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Variable Threshold Algorithm for Division of Labor
Analyzed as a Dynamical System
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Abstract—Division of labor is a widely studied aspect of colony
behavior of social insects. Division of labor models indicate how
individuals distribute themselves in order to perform different
tasks simultaneously. However, models that study division of
labor from a dynamical system point of view cannot be found
in the literature. In this paper, we define a division of labor
model as a discrete-time dynamical system, in order to study the
equilibrium points and their properties related to convergence
and stability. By making use of this analytical model, an adaptive
algorithm based on division of labor can be designed to satisfy
dynamic criteria. In this way, we have designed and tested an
algorithm that varies the response thresholds in order to modify
the dynamic behavior of the system. This behavior modification
allows the system to adapt to specific environmental and collective
situations, making the algorithm a good candidate for distributed
control applications. The variable threshold algorithm is based on
specialization mechanisms. It is able to achieve an asymptotically
stable behavior of the system in different environments and
independently of the number of individuals. The algorithm has
been successfully tested under several initial conditions and
number of individuals.

Index Terms—Distributed control, division of labor,
dynamical systems, response thresholds, swarm intelligence.

I. INTRODUCTION

SOCIETIES of insects can perform different tasks simulta-
neously, distributing the workload among their individual

members. This phenomenon is called division of labor and is
one of the most basic and widely studied aspects of colony
behavior [1], [2]. The parallel task performance can be more
efficient than the sequential task performance because the task
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switching is avoided, reducing energy and time costs [3], [4].
The division of labor models indicate how individuals are
distributed to perform tasks in a way appropriate to the current
situation [5]. There are different classes of models based on
various hypotheses about the causes of division of labor [6].
This paper focuses on the response threshold models [6]–[8].

Response threshold models operate under the assumption
that individuals have internal thresholds associated to stimulus
intensities. These stimuli are related to specific tasks and can
be any environmental information sensed by individuals e.g.,
pheromone concentration or the number of encounters with
other individuals [1], [9]. The probability of acting or the
intensity of an action depends on the stimulus intensities and
the response thresholds of the individuals [8]. Every individual
has a response threshold for each possible task that it can
perform [10]. Variations in stimulus intensities are caused
by the task performance of the individuals [11]. Therefore,
the action of the individuals modifies and is modified by
the stimulus intensities, closing a loop where the stimulus
intensities are the system variables.

Although collective systems are commonly studied from
the dynamical systems theory perspective [12]–[15], response
threshold models of division of labor focus on how the action
of individuals performing one or several tasks varies in time.
In contrast, this paper focuses on the study of a response
threshold model of the division of labor from a dynamical
systems theory point of view. This approach allows us to study
the system equilibrium points and their properties related to the
convergence and stability of the model [16]. In order to carry
out this paper, we propose to work on a mono-task situation
in discrete-time, where individuals have to decide whether
they perform the task or remain inactive. The dynamical
system that implements the stimulus intensity loop is based
on Bonabeau et al.’s proposal [8], [11]. The study of the
equilibrium points of the dynamical system is carried out
with fixed response thresholds. Hence, the structure of the
dynamical system does not vary in time, and the system can
be reduced to a single equation.

In previous papers, some authors emphasized that stim-
uli provided by the environment, as well as individual his-
tory, are likely to play an important role in the structure
of response threshold models [17]. These studies suggest
that the response thresholds should be variable, implement-
ing an adaptive process. According to this suggestion, we
propose an algorithm that varies the response thresholds to
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modify the dynamic behavior of the model. This behavior
modification allows the system to adapt to specific environ-
mental and collective situations. Several algorithms focused on
the modeling of nature to modify the response thresholds can
be found in the literature [6], [17]–[20]. Unlike these works,
we incorporate concepts of dynamical systems in the design
of the variable threshold algorithm. The proposed variable
threshold algorithm, based on Theraulaz et al.’s proposal [17],
is built on a specialization mechanism with a learning and
a forgetting coefficient. A specialization mechanism is a
reinforcement process where the likelihood to do a task
increases when the task is performed and decreases when
the task is not performed [1], [21]. We introduce the use of
stimulus intensity and individual task performance statistics
to retrieve information about the dynamical behavior of the
response threshold model. These statistics are included in
the proposed algorithm to modify the dynamical behavior of
the model, increasing the stability and making the stimulus
intensity converge to a desired value. These features have a
great importance for the use of response threshold models as
distributed controllers [15].

The remainder of this paper is as follows. The response
threshold model and the distributed dynamical system are
presented in Section II. In this section, we demonstrate the
existence of four properties of the dynamical system. In
Section III, the variable threshold algorithm is presented. The
optimization of the configurable parameters of the variable
threshold algorithm and a population study are exposed in
Section IV. Finally, the conclusion, potential application, and
future work are presented in Section V.

II. MODEL

In this section, we describe the response threshold model
for division of labor for a single task. This model is a discrete-
time stochastic process based on the stimulus intensity sensed
by the individuals. We propose a transformation of the selected
model into an analytical one based on the average action of
the individuals. The transformation consists of representing
each individual as a deterministic equation included into
a discrete-time nonlinear dynamical system. Four properties
of the dynamical behavior are deducted from the analytical
model. These properties will help in understanding the de-
velopment of the variable threshold algorithm explained in
Section III.

