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Abstract—The coordination of multiagent systems in
real environments receives considerable attention from
research and industry. The design of coordination mech-
anisms should take into account the nature of the envi-
ronment where the system is embedded. In this paper,
the multiagent system is in an environment that features
periodic properties. This environment is approached from
a signal processing point of view to extract such prop-
erties. The coordination is performed by the proposed
multifrequency-coupled oscillators (MuFCO) algorithm. It
addresses the coordination of the multiagent system as a
distributed collective synchronization mechanism. An oper-
ation example of MuFCO algorithm is shown, where it is
used to coordinate consumptions in a smart grid. Thanks
to the MuFCO algorithm, the multiagent system can be used
to smooth the aggregated consumption of an electrical grid
in a distributed way.

Index Terms—Collective synchronization, distributed
coordination, multiagent system, smart grids.

I. INTRODUCTION

T HE COORDINATION of distributed multiagent systems
is an active research field. The interaction between agents

is a key factor in this coordination which can become highly
complex depending on both internal and external factors. In
practical applications, multiagent systems are usually embed-
ded in real environments. In this case, the coordination of
these systems may be strongly affected by different elements
of the environment. Previous works have studied multiagent
coordination with the presence of noise or disturbances [1].
For example, these effects have been studied in networked
systems performing consensus algorithms [2], [3]. However,
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the environment may affect the coordination process, not only
as noise or disturbance, but also to the nature of the coordi-
nation process itself. In such a case, the coordination between
agents may include certain adaptation to variations of the envi-
ronment where they are. This adaptive process may be designed
so that the environment meets certain predefined characteris-
tics or goals. This design procedure is typical in the design of
artificial systems where there are several elements that interact
with the environment [4]. To this end, information on the nature
of the environment should be considered during the design
process.

The dynamics of real environments is usually complex since
it includes events of different nature. A specific case of use
is the one in which the environment has periodic properties.
This periodicity means that certain events appear in the envi-
ronment with a specific frequency. Periodicity can originate
from both natural and artificial phenomena, e.g., earth’s rotation
and revolution, tides, cyclic production processes, and customer
demands. In this kind of environments, the multiagent system
coordination may be addressed from the collective synchro-
nization point of view. There is a wide variety of collective
synchronization phenomena in which a system composed of a
collective of elements suddenly locks to a common phase caus-
ing that the collective oscillates in unison. These phenomena
have been observed and studied in biology and physics [5], [6]:
networks of pacemaker cells in the heart [7], arrays of lasers [8],
different self-organizing processes [9], etc. Synchronization has
been previously used for multiagent coordination [10], [11].
For example, a new type of distributed consensus filters was
designed based on the theory of synchronization and consen-
sus in complex networks and systems in [2]. In [12], traveling
groups of agents were produced using chorusing mechanisms.
In [13], an algorithm inspired on fireflies synchronization was
used to detect nonoperational robots in a swarm robotic sys-
tem. Most works done on this field are focused on the dynamic
behavior of a collective of oscillators without considering their
integration in the environment. This paper differs from previ-
ous works in the inclusion of the periodic components of the
environment directly in the synchronization process. Thereby,
the coordination of the multiagent system with the environment
can be approached as collective synchronization.

This paper proposes an algorithm which implements a mul-
tiagent system coordination in periodic environments. The
environment is analyzed from the signal processing point of
view to extract its periodic properties. The coordination is
based on collective synchronization by including the effects
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of the environment in the coupling equations. In addition, the
proposed algorithm poses a frequency switching mech-
anism that allows collective synchronization to cover a
wide frequency spectrum. This multifrequency-coupled behav-
ior names the multifrequency-coupled oscillators (MuFCO)
algorithm.

This paper is organized as follows. The environment
approach and the definition of the multiagent system are pre-
sented in Section II. The MuFCO algorithm is defined in
Section III, where a variation of the Kuramoto model and a fre-
quency switching mechanism are presented. In Section IV, an
operation example of MuFCO algorithm in a real environment
is shown. This is an example of how this algorithm can be used
to coordinate consumptions in smart grids. Finally, the paper is
concluded in Section V.

II. ENVIRONMENT AND AGENTS

In general, an environment may be limited depending on the
problem studied. For example, an environment could be an elec-
trical grid where the agents are the different connected loads.
The relationship between this environment and these agents
may be represented through different electrical variables. In
the sake of simplicity, let the state of the environment be mea-
sured by a single-state variable represented by the signal s(t).
Returning to the example of the electrical grid, this state vari-
able may be the consumed power in the grid, so all interaction
between agents and environment may be represented in terms
of power consumed, neglecting other possible variables. At the
same time, the environment proposed in this paper is divided in
two different parts.

1) An uncontrollable part that represents any event in the
environment.

