

significativa. Por lo tanto, la rehabilitación es esencial tanto en las fases tempranas

como en las crónicas de la recuperación ya que la fisioterapia intensiva produce mejoras

significativas en las funciones motoras, como la fuerza muscular, que con frecuencia

limitan la independencia de estos individuos.

Las últimas decadas han atestiguado un amplio y rápido desarrollo de la robótica

en el ámbito de la rehabilitación dada su capacidad de proporcionar un entorno de

entrenamiento estandarizado, de ofrecer un apoyo adaptable al estado actual del

paciente y de aumentar la intensidad y la dosis de la terapia. Dado que el éxito

de la misma viene determinado, en gran medida, por la motivación y la participación

activa de los pacientes, este Trabajo de Fin de Máster propone un sistema de guiado

basado en visión artificial para los sistemas robóticos de asistencia a la marcha. Su

finalidad es dotar a estos dispositivos de la capacidad de reconocer objetos o personas

en su entorno de manera que sean capaces de guiar el movimiento del paciente hacia

un objetivo f́ısico, además de proporcionar una fuerza supletoria, dando aśı al usuario

un incentivo para caminar.

Para lograr este objetivo, se ha desarrollado un entorno de detección y re-

conocimiento de objetos, que puede adaptarse a cualquier caso de uso espećıfico,

a través de la implementación de múltiples técnicas de procesamiento de imágenes

digitales. Desde los métodos clásicos de segmentación hasta las últimas tendencias

en inteligencia artificial, se han elaborado y evaluado en diversas condiciones

experimentales un amplio conjunto de algoritmos con el fin de detectar objetos en

tiempo real. Además, se han confeccionado un mecanismo de cálculo de coordenadas

y un controlador cinemático inverso para el despliegue del sistema de navegación en

un andador inteligente con soporte parcial del peso y tracción motorizada tan solo

con una cámara USB y un ordenador de placa única.

Palabras clave: Lesión cerebral traumática, rehabilitación, robótica, visión

artificial, inteligencia artificial.



Abstract

Traumatic brain injury presents a major economic, social and health challenge

worldwide. The so-called “silent pandemic” afflicts millions of individuals every year,

giving rise to a growing population of patients living with significant disabilities

directly related to this disorder who struggle with basic activities of daily living,

community participation and reintegration. The loss of mobility derived from this

condition is considered by many as the most significant loss of activity. Therefore,

rehabilitation is essential during both early and chronic stages of recovery, with

intensive physical therapy yielding significantly better motor function outcomes such

as muscle strength, which frequently limits these patient’s self-independence.

The past decades have witnessed vast and rapid developments of robots for the

rehabilitation of sensorimotor deficits given their ability to supply a standardised

training environment, to provide adaptable support to the patient’s actual state and

to increase therapy intensity and dose. As the therapy’s success is in large part

determined by the active physical and cognitive engagement of patients and their

motivation, this Master’s Thesis proposes a computer-vision based guidance system

for assistive walking robots that aims to grant these devices the ability to recognise

objects or people in their surroundings so that they are capable of guiding the patient’s

movement towards a physical target as well as providing a helping force, thus giving

the user a compelling incentive to walk.

To achieve this goal, an object detection-recognition framework, that can be

adapted to any specific use case, has been developed. A collection of different

digital image processing techniques, from classical segmentation methods to the

latest trends in artificial intelligence, are implemented and evaluated under different

experimental conditions for the purpose of real-team detection. A coordinate finding

mechanism and a robotic inverse kinematic controller have also been elaborated for

the deployment of the navigation system on a partial body weight-supported and

traction-powered assistive walker with a USB camera and a single-board computer.

Keywords: Traumatic brain injury, rehabilitation, robotics, computer vision,

artificial intelligence.
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Chapter 1

Introduction

Traumatic brain injury (TBI) exerts a devastating impact on society. It

constitutes a major cause of chronic disability worldwide, with 5.3 million people living

with disability resulting from TBI in the US alone (over 2% of the US population),

where brain injury is suffered by someone every 15 seconds [1]. Those who suffer

brain injury may be left with behavioural, cognitive and executive function sequelae

lasting days, weeks, years or their entire lifetime [2]. This affects the performance of

individual tasks and social interaction and development to a point where the patient

may stop taking care of themselves (dressing, eating, walking) and suffer loss of family,

work and social environment [3]. Rehabilitation is essential after TBI treatment,

with widespread evidence proving that early intervention of rehabilitation training

yields significantly better treatment outcomes. As a result, this Master’s Thesis will

focus on developing a computer vision based robotic guidance system to enhance

active physical and cognitive engagement of patients during therapy, as well as their

motivation, which are all crucial factors for recovery.

1.1 Motivation

TBI presents a major economic, social and health challenge worldwide [4]. Despite

the fact that a certain percentage of TBI cases never reach medical care, and thus

overall rates for TBIs are most likely underreported, evidence suggests that this

condition continues to afflict millions of individuals around the world on an annual

basis [5][6]. Improved clinical guidelines and significant technological advancements

in current treatment regimens have led to a lower rate of related deaths and,

consequently, a growing population of individuals living with significant disabilities

directly related to this disorder [6].

A large proportion of individuals with TBI sustain long-term physical, cognitive,

and emotional impairments that have a profound impact on their everyday level of

functioning, community participation and reintegration [7]. The psychosocial factors

associated to this loss of functionality and occupational performance include loss of

self-esteem, depression and loss of quality of life [8]. In fact, participation in daily life

activities and work is identified by patients, their families and healthcare professionals

as one of the most important outcomes of TBI-rehabilitation [9].

1



1.2. Traumatic brain injury 2

The value a person places on a particular outcome acts as a decisive factor in

its accomplishment [10]. Therefore, directing patient treatment towards goals of

paramount importance to the patient heavily contributes towards the therapy’s

success as this is in large part determined by the patient’s motivation [11]. For

many individuals with TBI, loss of mobility is the most significant loss of activity

[12]. As such, the rehabilitation process must target the enhancement of motor

impairments and functions, area in which rehabilitation robots have already proven

their effectiveness [13]. Consequently, as a result of their implementation, the effect

of TBI both on patients and their families will be reduced as it depends not only on

the injury’s severity, but also on the quality of the rehabilitation services provided

[14].

1.2 Traumatic brain injury

TBI, also known as acquired brain injury, is a broad term that describes a vast

array of injuries that happen to the brain when it is damaged by a sudden, external,

physical assault [15] [16]. It may happen when there is a blow, bump, or jolt to the

head, in which case it is a closed head injury, or when an object penetrates the skull,

in which case it is referred to as a penetrating injury [15]. There are various forms of

TBI ranging from mild alterations of consciousness to an unrelenting comatose state

and death [6].

1.2.1 Impact

TBI, the so-called “silent pandemic”, is a leading cause of disability in all regions

of the globe, with approximately 69 million individuals sustaining a TBI each year

worldwide [17] [18] [19]. The frequency of brain injury is currently higher than

that of any other disease, including notorious diseases such as breast cancer, AIDS,

Parkinson’s disease and multiple sclerosis, as it affects all age groups and both genders

[20]. Accounting for an estimated global incidence rate of 351–939 cases per 100.000

population, it contributes to death and disability more than any other traumatic

insult [19] [17]. These staggering figures come as a result of the persistent rise in

the prevalence of this condition during the last decades, in large part due to the

the increased motorisation and urbanisation in low and medium-income countries

(LMICs) which has created new and multiple risks of TBI [21] [19]. In fact, the

World Health Organization (WHO) had already predicted by the mid-2000s that

TBI would surpass many diseases as the major cause of death and disability and

become the third largest cause of global disease burden by 2020 [22] [23].

1.2.1.1 Demographic

The incidence, prevalence and expected duration of disability from TBI differ

between global regions [18]. Overall, the highest incidence rates are found in

central Europe, eastern Europe and central Asia, as can be observed in Figure 1.1

[24]. However, proportionally, LMICs experience nearly three times more cases of

traumatic brain injury than high-income countries (HICs), with Southeast Asian and
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Western Pacific regions showcasing the greatest overall burden [21] [18]. Discrepancy

is also witnessed according to other geographic and demographic factors such as rural

and urban areas, which have been proven to experience significantly dissimilar TBI

incidence rates in various countries, including China and the United States (US) [21].

Figure 1.1: Age-standardised incidence of traumatic brain injury per 100.000

population by location for both sexes (2016) [24].

Age-related TBI differences demonstrate three main age groups with the highest

prevalence: early childhood (0-4 y), late adolescence or early adulthood (15-24 y)

and elderly (> 65 y) [21] [6]. TBI is of particular importance in children and adults

younger than 35 years, groups in which this pathology constitutes the leading cause

of long-term disability [23]. However, in terms of the lesion’s repercussions, moderate

and severe TBI are most common in individuals aged above 15 years [23]. In reference

to gender, the global trend illustrates that most individuals with TBI are men, with

a prevalence rate between 1.5 and 2.5 times that of women excluding the 8th and 9th

decades of life [23] [21].

1.2.1.2 Socioeconomic

Besides being a personal tragedy, TBI is also a public socioeconomic problem [14].

These injuries do not only cause health loss and disability for individuals and their

families, but also represent a burden to health-care systems and economies [24].

Moreover, there is an increased risk of job loss when incurring a TBI, resulting in

a decline of productivity that constitutes a larger share of the total societal costs

associated to this condition than direct health care costs [25]. In addition, emotional

distress and decreased quality of life among caregivers and close family members have

been reported several times as well as caregiver burden [26]. Furthermore, studies
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have shown how family members report personality change, which may very well affect

the marital relationship, leading to separation or divorce rates in the years following

injury as high as 49% [27].

The magnitude of the economic cost associated to this condition has led to its

recognition by the WHO as a “critical public health problem” to worldwide

healthcare systems. In the case of the US, where a TBI occurs every 15 seconds, an

estimated 5.3 million Americans are living today with long-term disabilities directly

related to TBI, costing the country between $56 and $76.5 billion per year considering

costs for disability and loss of productivity [20] [22] [21]. Total annual economic

costs of TBI in Europe were estimated to be e33 billion ($36.8 billion) in 2010,

corresponding to e8,809 ($9,820) per patient, as opposed to $13,000 in the US [14].

However, the previously mentioned transition in LMICs towards motorisation and

urbanisation has rendered these nations more susceptible to higher socioeconomic

burden given their insufficient health care and poor preventive strategies [21].

1.2.2 Causes

TBIs are mainly caused by external kinetic forces to the head, which occur

frequently in the context of road traffic collisions, interpersonal violence, work

environments, subsequent to falls and during sporting activities [19]. Overall, falls

and motor vehicle accidents are the two leading causes of TBI [6]. Falls in

particular are the main cause of TBI and years of healthy life lost due to disability

(YLDs) attributable to TBI, accounting for more than 50% of the age-standardised

incidence in some regions such as central Europe [24].

The primary causes of TBI also vary by age, socioeconomic factors, geographic

region and political circumstances (i.e. conflict areas) [21]. The occurrence of TBIs

among the younger population is mainly due to collisions in the road environment,

while falls account for a higher proportion of TBIs among older people [19]. The

proportion of head injuries following road traffic collisions and TBIs secondary to

these events is greatest in LMICs, specially Africa and Southeast Asia (56%), whilst

injuries related to violence present the highest incidence in South America, the

Caribbean and Sub Saharan Africa [17] [21]. Furthermore, TBI exhibits a close link

with alcohol consumption whereby head injury incidence in acutely intoxicated

patients can reach figures as high as 65% in certain countries such as the United

Kingdom (UK) [21].

1.2.3 Pathophysiology

Despite recent advances, our knowledge on the pathophysiology of TBI and its

underlying mechanisms remains limited [28]. The magnitude of the TBI epidemic is

matched only by the sheer complexity of the cerebral pathophysiology involved, as all

of its intrinsic factors, including injury severity, type and location or the individual’s

age and gender, contribute towards producing unique brain pathologies, meaning

that no two TBIs are the same [20]. The importance of this field of research lies
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in the fact that there are secondary effects ensuing the initial traumatic event that

often progress slowly over months to years, thus providing a window for therapeutic

interventions that can be acted upon if their processes are properly understood [28].

As mentioned, the damage to neuronal tissues associated with TBI falls into two

categories: primary injury, which is directly caused by mechanical forces during

the initial insult, and secondary injury, which refers to further tissue and cellular

damages following the primary insult [28]:

• Primary brain injuries. The immediate mechanical impact to the brain,

involving acute and irreversible damage to the parenchyma, can be both focal,

in which case the damage is limited to the injury site, or diffuse, also affecting

surrounding tissues [29]. Focal brain damage is frequently accompanied by

evidence of skull fracture, localised contusion and a concentrated necrotic area of

neuronal and glial cells with compromised blood supply, causing the occurrence

of hematoma, epidural, subdural and intracerebral hemorrhages [28]. In the

most severe form of TBI, the entirety of the brain is affected by a diffuse type

of injury and swelling [6]. In this scenario, strong tensile forces damage neuronal

axons, oligodendrocytes and blood vasculature, leading to brain edema and

ischemic brain damage which can trigger cognitive deficits, behavioural changes

and hemiparesis depending on the severity of the injury [28].

• Secondary brain injuries. The biochemical, cellular and physiological

events that occur during primary injury often progress into delayed and

prolonged secondary damages which can last from hours to years [28]. TBI

is a complex dynamic process that initiates a multitude of cascades of

pathological cellular pathways that contribute to secondary injuries, including:

excitotoxicity, mitochondrial dysfunction, oxidative stress, lipid peroxidation,

neuroinflammation, axon degeneration and apoptotic cell death [20]. As a

whole, these result in an imbalance between cerebral blood flow and metabolism,

inflammatory and apoptotic processes and edema formation, all of which can

render survival after TBI difficult due to inadequacy in attention, cognition,

severe depression, processing of information as well as progression towards other

forms of neurodegenerative diseases [30].

1.2.4 Consequences

Symptoms, which vary depending on the type and severity of the injury and the

damaged brain area, may appear right away or several days or even weeks later and

evolve over time [29]. Currently, the severity of TBI is categorised based on the

Glasgow Coma Scale (GCS), in which patients are scored on the basis of clinical

symptoms and the resulting overall score classifies their injury as mild, moderate or

severe [20]. The risk of sustaining mild TBI, which constitutes between 70 and 90%

of all cases, is more than 18 times greater than the risk for moderate to severe

injuries, but these can still result in long-term cognitive and behavioural deficits and

might even be associated with increased risk of neurodegenerative diseases such as
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Alzheimer’s or Parkison’s [23] [20]. Symptoms of mild to moderate TBI can include

headaches, dizziness, nausea and amnesia, although they usually resolve within days

to weeks after the insult [20].