A. Response Threshold Model

Response threshold models postulate that a task is per-
formed in response to an associated stimulus intensity s ∈ R.
Individuals increase their likelihood of performing a task when
s exceeds their internal response threshold � ∈ R. These
models are stochastic processes because the task performance
depends on the probability of acting. The relationship between
the stimulus intensity and the number of individuals perform-
ing the task is inversely proportional. Therefore, response
threshold models implement a negative feedback loop, where
s is the system variable. This study is done in the discrete-
time framework and the time is denoted with subscript k. The

evolution of sk regulates the number of individuals working
on a task [22].

In this model, the performance of individual i with respect
to a task at instant k is defined as a binary process represented
by f i

k . Where f i
k = 0 if the individual i is not working on the

task at instant k and f i
k = 1 on the contrary. It implies that

there are not performance differences between individuals. At
each instant, each individual works on the task with probability
P( f i

k = 1) = pi
k . Therefore, f i

k is a Bernoulli process, where
the probability of acting of individual i is a function of the sk

associated with the task. Hence

pi
k = T(sk,�

i) (1)

where �i is the response threshold of individual i and T(·) is
the response threshold function common to all individuals.

The response threshold functions cannot take any possible
shape; they are probability functions and should represent the
relationship between sk and pi

k , as previously explained. We
define the following constraints for the response threshold
functions: 1) T(·) ∈ [0, 1], representing the probability of
acting; 2) T(·) is a monotonically increasing function, the
higher the probability of acting the higher s; 3) it must be
continuous and differentiable in R; 4) the higher the slope
of T(·) ( defined as T ′ = dT/ds ) the closer �i to s. The
last constraint involves the fact that individuals become insen-
sible to stimulus intensity variations far from their response
thresholds. Logistic functions (e.g., Sigmoid) are examples of
response threshold functions that satisfy the four constraints
mentioned above.

As aforementioned, the stimulus intensity is modified by the
individual task performance. The environment also produces
variations in the stimulus intensity independently of whether
or not the task is performed. Then, the resulting equation for
discrete-time dynamics of sk is given as follows:

sk+1 = D · sk + δ − Nact
k (2)

where D and δ are two constants which represent two environ-
mental parameters. D represents the inertia of the environment
and δ a continuous increment of the stimulus intensity. The
environment is considered to be stable and autonomous; hence
D ∈ [0, 1) and δ ∈ R. Nact

k ∈ N is the number of individuals
performing the task at instant k and it is defined as

Nact
k =

N∑

i=1

f i
k (3)

where N ∈ N is the number of individuals. Nact
k introduces

the nonlinearity in (2). Nact
k is a random process because it

comprises the individual actions that are themselves random
processes as discussed above. In summary, (2) is the discrete-
time stochastic dynamical system which defines the response
threshold model of the division of labor.

B. Analytical Model

With the aim of analyzing the dynamics of the response
threshold model, it is necessary to approximate (2) by an
analytical equation, eliminating the random term. If Nact

k is
approximated by its expected value, the sum of individuals
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task performance is approximately the sum of probabilities of
acting. By combining (1), (2), and (3), the analytical model is
defined as

Nact
k ≈ E[Nact

k ] =
N∑

i=1

T(s∗
k ,�i) = F(s∗

k ,�) (4)

s∗
k+1 = D · s∗

k + δ − F(s∗
k ,�) (5)

where s∗
k ∈ R is the stimulus intensity at instant k for the

analytical model, � is the vector of all individual response
thresholds, and F(s∗,�) is the sum of all response threshold
functions. The analytical model is a discrete-time deterministic
dynamical system where the system variable is s∗.

C. Response Threshold Model Dynamics

The study of the response threshold dynamics allows under-
standing the evolution of the stimulus intensity for a certain
configuration of the dynamical system. A configuration is de-
fined as a fixed set of values for the environmental parameters
D and δ, the response threshold functions and the response
thresholds, respectively. Depending on the configuration of the
dynamical system, s∗

k can converge to a single value, perform
an oscillatory behavior or respond differently to disturbances.
To design the variable threshold algorithm, described in
Section III, it is mandatory to define some dynamic properties
of the analytical model. These properties are defined hereafter.

In the analytical model, s∗
k can be represented as a discrete

sequence for an initial stimulus intensity s∗
0

{S} : s∗
0 , s∗

1 = H(s∗
0 ) , . . . , s∗

k = H(s∗
k−1) (6)

H(s∗) = D · s∗ + δ − F(s∗,�) (7)

where H(s∗) is the dynamic function of (5). H(s∗) can be
plotted as a stair-step diagram, where the y-axis is the stimulus
intensity in k + 1, while the x-axis is the stimulus intensity
in k. An example of a generic H(s∗) function in a stair-step
diagram is shown in Fig. 1(a). The evolution of s∗

k can be easily
calculated using this diagram by the projections of H(s∗

k ) in
the bisectrix, sk+1 = sk , and back to H(s∗

k+1). This graphical
method is shown in Fig. 1(a), where the discrete sequence
{s∗

0 , s∗
1 } is represented by dotted arrows.