2) A controllable part that represents the multiagent system.
Both parts are represented by timeline signals in Fig. 1. The

uncontrollable part z(t) is defined as a single signal which is not
affected by modifications in the environment, and its dynam-
ics is unknown. On the other hand, the controllable part p(t) is
divided in different agents xi(t). Therefore, the environment
s(t) is defined as the sum of both parts as a sum of those
signals

s(t) = z(t) + p(t). (1)

The goal of the proposed algorithm is to control p(t) to mod-
ify s(t) by observing the same s(t). At the same time, p(t) is
composed of a M number of agents. The action of each agent
is represented by xi(t), where i is the agent identifier. The state
of the controllable part is the sum of the actions of all agents,
such that

p(t) =
M∑
i=1

xi(t). (2)

The algorithm works in a distributed way by controlling each
agent independently.

In this paper, the action of these agents is continuous,
such that an agent may only modify the intensity of its
action. In addition, the agents behave periodically, and they are

Fig. 1. Scheme of the proposed environment: s(t) is the state signal of
the environment; z(t) is the state signal of the uncontrollable part that
represents any event in the environment; p(t) is the state signal of the
controllable part that represents the agents; and xa(t), xb(t), and xc(t)
are the actions of three possible agents.

oscillators. The action of each agent is modeled as sinusoidal
functions because of two main reasons.

1) They are the simplest periodic functions.
2) Any periodic signal can be implemented as a combination

of sinusoidal functions.
This decision allows composing different periodic actions

of the whole multiagent system (p(t)) as the composition of
actions of different agents. Therefore, the action of an agent is
defined by the following equation:

xi(t) = sin(ωit+ φi) (3)

where ωi is the natural frequency and φi ∈ [−π, π) is the phase
difference relative to a reference. The behavior of an agent can
be modified by changing ωi and φi. Equation (1) can be also
written as

s(t) = z(t) +

M∑
i=1

sin(ωit+ φi). (4)

The uncontrollable signal z(t) may be of any nature, so it can
be represented as a Fourier series and an error term

z(t) =

N∑
n=0

Az
n · sin(nω0t+ φz

n) + ez(t) (5)

where N ∈ N is the number of components of the Fourier
series, ω0 is the fundamental frequency, Az

n and φz
n are the

amplitude and phase of the n component of z(t), respectively,
and ez(t) is the error term of z(t) because of the approximation
of the signal by a finite number of sinusoidal functions.

In the same way, the environment signal can be expressed as
a Fourier series plus an error term. s(t) can be decomposed in
series with the same number of components N and the same
fundamental frequency ω0, such that

s(t) =
N∑

n=0

As
n · sin(nω0t+ φs

n) + es(t) (6)

where As
n and φs

n are the amplitude and phase of the component
n of s(t), respectively, and es(t) is the error term of s(t).
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The natural frequency ωi of the agents can take any positive
real value. To bind xi(t) with s(t) and z(t), it is established that
the natural frequencies are contained in the set of frequencies of
the Fourier series components: ωi ∈ {ω0, 2ω0, 3ω0, . . . , Nω0}.
By combining (4)–(6) together with this approach, it leads to
the following equation:

N∑
n=0

As
n · sin(nω0t+ φs

n) + es(t) =

M∑
i=1

sin(liω0t+ φi)

+

N∑
n=0

Az
n · sin(nω0t+ φz

n) + ez(t) (7)

where li ∈ {1, . . . , N} defines the natural frequency of the
agent i in the Fourier series. Notice that the error terms are equal
through this approach es(t) = ez(t). Therefore, the relation-
ship between s(t), z(t), and xi(t) is reduced to a relationship
between components of the Fourier series.

The agents can be grouped depending on their natural fre-
quencies. All agents with same natural frequency, such that
li = n, form a group of agents, where the number of agents of
this group is denoted by Mn. By following this procedure and
using the Euler’s formula, (7) can be represented as

As
0 +

N∑
n=1

einω0teiφ
s
n = Az

0 +
N∑

n=1
einω0teiφ

z
n

+
N∑

n=1

Mn∑
j=1

einω0teiφn,j

(8)

where φn,j is the phase difference of the agent j with the natural
frequency nω0. Notice that a group of agents could be empty so
Mn = 0. In this case, the summation of the actions of the agents
is zero for this group.