Of all types of injury, those to the brain are among the most likely to result in

death or permanent disability [21]. The Case Fatality Rate (CFR) is in large part

determined by age and injury severity, ranging from 0.9 to 7.6 per 100 TBI patients

and from 29 to 55 per 100 severe injury patients [20] [21]. Regarding mortality, out of

those who die from this condition 68% do so before reaching a hospital and fatalities

are considerably higher in LMICs [21] [19]. Of the two million Americans that are

annually treated as a result of TBI, an estimated 56,000 individuals die whilst 80,000

individuals are estimated to be discharged from the hospital with some TBI-related

impairment and need assistance with activities of daily living [19].

As aforementioned, patients who have been diagnosed with a TBI are often affected

by long-term disabilities including cognitive and physical impairments, behavioural

changes, impaired attention and psychological problems such as depression [19].

Many studies have also linked TBI to sleep disturbances, chronic pain and loss of

communication skills, all of which disrupt the ability to engage in daily activities

within the home and community, and thus, negatively impact the Health-Related

Quality of Life (HRQoL) [31]. Mobility is a major domain affected by this condition,

with people affected by TBI-associated impaired mobility being more likely to

experience falls and to be discharged to a long term care facility [32]. These motor

as well as sensory deficits are wide-ranging and may include motor programmes

that are either ineffective or absent, impaired motor memory (especially for motor

sequences and postural alignment), impaired feedback and feed forward mechanisms,

ataxia, dysmetria, dysdiadochokinesis, and intention tremor [33].

1.2.5 Therapeutics

In the US and Europe, the increased public awareness on this epidemic due to

the publicity received by injured athletes and military personnel has uncovered the

lack of treatment options for a crisis that affects millions [20]. LMICs constitute a

particular testament to this acknowledgement, as 80% of individuals living with TBI-

related impairments are estimated to live in these countries yet merely 2% of these

have access to rehabilitation services [21]. However, the most successful measures in

decreasing TBI-related impairments have been proven to be preventive strategies

including more rigorous safety measures, legislative changes, educating the general

population, improved emergency and neuro-trauma services, and the implementation

of evidence-based guidelines in treating survivors [21].

Treatment modalities vary extensively based on the severity of the injury and range

from daily cognitive therapy sessions to radical surgery such as bilateral decompressive

craniectomies [6]. To date, hyperbaric oxygen therapy, defined as the inhalation

of 100% oxygen under the pressure greater than 1 atmosphere absolute, is one of
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the most important clinical therapies for TBI, with researches suggesting a derived

reduction in mortality and enhancement in functional outcomes [2]. Other approaches

that have also been reported to exert potential effects on TBI treatment including:

noninvasive brain stimulation (transcranial magnetic or direct current stimulation)

to alter neuronal excitability, functional electrical stimulation to replace or correct

lost function in limbs and organs, computer-aided training combined with audial and

visual stimulations for the engagement of different components of impairment (e.g.

memory, attention, visual perception, etc.) and behavioural, emotional, and family

therapies, crucial for emotional stability and self-confidence [2].

1.3 Neurorehabilitation and Neuroplasticity

Stroke and TBI are two of the most prevalent neurological conditions affecting

the central nervous system (CNS) and are the most common disorders for which

patients receive inpatient neurological rehabilitation [32]. Neurorehabilitation

is the Health Sciences discipline dealing with recovery from brain injury sequelae,

defined as “a systematic, functionally oriented service of therapeutic activities

that is based on assessment and understanding of the patient’s brain-behavioural

deficits” [3]. It maintains a multidisciplinary approach where different clinical

therapeutic perspectives like neuropsychology, physiotherapy, occupational therapy

and speech/language therapy work toward biopsychosocial recovery with field-specific

actions [3].

The aim of neurorehabilitation is to improve outcome of function after damage to

the CNS, mainly muscle weakness which frequently limits self-independence, through

intensive physical therapy [34]. Therefore, despite involving multiple disciplines, they

all work collectively towards the ultimate goal of enhancing an individual’s capacity

to process and use incoming information so as to allow increased functioning in

everyday life [3]. It is also worth noting that, since “normal” movement can only

be rarely restored after CNS injuries of this calibre, the objective of rehabilitation

is to enable “simpler”, less well-organised movements to achieve optimal outcome

in mobility and independence during activities of daily living rather than re-

establishing these “normal” movement patterns [34].

For over two millennia, rehabilitation of people with neurological damage was

based on the recovery of the physical structures of the body without consideration

for mental processes; with the arrival of the cognitive paradigm during the

latter half of the last century, however, the theoretical and scientific bases of

neurorehabilitation have been linked to the knowledge developed in cognitive

neuropsychology and cognitive neuroscience [3]. In this way, recovery of sensorimotor

function after CNS damage is based on the exploitation of neuroplasticity according

to neurophysiological and clinical insights and evidence from multiple studies both

in primates and humans [34]. Neuroplasticity can be viewed as a general umbrella

term that refers to the brain’s ability to modify, change and adapt both structure and

function throughout life in response to experience [35].
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Since studies have shown that the major cause of death after TBI is neuronal

death and rupture of blood vessels, nerve regeneration and angiogenesis play key

roles in functional recovery [2]. Research in neuroscience has shown that the brain

and spinal cord retain a remarkable ability to adapt, even after injury, through the

use of practised movements [36]. Therefore, therapy-induced recovery is mediated

by neuroplasticity, and the goal of rehabilitation is thus to maximally exploit

neuroplasticity in order to achieve an optimal outcome for the individual patient

[34]. However, neuroplasticity is limited, with most patients reaching a plateau after

recovering approximately 70–80% of the initial impairment, thus suggesting that most

of the observed recovery is spontaneous, particularly on upper limb function for which

there is no evidence of significant training effects [34].

So far there is no clear understanding of the principles underlying effective

neurorehabilitation approaches [37]. Current practice for motor recovery during

physical therapy is based on the theory that repeated mass practice will lead

to the recovery of motor function [38]. It is much like a relearning process exploiting

preserved sensorimotor circuits where the relearning can be optimised by providing

appropriate proprioceptive stimuli with the goal of maximally engaging preserved

neural circuits [34]. The extent of recovery depends on the severity of CNS damage

and the individual neural capacity of a patient to regain a function [34]. In general,

therapeutic protocols can be readily described by the following aspects: the body part

trained (e.g., the legs), the tools or machines used for the training (e.g., a treadmill),

the activity performed (e.g., walking), and when the therapy commences (e.g., during

the acute phase after a stroke) [37].

Rehabilitation is essential after TBI treatment, with studies proving that early

intervention of rehabilitation training yields significantly better treatment outcomes

such as higher disability rating scale (DRS) scores [2]. Repetitive, high dose, task

specific training during the acute stages of recovery has been found to enhance

beneficial neuroplasticity, accelerate functional recovery and the restoration of healthy

gait, and lead to better outcomes during the chronic stages of recovery [38]. However,

neurorehabilitation can still be beneficial even years after an injury or illness

event, with long-term and recurrent therapy helping individuals maintain or advance

their functional status [39]. Simultaneously, this practise enables the scientific

community to collect valuable data which allows inferring about the principles of

brain organisation and the mechanisms of learning new functions or relearning lost

ones [37].

There are several factors that must be considered when devising rehabilitation

protocols. Firstly, rehabilitation needs change over the course of an illness and

as patients adjust to their post-acute environment [39]. These protocols must be

individualised to each patient, with the common goal of developing the patient’s

ability to function within his or her unique social and physical environment through

therapeutic interventions, education, support, and environmental modifications [39].

Furthermore, active physical and cognitive engagement of patients during therapy are
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crucial for recovery, as is motivation, which can be enhanced through feedback about

movement performance [34]. Finally, it is also beneficial to take into account that

the recovery of motor function is dependent on the interrelationship between dosing,

intensity and task specific practice, with recent research indicating that the amount

of practice in the specific task is more critical than the difficulty and variations of

task practice when learning new gait patterns [38].

Physical therapists may not always be able to provide enough high dose, task

specific repetitive gait training during the acute stages of recovery where maximum

physical assistance is required [38]. Therefore, current practices result in variable

recovery of motor function, and may also cause residual gait deviations and reduced

functional ambulation [38]. Research is focused on increasing the dose administered to

individuals to enhance recovery during early stages, with rapid and vast developments

in the past decades of robots for the rehabilitation of sensorimotor deficits after

damage to the CNS [34]. Therapy robots, sometimes called rehabilitators, are

machines or tools for rehabilitation therapists that allow patients to perform practice

movements aided by the robot [36]. When appropriately applied, robot-assisted

therapy can provide a number of advantages over conventional approaches, including a

standardised training environment, adaptable support to the actual state of patients

and the ability to increase therapy intensity and dose, while reducing the physical

burden on therapists [34]. Nevertheless, limitations in functionality and high costs

continue to largely restrict the availability of rehabilitation robots [36].

1.4 Project scope and objectives

The aim of this Master’s thesis is to design and implement a guidance system for

assistive walking robots in order to provide them with the ability to recognise their

environment and hence navigate adequately through it. By means of its application,

the selection and labelling of surrounding objects or people will be enabled so that

the physician can direct the patient towards different physical targets that must be

reached during the rehabilitation process. As a result, the patient will be given a

compelling incentive to walk and the robot’s functionality will be enhanced as it will

be capable of guiding the patient’s movement as well as providing a helping force. In

this way, the expected outcome is to increase the patient’s active engagement and

motivation during therapy so as to improve motor recovery, as has been previously

discussed throughout this chapter.

To achieve this goal, a computer-vision based approach will be pursued by means

of a camera and micro-processor that will both be integrated into a pre-existing

robotic system: the Swalker robotic platform that promotes early weight bearing

and mobilisation during the rehabilitation of musculoskeletal diseases. This project

will focus mainly on the development of an object detection-recognition framework

that will allow the identification and localisation of any desired object in the patient’s

surroundings by selecting, in a simple, accessible and time-efficient manner, the

solution that presents the best behaviour for the specific object at hand from an
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extensive collection of pre-defined algorithms. Therefore, the following objectives can

be set for the accomplishment of this task:

• Analysis and familiarisation with state-of-the-art technologies in the fields

of robotics and computer vision.

• Investigation and implementation of digital image processing and video analysis

techniques for the development of real-time, object detection-recognition

algorithms.

• Validation of the multiple proposed solutions under different experimental

conditions for their comparison and inspection of their advantages and

limitations.

• Design of an object co-coordinate finding mechanism and robotic forward-

inverse kinematic controller to implement the guidance system from vision

sensor feedback.

• Integration of the developed software into a robotic operating system for

the hardware deployment of the navigation system.

• Evaluation of project outcomes and definition of future lines of work.

1.5 Document layout

In accordance with the previously established set of objectives, this Master’s Thesis

has been organised into the following chapters:

• Chapter 2. The latest advancements and current trends in robotics are pre-

sented both in the field of medicine and beyond, alongside detailed explanations

on robotic architectures, motion controllers and operating systems. Artificial

intelligence (AI) and computer vision tools are also introduced as well as their

development pipelines.

• Chapter 3. This chapter is dedicated to the exploitation of classical image

segmentation techniques, based on thresholds, edges or regions, for the purpose

of real-time object detection. Different approaches are pursued and assessed

with the aim of reviewing their strengths and weakness in order to select the

best possible alternative for the robotic guidance system at hand.

• Chapter 4. The application of AI-based technologies to the processing of

information contained in digital images is investigated for the completion of

object recognition tasks. A considerable cohort of varied solutions are examined,

with special emphasis on the comparison between one-stage and two-stage

methods which prioritise different outcomes.

• Chapter 5. Coordinate calculation and motion planning strategies are

elaborated for the deployment of the devised object detection-recognition

framework on the Swalker robotic platform.



Chapter 2

State of the Art

Artificial intelligence (AI) and robotics are both rapidly evolving fields. On one

hand, AI is currently being implemented for a myriad of different purposes including

personalised shopping, fraud prevention, facial recognition and the creation of smart,

human-like non-playable characters (NPCs) to interact with users in video games [40].

On the other, robots present a wide variety of use cases that make them the ideal

technology for the future, with applications ranging from co-bots in manufacturing

plants and autonomous vehicles to surgical assistants or landmine detectors in war

zones [41]. Artificially intelligent robots are ultimately the bridge between

robotics and AI; these are robots which are controlled by AI algorithms, enabling them

to perform more complex tasks as opposed to non-intelligent robots, whose limited

functionality often constraints their use to applications that only require carrying out

a repetitive series of movements [42].

2.1 Robotics

Robotics is an interdisciplinary sector of science and engineering dedicated to the

design, construction and use of mechanical robots [41]. There is no exact definition on

what a robot is, but by general agreement it is considered a programmable machine

that imitates the actions or appearance of an intelligent creature, usually a human

[43]. It is an exciting time to work in robotics, with plenty of interesting challenges

arising in designing machines that intelligently interact with both humans and their

environment, and a range of techniques and insights from engineering, computer

science, physics, biomechanics, psychology and other fields are available to help solve

them [44].

2.1.1 Present-day solutions

From carefully harvesting crops to assembling automobiles and delivering medica-

tions, robotics solutions are enhancing productivity, improving safety and enabling

greater flexibility in a variety of industries [45]. These devices are generally indicated

for tasks requiring programmable motions, particularly where those motions should

be quick, strong, precise, accurate, untiring, and/or via complex articulations [43].

The number of robots in use worldwide has already multiplied three-fold over the

11
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past two decades, with trends suggesting an even faster growth over the next 20 years

that is set to boost productivity, economic growth and lead to the creation of new

jobs in yet-to-exist industries [46].

Robots can be classified into multiple categories according to numerous criteria

such as their physical configuration (Cartesian, cylindrical, polar or joint-arm),

the mobility of the robot’s base, which can be fixed (e.g. manufacturing robots)

or mobile, or their control system [47]. While robotic applications vary greatly,

current instruments can be generally grouped into six categories: autonomous

mobile robots (AMRs), which move throughout the world while making near

real-time decisions, automated guided vehicles (AGVs), that rely on tracks,

predefined paths or operator oversight rather than traversing environments freely,

articulated robots, meant to emulate the functions of a human arm, humanoids,

which perform human-centric functions and often take human-like forms, cobots,

designed to function alongside or directly with humans, and hybrids of any of the

previous categories [45].

(a) (b)

(c) (d)

Figure 2.1: Selection of state-of-the-art robot systems. (a) Ghost Robotic’s Vision-60

robot [48] (b) Ameca Humanoid Robot AI Platform [49] (c) NASA’s VIPER rover

[50] (d) Ocean One: The Humanoid Remotely Operated Vehicle (ROV) [51].