The notion of equilibrium points is the central problem in
the stability of dynamical systems [16]. The evolution of s∗

k can
be defined in relation to its equilibrium points. A point ŝ of the
nonlinear dynamic system s∗

k+1 = H(s∗
k ) is an equilibrium point

if it is a fixed point of the system (ŝ = H(ŝ)). Geometrically,
an equilibrium point is the intersection between the function
s∗

k+1 = H(s∗
k ) and the bisectrix, s∗

k+1 = s∗
k . It is a constant

solution because s∗
k+1 = H(s∗

k ) = s∗
k , ∀k if s∗

0 = ŝ. The
equilibrium point ŝ of H(s∗) can be observed in Fig. 1(a).
Once the equilibrium points have been defined, two properties
can be established.

Property 1: The slope of H(s), defined as H′(s) =
dH(s)/ds, is in the range (−∞, 1).

Proof: The function H(s) is the sum of two terms which
depend on s (7), hence H′(s) = D−F′(s,�). F′(s,�) ∈ [0,∞)
because D ∈ [0, 1) and F(s,�) is a continuous monotonically

Fig. 1. Stair-step diagrams for a generic H(s∗) function with D = 0 and
N = 100. (a) First iteration, where ŝ is the unique constant equilibrium point
and the dotted arrows represent two steps of a stimulus intensity sequence
{s∗

0 , s∗
1 }. (b) Five periodic equilibrium points of the second iteration.

increasing function. Therefore, it is satisfied that H′(s) ∈
(−∞, 1).

Property 2: If it exists, there is only one equilibrium point
of H(s).

Proof: Let ŝ1 be an equilibrium point of H(s). It is supposed
that another equilibrium point ŝ2 exists such that ŝ1 	= ŝ2. No-
tice that, H(s) is continuous and differentiable because F(s,�)
is the sum of T(s,�i) which are continuous and differentiable
too. Therefore, according to the Mean Value Theorem, it exists
an sa ∈ (ŝ1, ŝ2) such that H′(sa) = (H(ŝ2)−H(ŝ1))/(ŝ2 − ŝ1) = 1
which contradicts Property 1. Therefore, only one equilibrium
point of H(s) is possible.

However, the restriction of a unique constant solution does
not limit the existence of multiple periodic stimulus intensity
behaviors. These periodic behaviors are called periodic orbits
of period T . The orbits are composed by a sequence of
T stimulus intensity values repeating permanently. In this
situation, it is satisfied that s∗

k+T = s∗
k . These periodic orbits
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cannot be directly calculated from H(s∗), but from the analysis
of HT (s∗), being the T-iteration of the difference equation
(HT = H ◦ · · · ◦ H). Notice that s∗

k+T = HT (s∗
k ) represents

the sequence {ST} : {s∗
0 , s∗

T , s∗
2T , ...} and it does not include

the elements of the {S} sequence between s∗
k+T and s∗

k . The
concept of equilibrium point can also be applied to HT (s∗);
hence a periodic orbit is a fixed point of the iterated difference
equation (ŝ j

T = HT (ŝ j
T )). It can also be represented graphically,

plotting the function s∗
k+T = HT (s∗

k ) and the bisectrix s∗
k+T = s∗

k .
The equilibrium points of the second iteration of a generic
function H2(s∗) can be observed in Fig. 1(b). In this case, the
y-axis is the k + 2 stimulus intensity. Notice that Properties
1 and 2 cannot be applied generally to HT (s∗), because the
slope of HT (s∗) is not necessarily in the range (−∞, 1].

To know the existence and location of the equilibrium
point is not enough to understand the response threshold
model dynamics. An equilibrium point has different dynamic
properties based on the stability when s∗

k takes a value close
to it. An equilibrium point ŝ is an attractor when s∗

k → ŝ for
k → ∞; hence, s∗

k converges to this equilibrium point. An
example of attractor is the equilibrium point ŝ of Fig. 2(a).
The evolution of the stimulus intensity in the analytical model
can be observed using the stair-step diagram. For a s∗

k value
close to ŝ, s∗

k converges to it. The attractor concept can also
be applied to periodic orbits. In Fig. 2(c), s∗

k converges to an
oscillatory behavior for a value close to the periodic orbits
of period T = 2. The attractors do not only appear in the
analytical model, but also in the stochastic one. As for the
randomness of the process, sk does not converge to a constant
value and its variance depends on the individuals probability
of acting. The evolution of sk can be observed in Fig. 2(b) and
(d). In this case, it converges to the attractors of the analytical
model. Therefore, it is important to analyze if the equilibrium
points of the system are attractors or not, as defined in
Property 3.

Property 3: If ŝ exists and it is satisfied that |�F(sk,�)| <

(1 + D)|�sk | ; ∀k > M ∈ N then ŝ is an attractor. Where
�sk = sk+1 − sk and �F(sk,�) = F(sk+1,�) − F(sk,�).

Proof: If |�sk+1| < |�sk | ; ∀k > M ∈ N ⇒ ∃ ε > 0 such
that |�sk+1| < ε ; ∀ k > N > M. Hence, sequence {S} is a
Cauchy sequence, being it convergent. By using (6) and (7),
the previous sequence can be rewritten as

|D · �sk − �F(sk,�)| < |�sk | ; ∀ k > M

As F(sk,�) is a monotonically increasing function, �sk >

0 ⇔ �F(sk,�) > 0; hence, the previous inequality is satisfied
if

(D − 1)|�sk | < |�F(sk,�)| < (1 + D)|�sk |
The lower limit is negative because D ∈ [0, 1), and the

previous equation can be rewritten as

|�F(sk,�)| < (1 + D)|�sk |
Therefore, {S} is a Cauchy sequence if |�F(sk,�)| <

(1 + D)|�sk | ; ∀k > M. According to Property 2, there is
only one equilibrium point ŝ, so {S} sequence converges to ŝ,
which is an attractor.