This representation allows to split the relationship of (8) in
each group of agents, such that

As
ne

iφs
n = Az

ne
iφz

n +

Mn∑
j=1

eiφn,j . (9)

The relationship between the uncontrollable signal z(t) and
the actions of the agents xn,j(t) can be assessed by an order
parameter. This parameter is a macroscopic quantity that can
be interpreted as the collective rhythm produced by oscillators
[14], [15]. It is usually used only with a collective of coupled
oscillators. Thanks to the Fourier series representation, z(t) can
be introduced in the order parameter. Let rneiΦn be the order
parameter of the component n, such that

rne
iΦn =

1

Mn +Az
n

⎛
⎝Az

ne
iφz

n +

Mn∑
j=1

eiφn,j

⎞
⎠ (10)

where rn is the coherence of the component n and Φn is the
average phase. The synchronization of z(t) and xn,j(t) can be
assessed by rn which is in the range [0, 1]. The order param-
eters are related with the amplitudes and phases of the s(t)
components. By combining (9) and (10)

rn =
As

n

Mn +Az
n

, Φn = φs
n. (11)

This relationship means that the order parameter may be cal-
culated through the observation of the environment for each
frequency component. In turn, the coherence between the
uncontrollable signal and the agents may be known, allowing
to perform a coupling process. For example, if As

n → 0, then
rn → 0 and z(t) and xn,j(t) are in an incoherent state. On
the other hand, if As

n →Mn +Az
n, then rn → 1 and z(t) and

xn,j(t) are fully synchronized.
Thanks to the Fourier series representation, the signals that

compose the environment can be easily studied in the fre-
quency domain through a Fourier analysis. However, to apply
this approach to a real application with digital systems, the
frequency analysis should be performed by a discrete Fourier
transform (DFT). It means that the signal must be sampled at
a certain period called sample period (T smp). The number of
samples of s(t) considered in the frequency analysis is the pro-
cessing window that is denoted by W . The use of the DFT
implies that the information obtained from the frequency com-
ponents of s(t) is not the same as if working in continuous time.
This calculus error must be taken into account, and both T smp

and W are parameters to be tuned when the proposed algorithm
is applied to a concrete use.

III. MULTIFREQUENCY-COUPLED OSCILLATORS

A. Coupling Equations

In this section, the collective synchronization of a group of
agents with a single-frequency component is studied. It means
that the uncontrollable signal z(t) is reduced to a single sinu-
soidal function and all agents work on this natural frequency.
Hence, the environment signal is also a sinusoidal function
whose amplitude and phase depend on the amplitude of z(t),
the number of agents, and the phase relationship. The subscript
n, which indicates the component of the Fourier series, has been
removed from the equations because the procedure followed in
this section is valid for any component. In this case, only the
phase differences of the agents can be modified because the nat-
ural frequencies are fixed. This phase difference modifications
are based on the Kuramoto model [15].

The Kuramoto model defines the coupling between a col-
lective of oscillators which represent the action of the agents
in this paper. The uncontrollable signal is also included in the
coupling process. It is simplified to a single sinusoidal func-
tion z(t) and, under this assumption, it can be considered as
an uncoupled oscillator. Although z(t) is a passive element,
it affects the coupling process through the order parameter—
see (10). Therefore, the phase differences of xi(t) vary in
time φi → φi(t) but the phase difference of z(t) keeps con-
stant φz = const. The Kuramoto model applied to the phase
differences leads the following coupling equation:

φ̇i(t) = K · r(t) · sin(Φ(t)− φi(t)) (12)

where K ∈ R is the coupling strength. K defines the coupling
process from a qualitative and quantitative point of view. The
absolute value of K affects the coupling velocity which in
turn affects the dynamical behavior of the coupling process.
The sign of K defines qualitatively the interaction between the
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Fig. 2. Example of negative coupling between agents and z(t) using (13) with K = −0.01, M = 10, ωz = ωi =
2π /32 rad/s ∀ i, Az = 5, W =

64 samples, and T smp = 1 s: (a) s(t); (b) φi(t), Φ(t) and φs(t); and (c) r(t) and normalized As(t).

agents and z(t). Positive K values correspond to an attractive
interaction. It implies that agent phases tend to the z(t) phase
being fully synchronized. On the other hand, negative K values
produce a repulsive interaction. Agent phases and z(t) phase
tend to separate each other, reaching an incoherent state where
As → 0. Along this paper, the agents are used to remove the fre-
quency components of s(t) as a bank of filters. For this reason,
K is always negative.

The use of the order parameter to perform (12) implies
that the phases of all agents should be known instantaneously.
Depending on the situation, this requirement may hinder the
application of collective synchronization on distributed sys-
tems. This paper proposes to approximate the order parameter
by the DFT of s(t) by using (11). Through this approach,
every agent may obtain the required coupling information
only by observing the environment signal s(t). Although the
DFT allows the coupling process without the knowledge of
agent phases, the coupling process still requires M and Az

to be implemented. The proposed algorithm aims to adapt
to unknown environments and populations. Hence, the nor-
malization of As by M +Az should be modified by another
normalization factor which does not require the knowledge of
M and Az . For this reason, M +Az is replaced by the histor-
ical maximum of the frequency component of the environment
signal max(As). The reason of this proposal is that the max-
imum value attainable by a component of s(t) is M +Az .
Combining (11) and (12) together with this approximation leads
the following coupling equation:

φ̇i(t) = K · As(t)

max(As)
· sin(φs(t)− φi(t)). (13)

Fig. 2 shows an example of negative coupling between agents
and z(t) using (13) with K = −0.01. The frequency of the
uncontrollable signal z(t) is ωz =2π /32

rad/s and the natural
frequencies of all agents are ωi =

2π /32
rad/s ∀i. The amplitude

of z(t) is Az = 5. The number of agents is M = 10. Thus,
if the agents and z(t) are in an incoherent state, the ampli-
tude of s(t) takes the value As = 0. The phase of z(t) is the
phase reference; thus, φz = 0 and the phase difference of the
agents φi(t) are referenced to this phase. The initial phase dif-
ferences of the agents are uniformly distributed in [−π, π).
Fig. 2(a) shows how s(t) develops in time. s(t) begins with an
amplitude As ≈ 10 but converges to an incoherent state with

As = 0. In this case, the phase differences converge to an inco-
herent state—see Fig. 2(b). It implies that they are spread in
the range [−π, π) such that the phase coherence is reduced to
zero. Fig. 2(c) shows the development in time of r(t). The use
of the DFT to calculate As(t) and φs(t) and to replace r(t)
and Φ(t) allows to perform a collective synchronization without
calculating the order parameter. In addition, the agents achieve
a incoherent state despite using the max(As) approximation.

The DFT has been applied to s(t) using a sample period of
T smp = 1 s, and the processing window is W = 64 samples.
The DFT gives the amplitude As(t) and phase difference
φs(t) of the frequency component analyzed in this example
ω0 =2π /32

rad/s. Fig. 2(b) shows the development of φs(t) cal-
culated by the DFT over the example. According to (11), φs(t)
and Φ(t) should be equal, but the information obtained from the
Fourier analysis is not exact because of the use of a DFT. In gen-
eral, W affects to this result by causing a certain delay between
the instantaneous phase Φ(t) and the phase calculated through
the DFT φs(t). Fig. 2(c) shows the development of the nor-
malized As(t) calculated by the DFT over the example. As(t)
has been normalized by Az +M to restrict it in the range [0, 1]
and to be compared with the phase coherence. According to
(11), normalized As(t) should be equal to r(t), but a certain
delay can be observed as in the case of the phase differences.
Although this detail, synchronization is achieved using a DFT
instead of a full knowledge of the phases of the oscillators.
This procedure has a practical advantage in the use of collective
synchronization in distributed multiagent systems.

B. Multifrequency Coupling

The previous coupling equations consider that all agents
and z(t) have the same frequency. However, the uncontrol-
lable signal and consequently the environment rarely are a
sinusoidal function. It is commonly formed by several fre-
quency components or even stochastic signals. The modifi-
cation of the natural frequencies of the agents is required to
adapt them to complex environments. The natural frequency
modification mechanism, also called frequency switching, is
described in this section. This mechanism allows the multia-
gent system works on different natural frequencies, where each
agent is coupled to a certain frequency component through
(13). This multifrequency-coupled behavior names the MuFCO
algorithm.



CASTILLO-CAGIGAL et al.: MUFCO FOR DISTRIBUTED MULTIAGENT COORDINATION 945

Fig. 3. Conceptual example of the MuFCO algorithm operation with two agents: a and b. Before switching, the natural frequencies are ωa = 4ω0

and ωb = 11ω0. The goal of the MuFCO algorithm in this example is to reduce the main frequency components of s(t). Thus, the natural frequencies
of the agents will switch to the most prominent components of S(Ω). The coupling strength is negative in this example. After switching, the natural
frequencies are ωa = 6ω0 and ωb = 7ω0. This mechanism reduces the amplitudes of As

6 and As
7. On the other hand, As

4 and As
11 increase because

of the absence of these agents.

Let S(Ω) be the DFT of s(t). The goal of MuFCO algorithm
is to achieve a target shape of S(Ω). This target shape defines
the coordination process by indicating the desired frequency
characteristics of the environment. Fig. 3 shows a conceptual
example of the MuFCO algorithm operation. In this example,
the objective is to smooth s(t) by removing the most promi-
nent frequency components. Thus, the target shape of S(Ω) is
zero for every frequency component. It means that the agents
behave like a bank of filters. The coupling strength is paramount
to achieve the target shape. In this case, a negative coupling is
required. First, S(Ω) has a certain shape because of z(t) and
the initial ωi of every agent. In this example, there are two
agents: a and b. Before switching, ωa is in the fourth compo-
nent of S(Ω) and ωb is in the eleventh component. In order
to reduce the frequency components with the highest ampli-
tude, the agent a switches from the fourth component to the
sixth and the agent b switches from the eleventh component to
the seventh. The amplitudes of these frequency components are
reduced because of the negative coupling. On the other hand,
As

4 and As
11 increase because of the absence of these agents.