Some examples of the latest advancements in this field of study have been chosen

to capture the current trends and to highlight the wide range of different applications

these solutions can enjoy. Ghost Robotics specialises in quadruped robots, including

the Vision-60 robot illustrated in Figure 2.1 (a), made for unstructured natural
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environments that cannot be traversed by traditional wheeled or tracked robots such

as caves, mines, forests and deserts [52]. Ameca , exhibited in Figure 2.1 (b), is

the world’s most advanced human shaped robot and has been designed specifically

as a platform for human-robot interaction through the implementation of smooth,

lifelike motion and advanced facial expression capabilities [53]. The VIPER rover

(Figure 2.1 (c)), scheduled to be launched to the southern polar region of the moon

in November 2023, will use a variety of instruments to search for water, ice and other

resources as well as to map and register terrain [52]. Robotics has also opened up

new possibilities in the field of underwater research with ROVs such as the Ocean

One displayed in Figure 2.1 (d), maneuvered and overlooked in real-time by human

operators, that enable the exploration of the ocean floor which is, in its majority, too

hostile for human explorers [51].

2.1.2 Architecture

The most important factor that distinguishes robot architectures from other

software structures is the need to interact asynchronously, in real time, with an

uncertain, often dynamic, environment at varying temporal scopes ranging from

millisecond feedback control to minutes, or hours, for complex tasks [54]. Therefore,

a common feature of robot architectures is the modular decomposition of systems

into simpler, largely independent pieces connected by communicating processes, as

this design enables each component to handle interactions with the environment

asynchronously while minimising interactions with one another, thus decreasing

overall system complexity and increasing reliability [54].

The basic architecture of automated robotics can be divided into modules that

include data collection, environment perception and understanding, decision

making and decision execution, as shown in Figure 2.2. The data collected from

sensors like cameras are then processed and interpreted by advanced algorithms such

as motion or path planning algorithms, whose outputs later determine the decisional

messages which are finally are passed onto the actuator hardware systems where

they are executed [55]. The communication between processes is usually carried

out through message passing either in the client–server style, in which a message

request from the client is paired with a response from the server, or in the publish-

subscribe paradigm, which reduces the impact of missing or out-of-order messages

by broadcasting them asynchronously in such a way so that all modules that have

previously indicated an interest in such messages receive a copy [54].

Figure 2.2: Basic architecture of robotics [55].
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2.1.3 Control System

The logic that continuously reads from sensors and accordingly updates the actuator

commands so as to achieve the desired robot behaviour is the robot’s control system

or controller [56]. Examples of control objectives include: motion control, when

a robot arm moves along a specified trajectory, force control, where the aim is to

apply specific forces to an object in the environment, hybrid motion-force control,

to control the motion in some directions and the forces in others, for example, when a

gripper opens a door, and impedance control, as when a robot is employed to render

a virtual environment [56] [57].

Within motion control, the control method that will be dealt with in this Master’s

Thesis, there are three main approaches [47]:

1. Point-to-point (PTP): the robot is capable of moving between memory

recorded locations, but it does not control the path to get from one point to the

other.

2. Continuous-path (CP): the robot is capable of performing movements along

a controlled path. All the points along the path must be stored explicitly in the

robot’s control memory, which is usually achieved by manually displacing the

robot through the desired path while the controller unit stores a large number

of individual point locations (teach-in). Straight-line motion is the simplest

example for this type of robot, although continuous-path controlled robots also

have the capability of following smooth curve paths defined by the programmer.

3. Controlled-path robot: the control equipment can generate paths of different

geometry such as straight lines, circles and interpolated curves with a high

degree of accuracy at any point along the specified path. Only the start and

finish points and the path definition function must be stored in the robot’s

control memory.

2.1.4 Robotic Operating System (ROS)

Writing software for robots is a challenging task, with different types of robots

having wildly varying hardware and with an extensive amount of required code,

starting from driver-level software and continuing up through perception, abstract

reasoning and beyond [58]. Since the necessary breadth of expertise is well beyond the

capabilities of any single researcher, robotics software architectures must also support

large-scale software integration efforts [58]. Many software platforms, sometimes

called middlewares, have been proposed with the purpose of easing the construction

of robot systems by introducing modular and adaptable features [52]. Over time,

some of them have grown to become rich ecosystems of utilities, algorithms and

sample applications; however, few rival the ROS in its significance on the maturing

robotics industry [52].
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ROS is an open-source, meta-operating system for robots that provides hardware

abstraction, low-level device control and message-passing between processes, among

many other services usually expected from an operating system, as well as tools and

libraries for obtaining, building, writing, and running code across multiple computers

[59]. Its biggest strength is its ability of connecting nodes together, pieces of software

that take care of a small subset of tasks, such as reading a sensor or controlling a

servo, and that can be written in any programming language [60]. An asynchronous

publish-subscribe message-passing framework is employed whereby nodes that have

information to share will broadcast it using topics so that only those nodes that are

interested in the information receive it [52] [60]. The multiple advantages offered by

ROS have led to its establishment as the standard in robotics programming, quickly

becoming the equivalent of Windows for PCs or Android for mobile phones as any

programme that runs on ROS can be shared among many different robots [61].

2.1.5 Robotics in medicine

Medical robotics is causing a paradigm shift in therapy, with AI, miniaturisation

and computer power contributing towards the rise in the design and use of robots in

this field [62] [63]. Medical robots were first introduced around 35 years ago when an

industrial robot and computed tomography navigation were used to insert a probe into

the brain to obtain a biopsy specimen [63]. Nowadays, new uses for medical robots

are created regularly, as in the initial stages of any technology-driven revolution,

while the use of already existing solutions becomes more consolidated, as is the case

with Intuitive Surgical’s da Vinci system (Figure 2.3), which was already used in

80% of radical prostatectomies in the U.S. just nine years after the system became

available on the market [62].

Figure 2.3: The da Vinci surgical system for robotic-assisted surgery [64].

The greatest impact of medical robots has been in surgeries, where outcomes

such as patient trauma or hospital stay can be improved through the precise and

accurate manipulation of the necessary tools with robotic assistance [62] [63]. These

instruments present a wide variety of features that range from 3D vision, tremor

filtration and haptic feedback for tactile sensation to infrared eye-tracking, image
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guided navigation systems, 4 to 7 degrees of freedom, integrated seats with enhanced

ergonomics or polarised glasses [65]. The main benefits offered by these devices are,

for surgeons, a greater range of motion and dexterity, visualisation of highly-magnified

and high-resolution images of the operating field and better access to the area being

operated on; for patients, this translates into less risk of infection, lower blood loss

and fewer blood transfusions, less pain and quicker return to daily routine [66].

In the area of rehabilitation, two kinds of robots can be distinguished: assistive

robotic systems, designed to provide more autonomy to people with disabilities by

aiding every day tasks such as eating or shaving, and rehabilitation systems, that

are similar to assistive systems but are designed to facilitate recovery by delivering

therapy and measuring the patient’s progress [62]. The topic of exoskeletons is

of particular interest given the number of devices currently being studied as well as

purchased by facilities for rehabilitation purposes, emerging as an advantageous tool

for disabled individuals [67]. The decades since the introduction of the first powered

exoskeletons for therapeutic applications in the 1970s, systems which used pneumatic,

hydraulic or electromagnetic actuators for position servocontrol in order to increase

patient stability, have seen an explosion of novel rehabilitation robots for both the

upper and lower extremities [34].

2.2 Artificial Intelligence

AI is a leading technology of the current age of the Fourth Industrial Revolution,

with the capability of incorporating human behaviour and intelligence into machines

or systems [68]. It is a branch of computer science which involves developing

algorithms that are able to tackle cognitive functions such as learning, percep-

tion, problem-solving, language-understanding and/or logical reasoning in order to

complete tasks which would otherwise require human intelligence [42]. There are

various types of AI including analytical, functional, interactive, textual and,

most relevantly to the pursued application in this project, visual AI, capable of

recognising, classifying and sorting items as well as converting images and videos into

insights [68].

2.2.1 Computer vision

Computer vision is a field of AI that enables computers and systems to derive

meaningful information from digital images, videos and other visual inputs, and take

actions or make recommendations based on that information; if AI enables computers

to think, computer vision enables them to see, observe and understand [69]. Even

though early experiments in computer vision started in the 1950s, its deployment

has not grown exponentially until fairly recently, with its market expected to reach

$48.6 billion in 2022 [69]. It has become a significant part of everyday life partly due

to the vast amount of visual data generated nowadays, with countless images and

videos from the built-in cameras of our mobile devices alone [70]. Any task enabled

by the human sight can be transferred onto machines through computer vision, thus
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creating endless applications such as facial recognition for police work or payment

portals, detection of lane markings and traffic signals in self-driving cars or accurate

translations of signs in foreign languages [70].

2.2.2 AI, ML and DL

AI, machine learning (ML) and deep learning (DL) are three prominent terminolo-

gies used interchangeably nowadays to represent intelligent systems or software [68].

In general, AI is an umbrella term that refers to any methodology that combines

human behaviour and intelligence into machines or systems, whereas ML is a way

of learning from data or experience through the application of AI in the form of

algorithms to enable automated tasks [71] [68]. ML models are often made up of a set

of rules, procedures or sophisticated “transfer functions” that can be used to discover

interesting data patterns or anticipate behaviours [68]. Finally, DL is a specialised

category of ML where the structure of AI algorithms is layered and more powerful,

creating what are known as artificial neural networks (ANNs) [71]. The relationship

between the three areas of study is depicted in Figure 2.4.

Figure 2.4: Position of ML and DL within the area of AI [72].

2.2.3 Supervised learning algorithms

There are two basic approaches within ML. Supervised learning is defined by

its use of labeled datasets, comprised of inputs and their corresponding correct

outputs, to train algorithms that solve either classification or regression problems

[73]. The first require assigning data into specific categories whilst the second

enable understanding the relationship between dependent and independent variables,

commonly being used to make projections such as sales revenues for businesses [73].

Image classification is one of the most important applications of these algorithms [74].

It must be performed on the basis of a vector of parameters which characterises

the visual content of the input images and, thus, enables their mapping to an N -

dimensional space, with N being the number of parameters, where they can be more

easily categorised. The supervised learning algorithms that will be implemented in

this project are presented below.
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2.2.3.1 K-nearest neighbours (KNN)

The KNN classifier is by far the most simple classification and regression ML

algorithm. It is referred to as a “lazy learner” because it doesn’t perform any training;

it simply stores the training data, without performing any calculations, and doesn’t

build a model until a query is performed on the dataset [75]. It uses proximity to

make classifications or predictions about the grouping of an individual data point,

working off the assumption that similar points can be found near one another in the

previously mentioned N -dimensional space [76]. For classification problems, which

make up for most of its applications, a class label is assigned to a given data point on

the basis of a majority vote, that is, the label that is most frequently represented

among its k -nearest neighbours [76]. In order to determine whether a data point is a

neighbour or not, a distance metric must be calculated between a given point and its

closest fellows [75].

2.2.3.2 Random forest (RF)

Decision trees, the most powerful and popular tool for classification and

prediction, are the building blocks of the random forest model [77] [78]. These are

flowchart-like tree structures where each internal node denotes a test on a feature or

attribute, each branch represents an outcome of the test and each leaf node (terminal

node) holds a class label [77]. An instance is classified by starting at the root node

of the tree, testing the attribute specified by this node, then moving down the tree

branch corresponding to the value of the attribute and then repeating this process for

the subtree rooted at the new node until some leaf node is reached, which provides

the classification of the instance [77]. A RF, like its name implies, consists of a large

number of individual decision trees that operate as an ensemble in which each tree

outputs a class prediction and the class with the most votes becomes the model’s

prediction [78]. The fundamental concept behind RFs is a simple but powerful one:

the “wisdom of crowds”, as a large number uncorrelated models can produce

ensemble predictions that are more accurate than any of the individual predictions

[78].

2.2.3.3 Support vector machine (SVM)

SVMs are a set of supervised ML methods used for classification, regression and

outlier detection [79]. The objective of the support vector machine algorithm is to find

a hyperplane in the aforementioned N -dimensional space that distinctly classifies

the input data [80]. Hyperplanes are decision boundaries that enable the attribution

of entries to different classes depending on the side of the plane they fall on, with the

optimal hyperplane being the one that presents the maximum margin, i.e. distance

between data points of both classes [80]. Support vectors are data points that are

closer to the hyperplane and influence its position and orientation in order to maximise

the classifier’s margin according to a pre-defined loss function [80]. Several studies

have reported that SVMs are generally capable of delivering higher performance in

terms of classification accuracy than the other data classification algorithms [74].
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2.2.4 Unsupervised learning algorithms

The other main approach in ML is unsupervised learning, which employs

algorithms to analyse unlabeled datasets, only containing inputs and no associated

outputs, with the aim of discovering hidden patterns or data groupings without the

need for human intervention [81]. These are clustering problems, consisting of

identifying homogeneous subgroups within the data such that data points in each

cluster are as similar as possible and data points in different clusters as different as

possible, according to a similarity measure such as euclidean or correlation based

distance [82]. In this case, inferences are made from datasets using only input vectors

without referring to known, or labelled, outcomes and so the model’s performance

cannot be evaluated [83]. The only unsupervised learning algorithm that will be

implemented in this project is presented below.

2.2.4.1 K-means

This algorithm tries to partition the dataset into K pre-defined, distinct and non-

overlapping subgroups or clusters where each data point belongs to only one group

[82]. A set of centroids, representing the location of each cluster’s centre, are randomly

selected and iterative calculations are performed to optimise their positions by means

of an expectation-maximisation approach [83]. The actions that are repetitively

carried out in each iteration until the centroids have stabilised are: allocating each

data point to the cluster with the closest centroid, updating the centroid coordinates

to the average of the all data points that belong to each cluster and computing the

sum of the squared distances between data points and all centroids [82]. In this

way, the within-cluster sum of the squared distances is minimised, ensuring that each

cluster subgroup possesses the optimal homogeneity [83].

2.2.5 Artificial neural networks (ANNs)

Although ANNs can be exploited both for supervised and unsupervised learning

problems, in this Master’s Thesis the former approach will be pursued. The name

and structure of these DL algorithms are inspired by the human brain, mimicking

the way that biological neurones signal to one another [84]. Processing elements,

also known as artificial neurones or perceptrons, are connected to each other, thus

constituting the nodes of the network, and are typically arranged in a layer or vector

[85]. The output of one layer serves as the input to the next and possibly other

layers, with a given neurone being connected to all or a subset of the neurones in

the subsequent layer, simulating the synaptic connections of the brain [85]. In this

way, ANNs are comprised of node layers which can take the form of an input layer,

hidden layers or an output layer, as depicted in Figure 2.5 [84].
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Figure 2.5: ANN structure: input layer, hidden layers and output layer [84].

Each neurone can be thought of as its own linear regression model, performing a

simple computation on the input data it receives, and has an associated threshold so

that it is only activated and, consequently, allowed to send data to the next layer of the

network, when its output exceeds a certain boundary [84]. The connections between

neurones are also assigned a weight that is adjusted during the learning process to

alter the strength of the signal carried by that connection according to a specified

learning rule until the ANN performs the desired task correctly [86]. When applied

on an unseen observation, the network is not only capable of predicting its associated

class label, but also of returning the probability of the observation belonging to each

possible class.