The convergence of sequence {S} to ŝ is linked to the
distance between s∗

0 and ŝ. This distance is related to the
concept of domain of attraction A(ŝ) ⊂ R. If s0 ∈ A(ŝ) then
it is satisfied that sk → ŝ when k → ∞. The sequence {S},
which satisfies Property 3, belongs to A(ŝ). An example of
the domain of attraction is shown in Fig. 2(a) and (c), where
s0 ∈ A(ŝ) and s0 /∈ A(ŝ), respectively. The calculation of the
domain of attraction is usually either very complex or has
even no analytical solution. In other cases, as the ones shown
in Fig. 2(a) and (c), an analytical solution is found by means
of Property 4.

Property 4: If D = 0, the domain of attraction of ŝ of H(s)
is limited by the next higher and next lower equilibrium points
of H2(s).

Proof: If D = 0, according to (7)

H(s) = δ − F(s,�)

which is a monotonically decreasing function. H′(s) ∈
(−∞, 0] , ∀s ∈ R, with an unique equilibrium point ŝ
(see Property 2). According to the Chain Rule, H′

m(s) =
H′(Hm−1(s)) · H′

m−1(s). For this reason, it is satisfied that all
Hm(s) functions, with m being an odd number, are monotoni-
cally decreasing, with one single equilibrium point. All Hm(s)
functions, with m being an even number, are monotonically
increasing. In this case, it is satisfied that ŝ i

2 < H2(s) <

Hm(s) < ŝ i+1
2 . Therefore, there are no equilibrium points

between [ŝ i
2, ŝ i+1

2 ] and it implies that the equilibrium points
of Hm(s) are the same as those of H2(s). If ŝ is an attractor,
then 0 ≤ H′

2(ŝ) < 1. Let s+ and s− be the next higher and
next lower equilibrium point of H2(s), respectively. They are
unstable and for each s0 ∈ (s−, s+), |sk−ŝ| → 0 when k → ∞.
Therefore, the domain of attraction of ŝ of H(s) when D = 0
is limited by s+ and s−.

Once s∗
k has converged to an equilibrium point or periodic

orbit, it stays in this state indefinitely. The response threshold
model dynamics can vary the equilibrium point in which it is
operating if s∗

k takes a value in other domain of attraction.
This s∗

k modification can be obtained through an external
disturbance. This event would modify the stimulus intensity
evolution permanently.

To represent the disturbances mathematically, we use the
nonlinear function Kronecker delta δk−l . This function is 1
if k = l, and 0 otherwise. δk−l is a nonpermanent stimulus
intensity disturbance which occurs at time instant l. It is
inserted in the response threshold model dynamics as follows:

s∗
k+1 = H(sk

k ) + al · δk−l (8)

where al is the disturbance amplitude at instant l. s∗
k can

converge to another equilibrium point depending on al and
the size of the domain of attraction of the equilibrium point
in which the response threshold dynamics is operating. An
example with two disturbances can be observed in Fig. 3(a).
In this example, s∗

0 is in the domain of attraction of ŝ; hence,
s∗

k converges to this equilibrium point. The first disturbance
takes place at k = 50 and it displaces the stimulus intensity
out of A(ŝ). This behavior causes that the stimulus intensity
diverges from ŝ and converges to a periodic orbit. The second
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Fig. 2. Evolution of stimulus intensity for a generic H(s∗) function with D = 0 and N = 100 and for different initial values. (a) Stair-step diagram for
s0 ∈ A(ŝ). (b) Evolution of the stochastic model for s0 ∈ A(ŝ). (c) Stair-step diagram for s0 	∈ A(ŝ). (d) Evolution of the stochastic model for s0 	∈ A(ŝ).
Domains of attraction are represented by their upper (s+) and lower (s−) values.

Fig. 3. Disturbance effects example with two disturbances a50 · δk−50 and
a100 · δk−100 for a generic H(s∗) function with D = 0 and N = 100.
(a) Representation of disturbances in the analytical model. (b) Evolution of
the stimulus intensity in the stochastic model.

disturbance takes place at k = 100 and it returns the stimulus
intensity to the domain of attraction of ŝ. The evolution of sk

for the stochastic model is shown in Fig. 3(b) with similar
dynamic properties to the analytical one.

III. VARIABLE THRESHOLD ALGORITHM

A dynamical system can be designed to perform specific
dynamic behaviors, e.g., ensure that sk converges asymptot-
ically to a concrete value. The downside of this procedure

is that it is necessary to know the environmental parameters
when the system is designed. If environmental parameters are
not known, the dynamical behavior of the response threshold
model cannot be ensured. In this case, the response thresholds
should be modified in real time, adapting to the environment.
In this section, we propose a variable threshold algorithm
which ensures the convergence of the stimulus intensity to
a certain value without the need to know the environmental
parameters. The variable threshold algorithm modifies the re-
sponse thresholds in a distributed manner. There is no explicit
information exchange between individuals. Through the eval-
uation of their own work and sk , the individuals modify their
response thresholds and hence, the dynamical system behavior.