With a sufficient number of agents, all components may be
reduced.

MuFCO algorithm is a distributed algorithm which implies
that each agent chooses its natural frequency. The frequency
switching is divided in two steps: 1) the switching decision,
where each agent decides to stay in the current frequency
component or switch; and 2) the new frequency component
selection, where each agent chooses its new natural frequency.
The switching decision is done through the calculation of
the shape error function E(S(Ω)). It evaluates the difference
between the target shape and the current shape of S(Ω). The
output range of E(S(Ω)) is [0,1], where 0 denotes that both
shapes are equal and 1 denotes the maximum difference to
be evaluated. E(S(Ω)) is used as the stop condition so that
the lower its value, the lower the probability that an agent
switches to another frequency component. If an agent decides
to switch to another frequency component, it uses the transi-
tion rule T (S(Ω), n). The transition rule generates a probability
density function from the spectrum of s(t), where T (S(Ω), n)

Algorithm 1. High-level description of the MuFCO algorithm.

1: /* Frequency switching */
2: /* Stop condition */
3: S (Ω)← DFT of s(t)
4: E (S (Ω))← Calculate E(S(Ω))
5: rnd ← Generate random number ∈ [0,1]
6: if rnd ≤ E(S(Ω)) then
7: /* Target frequency */
8: ωtarget ← Get frequency with distributionT (S(Ω), n)
9: ωi = ωtarget

10: end if
11: /* Coupling Equation */
12: Δφi ← Phase difference modification with Eq.13
13: φi = φi +Δφi

is the probability to switch to frequency component n. Each
agent chooses its new natural frequency following this density
function.

Algorithm 1 describes the operation of the MuFCO algorithm
performed by every agent individually. It is executed each new
sample, it means every T smp. First, the agent decides whether
switch or not its frequency using the shape error function—see
from line 3 to 6. Second, if the agent switches, it chooses its new
natural frequency with the transition rule—see from line 8 to 9.
Finally, this agent modifies its phase using (13)—see from line
12 to 13. Once the frequency and phase have been modified, the
action of the agent is modified by following (3).

Fig. 4 shows an example of the MuFCO algorithm oper-
ation. There is an uncontrollable signal z(t) which is com-
posed by three frequency components: 1) ωz

5 = 2π5/64
rad/s;

2) ωz
15 = 2π15/64

rad/s; and 3) ωz
25 = 2π25/64

rad/s. The ampli-
tudes of these frequency components are Az

5 = 50, Az
15 = 30,

and Az
25 = 20. The DFT of s(t) is calculated with T smp = 1 s

and W = 64 samples. Fig. 4(a) shows the DFT of z(t). There
are 100 agents with K = −0.01. The initial natural frequencies
of the agents are uniformly distributed over the spectrum. In
addition, the initial phase differences are uniformly distributed
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Fig. 4. Representation in the frequency domain of the proposed example of the MuFCO algorithm operation. There are 100 agents with K = −0.01.
The uncontrollable signal has the following frequency components: Az

5 = 50, Az
15 = 30, and Az

25 = 20. The DFT is calculated with T smp = 1s and
W = 64 samples. This example lasts for 5000 s. (a) Development in time of the DFT of z(t). (b) Distribution of natural frequencies of xi(t) during
the example. (c) Development in time of the DFT of s(t).

in [−π, π). Fig. 4(b) shows the natural frequencies distribution
of the agents. The DFT of s(t) is shown in Fig. 4(c).

The following equation defines the shape error function for
this example:

E(S(Ω)) =
Pswitch
W/2

·
W/2∑
j=1

(
As

j

max(S(Ω))

)2

(14)

where Pswitch is the switching factor that denotes the proba-
bility that an agent switches to another frequency component,
and max(S(Ω)) is the historical maximum amplitude of any
frequency component measured during the example execution.

The transition rule for this example is defined by the follow-
ing equation:

T (S(Ω), n) =
(As

n)
2

W/2∑
j=1

(As
j)

2

. (15)

In this case, the higher the value of As
n, the higher the probabil-

ity to switch to the frequency component n.
In this example, MuFCO algorithm is executed during 5000

s. Z(Ω) keeps constant because this signal has been defined
as a fixed number of sinusoidal functions—see Fig. 4(a). On
the other hand, the agents switch their natural frequencies, and
they couple to their respective frequency components. They
switch to the frequency components with the higher amplitudes
of S(Ω). For this reason, their natural frequencies end up being
the same that the initial main components of S(Ω)—compare
Fig. 4(b) with Fig. 4(c). Thanks to the negative coupling, these
components are removed. The development of S(Ω) in time
shows how As

5, As
15, and As

25 are decreased until they achieve
a value close to zero.