2.2.6 Development pipeline

Contrary to what may seem, identification and collection of data, along with their

suitable preparation, are the most important steps in an AI algorithm’s lifecycle

since these can only be as good as the quality of the data used for their development

[87]. Following data collection and data preparation, the third phase in the AI

development pipeline is the proper creation of an intelligent decision-making process,

performed following three basic steps: modeling, which involves deciding on the

algorithm or layers of algorithms to employ in order to interpret the data, training,

which entails processing large amounts of data through the AI model in iterative

test loops while monitoring accuracy to ensure an appropriate model behaviour, and

inference, which refers to the deployment of the AI model into its real-world use

case [71].



Chapter 3

Classical Object Detection and

Segmentation

Object detection is a computer vision technique that aims to replicate the human

ability to recognise and locate objects of interest in images or videos within a matter

of moments [88]. Therefore, it can be defined as “the task of detecting instances of

objects of a certain class within an image” [89]. With this kind of identification and

localisation, object detection can be used to count objects in a scene and determine

and track their precise locations, all while accurately labeling them [90]. This chapter

is dedicated to the study of the numerous classical digital image processing and

video analysis techniques that can be exploited for the development of a real-time,

object detection-recognition algorithm. Different approaches to this task will be

presented and assessed with the aim of selecting the best possible alternative for the

robotic guidance system at hand.

3.1 Materials and methods

In order to achieve the aforementioned purpose, the Open Source Computer Vision

Library (OpenCV ) will be employed. Launched by Intel in 1999 with the aim

of advancing vision research and disseminating vision knowledge, OpenCV is an

optimised and portable library of programming functions available for free [91]. The

newest release contains more than 2500 optimised algorithms, is used extensively

around the world, with over 2.5 million downloads and 40 thousand people in the

user group, and is implemented in both academic and commercial applications [91].

This library provides a simple interface that enables video capture from a file or

device and frame-by-frame manipulation [92]. In this MSc Thesis, live stream was

collected from the USB camera displayed in Figure 3.1. It possesses an acquisition

speed of 30 frames per second (fps), automatic correction in low light conditions and

full 360º rotatory movement [93]. Once the connection with this device is established

by means of a Python script, an infinite loop extracts each frame from the live feed,

applies different image segmentation techniques and, finally, displays the resulting

outcome.

21
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Figure 3.1: USB Camera [93].

3.2 Classical image segmentation

In computer vision, segmentation is the process of partitioning a digital image

into multiple segments (sets of pixels, also known as super pixels) to simplify and/or

change the representation of an image into something that is more meaningful and

easier to analyse [94]. Therefore, it can be defined more precisely as the process of

assigning a label to every pixel in an image such that pixels with the same label are

similar with respect to some characteristic or computed property, for instance colour,

intensity, or texture [94]. The combination of a segmentation technique followed by

classification, where the separated homogeneous regions are assigned to particular

classes, is regarded as the elementary component of computer vision [95].

A wide range of segmentation techniques are available and can be classified into two

main categories: classical segmentation methods, mainly edge based, region based

and threshold based, and AI based strategies, mainly ML and DL [95]. Even if these

last technologies have pushed the limits of what was possible in the domain of digital

image processing, that is not to say that traditional computer vision techniques have

become obsolete [96]. In fact, these still pose a better solution for some problems

while simultaneously overcoming the many challenges AI brings, including, among

others, computing power and quantity of inputs [96].

The following sections will review the classical segmentation methods which are

less resource-intensive as opposed to AI techniques. These are thresholding based

segmentations, where an optimum threshold separates the histogram into classes

while minimising intra-class variance and maximising inter-class variance, edge based

segmentations, which depend on local changes in image intensity, and region based

segmentations, that rely on seed points from which the regions grow by adding

neighbouring pixels according to their intensity [95].
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3.3 Colour-based object detection

Thresholding is the simplest way to segment images by dividing the image pixels

into different groups concerning their intensity values, usually obtaining binary images

where the pixel values below the selected threshold are set to 0 (background pixels)

and the ones above said limit are set to 1 (foreground pixels) [97]. In computer vision,

this procedure is employed to detect monochromatic objects by filtering all of the

pixel values within a specific range of colour so that every object whose colour falls

within the specified range is changed to white and the rest of the image is left black

[98]. The optimised algorithm developed for this purpose is displayed in Figure 3.2.

Figure 3.2: Colour-based object detection algorithm.

The Red, Green and Blue (RGB) colour space, widely used in digital image

display and optical instruments, is not sensitive to human visual perception or

statistical analysis [99]. When a colour pixel-value is adjusted in this colour space,

intensities of red channel, green channel and blue channel are modified, meaning

colour, intensity and saturation of a pixel are not involved in colour variations

and so these are difficult to observe in complex colour environments or content [99].

The Hue, Saturation and Value (HSV) format is a non-linear transform from the

RGB space that describes perceptual colour relationship more accurately, with hue

denoting the property of colour (e.g. blue, green, red, etc.), saturation denoting

its perceived intensity and value denoting its perceived brightness [99]. Therefore,

converting the colours in the image from the standard RGB space to the HSV scale is
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highly recommended when performing the task at hand in order to facilitate feature

extraction by masking a specific colour out of the frame [98].

Next, the lower and upper limits of the desired colour range are specified and fed

as arguments to the thresholding function, which will output a binary mask where

all the values from the image source that lie within said range are set to 255 and the

rest to 0. In order to obtain a better result, the noise and artifacts in the mask are

reduced using the opening and closing operators. Both are morphological methods,

image processing techniques based on the shape and form of objects, that consist of

applying a structuring element to an input image such that the value of each pixel

in the output image is based on a comparison of the corresponding pixel in the input

image with its neighbours [100]. While opening eliminates thin protrusions and thus

the internal noise in the image, closing removes small holes, smoothens contours and

fuses narrow breaks [101].

Finally, the contours in the mask are extracted to perform a shape analysis

and distinguish between the possibly multiple segments in the scene that have been

detected to present the same colour as the object of interest to be identified. Contours

are defined as the lines joining all the points along the boundary of an image

that possess the same intensity [102]. For this calculation, a simple chain contour

approximation method, that removes all redundant points and thereby compresses the

contour to minimise memory usage, and a tree contour retrieval mode, that creates a

full family hierarchy list for all contours, are employed [102] [103]. The area of each

contour is then obtained and compared in order to select the largest one for the

computation of the coordinates and geometrical properties of a bounding rectangle

that will be displayed in the original frame.

This algorithm’s effectiveness was tested by setting the task of detecting a green

water bottle placed amongst numerous objects (Figure 3.3 (a)). For this purpose,

the colour range parameter was delimited by [45, 100, 50] and [75, 255, 255], the

two HSV-expressed thresholds within which all the greens in the world lie [104].

Moreover, the kernel for the opening and closing operations was a 7×7 8-bit integer

matrix which, as shown in Figure 3.3 (d), successfully removes the pixels in the

mask that don’t correspond to the target object [105]. All in all, the developed

colour-based object detection algorithm provides encouraging results since the object

of interest was successfully distinguished from its surroundings, as Figure 3.3

(f) exhibits. Nevertheless, the entire object’s area is not captured by the obtained

contour, displayed in Figure 3.3 (e), which may result problematic when calculating

the object’s coordinates as this variable will be used to determine its location in terms

of depth within the field of view.

Further testing under different environmental conditions uncovered additional

limitations. As it can be observed in Figure 3.4, different lighting settings heavily

influence this algorithm’s outcome. In the case of medium lighting, the green water

bottle is correctly detected and its entire area is covered by the bounding rectangle.
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Colour-based object detection test. (a) Original frame (b) HSV conversion

(c) Colour-thresholding mask (d) Close-open noise removal (e) Contour extraction

(f) Bounding rectangle over detected object.

However, when the lighting is slightly increased or decreased with respect to this

scenario, the water bottle is no longer identified; instead, either another object in

the scene is mistaken for said item or none are distinguished. This suggests that the

detection quality of manual thresholding algorithms is unpredictable under varying

environmental conditions and so the coordinates and dimensions of the retrieved

contours can sustain significant changes.

The main downside of the simple thresholding technique of having to manually

determine the threshold in advance can be overcome through automatic thresh-

olding methods such as the Otsu method, mixture models or other histogram shape-

based procedures. Nevertheless, these are only useful when the image’s histogram

presents clear peaks corresponding to each object and when the number of objects

in the scene is known in advance, which is not always the case in computer vision

applications [106]. Another alternative is adaptive thresholding, an approach that

can be employed even when the image does not contain distinct peaks and in which,

unlike global thresholding, different threshold values are computed for each fractional

region so as to reduce the influence of illumination gradients, another problem of the

simple algorithm deployed [107]. However, its use is restricted to separating desirable

foreground image objects from background pixels, and is not able to distinguish

between different foreground objects as is requested of this navigation system.



3.4. Edge-based object detection 26

L
o
w

M
ed
iu
m

H
ig
h

(a) (b)
(c)

Figure 3.4: Colour-based object detection test under different lighting conditions

(low, medium and high). (a) Original frame (b) Colour-thresholding mask after noise

removal (c) Bounding rectangle over detected object.

3.4 Edge-based object detection

The problem of image edge detection is based on a discontinuity search for

abrupt changes in pixel intensity values and plays an important role in computer

vision systems [108]. Edge detection is the process of finding edges in an image,

revealing structural information which could correspond to an object’s boundaries,

shadowing or lighting conditions or boundaries of “parts” within an object [109].

Using these outlines, contours can then be applied to extract the actual objects from

the regions or quantify the shapes so that they can be later identified [110]. In order

to implement this practice in the object detection task of this Master’s thesis, the

algorithm presented in Figure 3.5 has been deployed.

Edge detection requires the computation of image gradients, formally defined as

directional changes in image intensity [110]. This task will be performed by means

of the Canny edge detector, a multi-step algorithm introduced by John F. Canny

in 1986 and regarded by many as the standard for edge detection [111]. It has been

chosen because of its ability to produce single pixel thick, continuous edges, to detect

strong and weak edges and its insusceptibility to noise interference [112].
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Figure 3.5: Edge-based object detection algorithm.

The frames must be first converted from the RGB colour space to gray scale

to, not only reduce the computational cost associated to the subsequent processing

operations, but also ensure less noise during the edge detection process [113]. Then,

Gaussian smoothing is applied for a reduction in the amount of high-frequency

content as another means of noise removal, as the gradient magnitude is quite

susceptible to this phenomenon [110]. This filter iterates through every pixel in the

image with a 5 x 5 kernel conducting a weighted average according to the Gaussian

distribution, thus conferring greater importance to central pixels in the mask [113].

The image is then fed to the Canny algorithm. This multi-step process also

includes Gaussian filtering, followed by the calculation of the gradient magnitude and

orientation using the Sobel method (equivalent to first derivative estimation), non-

maxima suppression as an edge-thinning process and, finally, hysteresis thresholding

to remove regions that technically aren’t edges [110]. Therefore, the only parameters

demanded by this module are the maximum and minimum limits for the hysteresis

thresholding phase, which were determined by comparing the results obtained with

three different cases: a wide threshold, a mid-range threshold and a tight threshold,

finally keeping the intermediate scenario [110].

The edge maps provided by the Canny algorithm enable the distinction between

foreground objects and the background. Therefore, an additional criterion is

required to distinguish the object of interest from the rest once the edge features have

been identified. In this case, a template matching procedure has been pursued

as suggested by [112]. This reasoning has been adapted to the available tools by

employing a method that slides the template image over the input image, calculating
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the correlation response between the template and each patch of the processed frame

[114]. Finally, the location of the maximum correlation value is found and, based

on its coordinates, a bounding rectangle is constructed and drawn on the original

frame to highlight the object detected.

As with the colour-based object detection technique, this algorithm was tested

by setting the task of detecting a green water bottle placed amongst numerous

objects. The results obtained are presented in Figure 3.6. The output from the Canny

edge detector (Figure 3.6 (c)), as previously hypothesised, successfully isolates the

foreground objects from the background, thus simplifying the template matching

procedure. The template was obtained by capturing a front-view image of the water

bottle, shown in Figure 3.6 (d), applying the Canny algorithm and then resizing the

output to a size similar to that of the object in the original frame. The final template,

exhibited in Figure 3.6 (e), is employed in the template matching process yielding the

normalised correlation coefficient matrix displayed in Figure 3.6 (f), whose maximum

values are illustrated in white and are located in the bottom middle section where

the object is located. Hence, the object is correctly outlined in Figure 3.6 (g).

(a) (b) (c)

(d) (e) (f) (g)

Figure 3.6: Edge-based object detection test. (a) Original frame (b) Gray scale

conversion and Gaussian smoothening (c) Edge detection by Canny algorithm (d)

Raw template (e) Canny-processed template (f) Correlation matrix (g) Bounding

rectangle over detected object.

With the algorithm’s effectiveness proven under the standard environmental

conditions, it’s dependence on the scene’s lighting was studied to analyse the

importance of this parameter in this technique’s performance and compare its

robustness with that of the previous algorithm. In order to do so, it was fed the
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same low, medium and high lighting frames used in the previous light-dependence

test, providing the results exhibited in Figure 3.7. As it can be seen, even though the

Canny algorithm’s outputs vary slightly depending on the lighting, the edge-based

object detection is not affected by this variable and so it can be considered to be

independent of this parameter.
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Figure 3.7: Edge-based object detection test under different lighting conditions (low,

medium and high). (a) Original frame (b) Edge detection by Canny algorithm (c)

Bounding rectangle over detected object.

Nevertheless, the exploitation of the template matching procedure limits this

algorithm’s independence from variability in input images. For instance, the scale

of the template must be similar to that of the object in the frame for there to be a

sufficiently high correlation between the two. A study was carried out to determine

this algorithm’s tolerance to differences between template and object sizes by varying

the template’s size until the water bottle was no longer recognised. The results

indicate that an adequate recognition requires a template size at most 20% over

or 15% under the object’s size in the input image, which may result in an incorrect

detection as the robot approaches or moves away from the object of interest.

Although robustness to scaling variations can be improved employing a multi-

scale approach in which the input image is repeatedly re-scaled in search for the

largest correlation coefficient, template matching can similarly fail due to changes in



3.5. Region-based object detection 30

rotation, viewing or non-affine transformations [115]. Even if the template employed

in the above, successful tests presents a different viewing angle to that of the water

bottle in the input images, as it can be observed in Figure 3.6 (d) and Figure 3.6

(a), a similar behaviour in terms of this factor as with the scale can be expected,

with changes in viewing angle greater than a certain proportion causing inevitable

detection errors. Therefore, template-matching is only applicable when templates

are fairly rigid and well-defined via an edge map and when variations in translation

and scaling, at most, are expected [115].