The variable threshold algorithm takes into account the
response threshold dynamics properties and has the following
features.

1) Stability against disturbances: The presence of stimulus
intensity disturbances (ak ·δk) can modify the equilibrium
point in which the dynamical system is operating. It
implies that sk evolution varies in a qualitative point
of view, e.g., from a nonoscillatory behavior to an
oscillatory one. The objective of the variable threshold
algorithm is to stabilize the response threshold dynamics
in a concrete equilibrium point, in such a way that the
disturbances cannot get sk out of it.

2) Oscillatory behavior avoidance: If the system is op-
erating in a periodic orbit, sk varies periodically. The
objective of the variable threshold algorithm is to con-
verge asymptotically to a concrete value and therefore
oscillatory behaviors must be avoided.

3) Reference stimulus intensity: Although sk converges
asymptotically to a stable equilibrium point, the value of
this equilibrium point is not guaranteed. The objective of
the variable threshold algorithm is to make sk converge
to a reference value.

A. Stability Against Disturbances

Every dynamical system that faces a real environment must
take into account the presence of disturbances. Variations of
sk induced by disturbances can modify the evolution of sk

permanently, as explained in Section II. This effect should
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be avoided by the variable threshold algorithm. Permanent
modifications of sk evolution arise when sk takes a value in
a domain of attraction of another equilibrium point. Hence,
the permanent modifications induced by disturbances can
be avoided if the domain of attraction, where the stimulus
intensity is located, increases.

Conjecture 1: The farther the response thresholds from ŝ
are, the greater the domain of attraction of ŝ is.
Reasoning: As for the definition of the response threshold
function, T ′(ŝ,�i) is reduced in a region close to ŝ if the
distance between �i and ŝ is increased. F′(ŝ,�) is reduced
if the response thresholds increase their distance from ŝ,
because F(s,�) is the sum of the individual response threshold
functions. It implies that the difference �F(sk,�) for two
points sk and sk+1 that belongs to a region close to ŝ, decreases
as far as the response thresholds from ŝ are. Therefore, if
the response thresholds tend to increase their distances with
respect to ŝ, the region in which the sequence {Sk} satisfies
the inequality of Property 3 increases.

In order to implement Conjecture 1, the variable threshold
algorithm is based on a specialization mechanism. Specializa-
tion is a postulated mechanism in which the more often an
individual performs a task, the more often it continues doing
the same task with a higher probability [17]. In a specialization
process, some individuals tend to do always the same task
while others never do it (pi

k ≈ 1 or pi
k ≈ 0 , ∀k respectively);

when this occurs, individuals are specialized. In the response
threshold models, the response threshold decreases when the
corresponding task is performed and vice versa, implementing
a positive feedback loop and increasing the distance between
the response thresholds and ŝ. The response threshold variation
��i

k of the individual i at instant k is defined by the following
nonlinear equations

�i
k+1 = �i

k + ��i
k (9)

��i
k =

⎧
⎨

⎩

−ϕi
k + ξ i

k if f i
k = 1

ϕi
k − ξ i

k if f i
k = 0

(10)

where ϕi
k is the learning coefficient which implements the

specialization and ξ i
k is the forgetting coefficient which im-

plements the opposite process to specialization. Note that the
response threshold modification depends on the task perfor-
mance of individual i. It implies that if an individual works
on the task, its response threshold is reduced by increasing its
probability of acting. On the contrary, if an individual does not
work on the task, its response threshold is increased reducing
its probability of acting.

When an individual is specialized, the learning coefficient
continues increasing (or decreasing) the response threshold
indefinitely, so it satisfies |�i

k − sk | → ∞ when k → ∞.
According to the definition of the response threshold function,
it implies that T ′(sk,�

i
k) → 0. Therefore, the individuals

become insensible to sk variations and continue doing always
the same action; this phenomenon is called overspecialization.
This situation has been solved in previous papers limiting the
response threshold values in a certain range. In this paper,
we propose the use of a continuous function to control the

response threshold variations. The necessary information to
perform this feature can be locally obtained from the following
two stimulus intensity statistics: Sk that is the exponential
moving average of sk and σk that is the exponential moving
variance of sk . Hence

Sk = ρsk + (1 − ρ)Sk−1 (11)

σk = ρ(sk − Sk)2 + (1 − ρ)σk−1 (12)

Both time-dependent variables take into account the current
stimulus value and its previous history. ρ is a configurable
parameter which represents the weight of new samples in
relation with the historical one. As ρ ∈ [0, 1], the higher ρ

is, the more relevant current values are and vice versa. Then,
a new property can be enunciated to define the control function
as:

Property 5: When the stimulus intensity has converged to
ŝ, the lower the variance is, the greater the distance between
response thresholds and ŝ is.