IV. OPERATION EXAMPLE: SMART GRID APPLICATION

MuFCO algorithm may be used in different applications
where the environment and the actions of the agents can be
modeled as signals. In this section, the MuFCO algorithm is
used to coordinate consumptions in a smart grid. In general,
the consumption of an electrical grid behaves periodically: the
consumption profile almost repeats every day, week, or season.

The management of the consumption of these grids is receiving
increasing attention by research and industry with the so called
demand-side management (DSM) [16]. One of the main objec-
tives of the DSM is the smooth of the aggregated consumption
by reducing the difference between maximum and minimum
consumption power [17]. This smoothing requires the coordi-
nation of thousand or even million of elements spread over a
certain area. The coordination of these elements to use prop-
erly the available resource becomes a complex task which is
addressed by the so-called smart grids.

DSM in smart grids enhances its capabilities regarding the
classical electrical grids. The convergence of information and
communications technologies (ICTs) with power system engi-
neering allows new levels of automation. DSM in this context
is usually formulated as optimization problems, which may be
solved by various approaches [18]. For example, [19] presents
a residential load control based on convex optimization which
achieves an equilibrium between economical user benefit and
social welfare. In [20], game theory is used to solve an energy
consumption scheduling game to minimize energy costs. In
[21], self-organizing agents are able to solve fundamental
control and monitoring problems in smart microgrids. These
approaches usually require dynamic pricing to coordinate the
users’ facilities with the utility company. In this paper, a new
approach based on the use of collective synchronization of a
multiagent system is proposed. MuFCO algorithm coordinates
different agents to smooth the consumption of the smart grids
in a self-organized way, where self-organized means that each
agent defines a consumption profile without communicating
with other. Thus, the only information received by the agents is
the aggregated consumption. One of the main differences from
previous works is that MuFCO algorithm does not use pricing
information.

For this operation example, the electrical grid is defined
as a single node disregarding losses and transmission delays.
The electrical grid contains facilities of different users which
contain in turn different electrical loads. The consumption in
time of the facility i is represented as the power signal pi(t).
The sum of all facilities in the electrical grid is the aggre-

gated consumption such that s(t) =
M∑
i=1

pi(t), where M is the

number of facilities in the electrical grid. In this example, the



CASTILLO-CAGIGAL et al.: MUFCO FOR DISTRIBUTED MULTIAGENT COORDINATION 947

Fig. 5. Schematic example of the proposed electrical grid where there are two facilities a and b. pa(t) and pb(t) represent the consumed power of
each facility. xa(t) and xb(t) are the controllable consumptions which are managed by the MuFCO algorithm. za(t) and zb(t) are the uncontrollable
consumptions of facilities a and b, respectively. s(t) is the aggregated consumption of the electrical grid. This example is divided in two parts: 1)
without MuFCO where the controllable consumption is not synchronized; and 2) with MuFCO where the controllable consumption is synchronized
with the grid.

aggregated consumption is the environment signal. Each facil-
ity is divided into a controllable part and an uncontrollable
part. The uncontrollable part represents all consumptions that
cannot be managed by the MuFCO algorithm because of their
energy requirements or simply because control technology is
not available. The uncontrollable consumption of the facility i is
represented by zi(t). The controllable part represents consump-
tion that can be managed by the MuFCO algorithm, e.g., water
pumps, HVAC,1 and electric vehicle charging. The controllable
consumption of the facility i is represented by xi(t), which is
the action of the agent i. The action of the agents xi(t) is used
as consumption patterns. If an agent controls the consumption
of a electrical system, the power of this system will be modi-
fied such that its consumption will shape xi(t). In this paper,
an ideal case is considered, where the consumptions controlled
by the MuFCO algorithm can shape sinusoidal functions. Fig. 5
shows a schematic example of the proposed electrical grid. This
representation is consistent with the definition of the environ-
ment in Section II. Notice that, although each uncontrollable
consumption zi(t) belongs to a single facility, the sum of them
can be considered as a single uncontrollable consumption of the
whole grid z(t).

The electrical grid chosen for this example is the peninsular
Spanish grid during the year 2014. Fig. 6(a) shows the aggre-
gated consumption during this year. This consumption varies
along the year with a yearly average consumption of 28.1 GW,
a maximum consumption around 39.5 GW, and minimum con-
sumption around 17.2 GW. The daily difference between peak
and valley has also been calculated so that the maximum differ-
ence throughout the year is 15.5 GW, the minimum is 7.6 GW,
and the average is 11.7 GW. Fig. 6(b) zooms on a signal seg-
ment showing the consumption of the electrical grid during 2
weeks. The intraday variation can be appreciated in this figure.
This variation is the strongest in the consumption signal. The
spectrum of the aggregated consumption is shown in Fig. 6(c).

1Heating, ventilation, and air conditioning (HVAC).