3.5 Region-based object detection

A region can be described as a group of connected pixels exhibiting similar

properties such as intensity or colour [116]. This type of segmentation method looks

for similarities between adjacent pixels, grouping together into unique regions those

that possess similar attributes according to predefined rules [116] [117]. It tends

to work well for difficult imagery, as it is adaptive and less susceptible to the effects

of partial occlusion, adjacency, noise and ambiguous boundaries [117]. Region-based

techniques are further classified into 2 types based on the approaches they follow.

Region growing methods start with some pixel as the seed and add those adjacent

pixels that abide by the predefined similarity rules to its region [116]; in region

splitting and merging methods, the whole image is first taken as a single region

that is repetitively subdivided as long as the generated sub-regions don’t follow the

pre-established rules [116].

Although these segmentation methods are not commonly employed for the purpose

of object detection, OpenCV does provide a simple binary large object (BLOB)

detector, where BLOBs are the equivalent of regions: groups of connected pixels

that share some common property [118]. This algorithm converts the input image

into multiple binary images by applying several thresholds, extracting connected

components from every binary image through contour identification, and calculating

the coordinates of their centres to then group close centres from different images

together [119]. From these groups, the final centre coordinates of each detected BLOB

and their corresponding radii are returned as locations and sizes of keypoints [119].

The final BLOBs can then be filtered according to different criteria including colour,

size, circularity, convexity or inertia ratio in order to extract the region or objected

that is searched [118].

As opposed to the aforementioned classical segmentation algorithms, this region-

based object detection technique will not be discussed in detail in this chapter

since the results yielded by this procedure were far from satisfactory. As shown in

Figure 3.8, the BLOB detector’s output was found to be heavily dependent upon

the morphology, both in shape and size, of the regions of interest. Despite yielding

fairly accurate detections for small elements, for instance, the cell nuclei displayed in

Figure 3.8 (a), when exposed to objects of a larger scale the algorithm was uncapable

of identification regardless of the filtering criteria specified, even when the rest of the
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attributes, such as colour and shape, were maintained. This can be corroborated in

Figure 3.8 (b), where similar sunflowers are captured at different distances from the

camera and only the ones at the back, of smaller apparent size in the image, are

recognised by the detector. A similar effect was observed in terms of shape, whereby

non-circular objects were extremely difficult to discern. Instead, region proposal

will be examined in the next chapter as its use is essential to many AI-based object

detection algorithms.

(a) (b)

Figure 3.8: Region-based object detection (a) Accurate detection for small elements

(b) Inconsistent detection for same object depending on its size in the image.

3.6 Limitations

The classical image segmentation methods reviewed in this section for the purpose

of object detection have proven that one of the major drawbacks of simple computer

vision algorithms is parametrisation: many techniques require setting parameters or

initial conditions for each situation [113]. Frequently, these parameters are exclusive

to a specific lighting or perspective, as is the case with the colour-based and edge-

based object detection algorithms presented, respectively. This also entails certain

limitations of particular importance in computer vision approaches, such as previous

knowledge requirements about the object to be detected and its surroundings (e.g.

colour or lighting temperature). As a result, it complicates finding a unique solution

for different situations and therefore, something that works correctly under certain

experimental conditions does not necessarily work under others.

All in all, the constraints endured by classical segmentation methods originate from

the two common underlying assumptions they are built upon: “the object of interest

is uniform and homogeneous with respect to some characteristic” and “adjacent

regions differ significantly” [94]. These are rarely met in real-world applications,

deriving in their inability to adapt to real-world changes that can be caused by

variations in the object itself (e.g. different colour or texture) or in the environmental

factors, most importantly shadow and highlight bands which cause non-uniform

changes in the appearance of objects, violating the homogeneity assumption [94].



Chapter 4

Artificial Intelligence Based

Recognition

Artificial vision is contained within the field of AI as it makes use of its different

algorithms, techniques and methods in order to achieve the processing of information

contained in digital images [120]. These techniques generally fall into either ML-

based approaches, where it becomes necessary to first define the features a selected

classifier will then use to sort the images, or DL-based approaches, which are

capable of carrying out the desired task without having to specifically define features

[121]. The state-of-the-art object detection algorithms typically leverage ML or

DL methodologies through two main types of approaches: one-stage methods,

which prioritise inference speed, and two-stage methods, which prioritise detection

accuracy [89]. Both these categories will be studied and compared in the present

chapter of this Master’s Thesis.

Two-stage detectors first filter out the regions that have a high probability of

containing an object from the entire image, phase which is known as region

proposal, and then feed the candidate bounding boxes to a classifier which extracts

features in order to assign each box’s corresponding classification score [122]. In

contrast, a one-stage detector predicts bounding boxes in a single step without using

region proposals, leveraging a grid box and anchors to localise the region of detection

in the image and constraint the shape of the object [123]. Though one-stage detectors

are more efficient due to their straightforward architectures, two-stage detectors still

take the lead in accuracy [123]. This is mainly due to the fact that, by sampling

a sparse set of region proposals, two-stage detectors filter out most of the negative

proposals and can afford the extraction of richer features as only a small number of

proposals are processed [122].

4.1 Image classifiers into object detectors

When performing image classification, an input image is given a class label,

that is meant to characterise the contents of the entire image or, at least, the most

dominant, visible contents of the image, and the probability associated with the class

label prediction [124]. Object detection, on the other hand, is not only capable of

32
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inferring what is in the image (i.e., class label), but also of identifying where in the

image the object is located by means of bounding box coordinates [124]. Object

detection networks are available but are more complex, more involved and take

multiple orders of magnitude and more effort to implement compared to traditional

image classification [124]. Fortunately, there are several computer vision techniques

that can be leveraged to convert any image classifier into an object detector by

means of a two-stage approach.

4.1.1 Image pyramid and sliding window approach

Operating with an image of constant size is the usual practice in image processing;

however, when searching for an object, the size at which said target will be present in

the image is unknown and so a set of the same image with different resolutions must

be created so that the object can be searched for in all of them and found regardless

of its scale [125]. When arranged into a stack where the highest resolution image, at

its original size, is located at the bottom and the lowest resolution image at the top,

as shown in Figure 4.1 (a), these sets of images resemble pyramids, as suggested by

their name [125]. At each subsequent layer, the image is progressively sub-sampled

and optionally smoothed via Gaussian blurring until some stopping criterion is met,

normally when a minimum size has been reached [124].

(a) (b)

Figure 4.1: Traditional approach to converting image classifiers into object detectors

(a) Image pyramid [124] (b) Sliding window.

These multi-scale image representations must then be split into regions, each of

which will be fed to the classifier in order to decide whether the object of interest is

present in any of them. These regions are generated by means of a sliding window,

a rectangular region of fixed width and height that slides from left-to-right and top-

to-bottom within an image, extracting in each step the region of interest (ROI) of the

image captured within its area [126]. In combination with image pyramids, sliding

windows enable the localisation of objects at different locations and multiple scales

of the input image.
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4.1.2 Selective search

Region proposal algorithms constitute an alternative to the image pyramid and

sliding window approach that avoids the high computational cost associated to

looping over each image pyramid layer and inspecting every location in the image

with a sliding window, and that also reduces the sensitivity to parameter choices

such as pyramid scale and sliding window size, that can lead to significant variations

in the yielded results [127]. The general idea behind these algorithms is to inspect the

image and attempt to find regions that likely contain an object accurately and in a fast

and efficient way, so that these “candidate proposals” can then be fed to a downstream

classifier which labels them, thus completing the object detection framework [127].

Selective search is an automatic region proposal algorithm that operates by over-

segmenting an image into superpixels which are then merged together in a hierarchical

fashion based on similarity measures in order to find regions that could contain an

object [128]. This procedure is exhibited by Figure 4.2, where the bottom layer of

the pyramid is the original over-segmentation generated by means of a superpixel

algorithm, regions are joined together in the middle layer and, eventually, the final

set of proposals, displayed in the top layer, are formed [127]. The five key similarity

measures for merging are: colour, texture, size, shape and a finalmeta-similarity

measure that acts as a linear combination of the aforementioned properties [128].

Figure 4.2: Selective search algorithm for automatic region proposal [127].

4.1.3 Non-maximum suppression (NMS)

In the object detection pipeline, once the candidate regions for the object of interest

have been identified, for instance, with either of the approaches detailed above, they

are then fed to a classifier which assigns foreground/background scores depending on

the features computed in each region [129]. Neighbouring windows normally present

similar scores to some extent and can therefore all be considered as candidate regions if

they surpass the threshold score established for detection, which leads to hundreds

of proposals and, thus, a large number of bounding boxes surrounding the image,

as can be observed in Figure 4.3 (a). While each detection may in fact be valid, the
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classifier must not report back multiple objects in the image when there is clearly just

one. This problem gave rise to NMS, a technique which filters the proposals based

on some criteria [129]. The result of its application is demonstrated by Figure 4.3

(b).

(a) (b)

Figure 4.3: NMS (a) Original classifier output (b) Output after NMS.

4.2 ML vs DL classification

The key challenge in creating ML classifiers is achieving robustness to variations

in illumination, pose and occlusions in the image [130]. In this way, rather than being

trained on the pixel-based representation of the image, an intermediate representation,

commonly known as feature vector or descriptor, is employed [130] [131]. This

simplification only extracts the image information that is useful for classification and

that is invariant to small changes in illumination and occlusions, reducing an image of

size width x height x 3 (channels) into an array of length n [130] [131]. Whilst earlier

ML classifiers require manually deciding which characteristics of the image are most

important for the task at hand, DL approaches perform this selection automatically,

taking the task of feature extraction out of the developer’s hands [132]. Both of these

approaches are contrasted and presented below for the purpose of image classification.

4.2.1 Feature descriptors for ML

The main feature descriptors employed in the field of computer vision are: the

gray level co-ocurrence matrix (GLCM), the local binary pattern (LBP), the scale-

invariant feature transform (SIFT) and the histogram of oriented gradients (HOG)

[121]. Once these are extracted from an image, they must be paired with an AI

algorithm, such as those presented in Section 2.2.3 and Section 2.2.4, in order to

carry out the classification problem.

4.2.1.1 GLCM

The GLCM function characterises the texture of an image by means of calculating

how often a pair of pixels with specified values and spatial relationship occurs [133].



4.2. ML vs DL classification 36

In this way, a square matrix, whose size depends on the image’s range of intensities

(e.g. 256 x 256 for an 8-bit channel), is constructed in which each entry GLCM[i,j]

holds the count of the number of times the corresponding pair of intensities (i,

j) appears in the image in the defined direction and distance [134]. Once the

GLCM is calculated, texture properties can be extracted from the matrix, such as

correlation, energy, homogeneity, contrast, or dissimilarity, to represent the textures

in the image [134]. To construct the GLCMs, a series of parameters are required

which must be stipulated through rigorous analysis for the extraction of the most

important textural information with lesser number of correlated features [133].

4.2.1.2 LBP

LBPs are very descriptive and efficient yet computationally simple grayscale texture

operators that have become a popular approach specially in applications involving

challenging real-time settings such as face recognition or visual inspection [135].

Rather than computing a global representation of texture as is the case with the

GLCM, a local representation is constructed by comparing each pixel with its

surrounding neighbourhood of pixels [136]. For every pixel in the grayscale image,

a LBP value is calculated by thresholding it against its selected neighborhood of

size r ; each neighbour is given a value of 0 or 1 depending on whether its intensity

is smaller or greater-than-or-equal to that of the centre pixel being evaluated [136].

These are then converted to decimal to obtain a single value per pixel and built into

a histogram that describes the entire image, yielding its feature vector [135].

4.2.1.3 HOG

The HOG descriptor focuses on the structure or the shape of an object, counting

occurrences of gradient orientation in the localised portion of an image [137]. To

calculate a HOG descriptor, the horizontal and vertical gradients must be first

calculated by filtering the image using kernels such as the Sobel operators; this

removes a considerable amount of non-essential information, highlighting outlines

(i.e. sharp changes in intensity) in their respective directions [131]. At every pixel,

the gradient has a magnitude and a direction, but rather than depicting individual

gradients, the image is subdivided into fixed-sized cells and a histogram is computed

with both variables for each patch in order to obtain a more compact representation

that is also much less sensitive to noise [131]. The final HOG feature vector is obtained

by concatenating all the histograms from every block in the image once these are

subjected to normalisation in order to reduce the influence of lighting variations [131].

All in all, the HOG is better than any edge descriptor as it uses magnitude as well as

angle of the gradient to compute the features [137].

4.2.1.4 SIFT

SIFT is a feature detection algorithm which enables the location of local features

in an image, commonly known as “keypoints”, whose major advantage is that they

are not affected by the size or orientation of the image [138]. This is achieved by

constructing a scale space, a collection of images with different scales generated from



4.3. End-to-end object detection 37

the same one, which are subjected to feature enhancement by means of the difference

of Gaussian (DoG) technique that acts as an edge detector [139]. Next, the important

keypoints are found by calculating the local maxima and minima and then removing

low contrast keypoints and those that lie very close to the edge [139]. At this stage, a

set of scale-invariant, stable keypoints have been selected which are finally assigned

an orientation so that they are invariant to rotation by computing a histogram for

magnitude and orientation of each pixel in the image [138].

In the world of natural language processing (NLP), multiple documents can be

compared by counting the occurrences of each word in the corpus of all words, thus

converting each document into a histogram of word counts that can be used as a

feature for ML [140]. Every picture can be thought of as a document of “visual

words”, or SIFT descriptors, with each “word” representing a part or feature of the

image such as an eye or a finger, and so the bag of words model can be extended to

classify images instead of text documents [140]. Descriptors representing the same

real-world feature must be grouped together as these may present variations over

different images; this gathering can be performed mathematically with a clustering

algorithm, where the descriptors are grouped into K different codewords [140].

4.2.2 CNNs for DL

Convolutional neural networks (CNNs) are frequently used for the task of image

classification as this term is used to describe an architecture for applying ANNs to

two-dimensional arrays [132] [141]. CNNs may be conceptualised as a system of

connected feature detectors with non-linear activations that is able to take raw

data, without the need for an initial separate preprocessing or feature extraction

stage, and perform both the feature extraction and classification tasks naturally

within a single framework [141]. Neurones that are located earlier in the network

are responsible for examining small windows of pixels and detecting simple, basic

features such as edges and corners [132]. These outputs are then fed into neurones

in the intermediate layers, which learn to recognise particular spatial combinations

of previous features at progressively larger spatial scales, generating “patterns of

patterns” in a hierarchical manner [132] [141]. These are then used to make a final

judgment about whether the image contains the desired object [132].