Proof: Consider the variance of Nact
k as

Var [Nact
k ] ≈

N∑

i=1

pi
k(1 − pi

k) =
N∑

i=1

T(sk,�
i)(1 − T(sk,�

i))

where the definition of the response threshold function,
T(·) → 0 or 1 when |sk − �i| → ∞ and T(·) → 0.5
when |sk − �i| → 0. Therefore, T(·)(1 − T(·)) → 0 when
|s − �i| → ∞ and T(·)(1 − T(·)) → 0.25 when |s − �i| → 0,
which is the maximum value. Let 
 be a vector of response
thresholds �i ∈ 
 and � another vector of response thresh-
olds �j ∈ � such that |ŝ − �i| < |ŝ − �j|. Therefore,
T(sk,�

i)(1 − T(sk,�
i)) > T(sk,�

j)(1 − T(sk,�
j)) ∀i and

Var [Nact
k ]
 > Var [Nact

k ]�. It means that the greater the
distance of the response threshold to the equilibrium point
is, the lower the variance is.

Conjecture 1 together with Property 5 establish σk as an
indicator of the domain of attraction and the overspecialization
of the individuals. If the response thresholds are close to the
equilibrium point, σk increases. On the other hand, if the
individuals are overspecialized then σk → 0. The variable
threshold algorithm has to reach a compromise between the
stability and the overspecialization. Following this compro-
mise, ϕk and ξk can be defined as

ϕk = νk · e
−
|sk − �i

k |
νk (13)

ξk = eα2σk (14)

νk = (1 + α1
√

σk) (15)

where νk denotes the standard deviation of sk . Note that ϕk

decreases when the distance between the stimulus intensity
and the threshold value increases; hence, it avoids overspe-
cialization. The higher νk is, the higher the distance between
sk and �i

k is, because the exponential index of ϕk is inversely
proportional to νk . Moreover, the magnitude of the learning
coefficient is directly proportional to νk which implies that the
higher σk is, the higher the learning step is. α1 is a configurable
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Fig. 4. Variable threshold algorithm example for s0 ∈ A(ŝ) with D = 0,
δ = 100, and N = 100 with 80% of individuals having �0 = 10 and 20%
having �0 = 45. (a) Evolution in time of response thresholds. (b) Evolution
of stimulus intensity and domain of attraction limits (s−, s+).

parameter which regulates the effect of σk in ϕk . The forgetting
coefficient is the opposite to the learning one; hence, the higher
this term is the lower σk is, avoiding overspecialization. α2 is a
configurable parameter which regulates the effect of σk in ξ i

k .
An example of the variable threshold algorithm is shown

in Fig. 4. In this example, the environmental parameters
are D = 0 and δ = 100. The population of individuals is
N = 100, where 80 individuals have an initial response thresh-
old �i

0 = 10 and 20 individuals �i
0 = 45. The H(s,�) function

of the dynamical system was already plotted in Fig. 1(a). s0 is
in the domain of attraction of the asymptotically stable equilib-
rium point (s0 ∈ A(ŝ)). During the first time steps (k < 50), the
variable threshold algorithm is not acting; hence, the response
thresholds maintain the same value as observed in Fig. 4(a).
In the time step k = 50, the variable threshold algorithm is
activated and it modifies the response thresholds. The distance
between the response thresholds and the asymptotically stable
equilibrium point is increased, because of the variance of the
stimulus intensity. Moreover, σk is reduced and the domain of
attraction is increased, as can be observed in Fig. 4(b).

B. Oscillatory Behavior Avoidance

We propose another example to show the effect of os-
cillatory behavior in Fig. 5. The environmental parameter,
the number of individuals, and the response thresholds initial
values are the same as those in the previous experiment. In
this example, the initial stimulus intensity is not in the domain
of attraction of the asymptotically stable equilibrium point
(s0 	∈ A(ŝ)). As in the previous example, the variable threshold

Fig. 5. Variable threshold algorithm example for s0 	∈ A(ŝ) with D = 0,
δ = 100, and N = 100 with 80% of individuals having �0 = 10 and 20%
having �0 = 45. (a) Evolution in time of response thresholds. (b) Evolution
of stimulus intensity and domain of attraction limits (s−, s+).

algorithm is activated at time step k = 50. In this situation,
the algorithm cannot drive sk to a nonoscillatory solution
[see Fig. 5(b)]. Fig. 5(a) shows how the response threshold
values are modified, performing an oscillatory behavior.

An oscillatory behavior implies that several individuals are
changing permanently their task performance f i

k . Individuals
that carry out these oscillations are sensing different stim-
ulus intensity values, lower and higher than their response
thresholds, and they provoke that the probability of acting
switches between a high and a low value. Therefore, the
response thresholds of the individuals which are performing an
oscillatory behavior are between the stimulus intensity values.

As shown in the previous example, the specialization mech-
anism is not able to avoid oscillations in its actual form. Os-
cillations can be avoided by using individual task performance
information. Let the exponential moving average ( f̄ i

k ) of the
action of the individual i be defined as

f̄ i
k = ρ f i

k + (1 − ρ) f̄ i
k−1 (16)

where ρ is the same configurable parameter of (12). f̄ i
k ∈ [0, 1]

because f i
k is a binary variable. f̄ i

k takes the value 0 or 1 when
an individual is specialized because it tends to do the same
action, while f̄ i

k → 0.5, when there is high variability of the
individual task performance.