The strongest frequency component has a period of 24 h veri-
fying the importance of intraday variation. The next strongest
component is in the 12-h period. For periods longer than 24 h,
the main frequency component corresponds to the weekly varia-
tions with a 168-h period. In this case, MuFCO algorithm is not
enabled; thus, the consumption of the electrical grid is directly
the environment and the uncontrollable signal s(t) = z(t).

In order to analyze the variability of the aggregated con-
sumption, the Crest Factor C has been used. It is a measure
of a waveform, showing the ratio of peak values to the average
value, such that

C =
|s|peak

srms
; srms =

√
s21 + s22 + · · ·+ s2N

N
(16)

where N is the number of samples taken from the aggregated
consumption, |s|peak is the absolute value of the maximum peak,
and srms is the root-mean square. The crest factor makes ref-
erence to a concrete time interval in which the aggregated
consumption is evaluated. The time interval is denoted with a
subscript, e.g., the crest factor of a day is denoted by Cday. In
this analysis, Cyear, Cmonth, Cweek, and Cday have been calcu-
lated. These crest factors are averaged during the whole year,
where C̄day represents the average of the crest factors of the 365
days, C̄week is the average of the 52 weeks, and C̄month is the
average of the 12 months. Table I,“without MuFCO” column,
shows the crest factor averages for the aggregated consumption
exposed in Fig. 6.

The example shown in this section is performed with 200
agents of 100MW of peak power: MuFCO algorithm is con-
trolling 20GW of the electrical grid (≈ 50% of the yearly
maximum peak). Recall that an agent ideally controls an elec-
trical system of any size. The electrical grid is defined by the
following equation:

s(t) = z(t) +
200∑
i=1

100MW sin(ωit+ φi) (17)
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Fig. 6. Aggregated consumption of peninsular Spain during 2014: (a) consumption of the electrical grid in time (s(t) = z(t)); (b) zoom on 2 weeks
of s(t); (c) DFT of the aggregated consumption. Source: Spanish grid operator (R.E.E.)

TABLE I
CREST FACTORS OF THE AGGREGATED CONSUMPTION

where s(t) is the aggregated consumption of the electrical grid
modified by the agents controlled by the MuFCO algorithm,
z(t) is the uncontrollable part of the grid that coincides with
the aggregated consumption of the example of Fig. 6, and the
sinusoidal functions are the consumption patterns of all agents.
The MuFCO algorithm uses the shape error function of (14) and
the transition rule of (15).

The MuFCO algorithm has four configurable parameters:
1)K; 2) P switch; 3) T smp; and 4) W . Their values depend on the
environment nature and optimization conditions. The optimiza-
tion conditions refer to a concrete objective, it means how the
MuFCO algorithm should modify the environment signal s(t).
In this example, the algorithm is tuned to reduce the intraday
variations of the electrical grid. The tuning process can be done
with different techniques of algorithm optimization as genetic
algorithms, ACO, PSO, etc. In this paper, the MuFCO algo-
rithm has been optimized using the iterated racing procedure
[22]. Its main purpose is to automatically configure optimiza-
tion algorithms by finding the most appropriate settings given
a set of instances of an optimization problem. irace executes
different instances of the problem with different configurable

parameter combinations of the MuFCO algorithm. An instance
of the problem represents a specific execution framework where
the MuFCO algorithm operates with a certain combination of
the configurable parameters. After the execution of an instance,
the MuFCO algorithm performance must be assessed through
a cost function. The goal of irace is to find the best combina-
tion of configurable parameters that minimizes the cost function
for the different instances. In order to assess the intraday vari-
ations, the cost function is the average daily crest factor C̄day.
The resulting optimization process shows that the value of the
configurable parameters that reduces the intraday variations
are: K = −0.03, P switch = 0.02, T smp = 90, and W = 16. It
is noteworthy that the sample period is 90 min; thus, the execu-
tion of the MuFCO algorithm only takes place in this interval.
This means that low computing power is required.

Fig. 7 shows an example of the MuFCO algorithm operation
optimized to reduce intraday variations. The aggregated con-
sumption with 20 GW controlled by the algorithm is shown
in Fig. 7(a). The intraday variations of the aggregated con-
sumption have been considerably reduced in comparison with
the situation of Fig. 6(a). The yearly average consumption is
28.1 GW, the maximum consumption is 35.8 GW, and the min-
imum consumption is 17.9 GW. The maximum daily difference
between peak and valley throughout the year is 11.2 GW, the
minimum is 1.3 GW, and the average is 4.7 GW. This effect
can be better appreciated by observing Fig. 7(b). The DFT of
the aggregated consumption also shows the intraday variation
reduction. Fig. 7(c) shows that the frequency components of 24-
and 12-h period have almost been removed in comparison with
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Fig. 7. Aggregated consumption of peninsular Spain during 2014 using MuFCO algorithm with daily optimization: (a) consumption of the electrical

grid in time (s(t) = z(t) +
i=1∑

200
xi(t)); (b) zoom on 2 weeks of s(t); (c) DFT of the aggregated consumption.