4.3 End-to-end object detection

The classification algorithms introduced in the previous section can all be exploited

as object detectors by applying two-stage techniques such as those detailed in

Section 4.1. However, this type of network is not end-to-end trainable. Precisely,

the reason why DL-based object detectors such as Faster R-CNN or Single Shot

MultiBox Detectors (SSDs) perform so well is because they are end-to-end trainable

as the region proposal task is carried out internally [124]. This means that any error

in bounding box predictions can be made more accurate through back propagation

and updating the weights of the network [124].
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4.3.1 YOLO

Amongst single-stage object detectors, the YOLO algorithm, which is an abbrevi-

ation for the term “You Only Look Once”, has excelled due to its speed, accuracy

and learning capabilities which enable real-time detection applications [142]. Other

approaches such as the aforemetioned Faster R-CNNs or SSDs have solved the

challenges of data limitation and modelling in object detection, but do not possess

YOLO’s ability to detect multiple objects in an image in a single algorithm run,

yielding a superior performance [142]. It works by dividing the image into N grids,

each having an equal dimensional region of S x S and each being responsible for the

detection and localisation of the object it contains [143]. Correspondingly, these grids

predict bounding box coordinates relative to their cell coordinates, along with the

object label and probability of the object being present in the cell [143]. This process

greatly lowers the computation as both detection and recognition are handled by

cells in the image [143].

4.4 Implementation

4.4.1 Dataset generation

In ML, datasets are split into two subsets. The first subset is known as the

training data and is the portion of the actual dataset that is fed into the ML

model to discover and learn patterns [144]. The other subset is known as the testing

data and it is unseen data that is used to evaluate the model’s performance and/or

progress the algorithm’s training by adjusting or optimising it for improved results

[144]. In this case, the entire dataset was constructed by manually acquiring 640 x 480

resolution images with the USB camera displayed in Figure 3.1. The chosen target for

detection was the same water bottle employed for the implementation of the classical

segmentation algorithms, capturing said object under different environmental

conditions such as natural and artificial lighting, varying lighting brightness and

temperature (at different times of day), diverse backgrounds and numerous distances

from the object and viewing angles. The images were then annotated by means of the

LabelImg tool to register the object’s ground-truth coordinates within each image.

4.4.2 Training

The training dataset was comprised of 74 images of the object in as many different

conditions as possible, as shown in Figure 4.4 (a), which contributed towards the aim

of subjecting the models to a considerable amount of variability in order to optimise

their robustness. The ML classifiers destined for the purpose of image classification

require 2 types of data: positive images, containing the object that is to be detected,

and negative images, that don’t contain the object at all. Therefore, the original

dataset had to be transformed to obtain such an arrangement by using the previously,

manually-specified coordinates of each object in the image in order to crop the ROIs

containing the object, which are considered positive samples, and the rest as negative

samples.



4.4. Implementation 39

Taking advantage of this necessary step, a data augmentation technique was

introduced so as to increase the training dataset’s size. Selective search was employed

to propose regions where there could be an object and only those which presented an

intersection over union (IoU) greater than 70% with the corresponding ground-

truth bounding box were introduced into the positive set. The IoU is an evaluation

metric used to measure the accuracy of an object detector on a particular dataset as

it represents the ratio of the area of overlap between a predicted bounding box and its

respective ground-truth bounding box with respect to the area of union, that is, the

area encompassed by both [145]. The resulting images were then resized to maintain

a fixed, constant size and reduce their computational load, taking into consideration

the preservation of their average aspect ratio. With a maximum number of 30 positive

and 10 negative images to be extracted from each original image, a total of 1.374 and

781 positive and negative samples were generated, respectively. A subsample of the

final training dataset for classification is displayed in Figure 4.4 (b).

(a) (b)

Figure 4.4: Training dataset (a) Original layout (b) Final classification dataset after

data augmentation: positive (top) and negative (bottom) samples.

Firstly, the training of all the supervised learning classifiers presented in Sec-

tion 2.2.3 was carried out based on the manual extraction of the feature descriptors

previously introduced in this Chapter. Each classifier was trained with each type of

descriptor with the aim of discovering the best performing pairings. To do so, the

training procedure was standardised and, after various iterations of model evaluation,

the optimal approach for each descriptor was attained. The GLCM was extracted in

four different directions: θ = {0◦, 45◦, 90◦, 135◦} and with a distance of 1 px, the LBP

was computed with 24 circularly symmetric neighbour set points and a radius of 8

px, and the HOG descriptor was acquired with 5 x 7 px cells and 10 x 21 px blocks.

The best results were found to be obtained with a simple preprocessing consisting of

grayscale conversion with the exception of the SIFT descriptor, whose performance

was discovered to be enhanced through histogram normalisation and equalisation,

along with the removal of the training image resizing process which resulted in lower

image resolution and thus complicated the identification of keypoints.
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With all features extracted from the training set of images, the collected data

could then be fed to the CNN, RF and SVM classifiers. In the case of the SIFT

feature, an additional step of training a Kmeans classifier was also required to

cluster the extracted keypoints into 5 different codewords that would enable the

classification of images, as in NLP. The performance of these ML algorithms can

be very sensitive to how cost, kernel or other types of parameters are set [74]. As a

result, extensive cross validation was conducted in order to determine their optimal

parameter settings, process which is commonly referred to as model selection [74].

This hyperparameter tuning was performed by means of the grid search technique,

which enables exhaustively testing all possible hyperparameter configurations the

developer is interested in optimising [146]. The grid was constructed with different

weighting functions and algorithms to compute the nearest neighbours, with varying

numbers of tree estimators and minimum number of samples required to split nodes,

and with varying kernels and tolerances, among other factors, for the KNN, RF and

SVM classifiers, respectively. The optimal parameter settings were determined using

a k-fold cross-validation process of 10 folds and 3 repetitions.

Finally, the remaining DL models were trained. In the case of the CNN for clas-

sification, a MobileNetV2 architecture was selected and an optimised preprocessing

technique for this particular architecture, provided by tensorflow, was employed. An

image generator was constructed for data augmentation on the fly by performing

operations such as rotations, zoom, horizontal flips or width shifts, and callbacks

including early stopping, to avoid overfitting, reduced learning rate on plateau,

to enhance model performance, and model checkpoints, to only save the best

model during training, were implemented. The quantity that was chosen as the

metric to be monitored in order to regulate the behaviour of these callbacks was

the validation loss, which required splitting the training set with an 80-20 split

to extract a validation dataset and selecting a loss function, binary cross-entropy.

In the case of YOLO, the training images were those originally captured, before the

data augmentation procedure (Figure 4.4 (a)), and online imagespace and colourspace

augmentations were also applied to create 3 random images from each input image

[147]. Following official guidelines and recommendations on training with small

custom datasets, pretrained YOLOv5 weights were utilised [148].

4.4.3 Testing

The different combinations of supervised learning classifiers and feature descriptors

were first evaluated on the basis of image classification. To do so, a 20% subset

of the aforementioned training dataset obtained through data augmentation was

employed, which was naturally excluded from the training process. In this way, a test

dataset completely independent from both the training and testing stages of image

classification would be later employed for the evaluation and comparison of these

classifiers as object detectors with respect to the YOLO detector. In this first scenario,

the chosen evaluation metrics to assess the models’ performance were: accuracy,

sensitivity, specificity and ROC AUC score, all of which are shown in Table 4.1.
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Classifer

KNN RF SVM CNN

Feature

GLCM

0.853 0.923 0.637

0.98 ± 0.02

0.95 ± 0.06

0.994 ± 0.006

0.9983 ± 0.0006

0.718 0.795 0.0

0.931 0.996 1.0

0.875 0.963 0.647

LBP

0.935 0.944 0.529

0.865 0.872 0.981

0.974 0.985 0.273

0.969 0.986 0.849

HOG

0.881 0.951 0.965

0.673 0.897 0.962

1.0 0.982 0.967

0.899 0.995 0.997

SIFT

0.853 0.747 0.639

0.718 0.75 0.004

0.931 0.745 1.0

0.865 0.819 0.629

Table 4.1: Evaluation metrics of ML and DL classifiers. Colour code: accuracy,

sensitivity, specificity and ROC AUC score.

Accuracy is the ratio of correct predictions to the total number of input samples

[149]. For sensitivity and specificity, the confusion matrix was constructed,

with the first being the proportion of positive data points that are correctly

considered as positives and the second the proportion of negative data points that are

correctly considered as negative [149]. Finally, the area under the receiver operating

characteristic curve (AUC ROC), one of the most widely used metrics for binary

classification evaluation, is the probability that the classifier will rank a randomly

chosen positive example higher than a randomly chosen negative example [149].

The testing procedure was performed on three trained models of each feature-

classifier combination, with the mean values for each evaluation metric displayed

in Table 4.1. As it can be observed, the only model that presented performance

variations across different training instances was the CNN, where the standard

deviation is included as well as the mean value, due to the stochastic nature of its

training process. Overall, the results obtained are encouraging, with most classifiers

presenting reasonably good behaviours. These outcomes reveal that the same data,

in this case the various features extracted from the images, yield different results

depending on the ML model employed. As expected, the CNN exhibits excellent

results across all 4 metrics, particularly in terms of accuracy and ROC AUC score,

arguably the most important variable, where it assumes the leading position amongst

all models. Interestingly, however, the other models do not fall far behind, specially

the well known HOG-SVM pairing, that also performs very well across all 4 variables.
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This suggests that manual feature extraction is still a viable option and may even

prove to be a better solution in some cases than DL considering the computational

resources involved. Nevertheless, finding the appropriate features to extract, the best

model to employ and the optimal parameter settings is crucial to the development

of a high-quality performance algorithm, as this investigation demonstrates.

These classifiers were then converted into object detectors using the aforementioned

image pyramid and sliding window approach and the selective search methodology.

For the first scenario, a custom function was developed to loop over each image,

generating increasingly downsized copies according to a scale factor received as a

parameter, finally set at 10% for each iteration, until a minimum size was reached,

corresponding to the object’s smallest expected dimensions. Moreover, for each

layer of the pyramid, several ROIs were extracted in accordance with the window

size and window step size specified by the user, finally fixed at 90 x 280 px and

8 px, respectively. These ROIs were then fed to the classifying models after the

adequate preprocessing and feature extraction techniques had been applied and their

coordinates in terms of the original image were stored in order to later possess the

ability to localise positive detections. On the other hand, the selective search strategy

was carried out with OpenCV ’s utilities, establishing a maximum number of 200

proposals from each image on which to perform inference.

To test and compare the image classifiers and the YOLO detector, an independent

dataset was generated by acquiring 25 images of the water bottle in environments

which were not included in the training set, again varying factors such as lighting

conditions to introduce high variability and, therefore, extract reliable conclusions.

These images were also labeled with the same tool in order to gather the ground-

truth bounding box coordinates which were required for the evaluation procedure.

In this case, the main metric that was chosen to assess the models’ behaviour was

the mean average precision (mAP), which considers both the category and the

location of the classifications. To calculate it, a custom function was created that first

computes the IoU between the ground-truth and the predicted bounding boxes to

decide which predictions are true positives and which are false positives depending on

whether an established IoU threshold is surpassed or not. With this information, the

precision-recall curve can then be constructed, with precision being the ratio between

the correctly classified positive samples to the total number of samples classified as

positive, and recall being equivalent to sensitivity [150]. After proper smoothing, the

AUC is calculated by means of the 11-point interpolation technique introduced in

the PASCAL VOC challenge, obtaining the so-called average precision (AP), which

is replaced by the mAP when the detection involves multiple categories [150].

The results obtained from this testing phase are exhibited in Table 4.2. As it can be

seen, all the feature descriptors presented for the purpose of image classification were

included, but only paired with the ML classifier which yielded the best performance

results in the previous evaluation stage. The mAP (or AP in this case as there is only

1 class) was calculated for various confidence and IoU thresholds to investigate each
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algorithm’s performance in terms of its classification and localisation capabilities

separately. In this way, the “standard” mAP was calculated considering all positive

detections whose confidence surpassed a 0.5 probability threshold, the bare minimum

to not be considered a background ROI, and whose IoU overlap score with the ground-

truth bounding boxes was of at least 0.5, the usual norm for “good” predictions [150].

Building on this basis, two more metrics were computed: a mAP score for predictions

with a confidence level greater than 0.8, to test the models’ classification accuracy, and

a mAP score for predictions with an IoU greater than 0.8, to test the models’ ability

to correctly localise positive samples within the image. Furthermore, the mean time

required for the detection process on a single image was also recorded and incorporated

as an evaluation metric, as this information is of extreme importance when pursuing

real-time applications.

Region proposal

Image pyramid Selective search

AI

model

GLCM + RF

0.0560 0.0542

0.0335 0.0285

0.00521 0.00864

83 ± 2 8 ± 1

LBP + RF

0.0691 0.0611

0.273 0.125

0.0128 0.0

5 ± 1 5 ± 1

HOG + SVM

0.239 0.216

0.361 0.112

0.0200 0.0585

1.8 ± 0.8 5 ± 2

SIFT + KNN

0.0404 0.0526

0.0267 0.0598

0.00869 0.0103

400 ± 100 10 ± 7

CNN

0.220 0.318

0.0370 0.407

0.0125 0.0

6.1 ± 0.9 6 ± 2

YOLOv5

0.271

0.213

0.210

0.14 ± 0.05

Table 4.2: Colour code: mAP (conf > 0.5, IoU > 0.5), mAP (conf > 0.8, IoU > 0.5),

mAP (conf > 0.5, IoU > 0.8) and mean detection time (s).
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Amongst the image classifiers repurposed as object detectors, significant be-

havioural dissimilarities can be observed. In the case of the feature descriptor and

ML classifier pairings, a significant performance difference in the “standard” mAP

cannot be observerd between the two region proposal approaches, but when the

confidence threshold is increased, the mAP is significantly better with the image

pyramid technique. However, the CNN presents the opposite behaviour: when a

greater confidence level is demanded, the selective search approach constitutes a much

better alternative, with a significant difference of an order of magnitude. Therefore,

decisive conclusions cannot be extracted from this data, remaining unclear which

region proposal technique provides better performance results in two-stage object

detection algorithms as this may depend on the ML model in question. The same

can be inferred in terms of the time required for each detection, with some models

presenting almost the exact same time intervals across both approaches (e.g. LBP +

RF and CNN ), while others exhibit enormous disparities, notoriously the SIFT +

KNN combination which stands in the order of minutes when an image pyramid and

sliding window strategy is employed.