Let the stress factor be defined as

ηk = 4 · f̄ i
k (1 − f̄ i

k ) (17)

where ηk ∈ [0, 1]. For the individuals that are not performing
an oscillatory behavior ηk → 0 and for the individuals that
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Fig. 6. Variable threshold algorithm example with stress factor for s0 	∈ A(ŝ)
with D = 0, δ = 100, and N = 100 with 80% of individuals having �0 =
10 and 20% having �0 = 45. (a) Evolution in time of response thresholds.
(b) Evolution of stimulus intensity and domain of attraction limits (s−, s+).

have converged to a periodic equilibrium point ηk → 1. The
stress factor can be used to avoid an oscillatory behavior if the
most stressed individuals invert the process of specialization.
So that (10) is modified as

��i
k =

⎧
⎨

⎩

−(1 − 2 · ηk) · ϕk + ξk if f i
k = 1

(1 − 2 · ηk) · ϕk − ξk if f i
k = 0

(18)

where (1 − 2 · ηk) ∈ [−1, 1] and it modifies the learning
coefficient magnitude and direction.

An example of the stress factor operation is shown in Fig. 6.
The environmental parameter, the number of individuals, and
the response thresholds initial values are the same as the those
of the example of Fig. 5. The initial stimulus intensity value
is in the domain of attraction of the oscillatory equilibrium
points. The variable threshold algorithm is activated at time
step k = 50. In this case, the response thresholds spread into
two groups, similar to the result of the example of Fig. 4, as is
shown in Fig. 6(a). The stimulus intensity begins the example
of oscillating and it converges to a nonoscillatory situation
when the variable threshold algorithm is activated with the
stress factor [see Fig. 6(b)].

C. Reference Stimulus Intensity

Although the dynamical system can achieve a stable and
nonoscillatory situation, the attractor value is uncertain. This
value depends on the initial conditions and response threshold
evolution. Once the specialization mechanism has converged,
individuals continue performing the same behavior. Therefore,

Fig. 7. Variable threshold algorithm example with stress factor and reference
stimulus intensity R = 0 for s0 	∈ A(ŝ) with D = 0, δ = 100, and N = 100 with
80% of individuals having �0 = 10 and 20% having �0 = 45. (a) Evolution
in time of response thresholds. (b) Evolution of stimulus intensity and domain
of attraction limits (s−, s+).

to modify the attractor value, the response threshold variation
has to modify the specialization process. Let λk be the re-
sponse threshold variation to modify the attractor value

λk =

⎧
⎨

⎩

−(1 − ηk) · (1 − e−|Sk−R|) if Sk > R

(1 − ηk) · (1 − e−|Sk−R|) if Sk < R
(19)

where λk ∈ [−1, 1] and R is the reference stimulus intensity
which is the desired attractor value. Equation 19 satisfies that
if Sk > R ⇒ λk → −1, if Sk < R ⇒ λk → 1 and if Sk ≈
R ⇒ λk → 0. λk displaces the response thresholds to modify
the attractor value, but it can be in conflict with the stress
factor and the over-specialization process. For this reason, in
order to incorporate the modification of the attractor value in
the variable threshold algorithm, 18 must be redefined as

��i
k =

⎧
⎨

⎩

(2(λk + ηk) − 1) · ϕk + (λk + 1)ξk if f i
k = 1

(2(λk − ηk) + 1) · ϕk + (λk − 1)ξk if f i
k = 0

(20)

An example of how sk converges to R = 0 is shown in Fig. 7.
The environmental parameter, the number of individuals, and
the response thresholds initial values are the same as those
of the example of Fig. 6. The variable threshold algorithm
is activated at time step k = 50. The response thresholds
tend to take lower values, modifying the asymptotically stable
equilibrium point, as shown in Fig. 7(a). The evolution of
the stimulus intensity performs a nonoscillatory behavior and
converges to the reference value, as can be observed in
Fig. 7(b).
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Fig. 8. Grayscale color-map where the darker the shorter convergence time. It represents the Q3 of convergence time for the exhaustive search of the
configurable parameters of the variable threshold algorithm (see Section III). (a) Scanning of ρ and α1 for α2 = 101. (b) Scanning of ρ and α1 for α2 = 105.
(c) Scanning of ρ and α1 for α2 = 1020.

IV. EXPERIMENTS

In this section, we propose a set of experiments to optimize
the variable threshold parameters and to test them with dif-
ferent populations. As described in Section III, the variable
threshold algorithm has three configurable parameters: ρ, α1,
and α2. They modify how the variable threshold algorithm
adapts to the environment to achieve the previously defined
dynamic behavior. This algorithm can be optimized following
a certain criterion. An exhaustive search of these parameters
has been carried out to locate the minimum convergence time.

The response threshold function used for the experiments is
the Sigmoid function

T(sk,�
i) =

1

1 + e−β(sk−�i)
(21)

where β = −0.2 for all individuals. Using this response
threshold function, simulations with different environment and
initial configurations have been performed. In the exhaustive
search, every combination of ρ, α1, and α2 has been clustered
in a set. Every set of these parameters has been simulated
for populations of 102, 103, and 104 individuals. Moreover,
each of these populations has been simulated for two values
of coefficient D, 0 and 1. δ has been fixed to N/2. The
reference stimulus intensity has been fixed to R = 0. The initial
stimulus intensity value has been set to s0 = δ. Initial response
threshold values have also been tested, initializing the response
thresholds with two uniform probability distributions between
[−N, 0] and [0, N]. These distributions have been chosen to
provoke asymmetric situations with respect to R. Moreover,
because of the pseudo random nature of the experiments, each
configuration has been simulated for 30 different seeds of a
random generator number. Therefore, 360 simulations have
been performed for every set of ρ, α1, and α2, calculating the
convergence time (TC) for every simulation.