Fig. 8. Results of the statistical analysis of the example of the MuFCO
algorithm operation to reduce the uncertainty introduced by the random
component. These results are shown through a boxplot representation.
Dashed lines represent the crest factors when there are not consump-
tions controlled by the MuFCO algorithm (results of the example of
Fig. 6). ΔC is the difference between the crest factors without MuFCO
and the mean of the crest factors obtained from the analysis. The crest
factors have been reduced for all time intervals.

Fig. 6(c). The crest factor averages for this example are shown
in Table I, Cday column. All crest factors have been reduced with
special emphasis on the daily crest factor.

In the previous example, the reduction of the crest factors
using MuFCO algorithm has been shown. In the following, a

statistical analysis of this example is done to reduce the uncer-
tainty introduced by the random component. To carry out this
analysis, 100 experiments have been performed using MuFCO
with the optimized parameters. These experiments have the
same configuration as the previous example. They only dif-
fer in the seed of the random number generator. Fig. 8 shows
the result of the statistical analysis through a boxplot rep-
resentation. It shows the boxplot for the four types of crest
factors. The crest factors of the aggregated consumption with-
out MuFCO are also represented with discontinuous lines. They
correspond to the example of Fig. 6, where there are no random
components. These crest factors are used as reference of the
improvement brought by the MuFCO algorithm. Thereby the
crest factor improvement ΔC is also shown in the graphs. ΔC
is the difference between the crest factors without MuFCO and
the mean of the crest factors obtained from the analysis. All
crest factors are reduced by using MuFCO algorithm with the
optimized configurable parameters.

V. CONCLUSION

In this paper, an algorithm called MuFCO which imple-
ments a multiagent coordination in periodic environments has
been proposed. The coordination has been addressed from the
signal processing point of view, where all elements of the envi-
ronment are signals. The agents behave as oscillators whose
actions are sinusoidal functions. The environment signal has
been divided in different frequency components. The agents
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are coupled to these frequency components by performing a
coupling equation based on the Kuramoto model. Thanks to
this approach, an uncontrollable signal could be introduced
in the coordination process. In addition, the order parame-
ter has been replaced by the information of the frequency
components what allows a real-time implementation of the
algorithm. The natural frequencies can take different values in
a discrete range of these frequency components. The agents
are coupled to the component in which its natural frequency
is. This multifrequency-coupled behavior names the proposed
MuFCO algorithm. With this algorithm, the multiagent system
can coordinate and adapt in complex environments.

The coordination of multiagent systems with the environ-
ment from the signal processing point of view allows the
collective synchronization to be applied to more practical
applications. In this paper, the environment signals has been
analyzed through a DFT which is a widely use technique
in signal processing. However, the use of the DFT implies
that the information obtained from the frequency components
of the environment signal is not the same as in continuous
time. The sampling period and the processing window of the
DFT become key parameters for the MuFCO algorithm oper-
ation, and their proper value depends on the application. On
the other hand, the introduction of an uncontrollable signal
presents a new synchronization approach. The coordination can
be performed from a distributed point of view, where no infor-
mation is required from every agent. The agents do only require
information from the environment through the DFT. In addi-
tion, the oscillators can modify their natural frequencies by
performing a multifrequency behavior. This procedure differs
from most of works on coupled oscillators where the natural
frequencies have a certain distribution close to a central fre-
quency. To perform this modification or frequency switching, a
probability decision function has been defined which is called
transition rule. Through this rule, every oscillator chooses its
natural frequency in a certain discrete range. This algorithm
opens up a new approach to the application of such techniques
and to the adaptation of collectives of oscillators to complex
environments.

MuFCO algorithm may be applied in different applications
where the environment and the action of the agents can be mod-
eled as signals. In Section IV, the MuFCO algorithm has been
used to coordinate consumptions in a smart grid. Through this
coordination, the consumption of an electrical grid is smoothed.
In this example, the algorithm can coordinate the consumption
of the multiagent system by executing every 90 min. This is
a sign of the low computational load which can be reached
by MuFCO algorithm. In addition, the distributed approach
makes not necessary a central coordinator and reduces the
communication requirements: agents only need to receive the
aggregated consumption signal. These features present some
advantages for the smart grid management as low communi-
cation requirements, low computational load and data privacy.
These advantages are identified as being of great importance in
the development of such grids [23], [24]. Another advantage of
a self-organized multiagent system is the ease of introducing
a local energy management when distributed energy resources
are available. The rules are not strict because the agents adapt

between themselves so that they can pay attention to local
resources as storage or renewable energy without reporting
to any central agent. Following a similar procedure, MuFCO
algorithm may be used in other distributed multiagent system
applications, as distributed computing, coordination of fleet of
vehicles, or data networks.
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