In terms of the comparison between one-stage and two-stage object detectors, the

results corroborate the hypotheses encountered in the bibliographic sources cited at

the beginning of this Chapter, with two-stage detectors exhibiting better accuracy

and one-stage algorithms greater speed. With respect to accuracy, the findings show

how the YOLOv5 detector is outperformed both in the standard mAP as well as

in the confidence-enhanced mAP by the CNN, and surpassed by the HOG + SVM

and LBP + RF models in terms of the latter metric. Interestingly, however, when

the IoU thresold is increased, the YOLOv5 detector showcases a better response

than the other AI models, experiencing a much smaller decrease than the rest with

respect to the other mAP values, remaining considerably competitive whilst the others

provide near-null results. This suggests that two-stage methods are superior when

distinguishing between the object of interest and the rest of the image, but one-

stage techniques carry out a more desirable localisation of positive samples. This

seems reasonable considering that the region proposal is carried out internally in

these networks and so the weights updated during training will also aim to reduce

errors in bounding box predictions. Nevertheless, the biggest and most significant

disparity between both categories relies in the time required for detection, with one-

stage detectors in the order of ms and two-stage algorithms in the order of several

seconds, difference which proves to be pivotal when pursuing real-time detection.



Chapter 5

Deployment on a Robotic

Rehabilitation System

Having completed the investigation and evaluation of an extensive framework of

diverse digital image processing techniques for real-time object detection applicable

to any specific use case, the design of a coordinate finding mechanism and an

inverse kinematic controller must be accomplished in order to supply the robot with

the ability to approach the identified targets. As the popular strategy of modular

decomposition, introduced in Section 2.1.2, has been applied to reduce the robot

architecture’s complexity and increase its reliability, the integration of the software

developed throughout this MSc Thesis into ROS will also be required. In this way,

a structure consisting of simple, independent nodes each assuming a subset of the

navigation system’s tasks, for instance, object detection or motion planning, will be

utilised. Therefore, the developed vision sensor feedback functionality will need to

communicate with other processes which will pass the planned motion trajectories

onto the actuator hardware systems of a partial body weight-supported and traction

powered walker where they will be executed.

5.1 Object coordinate calculation

Once the object of interest has been detected in the scene through any of the

previously presented object-recognition algorithms, its location in the environment

must be determined so that the appropriate trajectory to reach it can be devised.

Hence, the next step in the implementation of a guidance system from vision sensor

feedback must be the design of an object co-coordinate finding strategy. This

task is not simple since the implemented arrangement relies on a single camera and

photogrammetric systems require at least two projections of an object, that is, from

two simultaneous photographs taken from different perspectives, in order to determine

its 3D space coordinates [151].

5.1.1 3D position estimation

Achieving 3D perception with a single camera is possible with the sole condition

of knowing the size of the object in the picture whose 3D location is to be estimated

45
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[152]. There are multiple techniques with different degrees of complexity from the very

straightforward triangle similarity to the complex, yet more accurate, use of the

intrinsic parameters of the camera model [153]. The first option sets up a simple

mathematical relationship between the object’s known width W , its apparent width

in pixels P and the perceived focal length of the camera F , from which the distance

D to the object can be determined with a simple calibration step (Equation 5.1)

[153]. However, a more accurate relationship between a 3D point in the real world

and its corresponding 2D projection (pixel) in the image can be established through

several camera parameters or coefficients that can be estimated by performing a

proper camera calibration [154].

F = (P ·D)/W (5.1)

Camera calibration is the process of understanding the intrinsic and extrinsic

parameters of the camera [152]. These describe how the three different coordinate

systems involved in the geometry of image formation, exhibited in Equation 5.1,

are related: the world coordinate system, the camera coordinate system and the

image coordinate system [155]. The extrinsic parameters are rotation and translation

matrices that describe the relation between a given 3D coordinate system in the

world with the position of the camera, and the intrinsic parameters are internal

parameters of the camera or lens system (e.g. focal length, optical centre, radial

distortion coefficients, etc.) that govern the relation between the 3D coordinate of

the object and the 2D pixel coordinate of the image captured by the camera [153]

[152].

Figure 5.1: Geometry of image formation [155].
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The first step in finding the projection of a 3D point onto the image plane is

transforming the point from the world coordinate system to the camera coordinate

system using the extrinsic parameters: the rotation matrix R and the translation

vector t [154]. The camera coordinate system is defined as a 3D Cartesian coordinate

system where the origin is located at the focus point of the camera and the Z -axis

is the optical axis of the camera, as shown in Figure 5.1 [152]. Then, the point is

projected onto the image plane using the camera’s intrinsic parameters and so the

3D point in world coordinates (Xw, Yw, Zw) is related to its projection (u, v) through

the projection matrix P as follows:

u′

v′

w′

 = P


Xw

Yw
Zw

1

 (5.2)

With:

u =
u′

w′ (5.3a)

v =
v′

w′ (5.3b)

P = K× [R|t] (5.3c)

K =

fx γ cx
0 fy cy
0 0 1

 (5.3d)

Where K is the intrinsic matrix, [R|t] is the extrinsic matrix, fx and fy are the x

and y focal lengths, cx and cy are the x and y coordinates of the optical centre in the

image plane and γ is the skew between the axes.

5.1.2 Camera calibration

The goal of the calibration process is to find the 3×3 matrix K, the 3×3 rotation

matrix R and the 3×1 translation vector t using a collection of images with points

whose 2D image coordinates (u, v) and 3D world coordinates (Xw, Yw, Zw) are known.

There are different types of camera calibration methods; in this case, geometric clues

in the scene will be used by capturing several images of an object or pattern of known

dimensions from different view points and orientations [154]. For this purpose, the

corners of the squares in a checkerboard pattern will be located since these are

distinct and easy to detect in an image, their sharp gradients in both directions are

ideal for localisation and their world coordinates are easily defined by taking a single

point as reference and defining the rest with respect to it since they all lie on the

same plane and are equally spaced [154].
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In this way, a chessboard was fixed to a wall in the camera’s surroundings and the

world coordinate system’s origin was established in its top-left corner, as shown in

Figure 5.2 (a). Multiple pictures of this pattern were taken from different positions

and orientations maintaining the same coordinate system. The pixel coordinates (u, v)

of each of the chessboard’s internal corners were determined with sub-pixel accuracy,

as can be observed in Figure 5.2 (b), using histogram equalisation and adaptive

thresholding for image binarisation as well as several computational load optimisation

strategies. Finally, the camera’s intrinsic matrix and distortion coefficients were

calculated employing each corner’s 2D and respective 3D coordinates as well as the

rotation matrix and translation vector for each camera position and orientation, since

these last parameters are unique for each perspective.

(a) (b)

Figure 5.2: Camera calibration (a) Checkerboard pattern with world coordinate

system axes (b) Corner detection.

5.1.3 Implementation

Taking into consideration all the information presented in this section and the

project’s requirements, a suitable object coordinate finding strategy was devised.

Since the rotation matrix R and the translation vector t that relate the camera

coordinate system to the world coordinate system vary according to the camera’s

position and orientation, these cannot be applied as the camera will be in constant

movement as it approaches an object of interest and, thus, these parameters will

not be valid for any possible configuration. In this case, determining the object’s

position solely in terms of the camera coordinate system seems like a better option

since this reference system will always be centered in the camera, thus removing the

uncertainty derived from the camera’s movement, and simplifying the trajectory

calculation from the camera to the object as the former is the origin (0 , 0 , 0 ) of the

system.

Following this line of reasoning, R can be taken as the identity matrix I and t as

[0 0 0]T given that the world and camera coordinate systems are now equivalent.

The resulting relationship between world and image coordinates is described by
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Equation 5.4, where S is a scaling factor. When expanded, this association gives

rise to three simultaneous equations with four unknown variables (S,Xw, Yw, Zw),

thus rendering the system unsolvable. However, Zw can also be obtained from

Equation 5.1, where Xw and Yw can be inferred from Equation 5.5 (a) and

Equation 5.5 (b) respectively, since S = Zw. In this way, the relationships derived

from both the triangle similarity and the camera’s intrinsic parameters are combined

to estimate the object’s 3D location.

S

uv
1

 = K

Xw

Yw
Zw

 (5.4)

Xw =
S (u− cx)

fx
(5.5a)

Yw =
S (v − cy)

fy
(5.5b)

Consequently, an additional calibration step was required in order to determine

the camera’s perceived focal length F, which was derived from Equation 5.1 by

taking multiple pictures of an object of known width W at different distances D

from the camera. With this datum, the object’s coordinates can now be calculated

by first undistorting the image with the distortion coefficients obtained through

the camera calibration process, then calculating the distance to the object (Zw) by

means of the triangle similarity, subsequently segmenting the image in order to find

the pixel coordinates of the object’s centre and, finally, determining Xw and Yw with

the camera’s intrinsic parameters.

The developed procedure’s effectiveness was tested by placing an object at different

positions with respect to the camera and comparing its estimated location with

its actual coordinates, determined by means of a measuring tape. Both of these

variables are displayed in Figure 5.3 for each of the multiple scenarios that were

tested at varying distances from the camera (short, medium, long) so as to analyse the

possible influence of this variable on the quality of results. The presented images are

undistorted and the object was manually segmented in this case in order to remove

the dependence of the object’s apparent width in pixels P on the accuracy of the

segmentation method employed, which may vary depending on various factors as has

been previously discussed in prior chapters.

Given that the robot’s task is to approach an object by moving on a plane, only two

of its 3D coordinates are required to characterise its position for trajectory planning.

Therefore, in terms of the camera’s coordinate system, the object’s Yw coordinate,

which represents its relative “height” with respect to the camera, is irrelevant since

the robot will not dispose of this degree of freedom and so only the estimated

and actual coordinates in the XZ plane are specified. As it can be observed, the
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estimations (Xe, Ze) are considerably reasonable for all scenarios, regardless of the

object’s distance from the camera, with an error of just 0.6 ± 0.6 cm in Xw and

7.0± 3.0 cm in Zw.

(a) (b) (c)

Figure 5.3: Object coordinate calculation test (a) Short distance: {Xw, Zw} = {-12,
60 } cm (b) Medium distance: {Xw, Zw} = {16.5, 90 } cm (c) Long distance: {Xw,

Zw} = {34.5, 120 } cm.

5.2 Trajectory planning

Path planning is the task of finding a continuous, collision-free path connecting

a system from an initial to a final goal configuration in a given environment by

determining and evaluating plausible trajectories [156]. This is one of the most

important functions of any navigational technique as its performance directly decides

whether the robot’s task is successful or not [157] [55]. The optimal path to follow

can be decided based on constraints and conditions with respect to time, distance

and energy, among other factors, with multiple algorithms existing in order to identify

safe, efficient, collision-free and least-cost travel paths from origin to destination

with varied applicability determined by the system’s kinematics, the environment’s

dynamics, robotic computation capabilities, and sensor-and other-sourced information

availability [156].

A custom controlled-path motion control system will be applied for the com-

putation of the trajectory to the object’s previously calculated world coordinates.

Developed by Álvaro Sala Ayala from ROBOLABO 1, this ROS server node receives as

parameters the angle α the Swalker must turn to reach the new, desired configuration,

as shown in Figure 5.4, and the wheel, left or right, that must perform such movement

[158]. In this way, the robot’s current position and the object’s 2D coordinates are

interpreted as a triangle, with the robot first performing a turn corresponding to the

angle formed between both positions, and then moving in a straight line along the

hypotenuse that joins them in the shortest distance. Therefore, the desired movement

is achieved through continuous petitions to this node with α = arctanXe/Ze.

1https://robolabo.etsit.upm.es
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Figure 5.4: Motion planning: α turn followed by a straight line trajectory.

5.3 Materials

Aside from the USB camera employed in the previous Chapters for the performance

of the video analysis, object detection techniques, two additional materials are

required for the navigation’s system’s deployment: a hardware device on which

to set up the ROS node that processes the camera’s live feed, and a rehabilitation

robot on which to test the system’s correct functioning.

5.3.1 Jetson Nano

The hardware deployment of the object detection navigation system was performed

on a single-board computer due to their low cost, small weight and high computing

capability, thus constituting the best option for the incorporation of the developed

system into the preexisting robotic device. The Raspberry Pi and the Jetson Nano

boards share a lot of common properties and are arguably the most popular devices

for the sort of application pursued in this Thesis. Given that the biggest difference

between the two lies in their graphics capabilities, with the Jetson Nano possessing

a much more capable graphical processing unit (GPU), the final choice was to opt

for said tool, displayed in Figure 5.5 (a), as the GPU’s parallel processing ability

considerably enhances the speed of the computations involved in ML model training

and inference [159].

The official operating system for the Jetson Nano, the Linux4Tegra based on

Ubuntu 18.04, was burnt onto a microSD card, illustrated in Figure 5.5 (b). This

is a key component of this single-board computer as it acts as both the boot device

and the main storage, and, in this case, it was also configured to provide swap space

given the Nano’s limited 2GB physical memory RAM. Although the aforementioned

operating system is designed to run on NVIDIA hardware, including GPUs, some

initial configuration alterations were carried out to obtain CUDA support for certain

applications required for this navigation system, such as OpenCV.
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(a) (b)

Figure 5.5: Hardware deployment (a) Jetson Nano single-board computer [160]

(b) 64 GB micro SD card [161].

5.3.2 Swalker

The relentless growth of individuals with a limited range of motion and strength

in their lower limbs, mainly due to the increasing older population in developed

countries, has made technology pursue new challenges to improve this collective’s

quality of life and independence. With the increased use of robotic devices in the

last decades, specially those focused on neurorehabilitation of disorders, one of the

newest applications has been the development of robotic platforms to rehabilitate

musculoskeletal diseases. The Swalker platform, whose main functional goal is to

facilitate these individuals’ early mobilisation and ambulation using a safety walker

frame, is found at the forefront of this movement [162]. Early intervention with this

partial body weight-supported and traction powered walker will aim to reduce the

high morbidity and increase the independence after therapy [162].

The Swalker frame, illustrated in Figure 5.6, consists of a T-shaped structure

supported on four wheels and two adjustable parallel grab bars for greater comfort

and safety perception. Two gear motors equipped with encoders are coupled to

the back wheels to enable motorised traction while providing speed information,

and a mechanical mechanism involving two cylinder-piston actuators activated by

a hydraulic pump, controlled by an electric motor, provides the body-weight

support. The user’s stability is achieved by an adaptable trunk harness, alongside

the aforementioned parallel bars. Several sensors are also included to provide relevant

outcome measures, in particular, hip range of motion, weight supported by the robot

and gait speed, which aid in the determination of optimum rehabilitation dosage

and progress. A control unit is incorporated to capture the information from the

sensors and control the actuators accordingly. Finally, a graphical therapist interface,

running on a conventional tablet, is designed to control the Swalker, monitor the

registered parameters and display a patient database where all the information about

the therapy sessions is stored.
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Figure 5.6: The Swalker robotic platform for early mobilisation and ambulation of

individuals with limited range of motion and strength in their lower limbs [162].

5.4 ROS integration

The workflow of the final software, that takes an image from the camera’s live feed

as the input and outputs the motion trajectory that must be performed to reach

an object in the robot’s surroundings, is exhibited in Figure 5.7. This algorithm is

deployed on a ROS 2 node on the Jetson Nano, which broadcasts the parameters

that characterise the movement to be performed so that the node responsible

for translating those commands to the actuators can receive this information by

subscribing to said topic. Rospy, the Python client library for ROS, is applied to

set up the node and the topic as well as the communication with other nodes, as it

enables the specification of numerous factors such as the message instance, the queue

size or the rate of publishing.