It is considered that the system has converged when the fol-
lowing two constraints are satisfied: 1) The stimulus intensity
mean or second quartile (Q2) is between [R−1, R+1], the first
quartile (Q1) is between [R−2, R], and the third quartile (Q3)
is between [R, R + 2]. This convergence constraint operates as
a mean filter, removing the noise of the stochastic process and
ensuring the convergence to the reference stimulus intensity R.

2) The stimulus intensity variance is in [0.5, 2.0]. The lower
limit indicates that the individuals are not overspecialized
and the upper one indicates a minimum distance between the
response thresholds and the attractor.

To analyze the effects of the configurable parameters on TC,
several sets of these parameters have been simulated. Every set
is a different combination of ρ, α1, and α2. Each parameter is
discretized in a certain range with an interval between values,
such that, ρ ∈ [0, 1] with an interval of 0.01, α1 ∈ [0, 10] with
an interval of 0.1 and α2 ∈ [1, 1020] with a logarithmic interval
of 10. This combination produces 2 · 105 different sets of
configurable parameters. As aforementioned, 360 simulations
have been performed for every set and this leads to 72 · 106

simulations for the exhaustive search campaign.
The third quartile of the convergence time is shown in

Fig. 8 with color maps. Each color map has been plotted
for a fixed value of α2 and represents the scanning of ρ

and α1. The values of the parameters and the convergence
time have a nonlinear relationship because the shape of the
color map. Although α2 has been simulated for more values
than shown, the more representative ones have been selected.
The optimum value of α2 is 105 whose color map is shown
in Fig.8(b). A lower value (α2 = 101) and a upper value
(α2 = 1020) than the optimum one are plotted in figures 8(a)
and (c), respectively. The minimum convergence time in Q3

is found for ρ = 0.64, α1 = 2.0 and α2 = 105.
Finally, a study of the effects on convergence time (TC)

for different population sizes has been carried out. For each
population size, the study has been divided for D = 0 and
D ≈ 1, which is a set {N, D}. For each set {N, D}, several
simulations have been carried out. The response threshold
functions, δ, s0, and R in each simulation are the same as
the exhaustive search. Different initial response thresholds
values have also been simulated with uniform distributions
between [−N, 0] and [0, N]. The number of seeds of the
random number generator has been set to 100, to have enough
samples for a statistical comparison. Therefore, there are
400 simulations for every set {N, D}. The results of these
simulations are shown in Fig. 9. The convergence times of
all studied sets {N, D} are represented through box-plots.
The TC increases approximately linearly with a logarithmic
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Fig. 9. Box-plots of population study. Each population is simulated for
D = 0 and D = 1 making a set {N, D} represented in the x-axis. The
y-axis represents the convergence time (TC). Each box comprises observations
ranging from the first to the third quartile. The median is indicated by a
horizontal bar, dividing the box into the upper and lower part. The whiskers
extend to the farthest data points that are within 1.5 times the interquartile
range. Outliers are shown as points.

population increase; it means that variable threshold algorithm
is scalable.

V. CONCLUSION

In this paper, we have shown how dynamical systems theory
can be used for the analysis and design of division of labor
models and algorithms. Depending on the complexity of the
model, the dynamic properties can be defined to ensure dy-
namic behaviors, stability, or design rules. In our case, we have
analyzed a response threshold model for the division of labor
as a discrete-time nonlinear dynamical system, defining five
properties. The response threshold model has been transformed
into an analytical one based on the average of the individual
task performances. The structure of the dynamical system
does not vary in time because the response thresholds are
fixed. The response threshold functions, the response threshold
values and the environment configuration define two possible
dynamical behaviors, asymptotically stable and oscillatory.

We have also proposed and implemented a variable thresh-
old algorithm. The algorithm modifies the equilibrium points
in real time in order to force an asymptotically stable behavior
of the response threshold model. The operation of the variable
threshold algorithm is based on a specialization mechanism.
We have shown how the proposed specialization equations
increase stability and solve the problem of over-specialization.
Moreover, oscillatory behaviors are avoided by the use of a
stress factor. It also enables the system to converge asymptoti-
cally to a specific stable reference value. Finally, the algorithm
has been tested in different environments and with different

numbers of individuals. All experiments behaved as deduced
from the analytical study.

This implementation of the variable threshold algorithm
allows the use of response threshold models as distributed
controllers. In this case, each individual can be considered
as a single controller, with no need of explicit information
exchange between them. This type of algorithms can be used
for applications where the communication is costly or noisy,
such as large data networks or satellite synchronization. They
can also be used for applications where each element cannot
obtain information from the others and only global information
is available, e.g., the electricity grid or traffic control. Another
potential use is for situations where information obtained by
individuals may be noisy or corrupted, such as in multirobot
applications.

A potential direction for future research would be an algo-
rithm that allows individuals to work in a multiple task envi-
ronment, where individuals have to choose the task they have
to work on. This environment needs a multivariable dynamical
system study. Another possible direction is to increase the
complexity of the environment, for example modifying the
δ environment parameter for a time-dependent signal δ(t).
In this situation, the algorithm must be able to adapt to a
dynamical environment which is of great interest in the design
of dynamical controllers for real environment applications.
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