As it can be observed, as soon as the node is initialised, a connection is established

with the camera, connected through the USB port, by means of the OpenCV client.

While the node is operating, an infinite loop performs continuous frame-by-frame

manipulation of the live feed supplied by the camera, which is placed on the Swalker ’s

structure. After a frame is extracted, it is first undistorted using the camera’s

distortion coefficients obtained through the calibration process, as this will contribute

towards a greater accuracy both in the model’s inference and in the 2D world

coordinate estimation. The next step involves further preprocessing of the captured

image, this time requiring different techniques depending on the AI model employed

for objection detection, as the exact same procedure employed during the training

stage, including dependencies, will have to be reproduced in order to obtain accurate

results. As presented in the previous chapter, this could entail a wide range of different

digital image processing techniques ranging from a simple grayscale conversion to

more sophisticated histogram equalisation or normalisation methodologies.
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Figure 5.7: Final algorithm that generates a motion trajectory from an input image

in real-time.

Once the image is adequately prepared, it must be fed to the AI algorithm of choice

for the recognition and localisation of the object it has been trained to identify in the

specific use case. Depending on the chosen architecture, a previous stage of region

proposal might be needed. The model will return a variable number of bounding

box proposals with an associated probability of containing the object. Given that

the robot can only approach a single target at a time, a filtering criteria must be

implemented to ensure that only one of the candidate regions progresses onto the

motion planning phase; in this case, the confidence level related to each proposal

is employed to select the ROI that possess the highest probability of containing the

object. The front and lateral distances to the object are then calculated based on the

proposed ROI’s bounding box coordinates and the trajectory to that spatial point

is determined following the procedures explained in previous sections, with the final

outcome being the publication of the angle turn and straight line distance required to

reach the target. If no object instance is detected, both variables receive null values to

indicate to the subscribing node that no movement is required. Whenever the node

receives a shut down request, this loop is interrupted and the webcam connection is

released to ensure a proper programme termination.



Chapter 6

Conclusions and Future

Developments

6.1 Conclusions

The devastating consequences brought upon worldwide communities by TBI, an

unknown condition to most people, have been highlighted in order to underline the

importance of taking action and improving the care of those affected given the

considerable socioeconomic impact this could entail. As discussed throughout this

MSc Thesis, the loss of functionality and occupational performance derived from the

multiple impairments associated with this condition triggers a wide spectrum of far-

reaching repercussions that range from economic burden to emotional distress and

decreased quality of life among family members, aside from the natural psychosocial

effects on the patients themselves including loss of self-esteem and depression. With

rehabilitation proven to be essential to the recovery of motor function outcomes, which

frequently limit these patients’ self-independence, an improvement of the currently

available physical therapies could be the key to unlocking a greater quality of life,

not only for the afflicted individuals, but also for those closest to them.

Considering the vast and rapid developments of robots in the field of rehabilitation

and their effectiveness in ameliorating recovery, a computer vision based guidance

system is proposed to grant these devices the ability to recognise objects or people

in their surroundings so that they are capable of guiding the patient’s movement

towards a physical target, aside from simply providing a helping force, thus promoting

the patient’s active participation and motivation. This approach to enhancing the

therapy’s success and adapting therapeutic interventions to each patient has required

the application of a wide range of different digital image processing techniques for the

purpose of real-time object recognition and localisation. After an extensive evaluation

of these techniques, the designed and implemented vision sensor feedback has been

effectively deployed on an assistive walking device employing a modular node based

on ROS that communicates with the other modules of the Swalker control system to

successfully perform the required task, consequently fulfilling all the objectives set

out at the beginning of the project.

55



6.2. Future developments 56

Special emphasis has been placed on the analysis and familiarisation with state-of-

the-art technologies in the field of computer vision, with the initial investigation of

simpler, more traditional techniques being essential to the achievement of a profound

understanding of image processing, which is definitely necessary before progressing

to the most advanced solutions that are actually applied in professional settings.

Overall, the object detection results obtained may seem slightly disappointing at first

sight. Understanding that the art of training high-quality AI models isn’t so much in

the code, but more in gathering the data to train the model with, is crucial in the

development of these solutions. Not only is quality data required, but also lots of it, as

this exerts a huge impact on the results. Considering the small size of the training and

testing datasets employed in this application, given the need to manually acquire and

label the images, the amount of variability introduced in both the training and testing

datasets has been exceedingly large, yielding subpar performance results. However,

satisfying results, along with the retrieval of robust models, should be expected with

this methodology when using significantly larger datasets.

6.2 Future developments

As the first step of a broad and ambitious project encompassing many different

areas of technological expertise and complexity, there are multiple functionalities

that can be incorporated or improved in order to enhance both the patient’s

experience and the therapy’s effectiveness. As previously stated, the performance of

the developed object detection algorithms is not sufficiently robust so as to ensure an

adequate and reliable functioning of the vision sensor feedback. Therefore, the most

immediate improvement would be the generation of a larger training database either

through manual acquisition or by obtaining a large number of images containing a

particular object from a public data repository. However, this last strategy could

result problematic as the training images would be acquired with different camera

characteristics than the ones employed for inference. The models’ behaviour could

also be enhanced by specifying a particular environment where the detection would

be carried out in order to narrow down the environmental conditions under which the

model will operate, and so the variability of factors, such as lighting, during training

could be reduced to more reasonable levels.

Other areas of refinement could be the employment of AI strategies for a more

accurate calculation of the object’s spatial position, rather than performing an

estimation based on the triangle similarity, or the exploitation of a stereo vision

system, capable of computing depth information using two cameras. In terms of

new features that could be incorporated, object tracking is a widely implemented

technique in the field of computer vision which, as its name suggests, enables tracking

detected objects as they move around frames in a video, interpreting them as a set

of trajectories with high accuracy [163]. Its application, once an initial detection is

performed, would enable updating the robot’s trajectory according to the object’s

movement without having to carry out the entire detection process, translating

into a lower computational cost and saving time. Another interesting approach,
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specially in terms of patient engagement and motivation during therapy, would be

the incorporation of virtual reality so that the patient can also approach objects in

an immersive virtual environment with the Swalker ’s aid.

Finally, the most important action that needs to be carried out to complete this

project is its clinical validation. As in any engineering activity, the feedback

obtained from potential users is crucial in creating a successful product as it directs

the project’s focus towards the aspects that are most important to those individuals

that will actually end up using the proposed solution. Taking into consideration the

field in which this project is encompassed, that is the health sector, this validation

phase is particularly important when pursuing the incorporation of the developed

functionalities into rehabilitation protocols so that they can reach the target patients

as this sector is specially demanding on proving a solution’s effectiveness, given the

potential risk of faulty devices on people’s health. As such, the elaborated navigation

system should be tested on a significant sample of volunteer patients to gather

clinical evidence of its actual effectiveness in improving motor function recovery

as well as to obtain feedback, from both patients and medical staff, to continue its

development into a more complete solution which can finally reach the market and

exert a considerable beneficial impact on society as a whole.
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Appendix A

Ethical, economic, social and

environmental impact

As in any professional project, it is necessary to consider and analyse the impact

that the development of this initiative has exerted on society as a whole, thus fulfilling

our duty as citizens and responsible members of our communities. In order to do so,

the consequences of certain aspects of the project on a number of areas, considered to

be of great importance for the common good, are examined. These include ethical,

socioeconomic and environmental considerations.

A.1 Introduction

TBI is a major economic, social and health challenge worldwide. The so-called

“silent pandemic” afflicts millions of individuals every year, giving rise to a growing

population of patients living with significant disabilities directly related to this

disorder who struggle with basic activities of daily living, community participation

and reintegration. This loss of functionality and occupational performance triggers

a wide spectrum of far-reaching repercussions that range from economic burden to

emotional distress and decreased quality of life among family members, aside from the

natural psychosocial effects on the patients themselves including loss of self-esteem

and depression.

Amongst the numerous cognitive, physical and behavioural impairments associated

with this condition, many individuals with TBI consider loss of mobility to be the

most significant loss of activity. Intensive physical therapy after damage to the CNS

is integral to the recovery of muscle strength, which frequently limitsthese patients’

self-independence. Therefore, neurorehabilitation is essential after TBI treatment,

as leveraging the brain’s inherent plasticity through the appropriate propioceptive

stimulation during physical therapy has yielded significantly better motor function

outcomes during both early and chronic stages of recovery.

The past decades have witnessed vast and rapid developments of robots for the

rehabilitation of sensorimotor deficits given their ability to supply a standardised

training environment, to provide adaptable support to the patient’s actual state and
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to increase therapy intensity and dose. As the therapy’s success is in large part

determined by the active physical and cognitive engagement of patients and their

motivation, this Master’s Thesis proposes a computer-vision based guidance system

for assistive walking robots that aims to grant these devices the ability to recognise

objects or people in their surroundings so that they are capable of guiding the patient’s

movement towards a physical target as well as providing a helping force, thus giving

the user a compelling incentive to walk.

Therefore, the socioeconomic problems this initiative aims to resolve are the

aforementioned repercussions that stem from TBI, which range from the loss of

productivity derived from job loss to mental health issues and caregiver burden.

The chosen approach to address these issues is to enhance robotic rehabilitation

devices, which are already proving great effectiveness in the improvement of motor

function outcomes during recovery, so that patient motivation and active participation

is stimulated and, thus, mobility is increased. In turn, this will enable patients

to perform daily activities, gain independence and reintegrate into their family and

community lives.

A.2 Description of relevant impacts related to the project

The work developed in this Master’s Thesis falls within the field of assistive robotics,

which has started several ethical, social and philosophical discussions, some of which

will be discussed below. This term describes a group of robots that assist individuals

with physical disabilities through physical interaction, aiming to address areas and

gaps in care by automating supervision, motivation and companionship aspects of

one-on-one interactions with individuals from various large and growing populations.

• Ethical impact. This project brushes on the ongoing social debate on

whether the use of robots will replace human interaction, in this case, human

care. However, the robotic device employed in this particular project does

not substitute medical staff, but rather facilitates the physical therapy session.

There are also considerations about robots’ ability to deal with moral reasoning

and ethical problems. Again, since clinical staff are required to supervise the

robot’s functioning as well as to perform other medical expertise-requiring tasks,

the robot is not expected to be left to deal with patients on its own, thus

removing the need to deal with these complex scenarios. Nevertheless, the

question still remains on who is responsible for the robot’s actions and possible

damage to the patient, specially as robots become more and more autonomous.

Finally, there is the issue of privacy and data collection, of what data is collected

during therapies, how and where it is stored, who has access to it and how it is

used. In this particular case, the acquisition of images to train the AI models,

specially if face recognition is performed, is a considerably sensitive issue.

• Economic impact. As discussed in the introductory chapters of this

document, the economic burden attributed to this condition is enormous and

has began to affect low to medium income countries the most, thus contributing
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towards a greater breach in the inequalities between differently developed

countries. The enhanced recovery of mobility in these patients will contribute

towards the reduction in the most sizeable portion of the economic burden

associated with TBI: loss of productivity. By recovering self-independence to

a greater extent and in a faster manner, not only will the direct healthcare

costs associated to chronic treatment of these patients be reduced, but these

will also be able to return to their occupations and thus contribute towards

the country’s productivity and income and, thus, overall economic well-being.

The issue of the assistive robots’ elevated price remains, however, to ensure

that everyone has accessed to the proposed rehabilitative treatment, specially

in those countries possess less economical resources and where the incidence of

these events is rising at the highest rate.

• Social impact. Disabilities are conditions that carry a great social burden

as, not only do they affect the patients themselves, but also those close to

them: family members, friends and informal carers. By improving the physical

therapy’s effectiveness and, thus, increasing mobility and self-independence,

this navigation system offers great potential for an increased quality of life of

both the patients and the rest of the agents involved in these situations. This

could prove pivotal in terms of reducing mental health issues that result from

disabilities such as low self-esteem or even depression, which can also frequently

affect other areas of the patients’ lives such as their personal relationships,

commonly causing an increased probability of divorce. Therefore, aiding

patients in living more comfortably with their conditions presents great potential

for improving the quality of life of a vast amount of people surrounding the

patient and, hence, for a considerable positive social impact.

• Environmental impact. As the material resources employed for the develop-

ment of this project have been mostly software solutions, the environmental

impact can be considered to be minimal, aside from the inevitable aspects

of carbon dioxide emissions related to electricity consumption to charge the

different electronic components. The use of a preexisting robotic device rather

than building a new hardware system, which was the originally proposed idea,

also contributes towards the low environmental impact of this project. In

addition, all the electrical components which will be discarded, due to breakage

or malfunction, will be properly disposed, in accordance with the relevant

guidelines and applicable regulations at their corresponding recycling points.

A.3 Conclusion

The implementation of the developed navigation system based on computer vision

for the purpose of neurorehabilitation will have a positive impact on the care of

traumatic brain injury patients, with beneficial consequences in many areas of society

and with an expected resulting improvement in the lives of citizens as a whole.



Appendix B

Economic Budget

The economic costs attributable to this Master’s Thesis can be classified into two

main categories, those related to the type of resources employed, which are human

resources and material resources. The expenses associated to both of these divisions

are quantified in Table B.1 and Table B.2, respectively, which will both be exploited

to calculate a total budget for the prototype developed over the course of this project’s

duration.

• Human resouces: a total of three individuals have been involved in the

development of this project, including: an engineering student, a project

manager and a technical advisor (see Table B.1).

Coste horario (e) Horas Total (e)

Project manager 30 30 900

Technical advisor 30 15 450

Engineering student 20 540 10,800

TOTAL 12,150

Table B.1: Economic budget for human resources.

• Material resources: this item considers the costs of the materials used for the

development of the prototype (see Table B.2).

Lifespan
Units

Cost Amortisation Time used Total

(years) (e) (e/month) (months) (e)

USB camera 5 1 18 0.30 4 1.20

Jetson Nano 4 1 48 1.00 4 4.00

Micro SD card 1 1 12 1.00 4 4.00

Laptop 6 1 800 11.11 4 44.44

TOTAL 53.64

Table B.2: Economic budget for material resources.
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As it can be seen, the most notable material cost is that of the computer, with the

rest of the components being of a much lower price. Taking into account both human

and material resource costs and the pertinent taxes, the final economical budget

ascends to 14,766.40e, as displayed in Table B.3. As in any professional project, the

human cost far exceeds the material cost, with the latter not even reaching a mere

1% of the former’s magnitude.

Coste

Costes de personal 12,150.00e

Costes de material 53.64e

Subtotal 12,203.64e

IVA 2.562,76e

Total 14,766.40e

Table B.3: Total costs.
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